3 * Sergey Kubushyn, himself, ksi@koi8.net
5 * Changes for unified multibus/multiadapter I2C support.
8 * Gerald Van Baren, Custom IDEAS, vanbaren@cideas.com.
10 * SPDX-License-Identifier: GPL-2.0+
14 * I2C Functions similar to the standard memory functions.
16 * There are several parameters in many of the commands that bear further
19 * {i2c_chip} is the I2C chip address (the first byte sent on the bus).
20 * Each I2C chip on the bus has a unique address. On the I2C data bus,
21 * the address is the upper seven bits and the LSB is the "read/write"
22 * bit. Note that the {i2c_chip} address specified on the command
23 * line is not shifted up: e.g. a typical EEPROM memory chip may have
24 * an I2C address of 0x50, but the data put on the bus will be 0xA0
25 * for write and 0xA1 for read. This "non shifted" address notation
26 * matches at least half of the data sheets :-/.
28 * {addr} is the address (or offset) within the chip. Small memory
29 * chips have 8 bit addresses. Large memory chips have 16 bit
30 * addresses. Other memory chips have 9, 10, or 11 bit addresses.
31 * Many non-memory chips have multiple registers and {addr} is used
32 * as the register index. Some non-memory chips have only one register
33 * and therefore don't need any {addr} parameter.
35 * The default {addr} parameter is one byte (.1) which works well for
36 * memories and registers with 8 bits of address space.
38 * You can specify the length of the {addr} field with the optional .0,
39 * .1, or .2 modifier (similar to the .b, .w, .l modifier). If you are
40 * manipulating a single register device which doesn't use an address
41 * field, use "0.0" for the address and the ".0" length field will
42 * suppress the address in the I2C data stream. This also works for
43 * successive reads using the I2C auto-incrementing memory pointer.
45 * If you are manipulating a large memory with 2-byte addresses, use
46 * the .2 address modifier, e.g. 210.2 addresses location 528 (decimal).
48 * Then there are the unfortunate memory chips that spill the most
49 * significant 1, 2, or 3 bits of address into the chip address byte.
50 * This effectively makes one chip (logically) look like 2, 4, or
51 * 8 chips. This is handled (awkwardly) by #defining
52 * CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW and using the .1 modifier on the
53 * {addr} field (since .1 is the default, it doesn't actually have to
54 * be specified). Examples: given a memory chip at I2C chip address
55 * 0x50, the following would happen...
56 * i2c md 50 0 10 display 16 bytes starting at 0x000
57 * On the bus: <S> A0 00 <E> <S> A1 <rd> ... <rd>
58 * i2c md 50 100 10 display 16 bytes starting at 0x100
59 * On the bus: <S> A2 00 <E> <S> A3 <rd> ... <rd>
60 * i2c md 50 210 10 display 16 bytes starting at 0x210
61 * On the bus: <S> A4 10 <E> <S> A5 <rd> ... <rd>
62 * This is awfully ugly. It would be nice if someone would think up
63 * a better way of handling this.
65 * Adapted from cmd_mem.c which is copyright Wolfgang Denk (wd@denx.de).
69 #include <bootretry.h>
73 #include <environment.h>
76 #include <asm/byteorder.h>
77 #include <linux/compiler.h>
79 DECLARE_GLOBAL_DATA_PTR;
81 /* Display values from last command.
82 * Memory modify remembered values are different from display memory.
84 static uchar i2c_dp_last_chip;
85 static uint i2c_dp_last_addr;
86 static uint i2c_dp_last_alen;
87 static uint i2c_dp_last_length = 0x10;
89 static uchar i2c_mm_last_chip;
90 static uint i2c_mm_last_addr;
91 static uint i2c_mm_last_alen;
93 /* If only one I2C bus is present, the list of devices to ignore when
94 * the probe command is issued is represented by a 1D array of addresses.
95 * When multiple buses are present, the list is an array of bus-address
96 * pairs. The following macros take care of this */
98 #if defined(CONFIG_SYS_I2C_NOPROBES)
99 #if defined(CONFIG_SYS_I2C) || defined(CONFIG_I2C_MULTI_BUS)
104 } i2c_no_probes[] = CONFIG_SYS_I2C_NOPROBES;
105 #define GET_BUS_NUM i2c_get_bus_num()
106 #define COMPARE_BUS(b,i) (i2c_no_probes[(i)].bus == (b))
107 #define COMPARE_ADDR(a,i) (i2c_no_probes[(i)].addr == (a))
108 #define NO_PROBE_ADDR(i) i2c_no_probes[(i)].addr
109 #else /* single bus */
110 static uchar i2c_no_probes[] = CONFIG_SYS_I2C_NOPROBES;
111 #define GET_BUS_NUM 0
112 #define COMPARE_BUS(b,i) ((b) == 0) /* Make compiler happy */
113 #define COMPARE_ADDR(a,i) (i2c_no_probes[(i)] == (a))
114 #define NO_PROBE_ADDR(i) i2c_no_probes[(i)]
115 #endif /* defined(CONFIG_SYS_I2C) */
118 #define DISP_LINE_LEN 16
121 * i2c_init_board() - Board-specific I2C bus init
123 * This function is the default no-op implementation of I2C bus
124 * initialization. This function can be overriden by board-specific
125 * implementation if needed.
128 void i2c_init_board(void)
132 /* TODO: Implement architecture-specific get/set functions */
135 * i2c_get_bus_speed() - Return I2C bus speed
137 * This function is the default implementation of function for retrieveing
138 * the current I2C bus speed in Hz.
140 * A driver implementing runtime switching of I2C bus speed must override
141 * this function to report the speed correctly. Simple or legacy drivers
142 * can use this fallback.
144 * Returns I2C bus speed in Hz.
146 #if !defined(CONFIG_SYS_I2C)
148 * TODO: Implement architecture-specific get/set functions
149 * Should go away, if we switched completely to new multibus support
152 unsigned int i2c_get_bus_speed(void)
154 return CONFIG_SYS_I2C_SPEED;
158 * i2c_set_bus_speed() - Configure I2C bus speed
159 * @speed: Newly set speed of the I2C bus in Hz
161 * This function is the default implementation of function for setting
162 * the I2C bus speed in Hz.
164 * A driver implementing runtime switching of I2C bus speed must override
165 * this function to report the speed correctly. Simple or legacy drivers
166 * can use this fallback.
168 * Returns zero on success, negative value on error.
171 int i2c_set_bus_speed(unsigned int speed)
173 if (speed != CONFIG_SYS_I2C_SPEED)
181 * get_alen() - Small parser helper function to get address length
183 * Returns the address length.
185 static uint get_alen(char *arg)
191 for (j = 0; j < 8; j++) {
193 alen = arg[j+1] - '0';
195 } else if (arg[j] == '\0')
202 * do_i2c_read() - Handle the "i2c read" command-line command
203 * @cmdtp: Command data struct pointer
204 * @flag: Command flag
205 * @argc: Command-line argument count
206 * @argv: Array of command-line arguments
208 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
212 * i2c read {i2c_chip} {devaddr}{.0, .1, .2} {len} {memaddr}
214 static int do_i2c_read ( cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
217 uint devaddr, alen, length;
221 return CMD_RET_USAGE;
226 chip = simple_strtoul(argv[1], NULL, 16);
229 * I2C data address within the chip. This can be 1 or
230 * 2 bytes long. Some day it might be 3 bytes long :-).
232 devaddr = simple_strtoul(argv[2], NULL, 16);
233 alen = get_alen(argv[2]);
235 return CMD_RET_USAGE;
238 * Length is the number of objects, not number of bytes.
240 length = simple_strtoul(argv[3], NULL, 16);
243 * memaddr is the address where to store things in memory
245 memaddr = (u_char *)simple_strtoul(argv[4], NULL, 16);
247 if (i2c_read(chip, devaddr, alen, memaddr, length) != 0) {
248 puts ("Error reading the chip.\n");
254 static int do_i2c_write(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
257 uint devaddr, alen, length;
261 return cmd_usage(cmdtp);
264 * memaddr is the address where to store things in memory
266 memaddr = (u_char *)simple_strtoul(argv[1], NULL, 16);
271 chip = simple_strtoul(argv[2], NULL, 16);
274 * I2C data address within the chip. This can be 1 or
275 * 2 bytes long. Some day it might be 3 bytes long :-).
277 devaddr = simple_strtoul(argv[3], NULL, 16);
278 alen = get_alen(argv[3]);
280 return cmd_usage(cmdtp);
283 * Length is the number of objects, not number of bytes.
285 length = simple_strtoul(argv[4], NULL, 16);
287 while (length-- > 0) {
288 if (i2c_write(chip, devaddr++, alen, memaddr++, 1) != 0) {
289 puts("Error writing to the chip.\n");
293 * No write delay with FRAM devices.
295 #if !defined(CONFIG_SYS_I2C_FRAM)
303 * do_i2c_md() - Handle the "i2c md" command-line command
304 * @cmdtp: Command data struct pointer
305 * @flag: Command flag
306 * @argc: Command-line argument count
307 * @argv: Array of command-line arguments
309 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
313 * i2c md {i2c_chip} {addr}{.0, .1, .2} {len}
315 static int do_i2c_md ( cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
318 uint addr, alen, length;
319 int j, nbytes, linebytes;
321 /* We use the last specified parameters, unless new ones are
324 chip = i2c_dp_last_chip;
325 addr = i2c_dp_last_addr;
326 alen = i2c_dp_last_alen;
327 length = i2c_dp_last_length;
330 return CMD_RET_USAGE;
332 if ((flag & CMD_FLAG_REPEAT) == 0) {
334 * New command specified.
340 chip = simple_strtoul(argv[1], NULL, 16);
343 * I2C data address within the chip. This can be 1 or
344 * 2 bytes long. Some day it might be 3 bytes long :-).
346 addr = simple_strtoul(argv[2], NULL, 16);
347 alen = get_alen(argv[2]);
349 return CMD_RET_USAGE;
352 * If another parameter, it is the length to display.
353 * Length is the number of objects, not number of bytes.
356 length = simple_strtoul(argv[3], NULL, 16);
362 * We buffer all read data, so we can make sure data is read only
367 unsigned char linebuf[DISP_LINE_LEN];
370 linebytes = (nbytes > DISP_LINE_LEN) ? DISP_LINE_LEN : nbytes;
372 if (i2c_read(chip, addr, alen, linebuf, linebytes) != 0)
373 puts ("Error reading the chip.\n");
375 printf("%04x:", addr);
377 for (j=0; j<linebytes; j++) {
378 printf(" %02x", *cp++);
383 for (j=0; j<linebytes; j++) {
384 if ((*cp < 0x20) || (*cp > 0x7e))
393 } while (nbytes > 0);
395 i2c_dp_last_chip = chip;
396 i2c_dp_last_addr = addr;
397 i2c_dp_last_alen = alen;
398 i2c_dp_last_length = length;
404 * do_i2c_mw() - Handle the "i2c mw" command-line command
405 * @cmdtp: Command data struct pointer
406 * @flag: Command flag
407 * @argc: Command-line argument count
408 * @argv: Array of command-line arguments
410 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
414 * i2c mw {i2c_chip} {addr}{.0, .1, .2} {data} [{count}]
416 static int do_i2c_mw ( cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
424 if ((argc < 4) || (argc > 5))
425 return CMD_RET_USAGE;
428 * Chip is always specified.
430 chip = simple_strtoul(argv[1], NULL, 16);
433 * Address is always specified.
435 addr = simple_strtoul(argv[2], NULL, 16);
436 alen = get_alen(argv[2]);
438 return CMD_RET_USAGE;
441 * Value to write is always specified.
443 byte = simple_strtoul(argv[3], NULL, 16);
449 count = simple_strtoul(argv[4], NULL, 16);
453 while (count-- > 0) {
454 if (i2c_write(chip, addr++, alen, &byte, 1) != 0)
455 puts ("Error writing the chip.\n");
457 * Wait for the write to complete. The write can take
458 * up to 10mSec (we allow a little more time).
461 * No write delay with FRAM devices.
463 #if !defined(CONFIG_SYS_I2C_FRAM)
472 * do_i2c_crc() - Handle the "i2c crc32" command-line command
473 * @cmdtp: Command data struct pointer
474 * @flag: Command flag
475 * @argc: Command-line argument count
476 * @argv: Array of command-line arguments
478 * Calculate a CRC on memory
480 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
484 * i2c crc32 {i2c_chip} {addr}{.0, .1, .2} {count}
486 static int do_i2c_crc (cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
497 return CMD_RET_USAGE;
500 * Chip is always specified.
502 chip = simple_strtoul(argv[1], NULL, 16);
505 * Address is always specified.
507 addr = simple_strtoul(argv[2], NULL, 16);
508 alen = get_alen(argv[2]);
510 return CMD_RET_USAGE;
513 * Count is always specified
515 count = simple_strtoul(argv[3], NULL, 16);
517 printf ("CRC32 for %08lx ... %08lx ==> ", addr, addr + count - 1);
519 * CRC a byte at a time. This is going to be slooow, but hey, the
520 * memories are small and slow too so hopefully nobody notices.
524 while (count-- > 0) {
525 if (i2c_read(chip, addr, alen, &byte, 1) != 0)
527 crc = crc32 (crc, &byte, 1);
531 puts ("Error reading the chip,\n");
533 printf ("%08lx\n", crc);
539 * mod_i2c_mem() - Handle the "i2c mm" and "i2c nm" command-line command
540 * @cmdtp: Command data struct pointer
541 * @flag: Command flag
542 * @argc: Command-line argument count
543 * @argv: Array of command-line arguments
547 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
551 * i2c mm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2}
552 * i2c nm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2}
555 mod_i2c_mem(cmd_tbl_t *cmdtp, int incrflag, int flag, int argc, char * const argv[])
565 return CMD_RET_USAGE;
567 bootretry_reset_cmd_timeout(); /* got a good command to get here */
569 * We use the last specified parameters, unless new ones are
572 chip = i2c_mm_last_chip;
573 addr = i2c_mm_last_addr;
574 alen = i2c_mm_last_alen;
576 if ((flag & CMD_FLAG_REPEAT) == 0) {
578 * New command specified. Check for a size specification.
579 * Defaults to byte if no or incorrect specification.
581 size = cmd_get_data_size(argv[0], 1);
584 * Chip is always specified.
586 chip = simple_strtoul(argv[1], NULL, 16);
589 * Address is always specified.
591 addr = simple_strtoul(argv[2], NULL, 16);
592 alen = get_alen(argv[2]);
594 return CMD_RET_USAGE;
598 * Print the address, followed by value. Then accept input for
599 * the next value. A non-converted value exits.
602 printf("%08lx:", addr);
603 if (i2c_read(chip, addr, alen, (uchar *)&data, size) != 0)
604 puts ("\nError reading the chip,\n");
606 data = cpu_to_be32(data);
608 printf(" %02lx", (data >> 24) & 0x000000FF);
610 printf(" %04lx", (data >> 16) & 0x0000FFFF);
612 printf(" %08lx", data);
615 nbytes = cli_readline(" ? ");
618 * <CR> pressed as only input, don't modify current
619 * location and move to next.
624 /* good enough to not time out */
625 bootretry_reset_cmd_timeout();
627 #ifdef CONFIG_BOOT_RETRY_TIME
628 else if (nbytes == -2)
629 break; /* timed out, exit the command */
634 data = simple_strtoul(console_buffer, &endp, 16);
639 data = be32_to_cpu(data);
640 nbytes = endp - console_buffer;
643 * good enough to not time out
645 bootretry_reset_cmd_timeout();
646 if (i2c_write(chip, addr, alen, (uchar *)&data, size) != 0)
647 puts ("Error writing the chip.\n");
648 #ifdef CONFIG_SYS_EEPROM_PAGE_WRITE_DELAY_MS
649 udelay(CONFIG_SYS_EEPROM_PAGE_WRITE_DELAY_MS * 1000);
657 i2c_mm_last_chip = chip;
658 i2c_mm_last_addr = addr;
659 i2c_mm_last_alen = alen;
665 * do_i2c_probe() - Handle the "i2c probe" command-line command
666 * @cmdtp: Command data struct pointer
667 * @flag: Command flag
668 * @argc: Command-line argument count
669 * @argv: Array of command-line arguments
671 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
677 * Returns zero (success) if one or more I2C devices was found
679 static int do_i2c_probe (cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
684 #if defined(CONFIG_SYS_I2C_NOPROBES)
686 unsigned int bus = GET_BUS_NUM;
687 #endif /* NOPROBES */
690 addr = simple_strtol(argv[1], 0, 16);
692 puts ("Valid chip addresses:");
693 for (j = 0; j < 128; j++) {
694 if ((0 <= addr) && (j != addr))
697 #if defined(CONFIG_SYS_I2C_NOPROBES)
699 for (k = 0; k < ARRAY_SIZE(i2c_no_probes); k++) {
700 if (COMPARE_BUS(bus, k) && COMPARE_ADDR(j, k)) {
708 if (i2c_probe(j) == 0) {
715 #if defined(CONFIG_SYS_I2C_NOPROBES)
716 puts ("Excluded chip addresses:");
717 for (k = 0; k < ARRAY_SIZE(i2c_no_probes); k++) {
718 if (COMPARE_BUS(bus,k))
719 printf(" %02X", NO_PROBE_ADDR(k));
728 * do_i2c_loop() - Handle the "i2c loop" command-line command
729 * @cmdtp: Command data struct pointer
730 * @flag: Command flag
731 * @argc: Command-line argument count
732 * @argv: Array of command-line arguments
734 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
738 * i2c loop {i2c_chip} {addr}{.0, .1, .2} [{length}] [{delay}]
739 * {length} - Number of bytes to read
740 * {delay} - A DECIMAL number and defaults to 1000 uSec
742 static int do_i2c_loop(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
752 return CMD_RET_USAGE;
755 * Chip is always specified.
757 chip = simple_strtoul(argv[1], NULL, 16);
760 * Address is always specified.
762 addr = simple_strtoul(argv[2], NULL, 16);
763 alen = get_alen(argv[2]);
765 return CMD_RET_USAGE;
768 * Length is the number of objects, not number of bytes.
771 length = simple_strtoul(argv[3], NULL, 16);
772 if (length > sizeof(bytes))
773 length = sizeof(bytes);
776 * The delay time (uSec) is optional.
780 delay = simple_strtoul(argv[4], NULL, 10);
785 if (i2c_read(chip, addr, alen, bytes, length) != 0)
786 puts ("Error reading the chip.\n");
795 * The SDRAM command is separately configured because many
796 * (most?) embedded boards don't use SDRAM DIMMs.
798 * FIXME: Document and probably move elsewhere!
800 #if defined(CONFIG_CMD_SDRAM)
801 static void print_ddr2_tcyc (u_char const b)
803 printf ("%d.", (b >> 4) & 0x0F);
815 printf ("%d ns\n", b & 0x0F);
835 static void decode_bits (u_char const b, char const *str[], int const do_once)
839 for (mask = 0x80; mask != 0x00; mask >>= 1, ++str) {
850 * i2c sdram {i2c_chip}
852 static int do_sdram (cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
854 enum { unknown, EDO, SDRAM, DDR2 } type;
861 static const char *decode_CAS_DDR2[] = {
862 " TBD", " 6", " 5", " 4", " 3", " 2", " TBD", " TBD"
865 static const char *decode_CAS_default[] = {
866 " TBD", " 7", " 6", " 5", " 4", " 3", " 2", " 1"
869 static const char *decode_CS_WE_default[] = {
870 " TBD", " 6", " 5", " 4", " 3", " 2", " 1", " 0"
873 static const char *decode_byte21_default[] = {
875 " Redundant row address\n",
876 " Differential clock input\n",
877 " Registerd DQMB inputs\n",
878 " Buffered DQMB inputs\n",
880 " Registered address/control lines\n",
881 " Buffered address/control lines\n"
884 static const char *decode_byte22_DDR2[] = {
890 " Supports partial array self refresh\n",
891 " Supports 50 ohm ODT\n",
892 " Supports weak driver\n"
895 static const char *decode_row_density_DDR2[] = {
896 "512 MiB", "256 MiB", "128 MiB", "16 GiB",
897 "8 GiB", "4 GiB", "2 GiB", "1 GiB"
900 static const char *decode_row_density_default[] = {
901 "512 MiB", "256 MiB", "128 MiB", "64 MiB",
902 "32 MiB", "16 MiB", "8 MiB", "4 MiB"
906 return CMD_RET_USAGE;
909 * Chip is always specified.
911 chip = simple_strtoul (argv[1], NULL, 16);
913 if (i2c_read (chip, 0, 1, data, sizeof (data)) != 0) {
914 puts ("No SDRAM Serial Presence Detect found.\n");
919 for (j = 0; j < 63; j++) {
922 if (cksum != data[63]) {
923 printf ("WARNING: Configuration data checksum failure:\n"
924 " is 0x%02x, calculated 0x%02x\n", data[63], cksum);
926 printf ("SPD data revision %d.%d\n",
927 (data[62] >> 4) & 0x0F, data[62] & 0x0F);
928 printf ("Bytes used 0x%02X\n", data[0]);
929 printf ("Serial memory size 0x%02X\n", 1 << data[1]);
931 puts ("Memory type ");
951 puts ("Row address bits ");
952 if ((data[3] & 0x00F0) == 0)
953 printf ("%d\n", data[3] & 0x0F);
955 printf ("%d/%d\n", data[3] & 0x0F, (data[3] >> 4) & 0x0F);
957 puts ("Column address bits ");
958 if ((data[4] & 0x00F0) == 0)
959 printf ("%d\n", data[4] & 0x0F);
961 printf ("%d/%d\n", data[4] & 0x0F, (data[4] >> 4) & 0x0F);
965 printf ("Number of ranks %d\n",
966 (data[5] & 0x07) + 1);
969 printf ("Module rows %d\n", data[5]);
975 printf ("Module data width %d bits\n", data[6]);
978 printf ("Module data width %d bits\n",
979 (data[7] << 8) | data[6]);
983 puts ("Interface signal levels ");
985 case 0: puts ("TTL 5.0 V\n"); break;
986 case 1: puts ("LVTTL\n"); break;
987 case 2: puts ("HSTL 1.5 V\n"); break;
988 case 3: puts ("SSTL 3.3 V\n"); break;
989 case 4: puts ("SSTL 2.5 V\n"); break;
990 case 5: puts ("SSTL 1.8 V\n"); break;
991 default: puts ("unknown\n"); break;
996 printf ("SDRAM cycle time ");
997 print_ddr2_tcyc (data[9]);
1000 printf ("SDRAM cycle time %d.%d ns\n",
1001 (data[9] >> 4) & 0x0F, data[9] & 0x0F);
1007 printf ("SDRAM access time 0.%d%d ns\n",
1008 (data[10] >> 4) & 0x0F, data[10] & 0x0F);
1011 printf ("SDRAM access time %d.%d ns\n",
1012 (data[10] >> 4) & 0x0F, data[10] & 0x0F);
1016 puts ("EDC configuration ");
1018 case 0: puts ("None\n"); break;
1019 case 1: puts ("Parity\n"); break;
1020 case 2: puts ("ECC\n"); break;
1021 default: puts ("unknown\n"); break;
1024 if ((data[12] & 0x80) == 0)
1025 puts ("No self refresh, rate ");
1027 puts ("Self refresh, rate ");
1029 switch(data[12] & 0x7F) {
1030 case 0: puts ("15.625 us\n"); break;
1031 case 1: puts ("3.9 us\n"); break;
1032 case 2: puts ("7.8 us\n"); break;
1033 case 3: puts ("31.3 us\n"); break;
1034 case 4: puts ("62.5 us\n"); break;
1035 case 5: puts ("125 us\n"); break;
1036 default: puts ("unknown\n"); break;
1041 printf ("SDRAM width (primary) %d\n", data[13]);
1044 printf ("SDRAM width (primary) %d\n", data[13] & 0x7F);
1045 if ((data[13] & 0x80) != 0) {
1046 printf (" (second bank) %d\n",
1047 2 * (data[13] & 0x7F));
1055 printf ("EDC width %d\n", data[14]);
1058 if (data[14] != 0) {
1059 printf ("EDC width %d\n",
1062 if ((data[14] & 0x80) != 0) {
1063 printf (" (second bank) %d\n",
1064 2 * (data[14] & 0x7F));
1071 printf ("Min clock delay, back-to-back random column addresses "
1075 puts ("Burst length(s) ");
1076 if (data[16] & 0x80) puts (" Page");
1077 if (data[16] & 0x08) puts (" 8");
1078 if (data[16] & 0x04) puts (" 4");
1079 if (data[16] & 0x02) puts (" 2");
1080 if (data[16] & 0x01) puts (" 1");
1082 printf ("Number of banks %d\n", data[17]);
1086 puts ("CAS latency(s) ");
1087 decode_bits (data[18], decode_CAS_DDR2, 0);
1091 puts ("CAS latency(s) ");
1092 decode_bits (data[18], decode_CAS_default, 0);
1098 puts ("CS latency(s) ");
1099 decode_bits (data[19], decode_CS_WE_default, 0);
1104 puts ("WE latency(s) ");
1105 decode_bits (data[20], decode_CS_WE_default, 0);
1111 puts ("Module attributes:\n");
1112 if (data[21] & 0x80)
1113 puts (" TBD (bit 7)\n");
1114 if (data[21] & 0x40)
1115 puts (" Analysis probe installed\n");
1116 if (data[21] & 0x20)
1117 puts (" TBD (bit 5)\n");
1118 if (data[21] & 0x10)
1119 puts (" FET switch external enable\n");
1120 printf (" %d PLLs on DIMM\n", (data[21] >> 2) & 0x03);
1121 if (data[20] & 0x11) {
1122 printf (" %d active registers on DIMM\n",
1123 (data[21] & 0x03) + 1);
1127 puts ("Module attributes:\n");
1131 decode_bits (data[21], decode_byte21_default, 0);
1137 decode_bits (data[22], decode_byte22_DDR2, 0);
1140 puts ("Device attributes:\n");
1141 if (data[22] & 0x80) puts (" TBD (bit 7)\n");
1142 if (data[22] & 0x40) puts (" TBD (bit 6)\n");
1143 if (data[22] & 0x20) puts (" Upper Vcc tolerance 5%\n");
1144 else puts (" Upper Vcc tolerance 10%\n");
1145 if (data[22] & 0x10) puts (" Lower Vcc tolerance 5%\n");
1146 else puts (" Lower Vcc tolerance 10%\n");
1147 if (data[22] & 0x08) puts (" Supports write1/read burst\n");
1148 if (data[22] & 0x04) puts (" Supports precharge all\n");
1149 if (data[22] & 0x02) puts (" Supports auto precharge\n");
1150 if (data[22] & 0x01) puts (" Supports early RAS# precharge\n");
1156 printf ("SDRAM cycle time (2nd highest CAS latency) ");
1157 print_ddr2_tcyc (data[23]);
1160 printf ("SDRAM cycle time (2nd highest CAS latency) %d."
1161 "%d ns\n", (data[23] >> 4) & 0x0F, data[23] & 0x0F);
1167 printf ("SDRAM access from clock (2nd highest CAS latency) 0."
1168 "%d%d ns\n", (data[24] >> 4) & 0x0F, data[24] & 0x0F);
1171 printf ("SDRAM access from clock (2nd highest CAS latency) %d."
1172 "%d ns\n", (data[24] >> 4) & 0x0F, data[24] & 0x0F);
1178 printf ("SDRAM cycle time (3rd highest CAS latency) ");
1179 print_ddr2_tcyc (data[25]);
1182 printf ("SDRAM cycle time (3rd highest CAS latency) %d."
1183 "%d ns\n", (data[25] >> 4) & 0x0F, data[25] & 0x0F);
1189 printf ("SDRAM access from clock (3rd highest CAS latency) 0."
1190 "%d%d ns\n", (data[26] >> 4) & 0x0F, data[26] & 0x0F);
1193 printf ("SDRAM access from clock (3rd highest CAS latency) %d."
1194 "%d ns\n", (data[26] >> 4) & 0x0F, data[26] & 0x0F);
1200 printf ("Minimum row precharge %d.%02d ns\n",
1201 (data[27] >> 2) & 0x3F, 25 * (data[27] & 0x03));
1204 printf ("Minimum row precharge %d ns\n", data[27]);
1210 printf ("Row active to row active min %d.%02d ns\n",
1211 (data[28] >> 2) & 0x3F, 25 * (data[28] & 0x03));
1214 printf ("Row active to row active min %d ns\n", data[28]);
1220 printf ("RAS to CAS delay min %d.%02d ns\n",
1221 (data[29] >> 2) & 0x3F, 25 * (data[29] & 0x03));
1224 printf ("RAS to CAS delay min %d ns\n", data[29]);
1228 printf ("Minimum RAS pulse width %d ns\n", data[30]);
1232 puts ("Density of each row ");
1233 decode_bits (data[31], decode_row_density_DDR2, 1);
1237 puts ("Density of each row ");
1238 decode_bits (data[31], decode_row_density_default, 1);
1245 puts ("Command and Address setup ");
1246 if (data[32] >= 0xA0) {
1247 printf ("1.%d%d ns\n",
1248 ((data[32] >> 4) & 0x0F) - 10, data[32] & 0x0F);
1250 printf ("0.%d%d ns\n",
1251 ((data[32] >> 4) & 0x0F), data[32] & 0x0F);
1255 printf ("Command and Address setup %c%d.%d ns\n",
1256 (data[32] & 0x80) ? '-' : '+',
1257 (data[32] >> 4) & 0x07, data[32] & 0x0F);
1263 puts ("Command and Address hold ");
1264 if (data[33] >= 0xA0) {
1265 printf ("1.%d%d ns\n",
1266 ((data[33] >> 4) & 0x0F) - 10, data[33] & 0x0F);
1268 printf ("0.%d%d ns\n",
1269 ((data[33] >> 4) & 0x0F), data[33] & 0x0F);
1273 printf ("Command and Address hold %c%d.%d ns\n",
1274 (data[33] & 0x80) ? '-' : '+',
1275 (data[33] >> 4) & 0x07, data[33] & 0x0F);
1281 printf ("Data signal input setup 0.%d%d ns\n",
1282 (data[34] >> 4) & 0x0F, data[34] & 0x0F);
1285 printf ("Data signal input setup %c%d.%d ns\n",
1286 (data[34] & 0x80) ? '-' : '+',
1287 (data[34] >> 4) & 0x07, data[34] & 0x0F);
1293 printf ("Data signal input hold 0.%d%d ns\n",
1294 (data[35] >> 4) & 0x0F, data[35] & 0x0F);
1297 printf ("Data signal input hold %c%d.%d ns\n",
1298 (data[35] & 0x80) ? '-' : '+',
1299 (data[35] >> 4) & 0x07, data[35] & 0x0F);
1303 puts ("Manufacturer's JEDEC ID ");
1304 for (j = 64; j <= 71; j++)
1305 printf ("%02X ", data[j]);
1307 printf ("Manufacturing Location %02X\n", data[72]);
1308 puts ("Manufacturer's Part Number ");
1309 for (j = 73; j <= 90; j++)
1310 printf ("%02X ", data[j]);
1312 printf ("Revision Code %02X %02X\n", data[91], data[92]);
1313 printf ("Manufacturing Date %02X %02X\n", data[93], data[94]);
1314 puts ("Assembly Serial Number ");
1315 for (j = 95; j <= 98; j++)
1316 printf ("%02X ", data[j]);
1320 printf ("Speed rating PC%d\n",
1321 data[126] == 0x66 ? 66 : data[126]);
1329 * i2c edid {i2c_chip}
1331 #if defined(CONFIG_I2C_EDID)
1332 int do_edid(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[])
1335 struct edid1_info edid;
1342 chip = simple_strtoul(argv[1], NULL, 16);
1343 if (i2c_read(chip, 0, 1, (uchar *)&edid, sizeof(edid)) != 0) {
1344 puts("Error reading EDID content.\n");
1348 if (edid_check_info(&edid)) {
1349 puts("Content isn't valid EDID.\n");
1353 edid_print_info(&edid);
1357 #endif /* CONFIG_I2C_EDID */
1360 * do_i2c_show_bus() - Handle the "i2c bus" command-line command
1361 * @cmdtp: Command data struct pointer
1362 * @flag: Command flag
1363 * @argc: Command-line argument count
1364 * @argv: Array of command-line arguments
1366 * Returns zero always.
1368 #if defined(CONFIG_SYS_I2C)
1369 static int do_i2c_show_bus(cmd_tbl_t *cmdtp, int flag, int argc,
1370 char * const argv[])
1373 #ifndef CONFIG_SYS_I2C_DIRECT_BUS
1378 /* show all busses */
1379 for (i = 0; i < CONFIG_SYS_NUM_I2C_BUSES; i++) {
1380 printf("Bus %d:\t%s", i, I2C_ADAP_NR(i)->name);
1381 #ifndef CONFIG_SYS_I2C_DIRECT_BUS
1382 for (j = 0; j < CONFIG_SYS_I2C_MAX_HOPS; j++) {
1383 if (i2c_bus[i].next_hop[j].chip == 0)
1385 printf("->%s@0x%2x:%d",
1386 i2c_bus[i].next_hop[j].mux.name,
1387 i2c_bus[i].next_hop[j].chip,
1388 i2c_bus[i].next_hop[j].channel);
1394 /* show specific bus */
1395 i = simple_strtoul(argv[1], NULL, 10);
1396 if (i >= CONFIG_SYS_NUM_I2C_BUSES) {
1397 printf("Invalid bus %d\n", i);
1400 printf("Bus %d:\t%s", i, I2C_ADAP_NR(i)->name);
1401 #ifndef CONFIG_SYS_I2C_DIRECT_BUS
1402 for (j = 0; j < CONFIG_SYS_I2C_MAX_HOPS; j++) {
1403 if (i2c_bus[i].next_hop[j].chip == 0)
1405 printf("->%s@0x%2x:%d",
1406 i2c_bus[i].next_hop[j].mux.name,
1407 i2c_bus[i].next_hop[j].chip,
1408 i2c_bus[i].next_hop[j].channel);
1419 * do_i2c_bus_num() - Handle the "i2c dev" command-line command
1420 * @cmdtp: Command data struct pointer
1421 * @flag: Command flag
1422 * @argc: Command-line argument count
1423 * @argv: Array of command-line arguments
1425 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1428 #if defined(CONFIG_SYS_I2C) || defined(CONFIG_I2C_MULTI_BUS)
1429 static int do_i2c_bus_num(cmd_tbl_t *cmdtp, int flag, int argc,
1430 char * const argv[])
1433 unsigned int bus_no;
1436 /* querying current setting */
1437 printf("Current bus is %d\n", i2c_get_bus_num());
1439 bus_no = simple_strtoul(argv[1], NULL, 10);
1440 #if defined(CONFIG_SYS_I2C)
1441 if (bus_no >= CONFIG_SYS_NUM_I2C_BUSES) {
1442 printf("Invalid bus %d\n", bus_no);
1446 printf("Setting bus to %d\n", bus_no);
1447 ret = i2c_set_bus_num(bus_no);
1449 printf("Failure changing bus number (%d)\n", ret);
1453 #endif /* defined(CONFIG_SYS_I2C) */
1456 * do_i2c_bus_speed() - Handle the "i2c speed" command-line command
1457 * @cmdtp: Command data struct pointer
1458 * @flag: Command flag
1459 * @argc: Command-line argument count
1460 * @argv: Array of command-line arguments
1462 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1465 static int do_i2c_bus_speed(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
1470 /* querying current speed */
1471 printf("Current bus speed=%d\n", i2c_get_bus_speed());
1473 speed = simple_strtoul(argv[1], NULL, 10);
1474 printf("Setting bus speed to %d Hz\n", speed);
1475 ret = i2c_set_bus_speed(speed);
1477 printf("Failure changing bus speed (%d)\n", ret);
1483 * do_i2c_mm() - Handle the "i2c mm" command-line command
1484 * @cmdtp: Command data struct pointer
1485 * @flag: Command flag
1486 * @argc: Command-line argument count
1487 * @argv: Array of command-line arguments
1489 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1492 static int do_i2c_mm(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
1494 return mod_i2c_mem (cmdtp, 1, flag, argc, argv);
1498 * do_i2c_nm() - Handle the "i2c nm" command-line command
1499 * @cmdtp: Command data struct pointer
1500 * @flag: Command flag
1501 * @argc: Command-line argument count
1502 * @argv: Array of command-line arguments
1504 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1507 static int do_i2c_nm(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
1509 return mod_i2c_mem (cmdtp, 0, flag, argc, argv);
1513 * do_i2c_reset() - Handle the "i2c reset" command-line command
1514 * @cmdtp: Command data struct pointer
1515 * @flag: Command flag
1516 * @argc: Command-line argument count
1517 * @argv: Array of command-line arguments
1519 * Returns zero always.
1521 static int do_i2c_reset(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
1523 #if defined(CONFIG_SYS_I2C)
1524 i2c_init(I2C_ADAP->speed, I2C_ADAP->slaveaddr);
1526 i2c_init(CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE);
1531 static cmd_tbl_t cmd_i2c_sub[] = {
1532 #if defined(CONFIG_SYS_I2C)
1533 U_BOOT_CMD_MKENT(bus, 1, 1, do_i2c_show_bus, "", ""),
1535 U_BOOT_CMD_MKENT(crc32, 3, 1, do_i2c_crc, "", ""),
1536 #if defined(CONFIG_SYS_I2C) || \
1537 defined(CONFIG_I2C_MULTI_BUS)
1538 U_BOOT_CMD_MKENT(dev, 1, 1, do_i2c_bus_num, "", ""),
1539 #endif /* CONFIG_I2C_MULTI_BUS */
1540 #if defined(CONFIG_I2C_EDID)
1541 U_BOOT_CMD_MKENT(edid, 1, 1, do_edid, "", ""),
1542 #endif /* CONFIG_I2C_EDID */
1543 U_BOOT_CMD_MKENT(loop, 3, 1, do_i2c_loop, "", ""),
1544 U_BOOT_CMD_MKENT(md, 3, 1, do_i2c_md, "", ""),
1545 U_BOOT_CMD_MKENT(mm, 2, 1, do_i2c_mm, "", ""),
1546 U_BOOT_CMD_MKENT(mw, 3, 1, do_i2c_mw, "", ""),
1547 U_BOOT_CMD_MKENT(nm, 2, 1, do_i2c_nm, "", ""),
1548 U_BOOT_CMD_MKENT(probe, 0, 1, do_i2c_probe, "", ""),
1549 U_BOOT_CMD_MKENT(read, 5, 1, do_i2c_read, "", ""),
1550 U_BOOT_CMD_MKENT(write, 5, 0, do_i2c_write, "", ""),
1551 U_BOOT_CMD_MKENT(reset, 0, 1, do_i2c_reset, "", ""),
1552 #if defined(CONFIG_CMD_SDRAM)
1553 U_BOOT_CMD_MKENT(sdram, 1, 1, do_sdram, "", ""),
1555 U_BOOT_CMD_MKENT(speed, 1, 1, do_i2c_bus_speed, "", ""),
1558 #ifdef CONFIG_NEEDS_MANUAL_RELOC
1559 void i2c_reloc(void) {
1560 fixup_cmdtable(cmd_i2c_sub, ARRAY_SIZE(cmd_i2c_sub));
1565 * do_i2c() - Handle the "i2c" command-line command
1566 * @cmdtp: Command data struct pointer
1567 * @flag: Command flag
1568 * @argc: Command-line argument count
1569 * @argv: Array of command-line arguments
1571 * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1574 static int do_i2c(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
1579 return CMD_RET_USAGE;
1581 /* Strip off leading 'i2c' command argument */
1585 c = find_cmd_tbl(argv[0], &cmd_i2c_sub[0], ARRAY_SIZE(cmd_i2c_sub));
1588 return c->cmd(cmdtp, flag, argc, argv);
1590 return CMD_RET_USAGE;
1593 /***************************************************/
1594 #ifdef CONFIG_SYS_LONGHELP
1595 static char i2c_help_text[] =
1596 #if defined(CONFIG_SYS_I2C)
1597 "bus [muxtype:muxaddr:muxchannel] - show I2C bus info\n"
1599 "crc32 chip address[.0, .1, .2] count - compute CRC32 checksum\n"
1600 #if defined(CONFIG_SYS_I2C) || \
1601 defined(CONFIG_I2C_MULTI_BUS)
1602 "i2c dev [dev] - show or set current I2C bus\n"
1603 #endif /* CONFIG_I2C_MULTI_BUS */
1604 #if defined(CONFIG_I2C_EDID)
1605 "i2c edid chip - print EDID configuration information\n"
1606 #endif /* CONFIG_I2C_EDID */
1607 "i2c loop chip address[.0, .1, .2] [# of objects] - looping read of device\n"
1608 "i2c md chip address[.0, .1, .2] [# of objects] - read from I2C device\n"
1609 "i2c mm chip address[.0, .1, .2] - write to I2C device (auto-incrementing)\n"
1610 "i2c mw chip address[.0, .1, .2] value [count] - write to I2C device (fill)\n"
1611 "i2c nm chip address[.0, .1, .2] - write to I2C device (constant address)\n"
1612 "i2c probe [address] - test for and show device(s) on the I2C bus\n"
1613 "i2c read chip address[.0, .1, .2] length memaddress - read to memory \n"
1614 "i2c write memaddress chip address[.0, .1, .2] length - write memory to i2c\n"
1615 "i2c reset - re-init the I2C Controller\n"
1616 #if defined(CONFIG_CMD_SDRAM)
1617 "i2c sdram chip - print SDRAM configuration information\n"
1619 "i2c speed [speed] - show or set I2C bus speed";