1 // SPDX-License-Identifier: GPL-2.0+
3 * This code is based on a version (aka dlmalloc) of malloc/free/realloc written
4 * by Doug Lea and released to the public domain, as explained at
5 * http://creativecommons.org/publicdomain/zero/1.0/-
7 * The original code is available at http://gee.cs.oswego.edu/pub/misc/
8 * as file malloc-2.6.6.c.
13 #include <asm/global_data.h>
15 #if CONFIG_IS_ENABLED(UNIT_TEST)
21 #include <valgrind/memcheck.h>
25 static void malloc_update_mallinfo (void);
26 void malloc_stats (void);
28 static void malloc_update_mallinfo ();
33 DECLARE_GLOBAL_DATA_PTR;
36 Emulation of sbrk for WIN32
37 All code within the ifdef WIN32 is untested by me.
39 Thanks to Martin Fong and others for supplying this.
45 #define AlignPage(add) (((add) + (malloc_getpagesize-1)) & \
46 ~(malloc_getpagesize-1))
47 #define AlignPage64K(add) (((add) + (0x10000 - 1)) & ~(0x10000 - 1))
49 /* resrve 64MB to insure large contiguous space */
50 #define RESERVED_SIZE (1024*1024*64)
51 #define NEXT_SIZE (2048*1024)
52 #define TOP_MEMORY ((unsigned long)2*1024*1024*1024)
55 typedef struct GmListElement GmListElement;
63 static GmListElement* head = 0;
64 static unsigned int gNextAddress = 0;
65 static unsigned int gAddressBase = 0;
66 static unsigned int gAllocatedSize = 0;
69 GmListElement* makeGmListElement (void* bas)
72 this = (GmListElement*)(void*)LocalAlloc (0, sizeof (GmListElement));
86 assert ( (head == NULL) || (head->base == (void*)gAddressBase));
87 if (gAddressBase && (gNextAddress - gAddressBase))
89 rval = VirtualFree ((void*)gAddressBase,
90 gNextAddress - gAddressBase,
96 GmListElement* next = head->next;
97 rval = VirtualFree (head->base, 0, MEM_RELEASE);
105 void* findRegion (void* start_address, unsigned long size)
107 MEMORY_BASIC_INFORMATION info;
108 if (size >= TOP_MEMORY) return NULL;
110 while ((unsigned long)start_address + size < TOP_MEMORY)
112 VirtualQuery (start_address, &info, sizeof (info));
113 if ((info.State == MEM_FREE) && (info.RegionSize >= size))
114 return start_address;
117 /* Requested region is not available so see if the */
118 /* next region is available. Set 'start_address' */
119 /* to the next region and call 'VirtualQuery()' */
122 start_address = (char*)info.BaseAddress + info.RegionSize;
124 /* Make sure we start looking for the next region */
125 /* on the *next* 64K boundary. Otherwise, even if */
126 /* the new region is free according to */
127 /* 'VirtualQuery()', the subsequent call to */
128 /* 'VirtualAlloc()' (which follows the call to */
129 /* this routine in 'wsbrk()') will round *down* */
130 /* the requested address to a 64K boundary which */
131 /* we already know is an address in the */
132 /* unavailable region. Thus, the subsequent call */
133 /* to 'VirtualAlloc()' will fail and bring us back */
134 /* here, causing us to go into an infinite loop. */
137 (void *) AlignPage64K((unsigned long) start_address);
145 void* wsbrk (long size)
150 if (gAddressBase == 0)
152 gAllocatedSize = max (RESERVED_SIZE, AlignPage (size));
153 gNextAddress = gAddressBase =
154 (unsigned int)VirtualAlloc (NULL, gAllocatedSize,
155 MEM_RESERVE, PAGE_NOACCESS);
156 } else if (AlignPage (gNextAddress + size) > (gAddressBase +
159 long new_size = max (NEXT_SIZE, AlignPage (size));
160 void* new_address = (void*)(gAddressBase+gAllocatedSize);
163 new_address = findRegion (new_address, new_size);
168 gAddressBase = gNextAddress =
169 (unsigned int)VirtualAlloc (new_address, new_size,
170 MEM_RESERVE, PAGE_NOACCESS);
171 /* repeat in case of race condition */
172 /* The region that we found has been snagged */
173 /* by another thread */
175 while (gAddressBase == 0);
177 assert (new_address == (void*)gAddressBase);
179 gAllocatedSize = new_size;
181 if (!makeGmListElement ((void*)gAddressBase))
184 if ((size + gNextAddress) > AlignPage (gNextAddress))
187 res = VirtualAlloc ((void*)AlignPage (gNextAddress),
188 (size + gNextAddress -
189 AlignPage (gNextAddress)),
190 MEM_COMMIT, PAGE_READWRITE);
194 tmp = (void*)gNextAddress;
195 gNextAddress = (unsigned int)tmp + size;
200 unsigned int alignedGoal = AlignPage (gNextAddress + size);
201 /* Trim by releasing the virtual memory */
202 if (alignedGoal >= gAddressBase)
204 VirtualFree ((void*)alignedGoal, gNextAddress - alignedGoal,
206 gNextAddress = gNextAddress + size;
207 return (void*)gNextAddress;
211 VirtualFree ((void*)gAddressBase, gNextAddress - gAddressBase,
213 gNextAddress = gAddressBase;
219 return (void*)gNextAddress;
234 INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
235 INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */
236 struct malloc_chunk* fd; /* double links -- used only if free. */
237 struct malloc_chunk* bk;
238 } __attribute__((__may_alias__)) ;
240 typedef struct malloc_chunk* mchunkptr;
244 malloc_chunk details:
246 (The following includes lightly edited explanations by Colin Plumb.)
248 Chunks of memory are maintained using a `boundary tag' method as
249 described in e.g., Knuth or Standish. (See the paper by Paul
250 Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
251 survey of such techniques.) Sizes of free chunks are stored both
252 in the front of each chunk and at the end. This makes
253 consolidating fragmented chunks into bigger chunks very fast. The
254 size fields also hold bits representing whether chunks are free or
257 An allocated chunk looks like this:
260 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
261 | Size of previous chunk, if allocated | |
262 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
263 | Size of chunk, in bytes |P|
264 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
265 | User data starts here... .
267 . (malloc_usable_space() bytes) .
269 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
271 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
274 Where "chunk" is the front of the chunk for the purpose of most of
275 the malloc code, but "mem" is the pointer that is returned to the
276 user. "Nextchunk" is the beginning of the next contiguous chunk.
278 Chunks always begin on even word boundries, so the mem portion
279 (which is returned to the user) is also on an even word boundary, and
280 thus double-word aligned.
282 Free chunks are stored in circular doubly-linked lists, and look like this:
284 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
285 | Size of previous chunk |
286 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
287 `head:' | Size of chunk, in bytes |P|
288 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
289 | Forward pointer to next chunk in list |
290 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
291 | Back pointer to previous chunk in list |
292 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
293 | Unused space (may be 0 bytes long) .
297 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
298 `foot:' | Size of chunk, in bytes |
299 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
301 The P (PREV_INUSE) bit, stored in the unused low-order bit of the
302 chunk size (which is always a multiple of two words), is an in-use
303 bit for the *previous* chunk. If that bit is *clear*, then the
304 word before the current chunk size contains the previous chunk
305 size, and can be used to find the front of the previous chunk.
306 (The very first chunk allocated always has this bit set,
307 preventing access to non-existent (or non-owned) memory.)
309 Note that the `foot' of the current chunk is actually represented
310 as the prev_size of the NEXT chunk. (This makes it easier to
311 deal with alignments etc).
313 The two exceptions to all this are
315 1. The special chunk `top', which doesn't bother using the
316 trailing size field since there is no
317 next contiguous chunk that would have to index off it. (After
318 initialization, `top' is forced to always exist. If it would
319 become less than MINSIZE bytes long, it is replenished via
322 2. Chunks allocated via mmap, which have the second-lowest-order
323 bit (IS_MMAPPED) set in their size fields. Because they are
324 never merged or traversed from any other chunk, they have no
325 foot size or inuse information.
327 Available chunks are kept in any of several places (all declared below):
329 * `av': An array of chunks serving as bin headers for consolidated
330 chunks. Each bin is doubly linked. The bins are approximately
331 proportionally (log) spaced. There are a lot of these bins
332 (128). This may look excessive, but works very well in
333 practice. All procedures maintain the invariant that no
334 consolidated chunk physically borders another one. Chunks in
335 bins are kept in size order, with ties going to the
336 approximately least recently used chunk.
338 The chunks in each bin are maintained in decreasing sorted order by
339 size. This is irrelevant for the small bins, which all contain
340 the same-sized chunks, but facilitates best-fit allocation for
341 larger chunks. (These lists are just sequential. Keeping them in
342 order almost never requires enough traversal to warrant using
343 fancier ordered data structures.) Chunks of the same size are
344 linked with the most recently freed at the front, and allocations
345 are taken from the back. This results in LRU or FIFO allocation
346 order, which tends to give each chunk an equal opportunity to be
347 consolidated with adjacent freed chunks, resulting in larger free
348 chunks and less fragmentation.
350 * `top': The top-most available chunk (i.e., the one bordering the
351 end of available memory) is treated specially. It is never
352 included in any bin, is used only if no other chunk is
353 available, and is released back to the system if it is very
354 large (see M_TRIM_THRESHOLD).
356 * `last_remainder': A bin holding only the remainder of the
357 most recently split (non-top) chunk. This bin is checked
358 before other non-fitting chunks, so as to provide better
359 locality for runs of sequentially allocated chunks.
361 * Implicitly, through the host system's memory mapping tables.
362 If supported, requests greater than a threshold are usually
363 serviced via calls to mmap, and then later released via munmap.
367 /* sizes, alignments */
369 #define SIZE_SZ (sizeof(INTERNAL_SIZE_T))
370 #define MALLOC_ALIGNMENT (SIZE_SZ + SIZE_SZ)
371 #define MALLOC_ALIGN_MASK (MALLOC_ALIGNMENT - 1)
372 #define MINSIZE (sizeof(struct malloc_chunk))
374 /* conversion from malloc headers to user pointers, and back */
376 #define chunk2mem(p) ((Void_t*)((char*)(p) + 2*SIZE_SZ))
377 #define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
379 /* pad request bytes into a usable size */
381 #define request2size(req) \
382 (((long)((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) < \
383 (long)(MINSIZE + MALLOC_ALIGN_MASK)) ? MINSIZE : \
384 (((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) & ~(MALLOC_ALIGN_MASK)))
386 /* Check if m has acceptable alignment */
388 #define aligned_OK(m) (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0)
394 Physical chunk operations
398 /* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
400 #define PREV_INUSE 0x1
402 /* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
404 #define IS_MMAPPED 0x2
406 /* Bits to mask off when extracting size */
408 #define SIZE_BITS (PREV_INUSE|IS_MMAPPED)
411 /* Ptr to next physical malloc_chunk. */
413 #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) ))
415 /* Ptr to previous physical malloc_chunk */
417 #define prev_chunk(p)\
418 ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) ))
421 /* Treat space at ptr + offset as a chunk */
423 #define chunk_at_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
429 Dealing with use bits
432 /* extract p's inuse bit */
435 ((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE)
437 /* extract inuse bit of previous chunk */
439 #define prev_inuse(p) ((p)->size & PREV_INUSE)
441 /* check for mmap()'ed chunk */
443 #define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
445 /* set/clear chunk as in use without otherwise disturbing */
447 #define set_inuse(p)\
448 ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE
450 #define clear_inuse(p)\
451 ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE)
453 /* check/set/clear inuse bits in known places */
455 #define inuse_bit_at_offset(p, s)\
456 (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)
458 #define set_inuse_bit_at_offset(p, s)\
459 (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)
461 #define clear_inuse_bit_at_offset(p, s)\
462 (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE))
468 Dealing with size fields
471 /* Get size, ignoring use bits */
473 #define chunksize(p) ((p)->size & ~(SIZE_BITS))
475 /* Set size at head, without disturbing its use bit */
477 #define set_head_size(p, s) ((p)->size = (((p)->size & PREV_INUSE) | (s)))
479 /* Set size/use ignoring previous bits in header */
481 #define set_head(p, s) ((p)->size = (s))
483 /* Set size at footer (only when chunk is not in use) */
485 #define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_size = (s))
494 The bins, `av_' are an array of pairs of pointers serving as the
495 heads of (initially empty) doubly-linked lists of chunks, laid out
496 in a way so that each pair can be treated as if it were in a
497 malloc_chunk. (This way, the fd/bk offsets for linking bin heads
498 and chunks are the same).
500 Bins for sizes < 512 bytes contain chunks of all the same size, spaced
501 8 bytes apart. Larger bins are approximately logarithmically
502 spaced. (See the table below.) The `av_' array is never mentioned
503 directly in the code, but instead via bin access macros.
512 2 bins of size 262144
513 1 bin of size what's left
515 There is actually a little bit of slop in the numbers in bin_index
516 for the sake of speed. This makes no difference elsewhere.
518 The special chunks `top' and `last_remainder' get their own bins,
519 (this is implemented via yet more trickery with the av_ array),
520 although `top' is never properly linked to its bin since it is
521 always handled specially.
525 #define NAV 128 /* number of bins */
527 typedef struct malloc_chunk* mbinptr;
531 #define bin_at(i) ((mbinptr)((char*)&(av_[2*(i) + 2]) - 2*SIZE_SZ))
532 #define next_bin(b) ((mbinptr)((char*)(b) + 2 * sizeof(mbinptr)))
533 #define prev_bin(b) ((mbinptr)((char*)(b) - 2 * sizeof(mbinptr)))
536 The first 2 bins are never indexed. The corresponding av_ cells are instead
537 used for bookkeeping. This is not to save space, but to simplify
538 indexing, maintain locality, and avoid some initialization tests.
541 #define top (av_[2]) /* The topmost chunk */
542 #define last_remainder (bin_at(1)) /* remainder from last split */
546 Because top initially points to its own bin with initial
547 zero size, thus forcing extension on the first malloc request,
548 we avoid having any special code in malloc to check whether
549 it even exists yet. But we still need to in malloc_extend_top.
552 #define initial_top ((mchunkptr)(bin_at(0)))
554 /* Helper macro to initialize bins */
556 #define IAV(i) bin_at(i), bin_at(i)
558 static mbinptr av_[NAV * 2 + 2] = {
560 IAV(0), IAV(1), IAV(2), IAV(3), IAV(4), IAV(5), IAV(6), IAV(7),
561 IAV(8), IAV(9), IAV(10), IAV(11), IAV(12), IAV(13), IAV(14), IAV(15),
562 IAV(16), IAV(17), IAV(18), IAV(19), IAV(20), IAV(21), IAV(22), IAV(23),
563 IAV(24), IAV(25), IAV(26), IAV(27), IAV(28), IAV(29), IAV(30), IAV(31),
564 IAV(32), IAV(33), IAV(34), IAV(35), IAV(36), IAV(37), IAV(38), IAV(39),
565 IAV(40), IAV(41), IAV(42), IAV(43), IAV(44), IAV(45), IAV(46), IAV(47),
566 IAV(48), IAV(49), IAV(50), IAV(51), IAV(52), IAV(53), IAV(54), IAV(55),
567 IAV(56), IAV(57), IAV(58), IAV(59), IAV(60), IAV(61), IAV(62), IAV(63),
568 IAV(64), IAV(65), IAV(66), IAV(67), IAV(68), IAV(69), IAV(70), IAV(71),
569 IAV(72), IAV(73), IAV(74), IAV(75), IAV(76), IAV(77), IAV(78), IAV(79),
570 IAV(80), IAV(81), IAV(82), IAV(83), IAV(84), IAV(85), IAV(86), IAV(87),
571 IAV(88), IAV(89), IAV(90), IAV(91), IAV(92), IAV(93), IAV(94), IAV(95),
572 IAV(96), IAV(97), IAV(98), IAV(99), IAV(100), IAV(101), IAV(102), IAV(103),
573 IAV(104), IAV(105), IAV(106), IAV(107), IAV(108), IAV(109), IAV(110), IAV(111),
574 IAV(112), IAV(113), IAV(114), IAV(115), IAV(116), IAV(117), IAV(118), IAV(119),
575 IAV(120), IAV(121), IAV(122), IAV(123), IAV(124), IAV(125), IAV(126), IAV(127)
578 #ifdef CONFIG_NEEDS_MANUAL_RELOC
579 static void malloc_bin_reloc(void)
581 mbinptr *p = &av_[2];
584 for (i = 2; i < ARRAY_SIZE(av_); ++i, ++p)
585 *p = (mbinptr)((ulong)*p + gd->reloc_off);
588 static inline void malloc_bin_reloc(void) {}
591 #ifdef CONFIG_SYS_MALLOC_DEFAULT_TO_INIT
592 static void malloc_init(void);
595 ulong mem_malloc_start = 0;
596 ulong mem_malloc_end = 0;
597 ulong mem_malloc_brk = 0;
599 static bool malloc_testing; /* enable test mode */
600 static int malloc_max_allocs; /* return NULL after this many calls to malloc() */
602 void *sbrk(ptrdiff_t increment)
604 ulong old = mem_malloc_brk;
605 ulong new = old + increment;
608 * if we are giving memory back make sure we clear it out since
609 * we set MORECORE_CLEARS to 1
612 memset((void *)new, 0, -increment);
614 if ((new < mem_malloc_start) || (new > mem_malloc_end))
615 return (void *)MORECORE_FAILURE;
617 mem_malloc_brk = new;
622 void mem_malloc_init(ulong start, ulong size)
624 mem_malloc_start = start;
625 mem_malloc_end = start + size;
626 mem_malloc_brk = start;
628 #ifdef CONFIG_SYS_MALLOC_DEFAULT_TO_INIT
632 debug("using memory %#lx-%#lx for malloc()\n", mem_malloc_start,
634 #ifdef CONFIG_SYS_MALLOC_CLEAR_ON_INIT
635 memset((void *)mem_malloc_start, 0x0, size);
640 /* field-extraction macros */
642 #define first(b) ((b)->fd)
643 #define last(b) ((b)->bk)
649 #define bin_index(sz) \
650 (((((unsigned long)(sz)) >> 9) == 0) ? (((unsigned long)(sz)) >> 3): \
651 ((((unsigned long)(sz)) >> 9) <= 4) ? 56 + (((unsigned long)(sz)) >> 6): \
652 ((((unsigned long)(sz)) >> 9) <= 20) ? 91 + (((unsigned long)(sz)) >> 9): \
653 ((((unsigned long)(sz)) >> 9) <= 84) ? 110 + (((unsigned long)(sz)) >> 12): \
654 ((((unsigned long)(sz)) >> 9) <= 340) ? 119 + (((unsigned long)(sz)) >> 15): \
655 ((((unsigned long)(sz)) >> 9) <= 1364) ? 124 + (((unsigned long)(sz)) >> 18): \
658 bins for chunks < 512 are all spaced 8 bytes apart, and hold
659 identically sized chunks. This is exploited in malloc.
662 #define MAX_SMALLBIN 63
663 #define MAX_SMALLBIN_SIZE 512
664 #define SMALLBIN_WIDTH 8
666 #define smallbin_index(sz) (((unsigned long)(sz)) >> 3)
669 Requests are `small' if both the corresponding and the next bin are small
672 #define is_small_request(nb) (nb < MAX_SMALLBIN_SIZE - SMALLBIN_WIDTH)
677 To help compensate for the large number of bins, a one-level index
678 structure is used for bin-by-bin searching. `binblocks' is a
679 one-word bitvector recording whether groups of BINBLOCKWIDTH bins
680 have any (possibly) non-empty bins, so they can be skipped over
681 all at once during during traversals. The bits are NOT always
682 cleared as soon as all bins in a block are empty, but instead only
683 when all are noticed to be empty during traversal in malloc.
686 #define BINBLOCKWIDTH 4 /* bins per block */
688 #define binblocks_r ((INTERNAL_SIZE_T)av_[1]) /* bitvector of nonempty blocks */
689 #define binblocks_w (av_[1])
691 /* bin<->block macros */
693 #define idx2binblock(ix) ((unsigned)1 << (ix / BINBLOCKWIDTH))
694 #define mark_binblock(ii) (binblocks_w = (mbinptr)(binblocks_r | idx2binblock(ii)))
695 #define clear_binblock(ii) (binblocks_w = (mbinptr)(binblocks_r & ~(idx2binblock(ii))))
701 /* Other static bookkeeping data */
703 /* variables holding tunable values */
705 static unsigned long trim_threshold = DEFAULT_TRIM_THRESHOLD;
706 static unsigned long top_pad = DEFAULT_TOP_PAD;
707 static unsigned int n_mmaps_max = DEFAULT_MMAP_MAX;
708 static unsigned long mmap_threshold = DEFAULT_MMAP_THRESHOLD;
710 /* The first value returned from sbrk */
711 static char* sbrk_base = (char*)(-1);
713 /* The maximum memory obtained from system via sbrk */
714 static unsigned long max_sbrked_mem = 0;
716 /* The maximum via either sbrk or mmap */
717 static unsigned long max_total_mem = 0;
719 /* internal working copy of mallinfo */
720 static struct mallinfo current_mallinfo = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
722 /* The total memory obtained from system via sbrk */
723 #define sbrked_mem (current_mallinfo.arena)
728 static unsigned int n_mmaps = 0;
730 static unsigned long mmapped_mem = 0;
732 static unsigned int max_n_mmaps = 0;
733 static unsigned long max_mmapped_mem = 0;
736 #ifdef CONFIG_SYS_MALLOC_DEFAULT_TO_INIT
737 static void malloc_init(void)
741 debug("bins (av_ array) are at %p\n", (void *)av_);
743 av_[0] = NULL; av_[1] = NULL;
744 for (i = 2, j = 2; i < NAV * 2 + 2; i += 2, j++) {
745 av_[i] = bin_at(j - 2);
746 av_[i + 1] = bin_at(j - 2);
748 /* Just print the first few bins so that
749 * we can see there are alright.
752 debug("av_[%d]=%lx av_[%d]=%lx\n",
754 i + 1, (ulong)av_[i + 1]);
757 /* Init the static bookkeeping as well */
758 sbrk_base = (char *)(-1);
762 memset((void *)¤t_mallinfo, 0, sizeof(struct mallinfo));
775 These routines make a number of assertions about the states
776 of data structures that should be true at all times. If any
777 are not true, it's very likely that a user program has somehow
778 trashed memory. (It's also possible that there is a coding error
779 in malloc. In which case, please report it!)
783 static void do_check_chunk(mchunkptr p)
785 static void do_check_chunk(p) mchunkptr p;
788 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
790 /* No checkable chunk is mmapped */
791 assert(!chunk_is_mmapped(p));
793 /* Check for legal address ... */
794 assert((char*)p >= sbrk_base);
796 assert((char*)p + sz <= (char*)top);
798 assert((char*)p + sz <= sbrk_base + sbrked_mem);
804 static void do_check_free_chunk(mchunkptr p)
806 static void do_check_free_chunk(p) mchunkptr p;
809 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
810 mchunkptr next = chunk_at_offset(p, sz);
814 /* Check whether it claims to be free ... */
817 /* Unless a special marker, must have OK fields */
818 if ((long)sz >= (long)MINSIZE)
820 assert((sz & MALLOC_ALIGN_MASK) == 0);
821 assert(aligned_OK(chunk2mem(p)));
822 /* ... matching footer field */
823 assert(next->prev_size == sz);
824 /* ... and is fully consolidated */
825 assert(prev_inuse(p));
826 assert (next == top || inuse(next));
828 /* ... and has minimally sane links */
829 assert(p->fd->bk == p);
830 assert(p->bk->fd == p);
832 else /* markers are always of size SIZE_SZ */
833 assert(sz == SIZE_SZ);
837 static void do_check_inuse_chunk(mchunkptr p)
839 static void do_check_inuse_chunk(p) mchunkptr p;
842 mchunkptr next = next_chunk(p);
845 /* Check whether it claims to be in use ... */
848 /* ... and is surrounded by OK chunks.
849 Since more things can be checked with free chunks than inuse ones,
850 if an inuse chunk borders them and debug is on, it's worth doing them.
854 mchunkptr prv = prev_chunk(p);
855 assert(next_chunk(prv) == p);
856 do_check_free_chunk(prv);
860 assert(prev_inuse(next));
861 assert(chunksize(next) >= MINSIZE);
863 else if (!inuse(next))
864 do_check_free_chunk(next);
869 static void do_check_malloced_chunk(mchunkptr p, INTERNAL_SIZE_T s)
871 static void do_check_malloced_chunk(p, s) mchunkptr p; INTERNAL_SIZE_T s;
874 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
877 do_check_inuse_chunk(p);
880 assert((long)sz >= (long)MINSIZE);
881 assert((sz & MALLOC_ALIGN_MASK) == 0);
883 assert(room < (long)MINSIZE);
885 /* ... and alignment */
886 assert(aligned_OK(chunk2mem(p)));
889 /* ... and was allocated at front of an available chunk */
890 assert(prev_inuse(p));
895 #define check_free_chunk(P) do_check_free_chunk(P)
896 #define check_inuse_chunk(P) do_check_inuse_chunk(P)
897 #define check_chunk(P) do_check_chunk(P)
898 #define check_malloced_chunk(P,N) do_check_malloced_chunk(P,N)
900 #define check_free_chunk(P)
901 #define check_inuse_chunk(P)
902 #define check_chunk(P)
903 #define check_malloced_chunk(P,N)
909 Macro-based internal utilities
914 Linking chunks in bin lists.
915 Call these only with variables, not arbitrary expressions, as arguments.
919 Place chunk p of size s in its bin, in size order,
920 putting it ahead of others of same size.
924 #define frontlink(P, S, IDX, BK, FD) \
926 if (S < MAX_SMALLBIN_SIZE) \
928 IDX = smallbin_index(S); \
929 mark_binblock(IDX); \
934 FD->bk = BK->fd = P; \
938 IDX = bin_index(S); \
941 if (FD == BK) mark_binblock(IDX); \
944 while (FD != BK && S < chunksize(FD)) FD = FD->fd; \
949 FD->bk = BK->fd = P; \
954 /* take a chunk off a list */
956 #define unlink(P, BK, FD) \
964 /* Place p as the last remainder */
966 #define link_last_remainder(P) \
968 last_remainder->fd = last_remainder->bk = P; \
969 P->fd = P->bk = last_remainder; \
972 /* Clear the last_remainder bin */
974 #define clear_last_remainder \
975 (last_remainder->fd = last_remainder->bk = last_remainder)
981 /* Routines dealing with mmap(). */
986 static mchunkptr mmap_chunk(size_t size)
988 static mchunkptr mmap_chunk(size) size_t size;
991 size_t page_mask = malloc_getpagesize - 1;
994 #ifndef MAP_ANONYMOUS
998 if(n_mmaps >= n_mmaps_max) return 0; /* too many regions */
1000 /* For mmapped chunks, the overhead is one SIZE_SZ unit larger, because
1001 * there is no following chunk whose prev_size field could be used.
1003 size = (size + SIZE_SZ + page_mask) & ~page_mask;
1005 #ifdef MAP_ANONYMOUS
1006 p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE,
1007 MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
1008 #else /* !MAP_ANONYMOUS */
1011 fd = open("/dev/zero", O_RDWR);
1012 if(fd < 0) return 0;
1014 p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
1017 if(p == (mchunkptr)-1) return 0;
1020 if (n_mmaps > max_n_mmaps) max_n_mmaps = n_mmaps;
1022 /* We demand that eight bytes into a page must be 8-byte aligned. */
1023 assert(aligned_OK(chunk2mem(p)));
1025 /* The offset to the start of the mmapped region is stored
1026 * in the prev_size field of the chunk; normally it is zero,
1027 * but that can be changed in memalign().
1030 set_head(p, size|IS_MMAPPED);
1032 mmapped_mem += size;
1033 if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
1034 max_mmapped_mem = mmapped_mem;
1035 if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1036 max_total_mem = mmapped_mem + sbrked_mem;
1041 static void munmap_chunk(mchunkptr p)
1043 static void munmap_chunk(p) mchunkptr p;
1046 INTERNAL_SIZE_T size = chunksize(p);
1049 assert (chunk_is_mmapped(p));
1050 assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1051 assert((n_mmaps > 0));
1052 assert(((p->prev_size + size) & (malloc_getpagesize-1)) == 0);
1055 mmapped_mem -= (size + p->prev_size);
1057 ret = munmap((char *)p - p->prev_size, size + p->prev_size);
1059 /* munmap returns non-zero on failure */
1066 static mchunkptr mremap_chunk(mchunkptr p, size_t new_size)
1068 static mchunkptr mremap_chunk(p, new_size) mchunkptr p; size_t new_size;
1071 size_t page_mask = malloc_getpagesize - 1;
1072 INTERNAL_SIZE_T offset = p->prev_size;
1073 INTERNAL_SIZE_T size = chunksize(p);
1076 assert (chunk_is_mmapped(p));
1077 assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1078 assert((n_mmaps > 0));
1079 assert(((size + offset) & (malloc_getpagesize-1)) == 0);
1081 /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
1082 new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask;
1084 cp = (char *)mremap((char *)p - offset, size + offset, new_size, 1);
1086 if (cp == (char *)-1) return 0;
1088 p = (mchunkptr)(cp + offset);
1090 assert(aligned_OK(chunk2mem(p)));
1092 assert((p->prev_size == offset));
1093 set_head(p, (new_size - offset)|IS_MMAPPED);
1095 mmapped_mem -= size + offset;
1096 mmapped_mem += new_size;
1097 if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
1098 max_mmapped_mem = mmapped_mem;
1099 if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1100 max_total_mem = mmapped_mem + sbrked_mem;
1104 #endif /* HAVE_MREMAP */
1106 #endif /* HAVE_MMAP */
1109 Extend the top-most chunk by obtaining memory from system.
1110 Main interface to sbrk (but see also malloc_trim).
1114 static void malloc_extend_top(INTERNAL_SIZE_T nb)
1116 static void malloc_extend_top(nb) INTERNAL_SIZE_T nb;
1119 char* brk; /* return value from sbrk */
1120 INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of sbrked space */
1121 INTERNAL_SIZE_T correction; /* bytes for 2nd sbrk call */
1122 char* new_brk; /* return of 2nd sbrk call */
1123 INTERNAL_SIZE_T top_size; /* new size of top chunk */
1125 mchunkptr old_top = top; /* Record state of old top */
1126 INTERNAL_SIZE_T old_top_size = chunksize(old_top);
1127 char* old_end = (char*)(chunk_at_offset(old_top, old_top_size));
1129 /* Pad request with top_pad plus minimal overhead */
1131 INTERNAL_SIZE_T sbrk_size = nb + top_pad + MINSIZE;
1132 unsigned long pagesz = malloc_getpagesize;
1134 /* If not the first time through, round to preserve page boundary */
1135 /* Otherwise, we need to correct to a page size below anyway. */
1136 /* (We also correct below if an intervening foreign sbrk call.) */
1138 if (sbrk_base != (char*)(-1))
1139 sbrk_size = (sbrk_size + (pagesz - 1)) & ~(pagesz - 1);
1141 brk = (char*)(MORECORE (sbrk_size));
1143 /* Fail if sbrk failed or if a foreign sbrk call killed our space */
1144 if (brk == (char*)(MORECORE_FAILURE) ||
1145 (brk < old_end && old_top != initial_top))
1148 sbrked_mem += sbrk_size;
1150 if (brk == old_end) /* can just add bytes to current top */
1152 top_size = sbrk_size + old_top_size;
1153 set_head(top, top_size | PREV_INUSE);
1157 if (sbrk_base == (char*)(-1)) /* First time through. Record base */
1159 else /* Someone else called sbrk(). Count those bytes as sbrked_mem. */
1160 sbrked_mem += brk - (char*)old_end;
1162 /* Guarantee alignment of first new chunk made from this space */
1163 front_misalign = (unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK;
1164 if (front_misalign > 0)
1166 correction = (MALLOC_ALIGNMENT) - front_misalign;
1172 /* Guarantee the next brk will be at a page boundary */
1174 correction += ((((unsigned long)(brk + sbrk_size))+(pagesz-1)) &
1175 ~(pagesz - 1)) - ((unsigned long)(brk + sbrk_size));
1177 /* Allocate correction */
1178 new_brk = (char*)(MORECORE (correction));
1179 if (new_brk == (char*)(MORECORE_FAILURE)) return;
1181 sbrked_mem += correction;
1183 top = (mchunkptr)brk;
1184 top_size = new_brk - brk + correction;
1185 set_head(top, top_size | PREV_INUSE);
1187 if (old_top != initial_top)
1190 /* There must have been an intervening foreign sbrk call. */
1191 /* A double fencepost is necessary to prevent consolidation */
1193 /* If not enough space to do this, then user did something very wrong */
1194 if (old_top_size < MINSIZE)
1196 set_head(top, PREV_INUSE); /* will force null return from malloc */
1200 /* Also keep size a multiple of MALLOC_ALIGNMENT */
1201 old_top_size = (old_top_size - 3*SIZE_SZ) & ~MALLOC_ALIGN_MASK;
1202 set_head_size(old_top, old_top_size);
1203 chunk_at_offset(old_top, old_top_size )->size =
1205 chunk_at_offset(old_top, old_top_size + SIZE_SZ)->size =
1207 /* If possible, release the rest. */
1208 if (old_top_size >= MINSIZE)
1209 fREe(chunk2mem(old_top));
1213 if ((unsigned long)sbrked_mem > (unsigned long)max_sbrked_mem)
1214 max_sbrked_mem = sbrked_mem;
1215 if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1216 max_total_mem = mmapped_mem + sbrked_mem;
1218 /* We always land on a page boundary */
1219 assert(((unsigned long)((char*)top + top_size) & (pagesz - 1)) == 0);
1225 /* Main public routines */
1231 The requested size is first converted into a usable form, `nb'.
1232 This currently means to add 4 bytes overhead plus possibly more to
1233 obtain 8-byte alignment and/or to obtain a size of at least
1234 MINSIZE (currently 16 bytes), the smallest allocatable size.
1235 (All fits are considered `exact' if they are within MINSIZE bytes.)
1237 From there, the first successful of the following steps is taken:
1239 1. The bin corresponding to the request size is scanned, and if
1240 a chunk of exactly the right size is found, it is taken.
1242 2. The most recently remaindered chunk is used if it is big
1243 enough. This is a form of (roving) first fit, used only in
1244 the absence of exact fits. Runs of consecutive requests use
1245 the remainder of the chunk used for the previous such request
1246 whenever possible. This limited use of a first-fit style
1247 allocation strategy tends to give contiguous chunks
1248 coextensive lifetimes, which improves locality and can reduce
1249 fragmentation in the long run.
1251 3. Other bins are scanned in increasing size order, using a
1252 chunk big enough to fulfill the request, and splitting off
1253 any remainder. This search is strictly by best-fit; i.e.,
1254 the smallest (with ties going to approximately the least
1255 recently used) chunk that fits is selected.
1257 4. If large enough, the chunk bordering the end of memory
1258 (`top') is split off. (This use of `top' is in accord with
1259 the best-fit search rule. In effect, `top' is treated as
1260 larger (and thus less well fitting) than any other available
1261 chunk since it can be extended to be as large as necessary
1262 (up to system limitations).
1264 5. If the request size meets the mmap threshold and the
1265 system supports mmap, and there are few enough currently
1266 allocated mmapped regions, and a call to mmap succeeds,
1267 the request is allocated via direct memory mapping.
1269 6. Otherwise, the top of memory is extended by
1270 obtaining more space from the system (normally using sbrk,
1271 but definable to anything else via the MORECORE macro).
1272 Memory is gathered from the system (in system page-sized
1273 units) in a way that allows chunks obtained across different
1274 sbrk calls to be consolidated, but does not require
1275 contiguous memory. Thus, it should be safe to intersperse
1276 mallocs with other sbrk calls.
1279 All allocations are made from the the `lowest' part of any found
1280 chunk. (The implementation invariant is that prev_inuse is
1281 always true of any allocated chunk; i.e., that each allocated
1282 chunk borders either a previously allocated and still in-use chunk,
1283 or the base of its memory arena.)
1288 Void_t* mALLOc(size_t bytes)
1290 Void_t* mALLOc(bytes) size_t bytes;
1293 mchunkptr victim; /* inspected/selected chunk */
1294 INTERNAL_SIZE_T victim_size; /* its size */
1295 int idx; /* index for bin traversal */
1296 mbinptr bin; /* associated bin */
1297 mchunkptr remainder; /* remainder from a split */
1298 long remainder_size; /* its size */
1299 int remainder_index; /* its bin index */
1300 unsigned long block; /* block traverser bit */
1301 int startidx; /* first bin of a traversed block */
1302 mchunkptr fwd; /* misc temp for linking */
1303 mchunkptr bck; /* misc temp for linking */
1304 mbinptr q; /* misc temp */
1308 #if CONFIG_VAL(SYS_MALLOC_F_LEN)
1309 if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT))
1310 return malloc_simple(bytes);
1313 if (CONFIG_IS_ENABLED(UNIT_TEST) && malloc_testing) {
1314 if (--malloc_max_allocs < 0)
1318 /* check if mem_malloc_init() was run */
1319 if ((mem_malloc_start == 0) && (mem_malloc_end == 0)) {
1320 /* not initialized yet */
1324 if ((long)bytes < 0) return NULL;
1326 nb = request2size(bytes); /* padded request size; */
1328 /* Check for exact match in a bin */
1330 if (is_small_request(nb)) /* Faster version for small requests */
1332 idx = smallbin_index(nb);
1334 /* No traversal or size check necessary for small bins. */
1339 /* Also scan the next one, since it would have a remainder < MINSIZE */
1347 victim_size = chunksize(victim);
1348 unlink(victim, bck, fwd);
1349 set_inuse_bit_at_offset(victim, victim_size);
1350 check_malloced_chunk(victim, nb);
1351 VALGRIND_MALLOCLIKE_BLOCK(chunk2mem(victim), bytes, SIZE_SZ, false);
1352 return chunk2mem(victim);
1355 idx += 2; /* Set for bin scan below. We've already scanned 2 bins. */
1360 idx = bin_index(nb);
1363 for (victim = last(bin); victim != bin; victim = victim->bk)
1365 victim_size = chunksize(victim);
1366 remainder_size = victim_size - nb;
1368 if (remainder_size >= (long)MINSIZE) /* too big */
1370 --idx; /* adjust to rescan below after checking last remainder */
1374 else if (remainder_size >= 0) /* exact fit */
1376 unlink(victim, bck, fwd);
1377 set_inuse_bit_at_offset(victim, victim_size);
1378 check_malloced_chunk(victim, nb);
1379 VALGRIND_MALLOCLIKE_BLOCK(chunk2mem(victim), bytes, SIZE_SZ, false);
1380 return chunk2mem(victim);
1388 /* Try to use the last split-off remainder */
1390 if ( (victim = last_remainder->fd) != last_remainder)
1392 victim_size = chunksize(victim);
1393 remainder_size = victim_size - nb;
1395 if (remainder_size >= (long)MINSIZE) /* re-split */
1397 remainder = chunk_at_offset(victim, nb);
1398 set_head(victim, nb | PREV_INUSE);
1399 link_last_remainder(remainder);
1400 set_head(remainder, remainder_size | PREV_INUSE);
1401 set_foot(remainder, remainder_size);
1402 check_malloced_chunk(victim, nb);
1403 VALGRIND_MALLOCLIKE_BLOCK(chunk2mem(victim), bytes, SIZE_SZ, false);
1404 return chunk2mem(victim);
1407 clear_last_remainder;
1409 if (remainder_size >= 0) /* exhaust */
1411 set_inuse_bit_at_offset(victim, victim_size);
1412 check_malloced_chunk(victim, nb);
1413 VALGRIND_MALLOCLIKE_BLOCK(chunk2mem(victim), bytes, SIZE_SZ, false);
1414 return chunk2mem(victim);
1417 /* Else place in bin */
1419 frontlink(victim, victim_size, remainder_index, bck, fwd);
1423 If there are any possibly nonempty big-enough blocks,
1424 search for best fitting chunk by scanning bins in blockwidth units.
1427 if ( (block = idx2binblock(idx)) <= binblocks_r)
1430 /* Get to the first marked block */
1432 if ( (block & binblocks_r) == 0)
1434 /* force to an even block boundary */
1435 idx = (idx & ~(BINBLOCKWIDTH - 1)) + BINBLOCKWIDTH;
1437 while ((block & binblocks_r) == 0)
1439 idx += BINBLOCKWIDTH;
1444 /* For each possibly nonempty block ... */
1447 startidx = idx; /* (track incomplete blocks) */
1448 q = bin = bin_at(idx);
1450 /* For each bin in this block ... */
1453 /* Find and use first big enough chunk ... */
1455 for (victim = last(bin); victim != bin; victim = victim->bk)
1457 victim_size = chunksize(victim);
1458 remainder_size = victim_size - nb;
1460 if (remainder_size >= (long)MINSIZE) /* split */
1462 remainder = chunk_at_offset(victim, nb);
1463 set_head(victim, nb | PREV_INUSE);
1464 unlink(victim, bck, fwd);
1465 link_last_remainder(remainder);
1466 set_head(remainder, remainder_size | PREV_INUSE);
1467 set_foot(remainder, remainder_size);
1468 check_malloced_chunk(victim, nb);
1469 VALGRIND_MALLOCLIKE_BLOCK(chunk2mem(victim), bytes, SIZE_SZ, false);
1470 return chunk2mem(victim);
1473 else if (remainder_size >= 0) /* take */
1475 set_inuse_bit_at_offset(victim, victim_size);
1476 unlink(victim, bck, fwd);
1477 check_malloced_chunk(victim, nb);
1478 VALGRIND_MALLOCLIKE_BLOCK(chunk2mem(victim), bytes, SIZE_SZ, false);
1479 return chunk2mem(victim);
1484 bin = next_bin(bin);
1486 } while ((++idx & (BINBLOCKWIDTH - 1)) != 0);
1488 /* Clear out the block bit. */
1490 do /* Possibly backtrack to try to clear a partial block */
1492 if ((startidx & (BINBLOCKWIDTH - 1)) == 0)
1494 av_[1] = (mbinptr)(binblocks_r & ~block);
1499 } while (first(q) == q);
1501 /* Get to the next possibly nonempty block */
1503 if ( (block <<= 1) <= binblocks_r && (block != 0) )
1505 while ((block & binblocks_r) == 0)
1507 idx += BINBLOCKWIDTH;
1517 /* Try to use top chunk */
1519 /* Require that there be a remainder, ensuring top always exists */
1520 if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
1524 /* If big and would otherwise need to extend, try to use mmap instead */
1525 if ((unsigned long)nb >= (unsigned long)mmap_threshold &&
1526 (victim = mmap_chunk(nb)))
1527 VALGRIND_MALLOCLIKE_BLOCK(chunk2mem(victim), bytes, SIZE_SZ, false);
1528 return chunk2mem(victim);
1532 malloc_extend_top(nb);
1533 if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
1534 return NULL; /* propagate failure */
1538 set_head(victim, nb | PREV_INUSE);
1539 top = chunk_at_offset(victim, nb);
1540 set_head(top, remainder_size | PREV_INUSE);
1541 check_malloced_chunk(victim, nb);
1542 VALGRIND_MALLOCLIKE_BLOCK(chunk2mem(victim), bytes, SIZE_SZ, false);
1543 return chunk2mem(victim);
1556 1. free(0) has no effect.
1558 2. If the chunk was allocated via mmap, it is release via munmap().
1560 3. If a returned chunk borders the current high end of memory,
1561 it is consolidated into the top, and if the total unused
1562 topmost memory exceeds the trim threshold, malloc_trim is
1565 4. Other chunks are consolidated as they arrive, and
1566 placed in corresponding bins. (This includes the case of
1567 consolidating with the current `last_remainder').
1573 void fREe(Void_t* mem)
1575 void fREe(mem) Void_t* mem;
1578 mchunkptr p; /* chunk corresponding to mem */
1579 INTERNAL_SIZE_T hd; /* its head field */
1580 INTERNAL_SIZE_T sz; /* its size */
1581 int idx; /* its bin index */
1582 mchunkptr next; /* next contiguous chunk */
1583 INTERNAL_SIZE_T nextsz; /* its size */
1584 INTERNAL_SIZE_T prevsz; /* size of previous contiguous chunk */
1585 mchunkptr bck; /* misc temp for linking */
1586 mchunkptr fwd; /* misc temp for linking */
1587 int islr; /* track whether merging with last_remainder */
1589 #if CONFIG_VAL(SYS_MALLOC_F_LEN)
1590 /* free() is a no-op - all the memory will be freed on relocation */
1591 if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) {
1592 VALGRIND_FREELIKE_BLOCK(mem, SIZE_SZ);
1597 if (mem == NULL) /* free(0) has no effect */
1604 if (hd & IS_MMAPPED) /* release mmapped memory. */
1611 check_inuse_chunk(p);
1613 sz = hd & ~PREV_INUSE;
1614 next = chunk_at_offset(p, sz);
1615 nextsz = chunksize(next);
1616 VALGRIND_FREELIKE_BLOCK(mem, SIZE_SZ);
1618 if (next == top) /* merge with top */
1622 if (!(hd & PREV_INUSE)) /* consolidate backward */
1624 prevsz = p->prev_size;
1625 p = chunk_at_offset(p, -((long) prevsz));
1627 unlink(p, bck, fwd);
1630 set_head(p, sz | PREV_INUSE);
1632 if ((unsigned long)(sz) >= (unsigned long)trim_threshold)
1633 malloc_trim(top_pad);
1637 set_head(next, nextsz); /* clear inuse bit */
1641 if (!(hd & PREV_INUSE)) /* consolidate backward */
1643 prevsz = p->prev_size;
1644 p = chunk_at_offset(p, -((long) prevsz));
1647 if (p->fd == last_remainder) /* keep as last_remainder */
1650 unlink(p, bck, fwd);
1653 if (!(inuse_bit_at_offset(next, nextsz))) /* consolidate forward */
1657 if (!islr && next->fd == last_remainder) /* re-insert last_remainder */
1660 link_last_remainder(p);
1663 unlink(next, bck, fwd);
1667 set_head(p, sz | PREV_INUSE);
1670 frontlink(p, sz, idx, bck, fwd);
1681 Chunks that were obtained via mmap cannot be extended or shrunk
1682 unless HAVE_MREMAP is defined, in which case mremap is used.
1683 Otherwise, if their reallocation is for additional space, they are
1684 copied. If for less, they are just left alone.
1686 Otherwise, if the reallocation is for additional space, and the
1687 chunk can be extended, it is, else a malloc-copy-free sequence is
1688 taken. There are several different ways that a chunk could be
1689 extended. All are tried:
1691 * Extending forward into following adjacent free chunk.
1692 * Shifting backwards, joining preceding adjacent space
1693 * Both shifting backwards and extending forward.
1694 * Extending into newly sbrked space
1696 Unless the #define REALLOC_ZERO_BYTES_FREES is set, realloc with a
1697 size argument of zero (re)allocates a minimum-sized chunk.
1699 If the reallocation is for less space, and the new request is for
1700 a `small' (<512 bytes) size, then the newly unused space is lopped
1703 The old unix realloc convention of allowing the last-free'd chunk
1704 to be used as an argument to realloc is no longer supported.
1705 I don't know of any programs still relying on this feature,
1706 and allowing it would also allow too many other incorrect
1707 usages of realloc to be sensible.
1714 Void_t* rEALLOc(Void_t* oldmem, size_t bytes)
1716 Void_t* rEALLOc(oldmem, bytes) Void_t* oldmem; size_t bytes;
1719 INTERNAL_SIZE_T nb; /* padded request size */
1721 mchunkptr oldp; /* chunk corresponding to oldmem */
1722 INTERNAL_SIZE_T oldsize; /* its size */
1724 mchunkptr newp; /* chunk to return */
1725 INTERNAL_SIZE_T newsize; /* its size */
1726 Void_t* newmem; /* corresponding user mem */
1728 mchunkptr next; /* next contiguous chunk after oldp */
1729 INTERNAL_SIZE_T nextsize; /* its size */
1731 mchunkptr prev; /* previous contiguous chunk before oldp */
1732 INTERNAL_SIZE_T prevsize; /* its size */
1734 mchunkptr remainder; /* holds split off extra space from newp */
1735 INTERNAL_SIZE_T remainder_size; /* its size */
1737 mchunkptr bck; /* misc temp for linking */
1738 mchunkptr fwd; /* misc temp for linking */
1740 #ifdef REALLOC_ZERO_BYTES_FREES
1747 if ((long)bytes < 0) return NULL;
1749 /* realloc of null is supposed to be same as malloc */
1750 if (oldmem == NULL) return mALLOc(bytes);
1752 #if CONFIG_VAL(SYS_MALLOC_F_LEN)
1753 if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) {
1754 /* This is harder to support and should not be needed */
1755 panic("pre-reloc realloc() is not supported");
1759 newp = oldp = mem2chunk(oldmem);
1760 newsize = oldsize = chunksize(oldp);
1763 nb = request2size(bytes);
1766 if (chunk_is_mmapped(oldp))
1769 newp = mremap_chunk(oldp, nb);
1770 if(newp) return chunk2mem(newp);
1772 /* Note the extra SIZE_SZ overhead. */
1773 if(oldsize - SIZE_SZ >= nb) return oldmem; /* do nothing */
1774 /* Must alloc, copy, free. */
1775 newmem = mALLOc(bytes);
1777 return NULL; /* propagate failure */
1778 MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ);
1784 check_inuse_chunk(oldp);
1786 if ((long)(oldsize) < (long)(nb))
1789 /* Try expanding forward */
1791 next = chunk_at_offset(oldp, oldsize);
1792 if (next == top || !inuse(next))
1794 nextsize = chunksize(next);
1796 /* Forward into top only if a remainder */
1799 if ((long)(nextsize + newsize) >= (long)(nb + MINSIZE))
1801 newsize += nextsize;
1802 top = chunk_at_offset(oldp, nb);
1803 set_head(top, (newsize - nb) | PREV_INUSE);
1804 set_head_size(oldp, nb);
1805 VALGRIND_RESIZEINPLACE_BLOCK(chunk2mem(oldp), 0, bytes, SIZE_SZ);
1806 VALGRIND_MAKE_MEM_DEFINED(chunk2mem(oldp), bytes);
1807 return chunk2mem(oldp);
1811 /* Forward into next chunk */
1812 else if (((long)(nextsize + newsize) >= (long)(nb)))
1814 unlink(next, bck, fwd);
1815 newsize += nextsize;
1816 VALGRIND_RESIZEINPLACE_BLOCK(chunk2mem(oldp), 0, bytes, SIZE_SZ);
1817 VALGRIND_MAKE_MEM_DEFINED(chunk2mem(oldp), bytes);
1827 /* Try shifting backwards. */
1829 if (!prev_inuse(oldp))
1831 prev = prev_chunk(oldp);
1832 prevsize = chunksize(prev);
1834 /* try forward + backward first to save a later consolidation */
1841 if ((long)(nextsize + prevsize + newsize) >= (long)(nb + MINSIZE))
1843 unlink(prev, bck, fwd);
1845 newsize += prevsize + nextsize;
1846 newmem = chunk2mem(newp);
1847 VALGRIND_MALLOCLIKE_BLOCK(newmem, bytes, SIZE_SZ, false);
1848 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
1849 top = chunk_at_offset(newp, nb);
1850 set_head(top, (newsize - nb) | PREV_INUSE);
1851 set_head_size(newp, nb);
1852 VALGRIND_FREELIKE_BLOCK(oldmem, SIZE_SZ);
1857 /* into next chunk */
1858 else if (((long)(nextsize + prevsize + newsize) >= (long)(nb)))
1860 unlink(next, bck, fwd);
1861 unlink(prev, bck, fwd);
1863 newsize += nextsize + prevsize;
1864 newmem = chunk2mem(newp);
1865 VALGRIND_MALLOCLIKE_BLOCK(newmem, bytes, SIZE_SZ, false);
1866 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
1872 if (prev != NULL && (long)(prevsize + newsize) >= (long)nb)
1874 unlink(prev, bck, fwd);
1876 newsize += prevsize;
1877 newmem = chunk2mem(newp);
1878 VALGRIND_MALLOCLIKE_BLOCK(newmem, bytes, SIZE_SZ, false);
1879 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
1886 newmem = mALLOc (bytes);
1888 if (newmem == NULL) /* propagate failure */
1891 /* Avoid copy if newp is next chunk after oldp. */
1892 /* (This can only happen when new chunk is sbrk'ed.) */
1894 if ( (newp = mem2chunk(newmem)) == next_chunk(oldp))
1896 newsize += chunksize(newp);
1901 /* Otherwise copy, free, and exit */
1902 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
1906 VALGRIND_RESIZEINPLACE_BLOCK(oldmem, 0, bytes, SIZE_SZ);
1907 VALGRIND_MAKE_MEM_DEFINED(oldmem, bytes);
1911 split: /* split off extra room in old or expanded chunk */
1913 if (newsize - nb >= MINSIZE) /* split off remainder */
1915 remainder = chunk_at_offset(newp, nb);
1916 remainder_size = newsize - nb;
1917 set_head_size(newp, nb);
1918 set_head(remainder, remainder_size | PREV_INUSE);
1919 set_inuse_bit_at_offset(remainder, remainder_size);
1920 VALGRIND_MALLOCLIKE_BLOCK(chunk2mem(remainder), remainder_size, SIZE_SZ,
1922 fREe(chunk2mem(remainder)); /* let free() deal with it */
1926 set_head_size(newp, newsize);
1927 set_inuse_bit_at_offset(newp, newsize);
1930 check_inuse_chunk(newp);
1931 return chunk2mem(newp);
1941 memalign requests more than enough space from malloc, finds a spot
1942 within that chunk that meets the alignment request, and then
1943 possibly frees the leading and trailing space.
1945 The alignment argument must be a power of two. This property is not
1946 checked by memalign, so misuse may result in random runtime errors.
1948 8-byte alignment is guaranteed by normal malloc calls, so don't
1949 bother calling memalign with an argument of 8 or less.
1951 Overreliance on memalign is a sure way to fragment space.
1957 Void_t* mEMALIGn(size_t alignment, size_t bytes)
1959 Void_t* mEMALIGn(alignment, bytes) size_t alignment; size_t bytes;
1962 INTERNAL_SIZE_T nb; /* padded request size */
1963 char* m; /* memory returned by malloc call */
1964 mchunkptr p; /* corresponding chunk */
1965 char* brk; /* alignment point within p */
1966 mchunkptr newp; /* chunk to return */
1967 INTERNAL_SIZE_T newsize; /* its size */
1968 INTERNAL_SIZE_T leadsize; /* leading space befor alignment point */
1969 mchunkptr remainder; /* spare room at end to split off */
1970 long remainder_size; /* its size */
1972 if ((long)bytes < 0) return NULL;
1974 #if CONFIG_VAL(SYS_MALLOC_F_LEN)
1975 if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) {
1976 return memalign_simple(alignment, bytes);
1980 /* If need less alignment than we give anyway, just relay to malloc */
1982 if (alignment <= MALLOC_ALIGNMENT) return mALLOc(bytes);
1984 /* Otherwise, ensure that it is at least a minimum chunk size */
1986 if (alignment < MINSIZE) alignment = MINSIZE;
1988 /* Call malloc with worst case padding to hit alignment. */
1990 nb = request2size(bytes);
1991 m = (char*)(mALLOc(nb + alignment + MINSIZE));
1994 * The attempt to over-allocate (with a size large enough to guarantee the
1995 * ability to find an aligned region within allocated memory) failed.
1997 * Try again, this time only allocating exactly the size the user wants. If
1998 * the allocation now succeeds and just happens to be aligned, we can still
1999 * fulfill the user's request.
2002 size_t extra, extra2;
2004 * Use bytes not nb, since mALLOc internally calls request2size too, and
2005 * each call increases the size to allocate, to account for the header.
2007 m = (char*)(mALLOc(bytes));
2008 /* Aligned -> return it */
2009 if ((((unsigned long)(m)) % alignment) == 0)
2012 * Otherwise, try again, requesting enough extra space to be able to
2013 * acquire alignment.
2016 /* Add in extra bytes to match misalignment of unexpanded allocation */
2017 extra = alignment - (((unsigned long)(m)) % alignment);
2018 m = (char*)(mALLOc(bytes + extra));
2020 * m might not be the same as before. Validate that the previous value of
2021 * extra still works for the current value of m.
2022 * If (!m), extra2=alignment so
2025 extra2 = alignment - (((unsigned long)(m)) % alignment);
2026 if (extra2 > extra) {
2031 /* Fall through to original NULL check and chunk splitting logic */
2034 if (m == NULL) return NULL; /* propagate failure */
2038 if ((((unsigned long)(m)) % alignment) == 0) /* aligned */
2041 if(chunk_is_mmapped(p))
2042 return chunk2mem(p); /* nothing more to do */
2045 else /* misaligned */
2048 Find an aligned spot inside chunk.
2049 Since we need to give back leading space in a chunk of at
2050 least MINSIZE, if the first calculation places us at
2051 a spot with less than MINSIZE leader, we can move to the
2052 next aligned spot -- we've allocated enough total room so that
2053 this is always possible.
2056 brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) & -((signed) alignment));
2057 if ((long)(brk - (char*)(p)) < MINSIZE) brk = brk + alignment;
2059 newp = (mchunkptr)brk;
2060 leadsize = brk - (char*)(p);
2061 newsize = chunksize(p) - leadsize;
2064 if(chunk_is_mmapped(p))
2066 newp->prev_size = p->prev_size + leadsize;
2067 set_head(newp, newsize|IS_MMAPPED);
2068 return chunk2mem(newp);
2072 /* give back leader, use the rest */
2074 set_head(newp, newsize | PREV_INUSE);
2075 set_inuse_bit_at_offset(newp, newsize);
2076 set_head_size(p, leadsize);
2079 VALGRIND_MALLOCLIKE_BLOCK(chunk2mem(p), bytes, SIZE_SZ, false);
2081 assert (newsize >= nb && (((unsigned long)(chunk2mem(p))) % alignment) == 0);
2084 /* Also give back spare room at the end */
2086 remainder_size = chunksize(p) - nb;
2088 if (remainder_size >= (long)MINSIZE)
2090 remainder = chunk_at_offset(p, nb);
2091 set_head(remainder, remainder_size | PREV_INUSE);
2092 set_head_size(p, nb);
2093 VALGRIND_MALLOCLIKE_BLOCK(chunk2mem(remainder), remainder_size, SIZE_SZ,
2095 fREe(chunk2mem(remainder));
2098 check_inuse_chunk(p);
2099 return chunk2mem(p);
2107 valloc just invokes memalign with alignment argument equal
2108 to the page size of the system (or as near to this as can
2109 be figured out from all the includes/defines above.)
2113 Void_t* vALLOc(size_t bytes)
2115 Void_t* vALLOc(bytes) size_t bytes;
2118 return mEMALIGn (malloc_getpagesize, bytes);
2122 pvalloc just invokes valloc for the nearest pagesize
2123 that will accommodate request
2128 Void_t* pvALLOc(size_t bytes)
2130 Void_t* pvALLOc(bytes) size_t bytes;
2133 size_t pagesize = malloc_getpagesize;
2134 return mEMALIGn (pagesize, (bytes + pagesize - 1) & ~(pagesize - 1));
2139 calloc calls malloc, then zeroes out the allocated chunk.
2144 Void_t* cALLOc(size_t n, size_t elem_size)
2146 Void_t* cALLOc(n, elem_size) size_t n; size_t elem_size;
2150 INTERNAL_SIZE_T csz;
2152 INTERNAL_SIZE_T sz = n * elem_size;
2155 /* check if expand_top called, in which case don't need to clear */
2156 #ifdef CONFIG_SYS_MALLOC_CLEAR_ON_INIT
2158 mchunkptr oldtop = top;
2159 INTERNAL_SIZE_T oldtopsize = chunksize(top);
2162 Void_t* mem = mALLOc (sz);
2164 if ((long)n < 0) return NULL;
2170 #if CONFIG_VAL(SYS_MALLOC_F_LEN)
2171 if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) {
2178 /* Two optional cases in which clearing not necessary */
2182 if (chunk_is_mmapped(p)) return mem;
2187 #ifdef CONFIG_SYS_MALLOC_CLEAR_ON_INIT
2189 if (p == oldtop && csz > oldtopsize)
2191 /* clear only the bytes from non-freshly-sbrked memory */
2197 MALLOC_ZERO(mem, csz - SIZE_SZ);
2198 VALGRIND_MAKE_MEM_DEFINED(mem, sz);
2205 cfree just calls free. It is needed/defined on some systems
2206 that pair it with calloc, presumably for odd historical reasons.
2210 #if !defined(INTERNAL_LINUX_C_LIB) || !defined(__ELF__)
2212 void cfree(Void_t *mem)
2214 void cfree(mem) Void_t *mem;
2225 Malloc_trim gives memory back to the system (via negative
2226 arguments to sbrk) if there is unused memory at the `high' end of
2227 the malloc pool. You can call this after freeing large blocks of
2228 memory to potentially reduce the system-level memory requirements
2229 of a program. However, it cannot guarantee to reduce memory. Under
2230 some allocation patterns, some large free blocks of memory will be
2231 locked between two used chunks, so they cannot be given back to
2234 The `pad' argument to malloc_trim represents the amount of free
2235 trailing space to leave untrimmed. If this argument is zero,
2236 only the minimum amount of memory to maintain internal data
2237 structures will be left (one page or less). Non-zero arguments
2238 can be supplied to maintain enough trailing space to service
2239 future expected allocations without having to re-obtain memory
2242 Malloc_trim returns 1 if it actually released any memory, else 0.
2247 int malloc_trim(size_t pad)
2249 int malloc_trim(pad) size_t pad;
2252 long top_size; /* Amount of top-most memory */
2253 long extra; /* Amount to release */
2254 char* current_brk; /* address returned by pre-check sbrk call */
2255 char* new_brk; /* address returned by negative sbrk call */
2257 unsigned long pagesz = malloc_getpagesize;
2259 top_size = chunksize(top);
2260 extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz;
2262 if (extra < (long)pagesz) /* Not enough memory to release */
2267 /* Test to make sure no one else called sbrk */
2268 current_brk = (char*)(MORECORE (0));
2269 if (current_brk != (char*)(top) + top_size)
2270 return 0; /* Apparently we don't own memory; must fail */
2274 new_brk = (char*)(MORECORE (-extra));
2276 if (new_brk == (char*)(MORECORE_FAILURE)) /* sbrk failed? */
2278 /* Try to figure out what we have */
2279 current_brk = (char*)(MORECORE (0));
2280 top_size = current_brk - (char*)top;
2281 if (top_size >= (long)MINSIZE) /* if not, we are very very dead! */
2283 sbrked_mem = current_brk - sbrk_base;
2284 set_head(top, top_size | PREV_INUSE);
2292 /* Success. Adjust top accordingly. */
2293 set_head(top, (top_size - extra) | PREV_INUSE);
2294 sbrked_mem -= extra;
2307 This routine tells you how many bytes you can actually use in an
2308 allocated chunk, which may be more than you requested (although
2309 often not). You can use this many bytes without worrying about
2310 overwriting other allocated objects. Not a particularly great
2311 programming practice, but still sometimes useful.
2316 size_t malloc_usable_size(Void_t* mem)
2318 size_t malloc_usable_size(mem) Void_t* mem;
2327 if(!chunk_is_mmapped(p))
2329 if (!inuse(p)) return 0;
2330 check_inuse_chunk(p);
2331 return chunksize(p) - SIZE_SZ;
2333 return chunksize(p) - 2*SIZE_SZ;
2340 /* Utility to update current_mallinfo for malloc_stats and mallinfo() */
2343 static void malloc_update_mallinfo()
2352 INTERNAL_SIZE_T avail = chunksize(top);
2353 int navail = ((long)(avail) >= (long)MINSIZE)? 1 : 0;
2355 for (i = 1; i < NAV; ++i)
2358 for (p = last(b); p != b; p = p->bk)
2361 check_free_chunk(p);
2362 for (q = next_chunk(p);
2363 q < top && inuse(q) && (long)(chunksize(q)) >= (long)MINSIZE;
2365 check_inuse_chunk(q);
2367 avail += chunksize(p);
2372 current_mallinfo.ordblks = navail;
2373 current_mallinfo.uordblks = sbrked_mem - avail;
2374 current_mallinfo.fordblks = avail;
2375 current_mallinfo.hblks = n_mmaps;
2376 current_mallinfo.hblkhd = mmapped_mem;
2377 current_mallinfo.keepcost = chunksize(top);
2388 Prints on the amount of space obtain from the system (both
2389 via sbrk and mmap), the maximum amount (which may be more than
2390 current if malloc_trim and/or munmap got called), the maximum
2391 number of simultaneous mmap regions used, and the current number
2392 of bytes allocated via malloc (or realloc, etc) but not yet
2393 freed. (Note that this is the number of bytes allocated, not the
2394 number requested. It will be larger than the number requested
2395 because of alignment and bookkeeping overhead.)
2402 malloc_update_mallinfo();
2403 printf("max system bytes = %10u\n",
2404 (unsigned int)(max_total_mem));
2405 printf("system bytes = %10u\n",
2406 (unsigned int)(sbrked_mem + mmapped_mem));
2407 printf("in use bytes = %10u\n",
2408 (unsigned int)(current_mallinfo.uordblks + mmapped_mem));
2410 printf("max mmap regions = %10u\n",
2411 (unsigned int)max_n_mmaps);
2417 mallinfo returns a copy of updated current mallinfo.
2421 struct mallinfo mALLINFo()
2423 malloc_update_mallinfo();
2424 return current_mallinfo;
2434 mallopt is the general SVID/XPG interface to tunable parameters.
2435 The format is to provide a (parameter-number, parameter-value) pair.
2436 mallopt then sets the corresponding parameter to the argument
2437 value if it can (i.e., so long as the value is meaningful),
2438 and returns 1 if successful else 0.
2440 See descriptions of tunable parameters above.
2445 int mALLOPt(int param_number, int value)
2447 int mALLOPt(param_number, value) int param_number; int value;
2450 switch(param_number)
2452 case M_TRIM_THRESHOLD:
2453 trim_threshold = value; return 1;
2455 top_pad = value; return 1;
2456 case M_MMAP_THRESHOLD:
2457 mmap_threshold = value; return 1;
2460 n_mmaps_max = value; return 1;
2462 if (value != 0) return 0; else n_mmaps_max = value; return 1;
2470 int initf_malloc(void)
2472 #if CONFIG_VAL(SYS_MALLOC_F_LEN)
2473 assert(gd->malloc_base); /* Set up by crt0.S */
2474 gd->malloc_limit = CONFIG_VAL(SYS_MALLOC_F_LEN);
2481 void malloc_enable_testing(int max_allocs)
2483 malloc_testing = true;
2484 malloc_max_allocs = max_allocs;
2487 void malloc_disable_testing(void)
2489 malloc_testing = false;
2496 V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee)
2497 * return null for negative arguments
2498 * Added Several WIN32 cleanups from Martin C. Fong <mcfong@yahoo.com>
2499 * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
2500 (e.g. WIN32 platforms)
2501 * Cleanup up header file inclusion for WIN32 platforms
2502 * Cleanup code to avoid Microsoft Visual C++ compiler complaints
2503 * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
2504 memory allocation routines
2505 * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
2506 * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
2507 usage of 'assert' in non-WIN32 code
2508 * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
2510 * Always call 'fREe()' rather than 'free()'
2512 V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee)
2513 * Fixed ordering problem with boundary-stamping
2515 V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee)
2516 * Added pvalloc, as recommended by H.J. Liu
2517 * Added 64bit pointer support mainly from Wolfram Gloger
2518 * Added anonymously donated WIN32 sbrk emulation
2519 * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
2520 * malloc_extend_top: fix mask error that caused wastage after
2522 * Add linux mremap support code from HJ Liu
2524 V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee)
2525 * Integrated most documentation with the code.
2526 * Add support for mmap, with help from
2527 Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
2528 * Use last_remainder in more cases.
2529 * Pack bins using idea from colin@nyx10.cs.du.edu
2530 * Use ordered bins instead of best-fit threshhold
2531 * Eliminate block-local decls to simplify tracing and debugging.
2532 * Support another case of realloc via move into top
2533 * Fix error occuring when initial sbrk_base not word-aligned.
2534 * Rely on page size for units instead of SBRK_UNIT to
2535 avoid surprises about sbrk alignment conventions.
2536 * Add mallinfo, mallopt. Thanks to Raymond Nijssen
2537 (raymond@es.ele.tue.nl) for the suggestion.
2538 * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
2539 * More precautions for cases where other routines call sbrk,
2540 courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
2541 * Added macros etc., allowing use in linux libc from
2542 H.J. Lu (hjl@gnu.ai.mit.edu)
2543 * Inverted this history list
2545 V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee)
2546 * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
2547 * Removed all preallocation code since under current scheme
2548 the work required to undo bad preallocations exceeds
2549 the work saved in good cases for most test programs.
2550 * No longer use return list or unconsolidated bins since
2551 no scheme using them consistently outperforms those that don't
2552 given above changes.
2553 * Use best fit for very large chunks to prevent some worst-cases.
2554 * Added some support for debugging
2556 V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee)
2557 * Removed footers when chunks are in use. Thanks to
2558 Paul Wilson (wilson@cs.texas.edu) for the suggestion.
2560 V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee)
2561 * Added malloc_trim, with help from Wolfram Gloger
2562 (wmglo@Dent.MED.Uni-Muenchen.DE).
2564 V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g)
2566 V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g)
2567 * realloc: try to expand in both directions
2568 * malloc: swap order of clean-bin strategy;
2569 * realloc: only conditionally expand backwards
2570 * Try not to scavenge used bins
2571 * Use bin counts as a guide to preallocation
2572 * Occasionally bin return list chunks in first scan
2573 * Add a few optimizations from colin@nyx10.cs.du.edu
2575 V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g)
2576 * faster bin computation & slightly different binning
2577 * merged all consolidations to one part of malloc proper
2578 (eliminating old malloc_find_space & malloc_clean_bin)
2579 * Scan 2 returns chunks (not just 1)
2580 * Propagate failure in realloc if malloc returns 0
2581 * Add stuff to allow compilation on non-ANSI compilers
2582 from kpv@research.att.com
2584 V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu)
2585 * removed potential for odd address access in prev_chunk
2586 * removed dependency on getpagesize.h
2587 * misc cosmetics and a bit more internal documentation
2588 * anticosmetics: mangled names in macros to evade debugger strangeness
2589 * tested on sparc, hp-700, dec-mips, rs6000
2590 with gcc & native cc (hp, dec only) allowing
2591 Detlefs & Zorn comparison study (in SIGPLAN Notices.)
2593 Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu)
2594 * Based loosely on libg++-1.2X malloc. (It retains some of the overall
2595 structure of old version, but most details differ.)