1 // SPDX-License-Identifier: GPL-2.0+
3 * This code is based on a version (aka dlmalloc) of malloc/free/realloc written
4 * by Doug Lea and released to the public domain, as explained at
5 * http://creativecommons.org/publicdomain/zero/1.0/-
7 * The original code is available at http://gee.cs.oswego.edu/pub/misc/
8 * as file malloc-2.6.6.c.
13 #include <asm/global_data.h>
15 #if CONFIG_IS_ENABLED(UNIT_TEST)
21 #include <valgrind/memcheck.h>
25 static void malloc_update_mallinfo (void);
26 void malloc_stats (void);
28 static void malloc_update_mallinfo ();
33 DECLARE_GLOBAL_DATA_PTR;
36 Emulation of sbrk for WIN32
37 All code within the ifdef WIN32 is untested by me.
39 Thanks to Martin Fong and others for supplying this.
45 #define AlignPage(add) (((add) + (malloc_getpagesize-1)) & \
46 ~(malloc_getpagesize-1))
47 #define AlignPage64K(add) (((add) + (0x10000 - 1)) & ~(0x10000 - 1))
49 /* resrve 64MB to insure large contiguous space */
50 #define RESERVED_SIZE (1024*1024*64)
51 #define NEXT_SIZE (2048*1024)
52 #define TOP_MEMORY ((unsigned long)2*1024*1024*1024)
55 typedef struct GmListElement GmListElement;
63 static GmListElement* head = 0;
64 static unsigned int gNextAddress = 0;
65 static unsigned int gAddressBase = 0;
66 static unsigned int gAllocatedSize = 0;
69 GmListElement* makeGmListElement (void* bas)
72 this = (GmListElement*)(void*)LocalAlloc (0, sizeof (GmListElement));
86 assert ( (head == NULL) || (head->base == (void*)gAddressBase));
87 if (gAddressBase && (gNextAddress - gAddressBase))
89 rval = VirtualFree ((void*)gAddressBase,
90 gNextAddress - gAddressBase,
96 GmListElement* next = head->next;
97 rval = VirtualFree (head->base, 0, MEM_RELEASE);
105 void* findRegion (void* start_address, unsigned long size)
107 MEMORY_BASIC_INFORMATION info;
108 if (size >= TOP_MEMORY) return NULL;
110 while ((unsigned long)start_address + size < TOP_MEMORY)
112 VirtualQuery (start_address, &info, sizeof (info));
113 if ((info.State == MEM_FREE) && (info.RegionSize >= size))
114 return start_address;
117 /* Requested region is not available so see if the */
118 /* next region is available. Set 'start_address' */
119 /* to the next region and call 'VirtualQuery()' */
122 start_address = (char*)info.BaseAddress + info.RegionSize;
124 /* Make sure we start looking for the next region */
125 /* on the *next* 64K boundary. Otherwise, even if */
126 /* the new region is free according to */
127 /* 'VirtualQuery()', the subsequent call to */
128 /* 'VirtualAlloc()' (which follows the call to */
129 /* this routine in 'wsbrk()') will round *down* */
130 /* the requested address to a 64K boundary which */
131 /* we already know is an address in the */
132 /* unavailable region. Thus, the subsequent call */
133 /* to 'VirtualAlloc()' will fail and bring us back */
134 /* here, causing us to go into an infinite loop. */
137 (void *) AlignPage64K((unsigned long) start_address);
145 void* wsbrk (long size)
150 if (gAddressBase == 0)
152 gAllocatedSize = max (RESERVED_SIZE, AlignPage (size));
153 gNextAddress = gAddressBase =
154 (unsigned int)VirtualAlloc (NULL, gAllocatedSize,
155 MEM_RESERVE, PAGE_NOACCESS);
156 } else if (AlignPage (gNextAddress + size) > (gAddressBase +
159 long new_size = max (NEXT_SIZE, AlignPage (size));
160 void* new_address = (void*)(gAddressBase+gAllocatedSize);
163 new_address = findRegion (new_address, new_size);
168 gAddressBase = gNextAddress =
169 (unsigned int)VirtualAlloc (new_address, new_size,
170 MEM_RESERVE, PAGE_NOACCESS);
171 /* repeat in case of race condition */
172 /* The region that we found has been snagged */
173 /* by another thread */
175 while (gAddressBase == 0);
177 assert (new_address == (void*)gAddressBase);
179 gAllocatedSize = new_size;
181 if (!makeGmListElement ((void*)gAddressBase))
184 if ((size + gNextAddress) > AlignPage (gNextAddress))
187 res = VirtualAlloc ((void*)AlignPage (gNextAddress),
188 (size + gNextAddress -
189 AlignPage (gNextAddress)),
190 MEM_COMMIT, PAGE_READWRITE);
194 tmp = (void*)gNextAddress;
195 gNextAddress = (unsigned int)tmp + size;
200 unsigned int alignedGoal = AlignPage (gNextAddress + size);
201 /* Trim by releasing the virtual memory */
202 if (alignedGoal >= gAddressBase)
204 VirtualFree ((void*)alignedGoal, gNextAddress - alignedGoal,
206 gNextAddress = gNextAddress + size;
207 return (void*)gNextAddress;
211 VirtualFree ((void*)gAddressBase, gNextAddress - gAddressBase,
213 gNextAddress = gAddressBase;
219 return (void*)gNextAddress;
234 INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
235 INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */
236 struct malloc_chunk* fd; /* double links -- used only if free. */
237 struct malloc_chunk* bk;
238 } __attribute__((__may_alias__)) ;
240 typedef struct malloc_chunk* mchunkptr;
244 malloc_chunk details:
246 (The following includes lightly edited explanations by Colin Plumb.)
248 Chunks of memory are maintained using a `boundary tag' method as
249 described in e.g., Knuth or Standish. (See the paper by Paul
250 Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
251 survey of such techniques.) Sizes of free chunks are stored both
252 in the front of each chunk and at the end. This makes
253 consolidating fragmented chunks into bigger chunks very fast. The
254 size fields also hold bits representing whether chunks are free or
257 An allocated chunk looks like this:
260 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
261 | Size of previous chunk, if allocated | |
262 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
263 | Size of chunk, in bytes |P|
264 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
265 | User data starts here... .
267 . (malloc_usable_space() bytes) .
269 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
271 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
274 Where "chunk" is the front of the chunk for the purpose of most of
275 the malloc code, but "mem" is the pointer that is returned to the
276 user. "Nextchunk" is the beginning of the next contiguous chunk.
278 Chunks always begin on even word boundries, so the mem portion
279 (which is returned to the user) is also on an even word boundary, and
280 thus double-word aligned.
282 Free chunks are stored in circular doubly-linked lists, and look like this:
284 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
285 | Size of previous chunk |
286 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
287 `head:' | Size of chunk, in bytes |P|
288 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
289 | Forward pointer to next chunk in list |
290 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
291 | Back pointer to previous chunk in list |
292 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
293 | Unused space (may be 0 bytes long) .
297 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
298 `foot:' | Size of chunk, in bytes |
299 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
301 The P (PREV_INUSE) bit, stored in the unused low-order bit of the
302 chunk size (which is always a multiple of two words), is an in-use
303 bit for the *previous* chunk. If that bit is *clear*, then the
304 word before the current chunk size contains the previous chunk
305 size, and can be used to find the front of the previous chunk.
306 (The very first chunk allocated always has this bit set,
307 preventing access to non-existent (or non-owned) memory.)
309 Note that the `foot' of the current chunk is actually represented
310 as the prev_size of the NEXT chunk. (This makes it easier to
311 deal with alignments etc).
313 The two exceptions to all this are
315 1. The special chunk `top', which doesn't bother using the
316 trailing size field since there is no
317 next contiguous chunk that would have to index off it. (After
318 initialization, `top' is forced to always exist. If it would
319 become less than MINSIZE bytes long, it is replenished via
322 2. Chunks allocated via mmap, which have the second-lowest-order
323 bit (IS_MMAPPED) set in their size fields. Because they are
324 never merged or traversed from any other chunk, they have no
325 foot size or inuse information.
327 Available chunks are kept in any of several places (all declared below):
329 * `av': An array of chunks serving as bin headers for consolidated
330 chunks. Each bin is doubly linked. The bins are approximately
331 proportionally (log) spaced. There are a lot of these bins
332 (128). This may look excessive, but works very well in
333 practice. All procedures maintain the invariant that no
334 consolidated chunk physically borders another one. Chunks in
335 bins are kept in size order, with ties going to the
336 approximately least recently used chunk.
338 The chunks in each bin are maintained in decreasing sorted order by
339 size. This is irrelevant for the small bins, which all contain
340 the same-sized chunks, but facilitates best-fit allocation for
341 larger chunks. (These lists are just sequential. Keeping them in
342 order almost never requires enough traversal to warrant using
343 fancier ordered data structures.) Chunks of the same size are
344 linked with the most recently freed at the front, and allocations
345 are taken from the back. This results in LRU or FIFO allocation
346 order, which tends to give each chunk an equal opportunity to be
347 consolidated with adjacent freed chunks, resulting in larger free
348 chunks and less fragmentation.
350 * `top': The top-most available chunk (i.e., the one bordering the
351 end of available memory) is treated specially. It is never
352 included in any bin, is used only if no other chunk is
353 available, and is released back to the system if it is very
354 large (see M_TRIM_THRESHOLD).
356 * `last_remainder': A bin holding only the remainder of the
357 most recently split (non-top) chunk. This bin is checked
358 before other non-fitting chunks, so as to provide better
359 locality for runs of sequentially allocated chunks.
361 * Implicitly, through the host system's memory mapping tables.
362 If supported, requests greater than a threshold are usually
363 serviced via calls to mmap, and then later released via munmap.
367 /* sizes, alignments */
369 #define SIZE_SZ (sizeof(INTERNAL_SIZE_T))
370 #define MALLOC_ALIGNMENT (SIZE_SZ + SIZE_SZ)
371 #define MALLOC_ALIGN_MASK (MALLOC_ALIGNMENT - 1)
372 #define MINSIZE (sizeof(struct malloc_chunk))
374 /* conversion from malloc headers to user pointers, and back */
376 #define chunk2mem(p) ((Void_t*)((char*)(p) + 2*SIZE_SZ))
377 #define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
379 /* pad request bytes into a usable size */
381 #define request2size(req) \
382 (((long)((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) < \
383 (long)(MINSIZE + MALLOC_ALIGN_MASK)) ? MINSIZE : \
384 (((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) & ~(MALLOC_ALIGN_MASK)))
386 /* Check if m has acceptable alignment */
388 #define aligned_OK(m) (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0)
394 Physical chunk operations
398 /* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
400 #define PREV_INUSE 0x1
402 /* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
404 #define IS_MMAPPED 0x2
406 /* Bits to mask off when extracting size */
408 #define SIZE_BITS (PREV_INUSE|IS_MMAPPED)
411 /* Ptr to next physical malloc_chunk. */
413 #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) ))
415 /* Ptr to previous physical malloc_chunk */
417 #define prev_chunk(p)\
418 ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) ))
421 /* Treat space at ptr + offset as a chunk */
423 #define chunk_at_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
429 Dealing with use bits
432 /* extract p's inuse bit */
435 ((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE)
437 /* extract inuse bit of previous chunk */
439 #define prev_inuse(p) ((p)->size & PREV_INUSE)
441 /* check for mmap()'ed chunk */
443 #define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
445 /* set/clear chunk as in use without otherwise disturbing */
447 #define set_inuse(p)\
448 ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE
450 #define clear_inuse(p)\
451 ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE)
453 /* check/set/clear inuse bits in known places */
455 #define inuse_bit_at_offset(p, s)\
456 (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)
458 #define set_inuse_bit_at_offset(p, s)\
459 (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)
461 #define clear_inuse_bit_at_offset(p, s)\
462 (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE))
468 Dealing with size fields
471 /* Get size, ignoring use bits */
473 #define chunksize(p) ((p)->size & ~(SIZE_BITS))
475 /* Set size at head, without disturbing its use bit */
477 #define set_head_size(p, s) ((p)->size = (((p)->size & PREV_INUSE) | (s)))
479 /* Set size/use ignoring previous bits in header */
481 #define set_head(p, s) ((p)->size = (s))
483 /* Set size at footer (only when chunk is not in use) */
485 #define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_size = (s))
494 The bins, `av_' are an array of pairs of pointers serving as the
495 heads of (initially empty) doubly-linked lists of chunks, laid out
496 in a way so that each pair can be treated as if it were in a
497 malloc_chunk. (This way, the fd/bk offsets for linking bin heads
498 and chunks are the same).
500 Bins for sizes < 512 bytes contain chunks of all the same size, spaced
501 8 bytes apart. Larger bins are approximately logarithmically
502 spaced. (See the table below.) The `av_' array is never mentioned
503 directly in the code, but instead via bin access macros.
512 2 bins of size 262144
513 1 bin of size what's left
515 There is actually a little bit of slop in the numbers in bin_index
516 for the sake of speed. This makes no difference elsewhere.
518 The special chunks `top' and `last_remainder' get their own bins,
519 (this is implemented via yet more trickery with the av_ array),
520 although `top' is never properly linked to its bin since it is
521 always handled specially.
525 #define NAV 128 /* number of bins */
527 typedef struct malloc_chunk* mbinptr;
531 #define bin_at(i) ((mbinptr)((char*)&(av_[2*(i) + 2]) - 2*SIZE_SZ))
532 #define next_bin(b) ((mbinptr)((char*)(b) + 2 * sizeof(mbinptr)))
533 #define prev_bin(b) ((mbinptr)((char*)(b) - 2 * sizeof(mbinptr)))
536 The first 2 bins are never indexed. The corresponding av_ cells are instead
537 used for bookkeeping. This is not to save space, but to simplify
538 indexing, maintain locality, and avoid some initialization tests.
541 #define top (av_[2]) /* The topmost chunk */
542 #define last_remainder (bin_at(1)) /* remainder from last split */
546 Because top initially points to its own bin with initial
547 zero size, thus forcing extension on the first malloc request,
548 we avoid having any special code in malloc to check whether
549 it even exists yet. But we still need to in malloc_extend_top.
552 #define initial_top ((mchunkptr)(bin_at(0)))
554 /* Helper macro to initialize bins */
556 #define IAV(i) bin_at(i), bin_at(i)
558 static mbinptr av_[NAV * 2 + 2] = {
560 IAV(0), IAV(1), IAV(2), IAV(3), IAV(4), IAV(5), IAV(6), IAV(7),
561 IAV(8), IAV(9), IAV(10), IAV(11), IAV(12), IAV(13), IAV(14), IAV(15),
562 IAV(16), IAV(17), IAV(18), IAV(19), IAV(20), IAV(21), IAV(22), IAV(23),
563 IAV(24), IAV(25), IAV(26), IAV(27), IAV(28), IAV(29), IAV(30), IAV(31),
564 IAV(32), IAV(33), IAV(34), IAV(35), IAV(36), IAV(37), IAV(38), IAV(39),
565 IAV(40), IAV(41), IAV(42), IAV(43), IAV(44), IAV(45), IAV(46), IAV(47),
566 IAV(48), IAV(49), IAV(50), IAV(51), IAV(52), IAV(53), IAV(54), IAV(55),
567 IAV(56), IAV(57), IAV(58), IAV(59), IAV(60), IAV(61), IAV(62), IAV(63),
568 IAV(64), IAV(65), IAV(66), IAV(67), IAV(68), IAV(69), IAV(70), IAV(71),
569 IAV(72), IAV(73), IAV(74), IAV(75), IAV(76), IAV(77), IAV(78), IAV(79),
570 IAV(80), IAV(81), IAV(82), IAV(83), IAV(84), IAV(85), IAV(86), IAV(87),
571 IAV(88), IAV(89), IAV(90), IAV(91), IAV(92), IAV(93), IAV(94), IAV(95),
572 IAV(96), IAV(97), IAV(98), IAV(99), IAV(100), IAV(101), IAV(102), IAV(103),
573 IAV(104), IAV(105), IAV(106), IAV(107), IAV(108), IAV(109), IAV(110), IAV(111),
574 IAV(112), IAV(113), IAV(114), IAV(115), IAV(116), IAV(117), IAV(118), IAV(119),
575 IAV(120), IAV(121), IAV(122), IAV(123), IAV(124), IAV(125), IAV(126), IAV(127)
578 #ifdef CONFIG_NEEDS_MANUAL_RELOC
579 static void malloc_bin_reloc(void)
581 mbinptr *p = &av_[2];
584 for (i = 2; i < ARRAY_SIZE(av_); ++i, ++p)
585 *p = (mbinptr)((ulong)*p + gd->reloc_off);
588 static inline void malloc_bin_reloc(void) {}
591 #ifdef CONFIG_SYS_MALLOC_DEFAULT_TO_INIT
592 static void malloc_init(void);
595 ulong mem_malloc_start = 0;
596 ulong mem_malloc_end = 0;
597 ulong mem_malloc_brk = 0;
599 void *sbrk(ptrdiff_t increment)
601 ulong old = mem_malloc_brk;
602 ulong new = old + increment;
605 * if we are giving memory back make sure we clear it out since
606 * we set MORECORE_CLEARS to 1
609 memset((void *)new, 0, -increment);
611 if ((new < mem_malloc_start) || (new > mem_malloc_end))
612 return (void *)MORECORE_FAILURE;
614 mem_malloc_brk = new;
619 void mem_malloc_init(ulong start, ulong size)
621 mem_malloc_start = start;
622 mem_malloc_end = start + size;
623 mem_malloc_brk = start;
625 #ifdef CONFIG_SYS_MALLOC_DEFAULT_TO_INIT
629 debug("using memory %#lx-%#lx for malloc()\n", mem_malloc_start,
631 #ifdef CONFIG_SYS_MALLOC_CLEAR_ON_INIT
632 memset((void *)mem_malloc_start, 0x0, size);
637 /* field-extraction macros */
639 #define first(b) ((b)->fd)
640 #define last(b) ((b)->bk)
646 #define bin_index(sz) \
647 (((((unsigned long)(sz)) >> 9) == 0) ? (((unsigned long)(sz)) >> 3): \
648 ((((unsigned long)(sz)) >> 9) <= 4) ? 56 + (((unsigned long)(sz)) >> 6): \
649 ((((unsigned long)(sz)) >> 9) <= 20) ? 91 + (((unsigned long)(sz)) >> 9): \
650 ((((unsigned long)(sz)) >> 9) <= 84) ? 110 + (((unsigned long)(sz)) >> 12): \
651 ((((unsigned long)(sz)) >> 9) <= 340) ? 119 + (((unsigned long)(sz)) >> 15): \
652 ((((unsigned long)(sz)) >> 9) <= 1364) ? 124 + (((unsigned long)(sz)) >> 18): \
655 bins for chunks < 512 are all spaced 8 bytes apart, and hold
656 identically sized chunks. This is exploited in malloc.
659 #define MAX_SMALLBIN 63
660 #define MAX_SMALLBIN_SIZE 512
661 #define SMALLBIN_WIDTH 8
663 #define smallbin_index(sz) (((unsigned long)(sz)) >> 3)
666 Requests are `small' if both the corresponding and the next bin are small
669 #define is_small_request(nb) (nb < MAX_SMALLBIN_SIZE - SMALLBIN_WIDTH)
674 To help compensate for the large number of bins, a one-level index
675 structure is used for bin-by-bin searching. `binblocks' is a
676 one-word bitvector recording whether groups of BINBLOCKWIDTH bins
677 have any (possibly) non-empty bins, so they can be skipped over
678 all at once during during traversals. The bits are NOT always
679 cleared as soon as all bins in a block are empty, but instead only
680 when all are noticed to be empty during traversal in malloc.
683 #define BINBLOCKWIDTH 4 /* bins per block */
685 #define binblocks_r ((INTERNAL_SIZE_T)av_[1]) /* bitvector of nonempty blocks */
686 #define binblocks_w (av_[1])
688 /* bin<->block macros */
690 #define idx2binblock(ix) ((unsigned)1 << (ix / BINBLOCKWIDTH))
691 #define mark_binblock(ii) (binblocks_w = (mbinptr)(binblocks_r | idx2binblock(ii)))
692 #define clear_binblock(ii) (binblocks_w = (mbinptr)(binblocks_r & ~(idx2binblock(ii))))
698 /* Other static bookkeeping data */
700 /* variables holding tunable values */
702 static unsigned long trim_threshold = DEFAULT_TRIM_THRESHOLD;
703 static unsigned long top_pad = DEFAULT_TOP_PAD;
704 static unsigned int n_mmaps_max = DEFAULT_MMAP_MAX;
705 static unsigned long mmap_threshold = DEFAULT_MMAP_THRESHOLD;
707 /* The first value returned from sbrk */
708 static char* sbrk_base = (char*)(-1);
710 /* The maximum memory obtained from system via sbrk */
711 static unsigned long max_sbrked_mem = 0;
713 /* The maximum via either sbrk or mmap */
714 static unsigned long max_total_mem = 0;
716 /* internal working copy of mallinfo */
717 static struct mallinfo current_mallinfo = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
719 /* The total memory obtained from system via sbrk */
720 #define sbrked_mem (current_mallinfo.arena)
725 static unsigned int n_mmaps = 0;
727 static unsigned long mmapped_mem = 0;
729 static unsigned int max_n_mmaps = 0;
730 static unsigned long max_mmapped_mem = 0;
733 #ifdef CONFIG_SYS_MALLOC_DEFAULT_TO_INIT
734 static void malloc_init(void)
738 debug("bins (av_ array) are at %p\n", (void *)av_);
740 av_[0] = NULL; av_[1] = NULL;
741 for (i = 2, j = 2; i < NAV * 2 + 2; i += 2, j++) {
742 av_[i] = bin_at(j - 2);
743 av_[i + 1] = bin_at(j - 2);
745 /* Just print the first few bins so that
746 * we can see there are alright.
749 debug("av_[%d]=%lx av_[%d]=%lx\n",
751 i + 1, (ulong)av_[i + 1]);
754 /* Init the static bookkeeping as well */
755 sbrk_base = (char *)(-1);
759 memset((void *)¤t_mallinfo, 0, sizeof(struct mallinfo));
772 These routines make a number of assertions about the states
773 of data structures that should be true at all times. If any
774 are not true, it's very likely that a user program has somehow
775 trashed memory. (It's also possible that there is a coding error
776 in malloc. In which case, please report it!)
780 static void do_check_chunk(mchunkptr p)
782 static void do_check_chunk(p) mchunkptr p;
785 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
787 /* No checkable chunk is mmapped */
788 assert(!chunk_is_mmapped(p));
790 /* Check for legal address ... */
791 assert((char*)p >= sbrk_base);
793 assert((char*)p + sz <= (char*)top);
795 assert((char*)p + sz <= sbrk_base + sbrked_mem);
801 static void do_check_free_chunk(mchunkptr p)
803 static void do_check_free_chunk(p) mchunkptr p;
806 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
807 mchunkptr next = chunk_at_offset(p, sz);
811 /* Check whether it claims to be free ... */
814 /* Unless a special marker, must have OK fields */
815 if ((long)sz >= (long)MINSIZE)
817 assert((sz & MALLOC_ALIGN_MASK) == 0);
818 assert(aligned_OK(chunk2mem(p)));
819 /* ... matching footer field */
820 assert(next->prev_size == sz);
821 /* ... and is fully consolidated */
822 assert(prev_inuse(p));
823 assert (next == top || inuse(next));
825 /* ... and has minimally sane links */
826 assert(p->fd->bk == p);
827 assert(p->bk->fd == p);
829 else /* markers are always of size SIZE_SZ */
830 assert(sz == SIZE_SZ);
834 static void do_check_inuse_chunk(mchunkptr p)
836 static void do_check_inuse_chunk(p) mchunkptr p;
839 mchunkptr next = next_chunk(p);
842 /* Check whether it claims to be in use ... */
845 /* ... and is surrounded by OK chunks.
846 Since more things can be checked with free chunks than inuse ones,
847 if an inuse chunk borders them and debug is on, it's worth doing them.
851 mchunkptr prv = prev_chunk(p);
852 assert(next_chunk(prv) == p);
853 do_check_free_chunk(prv);
857 assert(prev_inuse(next));
858 assert(chunksize(next) >= MINSIZE);
860 else if (!inuse(next))
861 do_check_free_chunk(next);
866 static void do_check_malloced_chunk(mchunkptr p, INTERNAL_SIZE_T s)
868 static void do_check_malloced_chunk(p, s) mchunkptr p; INTERNAL_SIZE_T s;
871 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
874 do_check_inuse_chunk(p);
877 assert((long)sz >= (long)MINSIZE);
878 assert((sz & MALLOC_ALIGN_MASK) == 0);
880 assert(room < (long)MINSIZE);
882 /* ... and alignment */
883 assert(aligned_OK(chunk2mem(p)));
886 /* ... and was allocated at front of an available chunk */
887 assert(prev_inuse(p));
892 #define check_free_chunk(P) do_check_free_chunk(P)
893 #define check_inuse_chunk(P) do_check_inuse_chunk(P)
894 #define check_chunk(P) do_check_chunk(P)
895 #define check_malloced_chunk(P,N) do_check_malloced_chunk(P,N)
897 #define check_free_chunk(P)
898 #define check_inuse_chunk(P)
899 #define check_chunk(P)
900 #define check_malloced_chunk(P,N)
906 Macro-based internal utilities
911 Linking chunks in bin lists.
912 Call these only with variables, not arbitrary expressions, as arguments.
916 Place chunk p of size s in its bin, in size order,
917 putting it ahead of others of same size.
921 #define frontlink(P, S, IDX, BK, FD) \
923 if (S < MAX_SMALLBIN_SIZE) \
925 IDX = smallbin_index(S); \
926 mark_binblock(IDX); \
931 FD->bk = BK->fd = P; \
935 IDX = bin_index(S); \
938 if (FD == BK) mark_binblock(IDX); \
941 while (FD != BK && S < chunksize(FD)) FD = FD->fd; \
946 FD->bk = BK->fd = P; \
951 /* take a chunk off a list */
953 #define unlink(P, BK, FD) \
961 /* Place p as the last remainder */
963 #define link_last_remainder(P) \
965 last_remainder->fd = last_remainder->bk = P; \
966 P->fd = P->bk = last_remainder; \
969 /* Clear the last_remainder bin */
971 #define clear_last_remainder \
972 (last_remainder->fd = last_remainder->bk = last_remainder)
978 /* Routines dealing with mmap(). */
983 static mchunkptr mmap_chunk(size_t size)
985 static mchunkptr mmap_chunk(size) size_t size;
988 size_t page_mask = malloc_getpagesize - 1;
991 #ifndef MAP_ANONYMOUS
995 if(n_mmaps >= n_mmaps_max) return 0; /* too many regions */
997 /* For mmapped chunks, the overhead is one SIZE_SZ unit larger, because
998 * there is no following chunk whose prev_size field could be used.
1000 size = (size + SIZE_SZ + page_mask) & ~page_mask;
1002 #ifdef MAP_ANONYMOUS
1003 p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE,
1004 MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
1005 #else /* !MAP_ANONYMOUS */
1008 fd = open("/dev/zero", O_RDWR);
1009 if(fd < 0) return 0;
1011 p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
1014 if(p == (mchunkptr)-1) return 0;
1017 if (n_mmaps > max_n_mmaps) max_n_mmaps = n_mmaps;
1019 /* We demand that eight bytes into a page must be 8-byte aligned. */
1020 assert(aligned_OK(chunk2mem(p)));
1022 /* The offset to the start of the mmapped region is stored
1023 * in the prev_size field of the chunk; normally it is zero,
1024 * but that can be changed in memalign().
1027 set_head(p, size|IS_MMAPPED);
1029 mmapped_mem += size;
1030 if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
1031 max_mmapped_mem = mmapped_mem;
1032 if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1033 max_total_mem = mmapped_mem + sbrked_mem;
1038 static void munmap_chunk(mchunkptr p)
1040 static void munmap_chunk(p) mchunkptr p;
1043 INTERNAL_SIZE_T size = chunksize(p);
1046 assert (chunk_is_mmapped(p));
1047 assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1048 assert((n_mmaps > 0));
1049 assert(((p->prev_size + size) & (malloc_getpagesize-1)) == 0);
1052 mmapped_mem -= (size + p->prev_size);
1054 ret = munmap((char *)p - p->prev_size, size + p->prev_size);
1056 /* munmap returns non-zero on failure */
1063 static mchunkptr mremap_chunk(mchunkptr p, size_t new_size)
1065 static mchunkptr mremap_chunk(p, new_size) mchunkptr p; size_t new_size;
1068 size_t page_mask = malloc_getpagesize - 1;
1069 INTERNAL_SIZE_T offset = p->prev_size;
1070 INTERNAL_SIZE_T size = chunksize(p);
1073 assert (chunk_is_mmapped(p));
1074 assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1075 assert((n_mmaps > 0));
1076 assert(((size + offset) & (malloc_getpagesize-1)) == 0);
1078 /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
1079 new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask;
1081 cp = (char *)mremap((char *)p - offset, size + offset, new_size, 1);
1083 if (cp == (char *)-1) return 0;
1085 p = (mchunkptr)(cp + offset);
1087 assert(aligned_OK(chunk2mem(p)));
1089 assert((p->prev_size == offset));
1090 set_head(p, (new_size - offset)|IS_MMAPPED);
1092 mmapped_mem -= size + offset;
1093 mmapped_mem += new_size;
1094 if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
1095 max_mmapped_mem = mmapped_mem;
1096 if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1097 max_total_mem = mmapped_mem + sbrked_mem;
1101 #endif /* HAVE_MREMAP */
1103 #endif /* HAVE_MMAP */
1106 Extend the top-most chunk by obtaining memory from system.
1107 Main interface to sbrk (but see also malloc_trim).
1111 static void malloc_extend_top(INTERNAL_SIZE_T nb)
1113 static void malloc_extend_top(nb) INTERNAL_SIZE_T nb;
1116 char* brk; /* return value from sbrk */
1117 INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of sbrked space */
1118 INTERNAL_SIZE_T correction; /* bytes for 2nd sbrk call */
1119 char* new_brk; /* return of 2nd sbrk call */
1120 INTERNAL_SIZE_T top_size; /* new size of top chunk */
1122 mchunkptr old_top = top; /* Record state of old top */
1123 INTERNAL_SIZE_T old_top_size = chunksize(old_top);
1124 char* old_end = (char*)(chunk_at_offset(old_top, old_top_size));
1126 /* Pad request with top_pad plus minimal overhead */
1128 INTERNAL_SIZE_T sbrk_size = nb + top_pad + MINSIZE;
1129 unsigned long pagesz = malloc_getpagesize;
1131 /* If not the first time through, round to preserve page boundary */
1132 /* Otherwise, we need to correct to a page size below anyway. */
1133 /* (We also correct below if an intervening foreign sbrk call.) */
1135 if (sbrk_base != (char*)(-1))
1136 sbrk_size = (sbrk_size + (pagesz - 1)) & ~(pagesz - 1);
1138 brk = (char*)(MORECORE (sbrk_size));
1140 /* Fail if sbrk failed or if a foreign sbrk call killed our space */
1141 if (brk == (char*)(MORECORE_FAILURE) ||
1142 (brk < old_end && old_top != initial_top))
1145 sbrked_mem += sbrk_size;
1147 if (brk == old_end) /* can just add bytes to current top */
1149 top_size = sbrk_size + old_top_size;
1150 set_head(top, top_size | PREV_INUSE);
1154 if (sbrk_base == (char*)(-1)) /* First time through. Record base */
1156 else /* Someone else called sbrk(). Count those bytes as sbrked_mem. */
1157 sbrked_mem += brk - (char*)old_end;
1159 /* Guarantee alignment of first new chunk made from this space */
1160 front_misalign = (unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK;
1161 if (front_misalign > 0)
1163 correction = (MALLOC_ALIGNMENT) - front_misalign;
1169 /* Guarantee the next brk will be at a page boundary */
1171 correction += ((((unsigned long)(brk + sbrk_size))+(pagesz-1)) &
1172 ~(pagesz - 1)) - ((unsigned long)(brk + sbrk_size));
1174 /* Allocate correction */
1175 new_brk = (char*)(MORECORE (correction));
1176 if (new_brk == (char*)(MORECORE_FAILURE)) return;
1178 sbrked_mem += correction;
1180 top = (mchunkptr)brk;
1181 top_size = new_brk - brk + correction;
1182 set_head(top, top_size | PREV_INUSE);
1184 if (old_top != initial_top)
1187 /* There must have been an intervening foreign sbrk call. */
1188 /* A double fencepost is necessary to prevent consolidation */
1190 /* If not enough space to do this, then user did something very wrong */
1191 if (old_top_size < MINSIZE)
1193 set_head(top, PREV_INUSE); /* will force null return from malloc */
1197 /* Also keep size a multiple of MALLOC_ALIGNMENT */
1198 old_top_size = (old_top_size - 3*SIZE_SZ) & ~MALLOC_ALIGN_MASK;
1199 set_head_size(old_top, old_top_size);
1200 chunk_at_offset(old_top, old_top_size )->size =
1202 chunk_at_offset(old_top, old_top_size + SIZE_SZ)->size =
1204 /* If possible, release the rest. */
1205 if (old_top_size >= MINSIZE)
1206 fREe(chunk2mem(old_top));
1210 if ((unsigned long)sbrked_mem > (unsigned long)max_sbrked_mem)
1211 max_sbrked_mem = sbrked_mem;
1212 if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1213 max_total_mem = mmapped_mem + sbrked_mem;
1215 /* We always land on a page boundary */
1216 assert(((unsigned long)((char*)top + top_size) & (pagesz - 1)) == 0);
1222 /* Main public routines */
1228 The requested size is first converted into a usable form, `nb'.
1229 This currently means to add 4 bytes overhead plus possibly more to
1230 obtain 8-byte alignment and/or to obtain a size of at least
1231 MINSIZE (currently 16 bytes), the smallest allocatable size.
1232 (All fits are considered `exact' if they are within MINSIZE bytes.)
1234 From there, the first successful of the following steps is taken:
1236 1. The bin corresponding to the request size is scanned, and if
1237 a chunk of exactly the right size is found, it is taken.
1239 2. The most recently remaindered chunk is used if it is big
1240 enough. This is a form of (roving) first fit, used only in
1241 the absence of exact fits. Runs of consecutive requests use
1242 the remainder of the chunk used for the previous such request
1243 whenever possible. This limited use of a first-fit style
1244 allocation strategy tends to give contiguous chunks
1245 coextensive lifetimes, which improves locality and can reduce
1246 fragmentation in the long run.
1248 3. Other bins are scanned in increasing size order, using a
1249 chunk big enough to fulfill the request, and splitting off
1250 any remainder. This search is strictly by best-fit; i.e.,
1251 the smallest (with ties going to approximately the least
1252 recently used) chunk that fits is selected.
1254 4. If large enough, the chunk bordering the end of memory
1255 (`top') is split off. (This use of `top' is in accord with
1256 the best-fit search rule. In effect, `top' is treated as
1257 larger (and thus less well fitting) than any other available
1258 chunk since it can be extended to be as large as necessary
1259 (up to system limitations).
1261 5. If the request size meets the mmap threshold and the
1262 system supports mmap, and there are few enough currently
1263 allocated mmapped regions, and a call to mmap succeeds,
1264 the request is allocated via direct memory mapping.
1266 6. Otherwise, the top of memory is extended by
1267 obtaining more space from the system (normally using sbrk,
1268 but definable to anything else via the MORECORE macro).
1269 Memory is gathered from the system (in system page-sized
1270 units) in a way that allows chunks obtained across different
1271 sbrk calls to be consolidated, but does not require
1272 contiguous memory. Thus, it should be safe to intersperse
1273 mallocs with other sbrk calls.
1276 All allocations are made from the the `lowest' part of any found
1277 chunk. (The implementation invariant is that prev_inuse is
1278 always true of any allocated chunk; i.e., that each allocated
1279 chunk borders either a previously allocated and still in-use chunk,
1280 or the base of its memory arena.)
1285 Void_t* mALLOc(size_t bytes)
1287 Void_t* mALLOc(bytes) size_t bytes;
1290 mchunkptr victim; /* inspected/selected chunk */
1291 INTERNAL_SIZE_T victim_size; /* its size */
1292 int idx; /* index for bin traversal */
1293 mbinptr bin; /* associated bin */
1294 mchunkptr remainder; /* remainder from a split */
1295 long remainder_size; /* its size */
1296 int remainder_index; /* its bin index */
1297 unsigned long block; /* block traverser bit */
1298 int startidx; /* first bin of a traversed block */
1299 mchunkptr fwd; /* misc temp for linking */
1300 mchunkptr bck; /* misc temp for linking */
1301 mbinptr q; /* misc temp */
1305 #if CONFIG_VAL(SYS_MALLOC_F_LEN)
1306 if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT))
1307 return malloc_simple(bytes);
1310 /* check if mem_malloc_init() was run */
1311 if ((mem_malloc_start == 0) && (mem_malloc_end == 0)) {
1312 /* not initialized yet */
1316 if ((long)bytes < 0) return NULL;
1318 nb = request2size(bytes); /* padded request size; */
1320 /* Check for exact match in a bin */
1322 if (is_small_request(nb)) /* Faster version for small requests */
1324 idx = smallbin_index(nb);
1326 /* No traversal or size check necessary for small bins. */
1331 /* Also scan the next one, since it would have a remainder < MINSIZE */
1339 victim_size = chunksize(victim);
1340 unlink(victim, bck, fwd);
1341 set_inuse_bit_at_offset(victim, victim_size);
1342 check_malloced_chunk(victim, nb);
1343 VALGRIND_MALLOCLIKE_BLOCK(chunk2mem(victim), bytes, SIZE_SZ, false);
1344 return chunk2mem(victim);
1347 idx += 2; /* Set for bin scan below. We've already scanned 2 bins. */
1352 idx = bin_index(nb);
1355 for (victim = last(bin); victim != bin; victim = victim->bk)
1357 victim_size = chunksize(victim);
1358 remainder_size = victim_size - nb;
1360 if (remainder_size >= (long)MINSIZE) /* too big */
1362 --idx; /* adjust to rescan below after checking last remainder */
1366 else if (remainder_size >= 0) /* exact fit */
1368 unlink(victim, bck, fwd);
1369 set_inuse_bit_at_offset(victim, victim_size);
1370 check_malloced_chunk(victim, nb);
1371 VALGRIND_MALLOCLIKE_BLOCK(chunk2mem(victim), bytes, SIZE_SZ, false);
1372 return chunk2mem(victim);
1380 /* Try to use the last split-off remainder */
1382 if ( (victim = last_remainder->fd) != last_remainder)
1384 victim_size = chunksize(victim);
1385 remainder_size = victim_size - nb;
1387 if (remainder_size >= (long)MINSIZE) /* re-split */
1389 remainder = chunk_at_offset(victim, nb);
1390 set_head(victim, nb | PREV_INUSE);
1391 link_last_remainder(remainder);
1392 set_head(remainder, remainder_size | PREV_INUSE);
1393 set_foot(remainder, remainder_size);
1394 check_malloced_chunk(victim, nb);
1395 VALGRIND_MALLOCLIKE_BLOCK(chunk2mem(victim), bytes, SIZE_SZ, false);
1396 return chunk2mem(victim);
1399 clear_last_remainder;
1401 if (remainder_size >= 0) /* exhaust */
1403 set_inuse_bit_at_offset(victim, victim_size);
1404 check_malloced_chunk(victim, nb);
1405 VALGRIND_MALLOCLIKE_BLOCK(chunk2mem(victim), bytes, SIZE_SZ, false);
1406 return chunk2mem(victim);
1409 /* Else place in bin */
1411 frontlink(victim, victim_size, remainder_index, bck, fwd);
1415 If there are any possibly nonempty big-enough blocks,
1416 search for best fitting chunk by scanning bins in blockwidth units.
1419 if ( (block = idx2binblock(idx)) <= binblocks_r)
1422 /* Get to the first marked block */
1424 if ( (block & binblocks_r) == 0)
1426 /* force to an even block boundary */
1427 idx = (idx & ~(BINBLOCKWIDTH - 1)) + BINBLOCKWIDTH;
1429 while ((block & binblocks_r) == 0)
1431 idx += BINBLOCKWIDTH;
1436 /* For each possibly nonempty block ... */
1439 startidx = idx; /* (track incomplete blocks) */
1440 q = bin = bin_at(idx);
1442 /* For each bin in this block ... */
1445 /* Find and use first big enough chunk ... */
1447 for (victim = last(bin); victim != bin; victim = victim->bk)
1449 victim_size = chunksize(victim);
1450 remainder_size = victim_size - nb;
1452 if (remainder_size >= (long)MINSIZE) /* split */
1454 remainder = chunk_at_offset(victim, nb);
1455 set_head(victim, nb | PREV_INUSE);
1456 unlink(victim, bck, fwd);
1457 link_last_remainder(remainder);
1458 set_head(remainder, remainder_size | PREV_INUSE);
1459 set_foot(remainder, remainder_size);
1460 check_malloced_chunk(victim, nb);
1461 VALGRIND_MALLOCLIKE_BLOCK(chunk2mem(victim), bytes, SIZE_SZ, false);
1462 return chunk2mem(victim);
1465 else if (remainder_size >= 0) /* take */
1467 set_inuse_bit_at_offset(victim, victim_size);
1468 unlink(victim, bck, fwd);
1469 check_malloced_chunk(victim, nb);
1470 VALGRIND_MALLOCLIKE_BLOCK(chunk2mem(victim), bytes, SIZE_SZ, false);
1471 return chunk2mem(victim);
1476 bin = next_bin(bin);
1478 } while ((++idx & (BINBLOCKWIDTH - 1)) != 0);
1480 /* Clear out the block bit. */
1482 do /* Possibly backtrack to try to clear a partial block */
1484 if ((startidx & (BINBLOCKWIDTH - 1)) == 0)
1486 av_[1] = (mbinptr)(binblocks_r & ~block);
1491 } while (first(q) == q);
1493 /* Get to the next possibly nonempty block */
1495 if ( (block <<= 1) <= binblocks_r && (block != 0) )
1497 while ((block & binblocks_r) == 0)
1499 idx += BINBLOCKWIDTH;
1509 /* Try to use top chunk */
1511 /* Require that there be a remainder, ensuring top always exists */
1512 if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
1516 /* If big and would otherwise need to extend, try to use mmap instead */
1517 if ((unsigned long)nb >= (unsigned long)mmap_threshold &&
1518 (victim = mmap_chunk(nb)))
1519 VALGRIND_MALLOCLIKE_BLOCK(chunk2mem(victim), bytes, SIZE_SZ, false);
1520 return chunk2mem(victim);
1524 malloc_extend_top(nb);
1525 if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
1526 return NULL; /* propagate failure */
1530 set_head(victim, nb | PREV_INUSE);
1531 top = chunk_at_offset(victim, nb);
1532 set_head(top, remainder_size | PREV_INUSE);
1533 check_malloced_chunk(victim, nb);
1534 VALGRIND_MALLOCLIKE_BLOCK(chunk2mem(victim), bytes, SIZE_SZ, false);
1535 return chunk2mem(victim);
1548 1. free(0) has no effect.
1550 2. If the chunk was allocated via mmap, it is release via munmap().
1552 3. If a returned chunk borders the current high end of memory,
1553 it is consolidated into the top, and if the total unused
1554 topmost memory exceeds the trim threshold, malloc_trim is
1557 4. Other chunks are consolidated as they arrive, and
1558 placed in corresponding bins. (This includes the case of
1559 consolidating with the current `last_remainder').
1565 void fREe(Void_t* mem)
1567 void fREe(mem) Void_t* mem;
1570 mchunkptr p; /* chunk corresponding to mem */
1571 INTERNAL_SIZE_T hd; /* its head field */
1572 INTERNAL_SIZE_T sz; /* its size */
1573 int idx; /* its bin index */
1574 mchunkptr next; /* next contiguous chunk */
1575 INTERNAL_SIZE_T nextsz; /* its size */
1576 INTERNAL_SIZE_T prevsz; /* size of previous contiguous chunk */
1577 mchunkptr bck; /* misc temp for linking */
1578 mchunkptr fwd; /* misc temp for linking */
1579 int islr; /* track whether merging with last_remainder */
1581 #if CONFIG_VAL(SYS_MALLOC_F_LEN)
1582 /* free() is a no-op - all the memory will be freed on relocation */
1583 if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) {
1584 VALGRIND_FREELIKE_BLOCK(mem, SIZE_SZ);
1589 if (mem == NULL) /* free(0) has no effect */
1596 if (hd & IS_MMAPPED) /* release mmapped memory. */
1603 check_inuse_chunk(p);
1605 sz = hd & ~PREV_INUSE;
1606 next = chunk_at_offset(p, sz);
1607 nextsz = chunksize(next);
1608 VALGRIND_FREELIKE_BLOCK(mem, SIZE_SZ);
1610 if (next == top) /* merge with top */
1614 if (!(hd & PREV_INUSE)) /* consolidate backward */
1616 prevsz = p->prev_size;
1617 p = chunk_at_offset(p, -((long) prevsz));
1619 unlink(p, bck, fwd);
1622 set_head(p, sz | PREV_INUSE);
1624 if ((unsigned long)(sz) >= (unsigned long)trim_threshold)
1625 malloc_trim(top_pad);
1629 set_head(next, nextsz); /* clear inuse bit */
1633 if (!(hd & PREV_INUSE)) /* consolidate backward */
1635 prevsz = p->prev_size;
1636 p = chunk_at_offset(p, -((long) prevsz));
1639 if (p->fd == last_remainder) /* keep as last_remainder */
1642 unlink(p, bck, fwd);
1645 if (!(inuse_bit_at_offset(next, nextsz))) /* consolidate forward */
1649 if (!islr && next->fd == last_remainder) /* re-insert last_remainder */
1652 link_last_remainder(p);
1655 unlink(next, bck, fwd);
1659 set_head(p, sz | PREV_INUSE);
1662 frontlink(p, sz, idx, bck, fwd);
1673 Chunks that were obtained via mmap cannot be extended or shrunk
1674 unless HAVE_MREMAP is defined, in which case mremap is used.
1675 Otherwise, if their reallocation is for additional space, they are
1676 copied. If for less, they are just left alone.
1678 Otherwise, if the reallocation is for additional space, and the
1679 chunk can be extended, it is, else a malloc-copy-free sequence is
1680 taken. There are several different ways that a chunk could be
1681 extended. All are tried:
1683 * Extending forward into following adjacent free chunk.
1684 * Shifting backwards, joining preceding adjacent space
1685 * Both shifting backwards and extending forward.
1686 * Extending into newly sbrked space
1688 Unless the #define REALLOC_ZERO_BYTES_FREES is set, realloc with a
1689 size argument of zero (re)allocates a minimum-sized chunk.
1691 If the reallocation is for less space, and the new request is for
1692 a `small' (<512 bytes) size, then the newly unused space is lopped
1695 The old unix realloc convention of allowing the last-free'd chunk
1696 to be used as an argument to realloc is no longer supported.
1697 I don't know of any programs still relying on this feature,
1698 and allowing it would also allow too many other incorrect
1699 usages of realloc to be sensible.
1706 Void_t* rEALLOc(Void_t* oldmem, size_t bytes)
1708 Void_t* rEALLOc(oldmem, bytes) Void_t* oldmem; size_t bytes;
1711 INTERNAL_SIZE_T nb; /* padded request size */
1713 mchunkptr oldp; /* chunk corresponding to oldmem */
1714 INTERNAL_SIZE_T oldsize; /* its size */
1716 mchunkptr newp; /* chunk to return */
1717 INTERNAL_SIZE_T newsize; /* its size */
1718 Void_t* newmem; /* corresponding user mem */
1720 mchunkptr next; /* next contiguous chunk after oldp */
1721 INTERNAL_SIZE_T nextsize; /* its size */
1723 mchunkptr prev; /* previous contiguous chunk before oldp */
1724 INTERNAL_SIZE_T prevsize; /* its size */
1726 mchunkptr remainder; /* holds split off extra space from newp */
1727 INTERNAL_SIZE_T remainder_size; /* its size */
1729 mchunkptr bck; /* misc temp for linking */
1730 mchunkptr fwd; /* misc temp for linking */
1732 #ifdef REALLOC_ZERO_BYTES_FREES
1739 if ((long)bytes < 0) return NULL;
1741 /* realloc of null is supposed to be same as malloc */
1742 if (oldmem == NULL) return mALLOc(bytes);
1744 #if CONFIG_VAL(SYS_MALLOC_F_LEN)
1745 if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) {
1746 /* This is harder to support and should not be needed */
1747 panic("pre-reloc realloc() is not supported");
1751 newp = oldp = mem2chunk(oldmem);
1752 newsize = oldsize = chunksize(oldp);
1755 nb = request2size(bytes);
1758 if (chunk_is_mmapped(oldp))
1761 newp = mremap_chunk(oldp, nb);
1762 if(newp) return chunk2mem(newp);
1764 /* Note the extra SIZE_SZ overhead. */
1765 if(oldsize - SIZE_SZ >= nb) return oldmem; /* do nothing */
1766 /* Must alloc, copy, free. */
1767 newmem = mALLOc(bytes);
1769 return NULL; /* propagate failure */
1770 MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ);
1776 check_inuse_chunk(oldp);
1778 if ((long)(oldsize) < (long)(nb))
1781 /* Try expanding forward */
1783 next = chunk_at_offset(oldp, oldsize);
1784 if (next == top || !inuse(next))
1786 nextsize = chunksize(next);
1788 /* Forward into top only if a remainder */
1791 if ((long)(nextsize + newsize) >= (long)(nb + MINSIZE))
1793 newsize += nextsize;
1794 top = chunk_at_offset(oldp, nb);
1795 set_head(top, (newsize - nb) | PREV_INUSE);
1796 set_head_size(oldp, nb);
1797 VALGRIND_RESIZEINPLACE_BLOCK(chunk2mem(oldp), 0, bytes, SIZE_SZ);
1798 VALGRIND_MAKE_MEM_DEFINED(chunk2mem(oldp), bytes);
1799 return chunk2mem(oldp);
1803 /* Forward into next chunk */
1804 else if (((long)(nextsize + newsize) >= (long)(nb)))
1806 unlink(next, bck, fwd);
1807 newsize += nextsize;
1808 VALGRIND_RESIZEINPLACE_BLOCK(chunk2mem(oldp), 0, bytes, SIZE_SZ);
1809 VALGRIND_MAKE_MEM_DEFINED(chunk2mem(oldp), bytes);
1819 /* Try shifting backwards. */
1821 if (!prev_inuse(oldp))
1823 prev = prev_chunk(oldp);
1824 prevsize = chunksize(prev);
1826 /* try forward + backward first to save a later consolidation */
1833 if ((long)(nextsize + prevsize + newsize) >= (long)(nb + MINSIZE))
1835 unlink(prev, bck, fwd);
1837 newsize += prevsize + nextsize;
1838 newmem = chunk2mem(newp);
1839 VALGRIND_MALLOCLIKE_BLOCK(newmem, bytes, SIZE_SZ, false);
1840 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
1841 top = chunk_at_offset(newp, nb);
1842 set_head(top, (newsize - nb) | PREV_INUSE);
1843 set_head_size(newp, nb);
1844 VALGRIND_FREELIKE_BLOCK(oldmem, SIZE_SZ);
1849 /* into next chunk */
1850 else if (((long)(nextsize + prevsize + newsize) >= (long)(nb)))
1852 unlink(next, bck, fwd);
1853 unlink(prev, bck, fwd);
1855 newsize += nextsize + prevsize;
1856 newmem = chunk2mem(newp);
1857 VALGRIND_MALLOCLIKE_BLOCK(newmem, bytes, SIZE_SZ, false);
1858 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
1864 if (prev != NULL && (long)(prevsize + newsize) >= (long)nb)
1866 unlink(prev, bck, fwd);
1868 newsize += prevsize;
1869 newmem = chunk2mem(newp);
1870 VALGRIND_MALLOCLIKE_BLOCK(newmem, bytes, SIZE_SZ, false);
1871 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
1878 newmem = mALLOc (bytes);
1880 if (newmem == NULL) /* propagate failure */
1883 /* Avoid copy if newp is next chunk after oldp. */
1884 /* (This can only happen when new chunk is sbrk'ed.) */
1886 if ( (newp = mem2chunk(newmem)) == next_chunk(oldp))
1888 newsize += chunksize(newp);
1893 /* Otherwise copy, free, and exit */
1894 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
1898 VALGRIND_RESIZEINPLACE_BLOCK(oldmem, 0, bytes, SIZE_SZ);
1899 VALGRIND_MAKE_MEM_DEFINED(oldmem, bytes);
1903 split: /* split off extra room in old or expanded chunk */
1905 if (newsize - nb >= MINSIZE) /* split off remainder */
1907 remainder = chunk_at_offset(newp, nb);
1908 remainder_size = newsize - nb;
1909 set_head_size(newp, nb);
1910 set_head(remainder, remainder_size | PREV_INUSE);
1911 set_inuse_bit_at_offset(remainder, remainder_size);
1912 VALGRIND_MALLOCLIKE_BLOCK(chunk2mem(remainder), remainder_size, SIZE_SZ,
1914 fREe(chunk2mem(remainder)); /* let free() deal with it */
1918 set_head_size(newp, newsize);
1919 set_inuse_bit_at_offset(newp, newsize);
1922 check_inuse_chunk(newp);
1923 return chunk2mem(newp);
1933 memalign requests more than enough space from malloc, finds a spot
1934 within that chunk that meets the alignment request, and then
1935 possibly frees the leading and trailing space.
1937 The alignment argument must be a power of two. This property is not
1938 checked by memalign, so misuse may result in random runtime errors.
1940 8-byte alignment is guaranteed by normal malloc calls, so don't
1941 bother calling memalign with an argument of 8 or less.
1943 Overreliance on memalign is a sure way to fragment space.
1949 Void_t* mEMALIGn(size_t alignment, size_t bytes)
1951 Void_t* mEMALIGn(alignment, bytes) size_t alignment; size_t bytes;
1954 INTERNAL_SIZE_T nb; /* padded request size */
1955 char* m; /* memory returned by malloc call */
1956 mchunkptr p; /* corresponding chunk */
1957 char* brk; /* alignment point within p */
1958 mchunkptr newp; /* chunk to return */
1959 INTERNAL_SIZE_T newsize; /* its size */
1960 INTERNAL_SIZE_T leadsize; /* leading space befor alignment point */
1961 mchunkptr remainder; /* spare room at end to split off */
1962 long remainder_size; /* its size */
1964 if ((long)bytes < 0) return NULL;
1966 #if CONFIG_VAL(SYS_MALLOC_F_LEN)
1967 if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) {
1968 return memalign_simple(alignment, bytes);
1972 /* If need less alignment than we give anyway, just relay to malloc */
1974 if (alignment <= MALLOC_ALIGNMENT) return mALLOc(bytes);
1976 /* Otherwise, ensure that it is at least a minimum chunk size */
1978 if (alignment < MINSIZE) alignment = MINSIZE;
1980 /* Call malloc with worst case padding to hit alignment. */
1982 nb = request2size(bytes);
1983 m = (char*)(mALLOc(nb + alignment + MINSIZE));
1986 * The attempt to over-allocate (with a size large enough to guarantee the
1987 * ability to find an aligned region within allocated memory) failed.
1989 * Try again, this time only allocating exactly the size the user wants. If
1990 * the allocation now succeeds and just happens to be aligned, we can still
1991 * fulfill the user's request.
1994 size_t extra, extra2;
1996 * Use bytes not nb, since mALLOc internally calls request2size too, and
1997 * each call increases the size to allocate, to account for the header.
1999 m = (char*)(mALLOc(bytes));
2000 /* Aligned -> return it */
2001 if ((((unsigned long)(m)) % alignment) == 0)
2004 * Otherwise, try again, requesting enough extra space to be able to
2005 * acquire alignment.
2008 /* Add in extra bytes to match misalignment of unexpanded allocation */
2009 extra = alignment - (((unsigned long)(m)) % alignment);
2010 m = (char*)(mALLOc(bytes + extra));
2012 * m might not be the same as before. Validate that the previous value of
2013 * extra still works for the current value of m.
2014 * If (!m), extra2=alignment so
2017 extra2 = alignment - (((unsigned long)(m)) % alignment);
2018 if (extra2 > extra) {
2023 /* Fall through to original NULL check and chunk splitting logic */
2026 if (m == NULL) return NULL; /* propagate failure */
2030 if ((((unsigned long)(m)) % alignment) == 0) /* aligned */
2033 if(chunk_is_mmapped(p))
2034 return chunk2mem(p); /* nothing more to do */
2037 else /* misaligned */
2040 Find an aligned spot inside chunk.
2041 Since we need to give back leading space in a chunk of at
2042 least MINSIZE, if the first calculation places us at
2043 a spot with less than MINSIZE leader, we can move to the
2044 next aligned spot -- we've allocated enough total room so that
2045 this is always possible.
2048 brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) & -((signed) alignment));
2049 if ((long)(brk - (char*)(p)) < MINSIZE) brk = brk + alignment;
2051 newp = (mchunkptr)brk;
2052 leadsize = brk - (char*)(p);
2053 newsize = chunksize(p) - leadsize;
2056 if(chunk_is_mmapped(p))
2058 newp->prev_size = p->prev_size + leadsize;
2059 set_head(newp, newsize|IS_MMAPPED);
2060 return chunk2mem(newp);
2064 /* give back leader, use the rest */
2066 set_head(newp, newsize | PREV_INUSE);
2067 set_inuse_bit_at_offset(newp, newsize);
2068 set_head_size(p, leadsize);
2071 VALGRIND_MALLOCLIKE_BLOCK(chunk2mem(p), bytes, SIZE_SZ, false);
2073 assert (newsize >= nb && (((unsigned long)(chunk2mem(p))) % alignment) == 0);
2076 /* Also give back spare room at the end */
2078 remainder_size = chunksize(p) - nb;
2080 if (remainder_size >= (long)MINSIZE)
2082 remainder = chunk_at_offset(p, nb);
2083 set_head(remainder, remainder_size | PREV_INUSE);
2084 set_head_size(p, nb);
2085 VALGRIND_MALLOCLIKE_BLOCK(chunk2mem(remainder), remainder_size, SIZE_SZ,
2087 fREe(chunk2mem(remainder));
2090 check_inuse_chunk(p);
2091 return chunk2mem(p);
2099 valloc just invokes memalign with alignment argument equal
2100 to the page size of the system (or as near to this as can
2101 be figured out from all the includes/defines above.)
2105 Void_t* vALLOc(size_t bytes)
2107 Void_t* vALLOc(bytes) size_t bytes;
2110 return mEMALIGn (malloc_getpagesize, bytes);
2114 pvalloc just invokes valloc for the nearest pagesize
2115 that will accommodate request
2120 Void_t* pvALLOc(size_t bytes)
2122 Void_t* pvALLOc(bytes) size_t bytes;
2125 size_t pagesize = malloc_getpagesize;
2126 return mEMALIGn (pagesize, (bytes + pagesize - 1) & ~(pagesize - 1));
2131 calloc calls malloc, then zeroes out the allocated chunk.
2136 Void_t* cALLOc(size_t n, size_t elem_size)
2138 Void_t* cALLOc(n, elem_size) size_t n; size_t elem_size;
2142 INTERNAL_SIZE_T csz;
2144 INTERNAL_SIZE_T sz = n * elem_size;
2147 /* check if expand_top called, in which case don't need to clear */
2148 #ifdef CONFIG_SYS_MALLOC_CLEAR_ON_INIT
2150 mchunkptr oldtop = top;
2151 INTERNAL_SIZE_T oldtopsize = chunksize(top);
2154 Void_t* mem = mALLOc (sz);
2156 if ((long)n < 0) return NULL;
2162 #if CONFIG_VAL(SYS_MALLOC_F_LEN)
2163 if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) {
2170 /* Two optional cases in which clearing not necessary */
2174 if (chunk_is_mmapped(p)) return mem;
2179 #ifdef CONFIG_SYS_MALLOC_CLEAR_ON_INIT
2181 if (p == oldtop && csz > oldtopsize)
2183 /* clear only the bytes from non-freshly-sbrked memory */
2189 MALLOC_ZERO(mem, csz - SIZE_SZ);
2190 VALGRIND_MAKE_MEM_DEFINED(mem, sz);
2197 cfree just calls free. It is needed/defined on some systems
2198 that pair it with calloc, presumably for odd historical reasons.
2202 #if !defined(INTERNAL_LINUX_C_LIB) || !defined(__ELF__)
2204 void cfree(Void_t *mem)
2206 void cfree(mem) Void_t *mem;
2217 Malloc_trim gives memory back to the system (via negative
2218 arguments to sbrk) if there is unused memory at the `high' end of
2219 the malloc pool. You can call this after freeing large blocks of
2220 memory to potentially reduce the system-level memory requirements
2221 of a program. However, it cannot guarantee to reduce memory. Under
2222 some allocation patterns, some large free blocks of memory will be
2223 locked between two used chunks, so they cannot be given back to
2226 The `pad' argument to malloc_trim represents the amount of free
2227 trailing space to leave untrimmed. If this argument is zero,
2228 only the minimum amount of memory to maintain internal data
2229 structures will be left (one page or less). Non-zero arguments
2230 can be supplied to maintain enough trailing space to service
2231 future expected allocations without having to re-obtain memory
2234 Malloc_trim returns 1 if it actually released any memory, else 0.
2239 int malloc_trim(size_t pad)
2241 int malloc_trim(pad) size_t pad;
2244 long top_size; /* Amount of top-most memory */
2245 long extra; /* Amount to release */
2246 char* current_brk; /* address returned by pre-check sbrk call */
2247 char* new_brk; /* address returned by negative sbrk call */
2249 unsigned long pagesz = malloc_getpagesize;
2251 top_size = chunksize(top);
2252 extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz;
2254 if (extra < (long)pagesz) /* Not enough memory to release */
2259 /* Test to make sure no one else called sbrk */
2260 current_brk = (char*)(MORECORE (0));
2261 if (current_brk != (char*)(top) + top_size)
2262 return 0; /* Apparently we don't own memory; must fail */
2266 new_brk = (char*)(MORECORE (-extra));
2268 if (new_brk == (char*)(MORECORE_FAILURE)) /* sbrk failed? */
2270 /* Try to figure out what we have */
2271 current_brk = (char*)(MORECORE (0));
2272 top_size = current_brk - (char*)top;
2273 if (top_size >= (long)MINSIZE) /* if not, we are very very dead! */
2275 sbrked_mem = current_brk - sbrk_base;
2276 set_head(top, top_size | PREV_INUSE);
2284 /* Success. Adjust top accordingly. */
2285 set_head(top, (top_size - extra) | PREV_INUSE);
2286 sbrked_mem -= extra;
2299 This routine tells you how many bytes you can actually use in an
2300 allocated chunk, which may be more than you requested (although
2301 often not). You can use this many bytes without worrying about
2302 overwriting other allocated objects. Not a particularly great
2303 programming practice, but still sometimes useful.
2308 size_t malloc_usable_size(Void_t* mem)
2310 size_t malloc_usable_size(mem) Void_t* mem;
2319 if(!chunk_is_mmapped(p))
2321 if (!inuse(p)) return 0;
2322 check_inuse_chunk(p);
2323 return chunksize(p) - SIZE_SZ;
2325 return chunksize(p) - 2*SIZE_SZ;
2332 /* Utility to update current_mallinfo for malloc_stats and mallinfo() */
2335 static void malloc_update_mallinfo()
2344 INTERNAL_SIZE_T avail = chunksize(top);
2345 int navail = ((long)(avail) >= (long)MINSIZE)? 1 : 0;
2347 for (i = 1; i < NAV; ++i)
2350 for (p = last(b); p != b; p = p->bk)
2353 check_free_chunk(p);
2354 for (q = next_chunk(p);
2355 q < top && inuse(q) && (long)(chunksize(q)) >= (long)MINSIZE;
2357 check_inuse_chunk(q);
2359 avail += chunksize(p);
2364 current_mallinfo.ordblks = navail;
2365 current_mallinfo.uordblks = sbrked_mem - avail;
2366 current_mallinfo.fordblks = avail;
2367 current_mallinfo.hblks = n_mmaps;
2368 current_mallinfo.hblkhd = mmapped_mem;
2369 current_mallinfo.keepcost = chunksize(top);
2380 Prints on the amount of space obtain from the system (both
2381 via sbrk and mmap), the maximum amount (which may be more than
2382 current if malloc_trim and/or munmap got called), the maximum
2383 number of simultaneous mmap regions used, and the current number
2384 of bytes allocated via malloc (or realloc, etc) but not yet
2385 freed. (Note that this is the number of bytes allocated, not the
2386 number requested. It will be larger than the number requested
2387 because of alignment and bookkeeping overhead.)
2394 malloc_update_mallinfo();
2395 printf("max system bytes = %10u\n",
2396 (unsigned int)(max_total_mem));
2397 printf("system bytes = %10u\n",
2398 (unsigned int)(sbrked_mem + mmapped_mem));
2399 printf("in use bytes = %10u\n",
2400 (unsigned int)(current_mallinfo.uordblks + mmapped_mem));
2402 printf("max mmap regions = %10u\n",
2403 (unsigned int)max_n_mmaps);
2409 mallinfo returns a copy of updated current mallinfo.
2413 struct mallinfo mALLINFo()
2415 malloc_update_mallinfo();
2416 return current_mallinfo;
2426 mallopt is the general SVID/XPG interface to tunable parameters.
2427 The format is to provide a (parameter-number, parameter-value) pair.
2428 mallopt then sets the corresponding parameter to the argument
2429 value if it can (i.e., so long as the value is meaningful),
2430 and returns 1 if successful else 0.
2432 See descriptions of tunable parameters above.
2437 int mALLOPt(int param_number, int value)
2439 int mALLOPt(param_number, value) int param_number; int value;
2442 switch(param_number)
2444 case M_TRIM_THRESHOLD:
2445 trim_threshold = value; return 1;
2447 top_pad = value; return 1;
2448 case M_MMAP_THRESHOLD:
2449 mmap_threshold = value; return 1;
2452 n_mmaps_max = value; return 1;
2454 if (value != 0) return 0; else n_mmaps_max = value; return 1;
2462 int initf_malloc(void)
2464 #if CONFIG_VAL(SYS_MALLOC_F_LEN)
2465 assert(gd->malloc_base); /* Set up by crt0.S */
2466 gd->malloc_limit = CONFIG_VAL(SYS_MALLOC_F_LEN);
2477 V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee)
2478 * return null for negative arguments
2479 * Added Several WIN32 cleanups from Martin C. Fong <mcfong@yahoo.com>
2480 * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
2481 (e.g. WIN32 platforms)
2482 * Cleanup up header file inclusion for WIN32 platforms
2483 * Cleanup code to avoid Microsoft Visual C++ compiler complaints
2484 * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
2485 memory allocation routines
2486 * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
2487 * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
2488 usage of 'assert' in non-WIN32 code
2489 * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
2491 * Always call 'fREe()' rather than 'free()'
2493 V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee)
2494 * Fixed ordering problem with boundary-stamping
2496 V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee)
2497 * Added pvalloc, as recommended by H.J. Liu
2498 * Added 64bit pointer support mainly from Wolfram Gloger
2499 * Added anonymously donated WIN32 sbrk emulation
2500 * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
2501 * malloc_extend_top: fix mask error that caused wastage after
2503 * Add linux mremap support code from HJ Liu
2505 V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee)
2506 * Integrated most documentation with the code.
2507 * Add support for mmap, with help from
2508 Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
2509 * Use last_remainder in more cases.
2510 * Pack bins using idea from colin@nyx10.cs.du.edu
2511 * Use ordered bins instead of best-fit threshhold
2512 * Eliminate block-local decls to simplify tracing and debugging.
2513 * Support another case of realloc via move into top
2514 * Fix error occuring when initial sbrk_base not word-aligned.
2515 * Rely on page size for units instead of SBRK_UNIT to
2516 avoid surprises about sbrk alignment conventions.
2517 * Add mallinfo, mallopt. Thanks to Raymond Nijssen
2518 (raymond@es.ele.tue.nl) for the suggestion.
2519 * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
2520 * More precautions for cases where other routines call sbrk,
2521 courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
2522 * Added macros etc., allowing use in linux libc from
2523 H.J. Lu (hjl@gnu.ai.mit.edu)
2524 * Inverted this history list
2526 V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee)
2527 * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
2528 * Removed all preallocation code since under current scheme
2529 the work required to undo bad preallocations exceeds
2530 the work saved in good cases for most test programs.
2531 * No longer use return list or unconsolidated bins since
2532 no scheme using them consistently outperforms those that don't
2533 given above changes.
2534 * Use best fit for very large chunks to prevent some worst-cases.
2535 * Added some support for debugging
2537 V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee)
2538 * Removed footers when chunks are in use. Thanks to
2539 Paul Wilson (wilson@cs.texas.edu) for the suggestion.
2541 V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee)
2542 * Added malloc_trim, with help from Wolfram Gloger
2543 (wmglo@Dent.MED.Uni-Muenchen.DE).
2545 V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g)
2547 V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g)
2548 * realloc: try to expand in both directions
2549 * malloc: swap order of clean-bin strategy;
2550 * realloc: only conditionally expand backwards
2551 * Try not to scavenge used bins
2552 * Use bin counts as a guide to preallocation
2553 * Occasionally bin return list chunks in first scan
2554 * Add a few optimizations from colin@nyx10.cs.du.edu
2556 V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g)
2557 * faster bin computation & slightly different binning
2558 * merged all consolidations to one part of malloc proper
2559 (eliminating old malloc_find_space & malloc_clean_bin)
2560 * Scan 2 returns chunks (not just 1)
2561 * Propagate failure in realloc if malloc returns 0
2562 * Add stuff to allow compilation on non-ANSI compilers
2563 from kpv@research.att.com
2565 V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu)
2566 * removed potential for odd address access in prev_chunk
2567 * removed dependency on getpagesize.h
2568 * misc cosmetics and a bit more internal documentation
2569 * anticosmetics: mangled names in macros to evade debugger strangeness
2570 * tested on sparc, hp-700, dec-mips, rs6000
2571 with gcc & native cc (hp, dec only) allowing
2572 Detlefs & Zorn comparison study (in SIGPLAN Notices.)
2574 Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu)
2575 * Based loosely on libg++-1.2X malloc. (It retains some of the overall
2576 structure of old version, but most details differ.)