3 #if CONFIG_IS_ENABLED(UNIT_TEST)
12 static void malloc_update_mallinfo (void);
13 void malloc_stats (void);
15 static void malloc_update_mallinfo ();
20 DECLARE_GLOBAL_DATA_PTR;
23 Emulation of sbrk for WIN32
24 All code within the ifdef WIN32 is untested by me.
26 Thanks to Martin Fong and others for supplying this.
32 #define AlignPage(add) (((add) + (malloc_getpagesize-1)) & \
33 ~(malloc_getpagesize-1))
34 #define AlignPage64K(add) (((add) + (0x10000 - 1)) & ~(0x10000 - 1))
36 /* resrve 64MB to insure large contiguous space */
37 #define RESERVED_SIZE (1024*1024*64)
38 #define NEXT_SIZE (2048*1024)
39 #define TOP_MEMORY ((unsigned long)2*1024*1024*1024)
42 typedef struct GmListElement GmListElement;
50 static GmListElement* head = 0;
51 static unsigned int gNextAddress = 0;
52 static unsigned int gAddressBase = 0;
53 static unsigned int gAllocatedSize = 0;
56 GmListElement* makeGmListElement (void* bas)
59 this = (GmListElement*)(void*)LocalAlloc (0, sizeof (GmListElement));
73 assert ( (head == NULL) || (head->base == (void*)gAddressBase));
74 if (gAddressBase && (gNextAddress - gAddressBase))
76 rval = VirtualFree ((void*)gAddressBase,
77 gNextAddress - gAddressBase,
83 GmListElement* next = head->next;
84 rval = VirtualFree (head->base, 0, MEM_RELEASE);
92 void* findRegion (void* start_address, unsigned long size)
94 MEMORY_BASIC_INFORMATION info;
95 if (size >= TOP_MEMORY) return NULL;
97 while ((unsigned long)start_address + size < TOP_MEMORY)
99 VirtualQuery (start_address, &info, sizeof (info));
100 if ((info.State == MEM_FREE) && (info.RegionSize >= size))
101 return start_address;
104 /* Requested region is not available so see if the */
105 /* next region is available. Set 'start_address' */
106 /* to the next region and call 'VirtualQuery()' */
109 start_address = (char*)info.BaseAddress + info.RegionSize;
111 /* Make sure we start looking for the next region */
112 /* on the *next* 64K boundary. Otherwise, even if */
113 /* the new region is free according to */
114 /* 'VirtualQuery()', the subsequent call to */
115 /* 'VirtualAlloc()' (which follows the call to */
116 /* this routine in 'wsbrk()') will round *down* */
117 /* the requested address to a 64K boundary which */
118 /* we already know is an address in the */
119 /* unavailable region. Thus, the subsequent call */
120 /* to 'VirtualAlloc()' will fail and bring us back */
121 /* here, causing us to go into an infinite loop. */
124 (void *) AlignPage64K((unsigned long) start_address);
132 void* wsbrk (long size)
137 if (gAddressBase == 0)
139 gAllocatedSize = max (RESERVED_SIZE, AlignPage (size));
140 gNextAddress = gAddressBase =
141 (unsigned int)VirtualAlloc (NULL, gAllocatedSize,
142 MEM_RESERVE, PAGE_NOACCESS);
143 } else if (AlignPage (gNextAddress + size) > (gAddressBase +
146 long new_size = max (NEXT_SIZE, AlignPage (size));
147 void* new_address = (void*)(gAddressBase+gAllocatedSize);
150 new_address = findRegion (new_address, new_size);
155 gAddressBase = gNextAddress =
156 (unsigned int)VirtualAlloc (new_address, new_size,
157 MEM_RESERVE, PAGE_NOACCESS);
158 /* repeat in case of race condition */
159 /* The region that we found has been snagged */
160 /* by another thread */
162 while (gAddressBase == 0);
164 assert (new_address == (void*)gAddressBase);
166 gAllocatedSize = new_size;
168 if (!makeGmListElement ((void*)gAddressBase))
171 if ((size + gNextAddress) > AlignPage (gNextAddress))
174 res = VirtualAlloc ((void*)AlignPage (gNextAddress),
175 (size + gNextAddress -
176 AlignPage (gNextAddress)),
177 MEM_COMMIT, PAGE_READWRITE);
181 tmp = (void*)gNextAddress;
182 gNextAddress = (unsigned int)tmp + size;
187 unsigned int alignedGoal = AlignPage (gNextAddress + size);
188 /* Trim by releasing the virtual memory */
189 if (alignedGoal >= gAddressBase)
191 VirtualFree ((void*)alignedGoal, gNextAddress - alignedGoal,
193 gNextAddress = gNextAddress + size;
194 return (void*)gNextAddress;
198 VirtualFree ((void*)gAddressBase, gNextAddress - gAddressBase,
200 gNextAddress = gAddressBase;
206 return (void*)gNextAddress;
221 INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
222 INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */
223 struct malloc_chunk* fd; /* double links -- used only if free. */
224 struct malloc_chunk* bk;
225 } __attribute__((__may_alias__)) ;
227 typedef struct malloc_chunk* mchunkptr;
231 malloc_chunk details:
233 (The following includes lightly edited explanations by Colin Plumb.)
235 Chunks of memory are maintained using a `boundary tag' method as
236 described in e.g., Knuth or Standish. (See the paper by Paul
237 Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
238 survey of such techniques.) Sizes of free chunks are stored both
239 in the front of each chunk and at the end. This makes
240 consolidating fragmented chunks into bigger chunks very fast. The
241 size fields also hold bits representing whether chunks are free or
244 An allocated chunk looks like this:
247 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
248 | Size of previous chunk, if allocated | |
249 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
250 | Size of chunk, in bytes |P|
251 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
252 | User data starts here... .
254 . (malloc_usable_space() bytes) .
256 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
258 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
261 Where "chunk" is the front of the chunk for the purpose of most of
262 the malloc code, but "mem" is the pointer that is returned to the
263 user. "Nextchunk" is the beginning of the next contiguous chunk.
265 Chunks always begin on even word boundries, so the mem portion
266 (which is returned to the user) is also on an even word boundary, and
267 thus double-word aligned.
269 Free chunks are stored in circular doubly-linked lists, and look like this:
271 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
272 | Size of previous chunk |
273 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
274 `head:' | Size of chunk, in bytes |P|
275 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
276 | Forward pointer to next chunk in list |
277 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
278 | Back pointer to previous chunk in list |
279 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
280 | Unused space (may be 0 bytes long) .
284 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
285 `foot:' | Size of chunk, in bytes |
286 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
288 The P (PREV_INUSE) bit, stored in the unused low-order bit of the
289 chunk size (which is always a multiple of two words), is an in-use
290 bit for the *previous* chunk. If that bit is *clear*, then the
291 word before the current chunk size contains the previous chunk
292 size, and can be used to find the front of the previous chunk.
293 (The very first chunk allocated always has this bit set,
294 preventing access to non-existent (or non-owned) memory.)
296 Note that the `foot' of the current chunk is actually represented
297 as the prev_size of the NEXT chunk. (This makes it easier to
298 deal with alignments etc).
300 The two exceptions to all this are
302 1. The special chunk `top', which doesn't bother using the
303 trailing size field since there is no
304 next contiguous chunk that would have to index off it. (After
305 initialization, `top' is forced to always exist. If it would
306 become less than MINSIZE bytes long, it is replenished via
309 2. Chunks allocated via mmap, which have the second-lowest-order
310 bit (IS_MMAPPED) set in their size fields. Because they are
311 never merged or traversed from any other chunk, they have no
312 foot size or inuse information.
314 Available chunks are kept in any of several places (all declared below):
316 * `av': An array of chunks serving as bin headers for consolidated
317 chunks. Each bin is doubly linked. The bins are approximately
318 proportionally (log) spaced. There are a lot of these bins
319 (128). This may look excessive, but works very well in
320 practice. All procedures maintain the invariant that no
321 consolidated chunk physically borders another one. Chunks in
322 bins are kept in size order, with ties going to the
323 approximately least recently used chunk.
325 The chunks in each bin are maintained in decreasing sorted order by
326 size. This is irrelevant for the small bins, which all contain
327 the same-sized chunks, but facilitates best-fit allocation for
328 larger chunks. (These lists are just sequential. Keeping them in
329 order almost never requires enough traversal to warrant using
330 fancier ordered data structures.) Chunks of the same size are
331 linked with the most recently freed at the front, and allocations
332 are taken from the back. This results in LRU or FIFO allocation
333 order, which tends to give each chunk an equal opportunity to be
334 consolidated with adjacent freed chunks, resulting in larger free
335 chunks and less fragmentation.
337 * `top': The top-most available chunk (i.e., the one bordering the
338 end of available memory) is treated specially. It is never
339 included in any bin, is used only if no other chunk is
340 available, and is released back to the system if it is very
341 large (see M_TRIM_THRESHOLD).
343 * `last_remainder': A bin holding only the remainder of the
344 most recently split (non-top) chunk. This bin is checked
345 before other non-fitting chunks, so as to provide better
346 locality for runs of sequentially allocated chunks.
348 * Implicitly, through the host system's memory mapping tables.
349 If supported, requests greater than a threshold are usually
350 serviced via calls to mmap, and then later released via munmap.
354 /* sizes, alignments */
356 #define SIZE_SZ (sizeof(INTERNAL_SIZE_T))
357 #define MALLOC_ALIGNMENT (SIZE_SZ + SIZE_SZ)
358 #define MALLOC_ALIGN_MASK (MALLOC_ALIGNMENT - 1)
359 #define MINSIZE (sizeof(struct malloc_chunk))
361 /* conversion from malloc headers to user pointers, and back */
363 #define chunk2mem(p) ((Void_t*)((char*)(p) + 2*SIZE_SZ))
364 #define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
366 /* pad request bytes into a usable size */
368 #define request2size(req) \
369 (((long)((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) < \
370 (long)(MINSIZE + MALLOC_ALIGN_MASK)) ? MINSIZE : \
371 (((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) & ~(MALLOC_ALIGN_MASK)))
373 /* Check if m has acceptable alignment */
375 #define aligned_OK(m) (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0)
381 Physical chunk operations
385 /* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
387 #define PREV_INUSE 0x1
389 /* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
391 #define IS_MMAPPED 0x2
393 /* Bits to mask off when extracting size */
395 #define SIZE_BITS (PREV_INUSE|IS_MMAPPED)
398 /* Ptr to next physical malloc_chunk. */
400 #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) ))
402 /* Ptr to previous physical malloc_chunk */
404 #define prev_chunk(p)\
405 ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) ))
408 /* Treat space at ptr + offset as a chunk */
410 #define chunk_at_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
416 Dealing with use bits
419 /* extract p's inuse bit */
422 ((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE)
424 /* extract inuse bit of previous chunk */
426 #define prev_inuse(p) ((p)->size & PREV_INUSE)
428 /* check for mmap()'ed chunk */
430 #define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
432 /* set/clear chunk as in use without otherwise disturbing */
434 #define set_inuse(p)\
435 ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE
437 #define clear_inuse(p)\
438 ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE)
440 /* check/set/clear inuse bits in known places */
442 #define inuse_bit_at_offset(p, s)\
443 (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)
445 #define set_inuse_bit_at_offset(p, s)\
446 (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)
448 #define clear_inuse_bit_at_offset(p, s)\
449 (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE))
455 Dealing with size fields
458 /* Get size, ignoring use bits */
460 #define chunksize(p) ((p)->size & ~(SIZE_BITS))
462 /* Set size at head, without disturbing its use bit */
464 #define set_head_size(p, s) ((p)->size = (((p)->size & PREV_INUSE) | (s)))
466 /* Set size/use ignoring previous bits in header */
468 #define set_head(p, s) ((p)->size = (s))
470 /* Set size at footer (only when chunk is not in use) */
472 #define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_size = (s))
481 The bins, `av_' are an array of pairs of pointers serving as the
482 heads of (initially empty) doubly-linked lists of chunks, laid out
483 in a way so that each pair can be treated as if it were in a
484 malloc_chunk. (This way, the fd/bk offsets for linking bin heads
485 and chunks are the same).
487 Bins for sizes < 512 bytes contain chunks of all the same size, spaced
488 8 bytes apart. Larger bins are approximately logarithmically
489 spaced. (See the table below.) The `av_' array is never mentioned
490 directly in the code, but instead via bin access macros.
499 2 bins of size 262144
500 1 bin of size what's left
502 There is actually a little bit of slop in the numbers in bin_index
503 for the sake of speed. This makes no difference elsewhere.
505 The special chunks `top' and `last_remainder' get their own bins,
506 (this is implemented via yet more trickery with the av_ array),
507 although `top' is never properly linked to its bin since it is
508 always handled specially.
512 #define NAV 128 /* number of bins */
514 typedef struct malloc_chunk* mbinptr;
518 #define bin_at(i) ((mbinptr)((char*)&(av_[2*(i) + 2]) - 2*SIZE_SZ))
519 #define next_bin(b) ((mbinptr)((char*)(b) + 2 * sizeof(mbinptr)))
520 #define prev_bin(b) ((mbinptr)((char*)(b) - 2 * sizeof(mbinptr)))
523 The first 2 bins are never indexed. The corresponding av_ cells are instead
524 used for bookkeeping. This is not to save space, but to simplify
525 indexing, maintain locality, and avoid some initialization tests.
528 #define top (av_[2]) /* The topmost chunk */
529 #define last_remainder (bin_at(1)) /* remainder from last split */
533 Because top initially points to its own bin with initial
534 zero size, thus forcing extension on the first malloc request,
535 we avoid having any special code in malloc to check whether
536 it even exists yet. But we still need to in malloc_extend_top.
539 #define initial_top ((mchunkptr)(bin_at(0)))
541 /* Helper macro to initialize bins */
543 #define IAV(i) bin_at(i), bin_at(i)
545 static mbinptr av_[NAV * 2 + 2] = {
547 IAV(0), IAV(1), IAV(2), IAV(3), IAV(4), IAV(5), IAV(6), IAV(7),
548 IAV(8), IAV(9), IAV(10), IAV(11), IAV(12), IAV(13), IAV(14), IAV(15),
549 IAV(16), IAV(17), IAV(18), IAV(19), IAV(20), IAV(21), IAV(22), IAV(23),
550 IAV(24), IAV(25), IAV(26), IAV(27), IAV(28), IAV(29), IAV(30), IAV(31),
551 IAV(32), IAV(33), IAV(34), IAV(35), IAV(36), IAV(37), IAV(38), IAV(39),
552 IAV(40), IAV(41), IAV(42), IAV(43), IAV(44), IAV(45), IAV(46), IAV(47),
553 IAV(48), IAV(49), IAV(50), IAV(51), IAV(52), IAV(53), IAV(54), IAV(55),
554 IAV(56), IAV(57), IAV(58), IAV(59), IAV(60), IAV(61), IAV(62), IAV(63),
555 IAV(64), IAV(65), IAV(66), IAV(67), IAV(68), IAV(69), IAV(70), IAV(71),
556 IAV(72), IAV(73), IAV(74), IAV(75), IAV(76), IAV(77), IAV(78), IAV(79),
557 IAV(80), IAV(81), IAV(82), IAV(83), IAV(84), IAV(85), IAV(86), IAV(87),
558 IAV(88), IAV(89), IAV(90), IAV(91), IAV(92), IAV(93), IAV(94), IAV(95),
559 IAV(96), IAV(97), IAV(98), IAV(99), IAV(100), IAV(101), IAV(102), IAV(103),
560 IAV(104), IAV(105), IAV(106), IAV(107), IAV(108), IAV(109), IAV(110), IAV(111),
561 IAV(112), IAV(113), IAV(114), IAV(115), IAV(116), IAV(117), IAV(118), IAV(119),
562 IAV(120), IAV(121), IAV(122), IAV(123), IAV(124), IAV(125), IAV(126), IAV(127)
565 #ifdef CONFIG_NEEDS_MANUAL_RELOC
566 static void malloc_bin_reloc(void)
568 mbinptr *p = &av_[2];
571 for (i = 2; i < ARRAY_SIZE(av_); ++i, ++p)
572 *p = (mbinptr)((ulong)*p + gd->reloc_off);
575 static inline void malloc_bin_reloc(void) {}
578 #ifdef CONFIG_SYS_MALLOC_DEFAULT_TO_INIT
579 static void malloc_init(void);
582 ulong mem_malloc_start = 0;
583 ulong mem_malloc_end = 0;
584 ulong mem_malloc_brk = 0;
586 void *sbrk(ptrdiff_t increment)
588 ulong old = mem_malloc_brk;
589 ulong new = old + increment;
592 * if we are giving memory back make sure we clear it out since
593 * we set MORECORE_CLEARS to 1
596 memset((void *)new, 0, -increment);
598 if ((new < mem_malloc_start) || (new > mem_malloc_end))
599 return (void *)MORECORE_FAILURE;
601 mem_malloc_brk = new;
606 void mem_malloc_init(ulong start, ulong size)
608 mem_malloc_start = start;
609 mem_malloc_end = start + size;
610 mem_malloc_brk = start;
612 #ifdef CONFIG_SYS_MALLOC_DEFAULT_TO_INIT
616 debug("using memory %#lx-%#lx for malloc()\n", mem_malloc_start,
618 #ifdef CONFIG_SYS_MALLOC_CLEAR_ON_INIT
619 memset((void *)mem_malloc_start, 0x0, size);
624 /* field-extraction macros */
626 #define first(b) ((b)->fd)
627 #define last(b) ((b)->bk)
633 #define bin_index(sz) \
634 (((((unsigned long)(sz)) >> 9) == 0) ? (((unsigned long)(sz)) >> 3): \
635 ((((unsigned long)(sz)) >> 9) <= 4) ? 56 + (((unsigned long)(sz)) >> 6): \
636 ((((unsigned long)(sz)) >> 9) <= 20) ? 91 + (((unsigned long)(sz)) >> 9): \
637 ((((unsigned long)(sz)) >> 9) <= 84) ? 110 + (((unsigned long)(sz)) >> 12): \
638 ((((unsigned long)(sz)) >> 9) <= 340) ? 119 + (((unsigned long)(sz)) >> 15): \
639 ((((unsigned long)(sz)) >> 9) <= 1364) ? 124 + (((unsigned long)(sz)) >> 18): \
642 bins for chunks < 512 are all spaced 8 bytes apart, and hold
643 identically sized chunks. This is exploited in malloc.
646 #define MAX_SMALLBIN 63
647 #define MAX_SMALLBIN_SIZE 512
648 #define SMALLBIN_WIDTH 8
650 #define smallbin_index(sz) (((unsigned long)(sz)) >> 3)
653 Requests are `small' if both the corresponding and the next bin are small
656 #define is_small_request(nb) (nb < MAX_SMALLBIN_SIZE - SMALLBIN_WIDTH)
661 To help compensate for the large number of bins, a one-level index
662 structure is used for bin-by-bin searching. `binblocks' is a
663 one-word bitvector recording whether groups of BINBLOCKWIDTH bins
664 have any (possibly) non-empty bins, so they can be skipped over
665 all at once during during traversals. The bits are NOT always
666 cleared as soon as all bins in a block are empty, but instead only
667 when all are noticed to be empty during traversal in malloc.
670 #define BINBLOCKWIDTH 4 /* bins per block */
672 #define binblocks_r ((INTERNAL_SIZE_T)av_[1]) /* bitvector of nonempty blocks */
673 #define binblocks_w (av_[1])
675 /* bin<->block macros */
677 #define idx2binblock(ix) ((unsigned)1 << (ix / BINBLOCKWIDTH))
678 #define mark_binblock(ii) (binblocks_w = (mbinptr)(binblocks_r | idx2binblock(ii)))
679 #define clear_binblock(ii) (binblocks_w = (mbinptr)(binblocks_r & ~(idx2binblock(ii))))
685 /* Other static bookkeeping data */
687 /* variables holding tunable values */
689 static unsigned long trim_threshold = DEFAULT_TRIM_THRESHOLD;
690 static unsigned long top_pad = DEFAULT_TOP_PAD;
691 static unsigned int n_mmaps_max = DEFAULT_MMAP_MAX;
692 static unsigned long mmap_threshold = DEFAULT_MMAP_THRESHOLD;
694 /* The first value returned from sbrk */
695 static char* sbrk_base = (char*)(-1);
697 /* The maximum memory obtained from system via sbrk */
698 static unsigned long max_sbrked_mem = 0;
700 /* The maximum via either sbrk or mmap */
701 static unsigned long max_total_mem = 0;
703 /* internal working copy of mallinfo */
704 static struct mallinfo current_mallinfo = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
706 /* The total memory obtained from system via sbrk */
707 #define sbrked_mem (current_mallinfo.arena)
712 static unsigned int n_mmaps = 0;
714 static unsigned long mmapped_mem = 0;
716 static unsigned int max_n_mmaps = 0;
717 static unsigned long max_mmapped_mem = 0;
720 #ifdef CONFIG_SYS_MALLOC_DEFAULT_TO_INIT
721 static void malloc_init(void)
725 debug("bins (av_ array) are at %p\n", (void *)av_);
727 av_[0] = NULL; av_[1] = NULL;
728 for (i = 2, j = 2; i < NAV * 2 + 2; i += 2, j++) {
729 av_[i] = bin_at(j - 2);
730 av_[i + 1] = bin_at(j - 2);
732 /* Just print the first few bins so that
733 * we can see there are alright.
736 debug("av_[%d]=%lx av_[%d]=%lx\n",
738 i + 1, (ulong)av_[i + 1]);
741 /* Init the static bookkeeping as well */
742 sbrk_base = (char *)(-1);
746 memset((void *)¤t_mallinfo, 0, sizeof(struct mallinfo));
759 These routines make a number of assertions about the states
760 of data structures that should be true at all times. If any
761 are not true, it's very likely that a user program has somehow
762 trashed memory. (It's also possible that there is a coding error
763 in malloc. In which case, please report it!)
767 static void do_check_chunk(mchunkptr p)
769 static void do_check_chunk(p) mchunkptr p;
772 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
774 /* No checkable chunk is mmapped */
775 assert(!chunk_is_mmapped(p));
777 /* Check for legal address ... */
778 assert((char*)p >= sbrk_base);
780 assert((char*)p + sz <= (char*)top);
782 assert((char*)p + sz <= sbrk_base + sbrked_mem);
788 static void do_check_free_chunk(mchunkptr p)
790 static void do_check_free_chunk(p) mchunkptr p;
793 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
794 mchunkptr next = chunk_at_offset(p, sz);
798 /* Check whether it claims to be free ... */
801 /* Unless a special marker, must have OK fields */
802 if ((long)sz >= (long)MINSIZE)
804 assert((sz & MALLOC_ALIGN_MASK) == 0);
805 assert(aligned_OK(chunk2mem(p)));
806 /* ... matching footer field */
807 assert(next->prev_size == sz);
808 /* ... and is fully consolidated */
809 assert(prev_inuse(p));
810 assert (next == top || inuse(next));
812 /* ... and has minimally sane links */
813 assert(p->fd->bk == p);
814 assert(p->bk->fd == p);
816 else /* markers are always of size SIZE_SZ */
817 assert(sz == SIZE_SZ);
821 static void do_check_inuse_chunk(mchunkptr p)
823 static void do_check_inuse_chunk(p) mchunkptr p;
826 mchunkptr next = next_chunk(p);
829 /* Check whether it claims to be in use ... */
832 /* ... and is surrounded by OK chunks.
833 Since more things can be checked with free chunks than inuse ones,
834 if an inuse chunk borders them and debug is on, it's worth doing them.
838 mchunkptr prv = prev_chunk(p);
839 assert(next_chunk(prv) == p);
840 do_check_free_chunk(prv);
844 assert(prev_inuse(next));
845 assert(chunksize(next) >= MINSIZE);
847 else if (!inuse(next))
848 do_check_free_chunk(next);
853 static void do_check_malloced_chunk(mchunkptr p, INTERNAL_SIZE_T s)
855 static void do_check_malloced_chunk(p, s) mchunkptr p; INTERNAL_SIZE_T s;
858 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
861 do_check_inuse_chunk(p);
864 assert((long)sz >= (long)MINSIZE);
865 assert((sz & MALLOC_ALIGN_MASK) == 0);
867 assert(room < (long)MINSIZE);
869 /* ... and alignment */
870 assert(aligned_OK(chunk2mem(p)));
873 /* ... and was allocated at front of an available chunk */
874 assert(prev_inuse(p));
879 #define check_free_chunk(P) do_check_free_chunk(P)
880 #define check_inuse_chunk(P) do_check_inuse_chunk(P)
881 #define check_chunk(P) do_check_chunk(P)
882 #define check_malloced_chunk(P,N) do_check_malloced_chunk(P,N)
884 #define check_free_chunk(P)
885 #define check_inuse_chunk(P)
886 #define check_chunk(P)
887 #define check_malloced_chunk(P,N)
893 Macro-based internal utilities
898 Linking chunks in bin lists.
899 Call these only with variables, not arbitrary expressions, as arguments.
903 Place chunk p of size s in its bin, in size order,
904 putting it ahead of others of same size.
908 #define frontlink(P, S, IDX, BK, FD) \
910 if (S < MAX_SMALLBIN_SIZE) \
912 IDX = smallbin_index(S); \
913 mark_binblock(IDX); \
918 FD->bk = BK->fd = P; \
922 IDX = bin_index(S); \
925 if (FD == BK) mark_binblock(IDX); \
928 while (FD != BK && S < chunksize(FD)) FD = FD->fd; \
933 FD->bk = BK->fd = P; \
938 /* take a chunk off a list */
940 #define unlink(P, BK, FD) \
948 /* Place p as the last remainder */
950 #define link_last_remainder(P) \
952 last_remainder->fd = last_remainder->bk = P; \
953 P->fd = P->bk = last_remainder; \
956 /* Clear the last_remainder bin */
958 #define clear_last_remainder \
959 (last_remainder->fd = last_remainder->bk = last_remainder)
965 /* Routines dealing with mmap(). */
970 static mchunkptr mmap_chunk(size_t size)
972 static mchunkptr mmap_chunk(size) size_t size;
975 size_t page_mask = malloc_getpagesize - 1;
978 #ifndef MAP_ANONYMOUS
982 if(n_mmaps >= n_mmaps_max) return 0; /* too many regions */
984 /* For mmapped chunks, the overhead is one SIZE_SZ unit larger, because
985 * there is no following chunk whose prev_size field could be used.
987 size = (size + SIZE_SZ + page_mask) & ~page_mask;
990 p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE,
991 MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
992 #else /* !MAP_ANONYMOUS */
995 fd = open("/dev/zero", O_RDWR);
998 p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
1001 if(p == (mchunkptr)-1) return 0;
1004 if (n_mmaps > max_n_mmaps) max_n_mmaps = n_mmaps;
1006 /* We demand that eight bytes into a page must be 8-byte aligned. */
1007 assert(aligned_OK(chunk2mem(p)));
1009 /* The offset to the start of the mmapped region is stored
1010 * in the prev_size field of the chunk; normally it is zero,
1011 * but that can be changed in memalign().
1014 set_head(p, size|IS_MMAPPED);
1016 mmapped_mem += size;
1017 if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
1018 max_mmapped_mem = mmapped_mem;
1019 if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1020 max_total_mem = mmapped_mem + sbrked_mem;
1025 static void munmap_chunk(mchunkptr p)
1027 static void munmap_chunk(p) mchunkptr p;
1030 INTERNAL_SIZE_T size = chunksize(p);
1033 assert (chunk_is_mmapped(p));
1034 assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1035 assert((n_mmaps > 0));
1036 assert(((p->prev_size + size) & (malloc_getpagesize-1)) == 0);
1039 mmapped_mem -= (size + p->prev_size);
1041 ret = munmap((char *)p - p->prev_size, size + p->prev_size);
1043 /* munmap returns non-zero on failure */
1050 static mchunkptr mremap_chunk(mchunkptr p, size_t new_size)
1052 static mchunkptr mremap_chunk(p, new_size) mchunkptr p; size_t new_size;
1055 size_t page_mask = malloc_getpagesize - 1;
1056 INTERNAL_SIZE_T offset = p->prev_size;
1057 INTERNAL_SIZE_T size = chunksize(p);
1060 assert (chunk_is_mmapped(p));
1061 assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1062 assert((n_mmaps > 0));
1063 assert(((size + offset) & (malloc_getpagesize-1)) == 0);
1065 /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
1066 new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask;
1068 cp = (char *)mremap((char *)p - offset, size + offset, new_size, 1);
1070 if (cp == (char *)-1) return 0;
1072 p = (mchunkptr)(cp + offset);
1074 assert(aligned_OK(chunk2mem(p)));
1076 assert((p->prev_size == offset));
1077 set_head(p, (new_size - offset)|IS_MMAPPED);
1079 mmapped_mem -= size + offset;
1080 mmapped_mem += new_size;
1081 if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
1082 max_mmapped_mem = mmapped_mem;
1083 if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1084 max_total_mem = mmapped_mem + sbrked_mem;
1088 #endif /* HAVE_MREMAP */
1090 #endif /* HAVE_MMAP */
1093 Extend the top-most chunk by obtaining memory from system.
1094 Main interface to sbrk (but see also malloc_trim).
1098 static void malloc_extend_top(INTERNAL_SIZE_T nb)
1100 static void malloc_extend_top(nb) INTERNAL_SIZE_T nb;
1103 char* brk; /* return value from sbrk */
1104 INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of sbrked space */
1105 INTERNAL_SIZE_T correction; /* bytes for 2nd sbrk call */
1106 char* new_brk; /* return of 2nd sbrk call */
1107 INTERNAL_SIZE_T top_size; /* new size of top chunk */
1109 mchunkptr old_top = top; /* Record state of old top */
1110 INTERNAL_SIZE_T old_top_size = chunksize(old_top);
1111 char* old_end = (char*)(chunk_at_offset(old_top, old_top_size));
1113 /* Pad request with top_pad plus minimal overhead */
1115 INTERNAL_SIZE_T sbrk_size = nb + top_pad + MINSIZE;
1116 unsigned long pagesz = malloc_getpagesize;
1118 /* If not the first time through, round to preserve page boundary */
1119 /* Otherwise, we need to correct to a page size below anyway. */
1120 /* (We also correct below if an intervening foreign sbrk call.) */
1122 if (sbrk_base != (char*)(-1))
1123 sbrk_size = (sbrk_size + (pagesz - 1)) & ~(pagesz - 1);
1125 brk = (char*)(MORECORE (sbrk_size));
1127 /* Fail if sbrk failed or if a foreign sbrk call killed our space */
1128 if (brk == (char*)(MORECORE_FAILURE) ||
1129 (brk < old_end && old_top != initial_top))
1132 sbrked_mem += sbrk_size;
1134 if (brk == old_end) /* can just add bytes to current top */
1136 top_size = sbrk_size + old_top_size;
1137 set_head(top, top_size | PREV_INUSE);
1141 if (sbrk_base == (char*)(-1)) /* First time through. Record base */
1143 else /* Someone else called sbrk(). Count those bytes as sbrked_mem. */
1144 sbrked_mem += brk - (char*)old_end;
1146 /* Guarantee alignment of first new chunk made from this space */
1147 front_misalign = (unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK;
1148 if (front_misalign > 0)
1150 correction = (MALLOC_ALIGNMENT) - front_misalign;
1156 /* Guarantee the next brk will be at a page boundary */
1158 correction += ((((unsigned long)(brk + sbrk_size))+(pagesz-1)) &
1159 ~(pagesz - 1)) - ((unsigned long)(brk + sbrk_size));
1161 /* Allocate correction */
1162 new_brk = (char*)(MORECORE (correction));
1163 if (new_brk == (char*)(MORECORE_FAILURE)) return;
1165 sbrked_mem += correction;
1167 top = (mchunkptr)brk;
1168 top_size = new_brk - brk + correction;
1169 set_head(top, top_size | PREV_INUSE);
1171 if (old_top != initial_top)
1174 /* There must have been an intervening foreign sbrk call. */
1175 /* A double fencepost is necessary to prevent consolidation */
1177 /* If not enough space to do this, then user did something very wrong */
1178 if (old_top_size < MINSIZE)
1180 set_head(top, PREV_INUSE); /* will force null return from malloc */
1184 /* Also keep size a multiple of MALLOC_ALIGNMENT */
1185 old_top_size = (old_top_size - 3*SIZE_SZ) & ~MALLOC_ALIGN_MASK;
1186 set_head_size(old_top, old_top_size);
1187 chunk_at_offset(old_top, old_top_size )->size =
1189 chunk_at_offset(old_top, old_top_size + SIZE_SZ)->size =
1191 /* If possible, release the rest. */
1192 if (old_top_size >= MINSIZE)
1193 fREe(chunk2mem(old_top));
1197 if ((unsigned long)sbrked_mem > (unsigned long)max_sbrked_mem)
1198 max_sbrked_mem = sbrked_mem;
1199 if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1200 max_total_mem = mmapped_mem + sbrked_mem;
1202 /* We always land on a page boundary */
1203 assert(((unsigned long)((char*)top + top_size) & (pagesz - 1)) == 0);
1209 /* Main public routines */
1215 The requested size is first converted into a usable form, `nb'.
1216 This currently means to add 4 bytes overhead plus possibly more to
1217 obtain 8-byte alignment and/or to obtain a size of at least
1218 MINSIZE (currently 16 bytes), the smallest allocatable size.
1219 (All fits are considered `exact' if they are within MINSIZE bytes.)
1221 From there, the first successful of the following steps is taken:
1223 1. The bin corresponding to the request size is scanned, and if
1224 a chunk of exactly the right size is found, it is taken.
1226 2. The most recently remaindered chunk is used if it is big
1227 enough. This is a form of (roving) first fit, used only in
1228 the absence of exact fits. Runs of consecutive requests use
1229 the remainder of the chunk used for the previous such request
1230 whenever possible. This limited use of a first-fit style
1231 allocation strategy tends to give contiguous chunks
1232 coextensive lifetimes, which improves locality and can reduce
1233 fragmentation in the long run.
1235 3. Other bins are scanned in increasing size order, using a
1236 chunk big enough to fulfill the request, and splitting off
1237 any remainder. This search is strictly by best-fit; i.e.,
1238 the smallest (with ties going to approximately the least
1239 recently used) chunk that fits is selected.
1241 4. If large enough, the chunk bordering the end of memory
1242 (`top') is split off. (This use of `top' is in accord with
1243 the best-fit search rule. In effect, `top' is treated as
1244 larger (and thus less well fitting) than any other available
1245 chunk since it can be extended to be as large as necessary
1246 (up to system limitations).
1248 5. If the request size meets the mmap threshold and the
1249 system supports mmap, and there are few enough currently
1250 allocated mmapped regions, and a call to mmap succeeds,
1251 the request is allocated via direct memory mapping.
1253 6. Otherwise, the top of memory is extended by
1254 obtaining more space from the system (normally using sbrk,
1255 but definable to anything else via the MORECORE macro).
1256 Memory is gathered from the system (in system page-sized
1257 units) in a way that allows chunks obtained across different
1258 sbrk calls to be consolidated, but does not require
1259 contiguous memory. Thus, it should be safe to intersperse
1260 mallocs with other sbrk calls.
1263 All allocations are made from the the `lowest' part of any found
1264 chunk. (The implementation invariant is that prev_inuse is
1265 always true of any allocated chunk; i.e., that each allocated
1266 chunk borders either a previously allocated and still in-use chunk,
1267 or the base of its memory arena.)
1272 Void_t* mALLOc(size_t bytes)
1274 Void_t* mALLOc(bytes) size_t bytes;
1277 mchunkptr victim; /* inspected/selected chunk */
1278 INTERNAL_SIZE_T victim_size; /* its size */
1279 int idx; /* index for bin traversal */
1280 mbinptr bin; /* associated bin */
1281 mchunkptr remainder; /* remainder from a split */
1282 long remainder_size; /* its size */
1283 int remainder_index; /* its bin index */
1284 unsigned long block; /* block traverser bit */
1285 int startidx; /* first bin of a traversed block */
1286 mchunkptr fwd; /* misc temp for linking */
1287 mchunkptr bck; /* misc temp for linking */
1288 mbinptr q; /* misc temp */
1292 #if CONFIG_VAL(SYS_MALLOC_F_LEN)
1293 if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT))
1294 return malloc_simple(bytes);
1297 /* check if mem_malloc_init() was run */
1298 if ((mem_malloc_start == 0) && (mem_malloc_end == 0)) {
1299 /* not initialized yet */
1303 if ((long)bytes < 0) return NULL;
1305 nb = request2size(bytes); /* padded request size; */
1307 /* Check for exact match in a bin */
1309 if (is_small_request(nb)) /* Faster version for small requests */
1311 idx = smallbin_index(nb);
1313 /* No traversal or size check necessary for small bins. */
1318 /* Also scan the next one, since it would have a remainder < MINSIZE */
1326 victim_size = chunksize(victim);
1327 unlink(victim, bck, fwd);
1328 set_inuse_bit_at_offset(victim, victim_size);
1329 check_malloced_chunk(victim, nb);
1330 return chunk2mem(victim);
1333 idx += 2; /* Set for bin scan below. We've already scanned 2 bins. */
1338 idx = bin_index(nb);
1341 for (victim = last(bin); victim != bin; victim = victim->bk)
1343 victim_size = chunksize(victim);
1344 remainder_size = victim_size - nb;
1346 if (remainder_size >= (long)MINSIZE) /* too big */
1348 --idx; /* adjust to rescan below after checking last remainder */
1352 else if (remainder_size >= 0) /* exact fit */
1354 unlink(victim, bck, fwd);
1355 set_inuse_bit_at_offset(victim, victim_size);
1356 check_malloced_chunk(victim, nb);
1357 return chunk2mem(victim);
1365 /* Try to use the last split-off remainder */
1367 if ( (victim = last_remainder->fd) != last_remainder)
1369 victim_size = chunksize(victim);
1370 remainder_size = victim_size - nb;
1372 if (remainder_size >= (long)MINSIZE) /* re-split */
1374 remainder = chunk_at_offset(victim, nb);
1375 set_head(victim, nb | PREV_INUSE);
1376 link_last_remainder(remainder);
1377 set_head(remainder, remainder_size | PREV_INUSE);
1378 set_foot(remainder, remainder_size);
1379 check_malloced_chunk(victim, nb);
1380 return chunk2mem(victim);
1383 clear_last_remainder;
1385 if (remainder_size >= 0) /* exhaust */
1387 set_inuse_bit_at_offset(victim, victim_size);
1388 check_malloced_chunk(victim, nb);
1389 return chunk2mem(victim);
1392 /* Else place in bin */
1394 frontlink(victim, victim_size, remainder_index, bck, fwd);
1398 If there are any possibly nonempty big-enough blocks,
1399 search for best fitting chunk by scanning bins in blockwidth units.
1402 if ( (block = idx2binblock(idx)) <= binblocks_r)
1405 /* Get to the first marked block */
1407 if ( (block & binblocks_r) == 0)
1409 /* force to an even block boundary */
1410 idx = (idx & ~(BINBLOCKWIDTH - 1)) + BINBLOCKWIDTH;
1412 while ((block & binblocks_r) == 0)
1414 idx += BINBLOCKWIDTH;
1419 /* For each possibly nonempty block ... */
1422 startidx = idx; /* (track incomplete blocks) */
1423 q = bin = bin_at(idx);
1425 /* For each bin in this block ... */
1428 /* Find and use first big enough chunk ... */
1430 for (victim = last(bin); victim != bin; victim = victim->bk)
1432 victim_size = chunksize(victim);
1433 remainder_size = victim_size - nb;
1435 if (remainder_size >= (long)MINSIZE) /* split */
1437 remainder = chunk_at_offset(victim, nb);
1438 set_head(victim, nb | PREV_INUSE);
1439 unlink(victim, bck, fwd);
1440 link_last_remainder(remainder);
1441 set_head(remainder, remainder_size | PREV_INUSE);
1442 set_foot(remainder, remainder_size);
1443 check_malloced_chunk(victim, nb);
1444 return chunk2mem(victim);
1447 else if (remainder_size >= 0) /* take */
1449 set_inuse_bit_at_offset(victim, victim_size);
1450 unlink(victim, bck, fwd);
1451 check_malloced_chunk(victim, nb);
1452 return chunk2mem(victim);
1457 bin = next_bin(bin);
1459 } while ((++idx & (BINBLOCKWIDTH - 1)) != 0);
1461 /* Clear out the block bit. */
1463 do /* Possibly backtrack to try to clear a partial block */
1465 if ((startidx & (BINBLOCKWIDTH - 1)) == 0)
1467 av_[1] = (mbinptr)(binblocks_r & ~block);
1472 } while (first(q) == q);
1474 /* Get to the next possibly nonempty block */
1476 if ( (block <<= 1) <= binblocks_r && (block != 0) )
1478 while ((block & binblocks_r) == 0)
1480 idx += BINBLOCKWIDTH;
1490 /* Try to use top chunk */
1492 /* Require that there be a remainder, ensuring top always exists */
1493 if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
1497 /* If big and would otherwise need to extend, try to use mmap instead */
1498 if ((unsigned long)nb >= (unsigned long)mmap_threshold &&
1499 (victim = mmap_chunk(nb)))
1500 return chunk2mem(victim);
1504 malloc_extend_top(nb);
1505 if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
1506 return NULL; /* propagate failure */
1510 set_head(victim, nb | PREV_INUSE);
1511 top = chunk_at_offset(victim, nb);
1512 set_head(top, remainder_size | PREV_INUSE);
1513 check_malloced_chunk(victim, nb);
1514 return chunk2mem(victim);
1527 1. free(0) has no effect.
1529 2. If the chunk was allocated via mmap, it is release via munmap().
1531 3. If a returned chunk borders the current high end of memory,
1532 it is consolidated into the top, and if the total unused
1533 topmost memory exceeds the trim threshold, malloc_trim is
1536 4. Other chunks are consolidated as they arrive, and
1537 placed in corresponding bins. (This includes the case of
1538 consolidating with the current `last_remainder').
1544 void fREe(Void_t* mem)
1546 void fREe(mem) Void_t* mem;
1549 mchunkptr p; /* chunk corresponding to mem */
1550 INTERNAL_SIZE_T hd; /* its head field */
1551 INTERNAL_SIZE_T sz; /* its size */
1552 int idx; /* its bin index */
1553 mchunkptr next; /* next contiguous chunk */
1554 INTERNAL_SIZE_T nextsz; /* its size */
1555 INTERNAL_SIZE_T prevsz; /* size of previous contiguous chunk */
1556 mchunkptr bck; /* misc temp for linking */
1557 mchunkptr fwd; /* misc temp for linking */
1558 int islr; /* track whether merging with last_remainder */
1560 #if CONFIG_VAL(SYS_MALLOC_F_LEN)
1561 /* free() is a no-op - all the memory will be freed on relocation */
1562 if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT))
1566 if (mem == NULL) /* free(0) has no effect */
1573 if (hd & IS_MMAPPED) /* release mmapped memory. */
1580 check_inuse_chunk(p);
1582 sz = hd & ~PREV_INUSE;
1583 next = chunk_at_offset(p, sz);
1584 nextsz = chunksize(next);
1586 if (next == top) /* merge with top */
1590 if (!(hd & PREV_INUSE)) /* consolidate backward */
1592 prevsz = p->prev_size;
1593 p = chunk_at_offset(p, -((long) prevsz));
1595 unlink(p, bck, fwd);
1598 set_head(p, sz | PREV_INUSE);
1600 if ((unsigned long)(sz) >= (unsigned long)trim_threshold)
1601 malloc_trim(top_pad);
1605 set_head(next, nextsz); /* clear inuse bit */
1609 if (!(hd & PREV_INUSE)) /* consolidate backward */
1611 prevsz = p->prev_size;
1612 p = chunk_at_offset(p, -((long) prevsz));
1615 if (p->fd == last_remainder) /* keep as last_remainder */
1618 unlink(p, bck, fwd);
1621 if (!(inuse_bit_at_offset(next, nextsz))) /* consolidate forward */
1625 if (!islr && next->fd == last_remainder) /* re-insert last_remainder */
1628 link_last_remainder(p);
1631 unlink(next, bck, fwd);
1635 set_head(p, sz | PREV_INUSE);
1638 frontlink(p, sz, idx, bck, fwd);
1649 Chunks that were obtained via mmap cannot be extended or shrunk
1650 unless HAVE_MREMAP is defined, in which case mremap is used.
1651 Otherwise, if their reallocation is for additional space, they are
1652 copied. If for less, they are just left alone.
1654 Otherwise, if the reallocation is for additional space, and the
1655 chunk can be extended, it is, else a malloc-copy-free sequence is
1656 taken. There are several different ways that a chunk could be
1657 extended. All are tried:
1659 * Extending forward into following adjacent free chunk.
1660 * Shifting backwards, joining preceding adjacent space
1661 * Both shifting backwards and extending forward.
1662 * Extending into newly sbrked space
1664 Unless the #define REALLOC_ZERO_BYTES_FREES is set, realloc with a
1665 size argument of zero (re)allocates a minimum-sized chunk.
1667 If the reallocation is for less space, and the new request is for
1668 a `small' (<512 bytes) size, then the newly unused space is lopped
1671 The old unix realloc convention of allowing the last-free'd chunk
1672 to be used as an argument to realloc is no longer supported.
1673 I don't know of any programs still relying on this feature,
1674 and allowing it would also allow too many other incorrect
1675 usages of realloc to be sensible.
1682 Void_t* rEALLOc(Void_t* oldmem, size_t bytes)
1684 Void_t* rEALLOc(oldmem, bytes) Void_t* oldmem; size_t bytes;
1687 INTERNAL_SIZE_T nb; /* padded request size */
1689 mchunkptr oldp; /* chunk corresponding to oldmem */
1690 INTERNAL_SIZE_T oldsize; /* its size */
1692 mchunkptr newp; /* chunk to return */
1693 INTERNAL_SIZE_T newsize; /* its size */
1694 Void_t* newmem; /* corresponding user mem */
1696 mchunkptr next; /* next contiguous chunk after oldp */
1697 INTERNAL_SIZE_T nextsize; /* its size */
1699 mchunkptr prev; /* previous contiguous chunk before oldp */
1700 INTERNAL_SIZE_T prevsize; /* its size */
1702 mchunkptr remainder; /* holds split off extra space from newp */
1703 INTERNAL_SIZE_T remainder_size; /* its size */
1705 mchunkptr bck; /* misc temp for linking */
1706 mchunkptr fwd; /* misc temp for linking */
1708 #ifdef REALLOC_ZERO_BYTES_FREES
1715 if ((long)bytes < 0) return NULL;
1717 /* realloc of null is supposed to be same as malloc */
1718 if (oldmem == NULL) return mALLOc(bytes);
1720 #if CONFIG_VAL(SYS_MALLOC_F_LEN)
1721 if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) {
1722 /* This is harder to support and should not be needed */
1723 panic("pre-reloc realloc() is not supported");
1727 newp = oldp = mem2chunk(oldmem);
1728 newsize = oldsize = chunksize(oldp);
1731 nb = request2size(bytes);
1734 if (chunk_is_mmapped(oldp))
1737 newp = mremap_chunk(oldp, nb);
1738 if(newp) return chunk2mem(newp);
1740 /* Note the extra SIZE_SZ overhead. */
1741 if(oldsize - SIZE_SZ >= nb) return oldmem; /* do nothing */
1742 /* Must alloc, copy, free. */
1743 newmem = mALLOc(bytes);
1745 return NULL; /* propagate failure */
1746 MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ);
1752 check_inuse_chunk(oldp);
1754 if ((long)(oldsize) < (long)(nb))
1757 /* Try expanding forward */
1759 next = chunk_at_offset(oldp, oldsize);
1760 if (next == top || !inuse(next))
1762 nextsize = chunksize(next);
1764 /* Forward into top only if a remainder */
1767 if ((long)(nextsize + newsize) >= (long)(nb + MINSIZE))
1769 newsize += nextsize;
1770 top = chunk_at_offset(oldp, nb);
1771 set_head(top, (newsize - nb) | PREV_INUSE);
1772 set_head_size(oldp, nb);
1773 return chunk2mem(oldp);
1777 /* Forward into next chunk */
1778 else if (((long)(nextsize + newsize) >= (long)(nb)))
1780 unlink(next, bck, fwd);
1781 newsize += nextsize;
1791 /* Try shifting backwards. */
1793 if (!prev_inuse(oldp))
1795 prev = prev_chunk(oldp);
1796 prevsize = chunksize(prev);
1798 /* try forward + backward first to save a later consolidation */
1805 if ((long)(nextsize + prevsize + newsize) >= (long)(nb + MINSIZE))
1807 unlink(prev, bck, fwd);
1809 newsize += prevsize + nextsize;
1810 newmem = chunk2mem(newp);
1811 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
1812 top = chunk_at_offset(newp, nb);
1813 set_head(top, (newsize - nb) | PREV_INUSE);
1814 set_head_size(newp, nb);
1819 /* into next chunk */
1820 else if (((long)(nextsize + prevsize + newsize) >= (long)(nb)))
1822 unlink(next, bck, fwd);
1823 unlink(prev, bck, fwd);
1825 newsize += nextsize + prevsize;
1826 newmem = chunk2mem(newp);
1827 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
1833 if (prev != NULL && (long)(prevsize + newsize) >= (long)nb)
1835 unlink(prev, bck, fwd);
1837 newsize += prevsize;
1838 newmem = chunk2mem(newp);
1839 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
1846 newmem = mALLOc (bytes);
1848 if (newmem == NULL) /* propagate failure */
1851 /* Avoid copy if newp is next chunk after oldp. */
1852 /* (This can only happen when new chunk is sbrk'ed.) */
1854 if ( (newp = mem2chunk(newmem)) == next_chunk(oldp))
1856 newsize += chunksize(newp);
1861 /* Otherwise copy, free, and exit */
1862 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
1868 split: /* split off extra room in old or expanded chunk */
1870 if (newsize - nb >= MINSIZE) /* split off remainder */
1872 remainder = chunk_at_offset(newp, nb);
1873 remainder_size = newsize - nb;
1874 set_head_size(newp, nb);
1875 set_head(remainder, remainder_size | PREV_INUSE);
1876 set_inuse_bit_at_offset(remainder, remainder_size);
1877 fREe(chunk2mem(remainder)); /* let free() deal with it */
1881 set_head_size(newp, newsize);
1882 set_inuse_bit_at_offset(newp, newsize);
1885 check_inuse_chunk(newp);
1886 return chunk2mem(newp);
1896 memalign requests more than enough space from malloc, finds a spot
1897 within that chunk that meets the alignment request, and then
1898 possibly frees the leading and trailing space.
1900 The alignment argument must be a power of two. This property is not
1901 checked by memalign, so misuse may result in random runtime errors.
1903 8-byte alignment is guaranteed by normal malloc calls, so don't
1904 bother calling memalign with an argument of 8 or less.
1906 Overreliance on memalign is a sure way to fragment space.
1912 Void_t* mEMALIGn(size_t alignment, size_t bytes)
1914 Void_t* mEMALIGn(alignment, bytes) size_t alignment; size_t bytes;
1917 INTERNAL_SIZE_T nb; /* padded request size */
1918 char* m; /* memory returned by malloc call */
1919 mchunkptr p; /* corresponding chunk */
1920 char* brk; /* alignment point within p */
1921 mchunkptr newp; /* chunk to return */
1922 INTERNAL_SIZE_T newsize; /* its size */
1923 INTERNAL_SIZE_T leadsize; /* leading space befor alignment point */
1924 mchunkptr remainder; /* spare room at end to split off */
1925 long remainder_size; /* its size */
1927 if ((long)bytes < 0) return NULL;
1929 #if CONFIG_VAL(SYS_MALLOC_F_LEN)
1930 if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) {
1931 return memalign_simple(alignment, bytes);
1935 /* If need less alignment than we give anyway, just relay to malloc */
1937 if (alignment <= MALLOC_ALIGNMENT) return mALLOc(bytes);
1939 /* Otherwise, ensure that it is at least a minimum chunk size */
1941 if (alignment < MINSIZE) alignment = MINSIZE;
1943 /* Call malloc with worst case padding to hit alignment. */
1945 nb = request2size(bytes);
1946 m = (char*)(mALLOc(nb + alignment + MINSIZE));
1949 * The attempt to over-allocate (with a size large enough to guarantee the
1950 * ability to find an aligned region within allocated memory) failed.
1952 * Try again, this time only allocating exactly the size the user wants. If
1953 * the allocation now succeeds and just happens to be aligned, we can still
1954 * fulfill the user's request.
1957 size_t extra, extra2;
1959 * Use bytes not nb, since mALLOc internally calls request2size too, and
1960 * each call increases the size to allocate, to account for the header.
1962 m = (char*)(mALLOc(bytes));
1963 /* Aligned -> return it */
1964 if ((((unsigned long)(m)) % alignment) == 0)
1967 * Otherwise, try again, requesting enough extra space to be able to
1968 * acquire alignment.
1971 /* Add in extra bytes to match misalignment of unexpanded allocation */
1972 extra = alignment - (((unsigned long)(m)) % alignment);
1973 m = (char*)(mALLOc(bytes + extra));
1975 * m might not be the same as before. Validate that the previous value of
1976 * extra still works for the current value of m.
1977 * If (!m), extra2=alignment so
1980 extra2 = alignment - (((unsigned long)(m)) % alignment);
1981 if (extra2 > extra) {
1986 /* Fall through to original NULL check and chunk splitting logic */
1989 if (m == NULL) return NULL; /* propagate failure */
1993 if ((((unsigned long)(m)) % alignment) == 0) /* aligned */
1996 if(chunk_is_mmapped(p))
1997 return chunk2mem(p); /* nothing more to do */
2000 else /* misaligned */
2003 Find an aligned spot inside chunk.
2004 Since we need to give back leading space in a chunk of at
2005 least MINSIZE, if the first calculation places us at
2006 a spot with less than MINSIZE leader, we can move to the
2007 next aligned spot -- we've allocated enough total room so that
2008 this is always possible.
2011 brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) & -((signed) alignment));
2012 if ((long)(brk - (char*)(p)) < MINSIZE) brk = brk + alignment;
2014 newp = (mchunkptr)brk;
2015 leadsize = brk - (char*)(p);
2016 newsize = chunksize(p) - leadsize;
2019 if(chunk_is_mmapped(p))
2021 newp->prev_size = p->prev_size + leadsize;
2022 set_head(newp, newsize|IS_MMAPPED);
2023 return chunk2mem(newp);
2027 /* give back leader, use the rest */
2029 set_head(newp, newsize | PREV_INUSE);
2030 set_inuse_bit_at_offset(newp, newsize);
2031 set_head_size(p, leadsize);
2035 assert (newsize >= nb && (((unsigned long)(chunk2mem(p))) % alignment) == 0);
2038 /* Also give back spare room at the end */
2040 remainder_size = chunksize(p) - nb;
2042 if (remainder_size >= (long)MINSIZE)
2044 remainder = chunk_at_offset(p, nb);
2045 set_head(remainder, remainder_size | PREV_INUSE);
2046 set_head_size(p, nb);
2047 fREe(chunk2mem(remainder));
2050 check_inuse_chunk(p);
2051 return chunk2mem(p);
2059 valloc just invokes memalign with alignment argument equal
2060 to the page size of the system (or as near to this as can
2061 be figured out from all the includes/defines above.)
2065 Void_t* vALLOc(size_t bytes)
2067 Void_t* vALLOc(bytes) size_t bytes;
2070 return mEMALIGn (malloc_getpagesize, bytes);
2074 pvalloc just invokes valloc for the nearest pagesize
2075 that will accommodate request
2080 Void_t* pvALLOc(size_t bytes)
2082 Void_t* pvALLOc(bytes) size_t bytes;
2085 size_t pagesize = malloc_getpagesize;
2086 return mEMALIGn (pagesize, (bytes + pagesize - 1) & ~(pagesize - 1));
2091 calloc calls malloc, then zeroes out the allocated chunk.
2096 Void_t* cALLOc(size_t n, size_t elem_size)
2098 Void_t* cALLOc(n, elem_size) size_t n; size_t elem_size;
2102 INTERNAL_SIZE_T csz;
2104 INTERNAL_SIZE_T sz = n * elem_size;
2107 /* check if expand_top called, in which case don't need to clear */
2108 #ifdef CONFIG_SYS_MALLOC_CLEAR_ON_INIT
2110 mchunkptr oldtop = top;
2111 INTERNAL_SIZE_T oldtopsize = chunksize(top);
2114 Void_t* mem = mALLOc (sz);
2116 if ((long)n < 0) return NULL;
2122 #if CONFIG_VAL(SYS_MALLOC_F_LEN)
2123 if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) {
2130 /* Two optional cases in which clearing not necessary */
2134 if (chunk_is_mmapped(p)) return mem;
2139 #ifdef CONFIG_SYS_MALLOC_CLEAR_ON_INIT
2141 if (p == oldtop && csz > oldtopsize)
2143 /* clear only the bytes from non-freshly-sbrked memory */
2149 MALLOC_ZERO(mem, csz - SIZE_SZ);
2156 cfree just calls free. It is needed/defined on some systems
2157 that pair it with calloc, presumably for odd historical reasons.
2161 #if !defined(INTERNAL_LINUX_C_LIB) || !defined(__ELF__)
2163 void cfree(Void_t *mem)
2165 void cfree(mem) Void_t *mem;
2176 Malloc_trim gives memory back to the system (via negative
2177 arguments to sbrk) if there is unused memory at the `high' end of
2178 the malloc pool. You can call this after freeing large blocks of
2179 memory to potentially reduce the system-level memory requirements
2180 of a program. However, it cannot guarantee to reduce memory. Under
2181 some allocation patterns, some large free blocks of memory will be
2182 locked between two used chunks, so they cannot be given back to
2185 The `pad' argument to malloc_trim represents the amount of free
2186 trailing space to leave untrimmed. If this argument is zero,
2187 only the minimum amount of memory to maintain internal data
2188 structures will be left (one page or less). Non-zero arguments
2189 can be supplied to maintain enough trailing space to service
2190 future expected allocations without having to re-obtain memory
2193 Malloc_trim returns 1 if it actually released any memory, else 0.
2198 int malloc_trim(size_t pad)
2200 int malloc_trim(pad) size_t pad;
2203 long top_size; /* Amount of top-most memory */
2204 long extra; /* Amount to release */
2205 char* current_brk; /* address returned by pre-check sbrk call */
2206 char* new_brk; /* address returned by negative sbrk call */
2208 unsigned long pagesz = malloc_getpagesize;
2210 top_size = chunksize(top);
2211 extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz;
2213 if (extra < (long)pagesz) /* Not enough memory to release */
2218 /* Test to make sure no one else called sbrk */
2219 current_brk = (char*)(MORECORE (0));
2220 if (current_brk != (char*)(top) + top_size)
2221 return 0; /* Apparently we don't own memory; must fail */
2225 new_brk = (char*)(MORECORE (-extra));
2227 if (new_brk == (char*)(MORECORE_FAILURE)) /* sbrk failed? */
2229 /* Try to figure out what we have */
2230 current_brk = (char*)(MORECORE (0));
2231 top_size = current_brk - (char*)top;
2232 if (top_size >= (long)MINSIZE) /* if not, we are very very dead! */
2234 sbrked_mem = current_brk - sbrk_base;
2235 set_head(top, top_size | PREV_INUSE);
2243 /* Success. Adjust top accordingly. */
2244 set_head(top, (top_size - extra) | PREV_INUSE);
2245 sbrked_mem -= extra;
2258 This routine tells you how many bytes you can actually use in an
2259 allocated chunk, which may be more than you requested (although
2260 often not). You can use this many bytes without worrying about
2261 overwriting other allocated objects. Not a particularly great
2262 programming practice, but still sometimes useful.
2267 size_t malloc_usable_size(Void_t* mem)
2269 size_t malloc_usable_size(mem) Void_t* mem;
2278 if(!chunk_is_mmapped(p))
2280 if (!inuse(p)) return 0;
2281 check_inuse_chunk(p);
2282 return chunksize(p) - SIZE_SZ;
2284 return chunksize(p) - 2*SIZE_SZ;
2291 /* Utility to update current_mallinfo for malloc_stats and mallinfo() */
2294 static void malloc_update_mallinfo()
2303 INTERNAL_SIZE_T avail = chunksize(top);
2304 int navail = ((long)(avail) >= (long)MINSIZE)? 1 : 0;
2306 for (i = 1; i < NAV; ++i)
2309 for (p = last(b); p != b; p = p->bk)
2312 check_free_chunk(p);
2313 for (q = next_chunk(p);
2314 q < top && inuse(q) && (long)(chunksize(q)) >= (long)MINSIZE;
2316 check_inuse_chunk(q);
2318 avail += chunksize(p);
2323 current_mallinfo.ordblks = navail;
2324 current_mallinfo.uordblks = sbrked_mem - avail;
2325 current_mallinfo.fordblks = avail;
2326 current_mallinfo.hblks = n_mmaps;
2327 current_mallinfo.hblkhd = mmapped_mem;
2328 current_mallinfo.keepcost = chunksize(top);
2339 Prints on the amount of space obtain from the system (both
2340 via sbrk and mmap), the maximum amount (which may be more than
2341 current if malloc_trim and/or munmap got called), the maximum
2342 number of simultaneous mmap regions used, and the current number
2343 of bytes allocated via malloc (or realloc, etc) but not yet
2344 freed. (Note that this is the number of bytes allocated, not the
2345 number requested. It will be larger than the number requested
2346 because of alignment and bookkeeping overhead.)
2353 malloc_update_mallinfo();
2354 printf("max system bytes = %10u\n",
2355 (unsigned int)(max_total_mem));
2356 printf("system bytes = %10u\n",
2357 (unsigned int)(sbrked_mem + mmapped_mem));
2358 printf("in use bytes = %10u\n",
2359 (unsigned int)(current_mallinfo.uordblks + mmapped_mem));
2361 printf("max mmap regions = %10u\n",
2362 (unsigned int)max_n_mmaps);
2368 mallinfo returns a copy of updated current mallinfo.
2372 struct mallinfo mALLINFo()
2374 malloc_update_mallinfo();
2375 return current_mallinfo;
2385 mallopt is the general SVID/XPG interface to tunable parameters.
2386 The format is to provide a (parameter-number, parameter-value) pair.
2387 mallopt then sets the corresponding parameter to the argument
2388 value if it can (i.e., so long as the value is meaningful),
2389 and returns 1 if successful else 0.
2391 See descriptions of tunable parameters above.
2396 int mALLOPt(int param_number, int value)
2398 int mALLOPt(param_number, value) int param_number; int value;
2401 switch(param_number)
2403 case M_TRIM_THRESHOLD:
2404 trim_threshold = value; return 1;
2406 top_pad = value; return 1;
2407 case M_MMAP_THRESHOLD:
2408 mmap_threshold = value; return 1;
2411 n_mmaps_max = value; return 1;
2413 if (value != 0) return 0; else n_mmaps_max = value; return 1;
2421 int initf_malloc(void)
2423 #if CONFIG_VAL(SYS_MALLOC_F_LEN)
2424 assert(gd->malloc_base); /* Set up by crt0.S */
2425 gd->malloc_limit = CONFIG_VAL(SYS_MALLOC_F_LEN);
2436 V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee)
2437 * return null for negative arguments
2438 * Added Several WIN32 cleanups from Martin C. Fong <mcfong@yahoo.com>
2439 * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
2440 (e.g. WIN32 platforms)
2441 * Cleanup up header file inclusion for WIN32 platforms
2442 * Cleanup code to avoid Microsoft Visual C++ compiler complaints
2443 * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
2444 memory allocation routines
2445 * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
2446 * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
2447 usage of 'assert' in non-WIN32 code
2448 * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
2450 * Always call 'fREe()' rather than 'free()'
2452 V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee)
2453 * Fixed ordering problem with boundary-stamping
2455 V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee)
2456 * Added pvalloc, as recommended by H.J. Liu
2457 * Added 64bit pointer support mainly from Wolfram Gloger
2458 * Added anonymously donated WIN32 sbrk emulation
2459 * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
2460 * malloc_extend_top: fix mask error that caused wastage after
2462 * Add linux mremap support code from HJ Liu
2464 V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee)
2465 * Integrated most documentation with the code.
2466 * Add support for mmap, with help from
2467 Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
2468 * Use last_remainder in more cases.
2469 * Pack bins using idea from colin@nyx10.cs.du.edu
2470 * Use ordered bins instead of best-fit threshhold
2471 * Eliminate block-local decls to simplify tracing and debugging.
2472 * Support another case of realloc via move into top
2473 * Fix error occuring when initial sbrk_base not word-aligned.
2474 * Rely on page size for units instead of SBRK_UNIT to
2475 avoid surprises about sbrk alignment conventions.
2476 * Add mallinfo, mallopt. Thanks to Raymond Nijssen
2477 (raymond@es.ele.tue.nl) for the suggestion.
2478 * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
2479 * More precautions for cases where other routines call sbrk,
2480 courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
2481 * Added macros etc., allowing use in linux libc from
2482 H.J. Lu (hjl@gnu.ai.mit.edu)
2483 * Inverted this history list
2485 V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee)
2486 * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
2487 * Removed all preallocation code since under current scheme
2488 the work required to undo bad preallocations exceeds
2489 the work saved in good cases for most test programs.
2490 * No longer use return list or unconsolidated bins since
2491 no scheme using them consistently outperforms those that don't
2492 given above changes.
2493 * Use best fit for very large chunks to prevent some worst-cases.
2494 * Added some support for debugging
2496 V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee)
2497 * Removed footers when chunks are in use. Thanks to
2498 Paul Wilson (wilson@cs.texas.edu) for the suggestion.
2500 V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee)
2501 * Added malloc_trim, with help from Wolfram Gloger
2502 (wmglo@Dent.MED.Uni-Muenchen.DE).
2504 V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g)
2506 V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g)
2507 * realloc: try to expand in both directions
2508 * malloc: swap order of clean-bin strategy;
2509 * realloc: only conditionally expand backwards
2510 * Try not to scavenge used bins
2511 * Use bin counts as a guide to preallocation
2512 * Occasionally bin return list chunks in first scan
2513 * Add a few optimizations from colin@nyx10.cs.du.edu
2515 V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g)
2516 * faster bin computation & slightly different binning
2517 * merged all consolidations to one part of malloc proper
2518 (eliminating old malloc_find_space & malloc_clean_bin)
2519 * Scan 2 returns chunks (not just 1)
2520 * Propagate failure in realloc if malloc returns 0
2521 * Add stuff to allow compilation on non-ANSI compilers
2522 from kpv@research.att.com
2524 V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu)
2525 * removed potential for odd address access in prev_chunk
2526 * removed dependency on getpagesize.h
2527 * misc cosmetics and a bit more internal documentation
2528 * anticosmetics: mangled names in macros to evade debugger strangeness
2529 * tested on sparc, hp-700, dec-mips, rs6000
2530 with gcc & native cc (hp, dec only) allowing
2531 Detlefs & Zorn comparison study (in SIGPLAN Notices.)
2533 Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu)
2534 * Based loosely on libg++-1.2X malloc. (It retains some of the overall
2535 structure of old version, but most details differ.)