2 * Driver for Disk-On-Chip 2000 and Millennium
3 * (c) 1999 Machine Vision Holdings, Inc.
4 * (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org>
6 * $Id: doc2000.c,v 1.46 2001/10/02 15:05:13 dwmw2 Exp $
15 #if defined(CONFIG_CMD_DOC)
17 #include <linux/mtd/nftl.h>
18 #include <linux/mtd/doc2000.h>
20 #ifdef CFG_DOC_SUPPORT_2000
21 #define DoC_is_2000(doc) (doc->ChipID == DOC_ChipID_Doc2k)
23 #define DoC_is_2000(doc) (0)
26 #ifdef CFG_DOC_SUPPORT_MILLENNIUM
27 #define DoC_is_Millennium(doc) (doc->ChipID == DOC_ChipID_DocMil)
29 #define DoC_is_Millennium(doc) (0)
32 /* CFG_DOC_PASSIVE_PROBE:
33 In order to ensure that the BIOS checksum is correct at boot time, and
34 hence that the onboard BIOS extension gets executed, the DiskOnChip
35 goes into reset mode when it is read sequentially: all registers
36 return 0xff until the chip is woken up again by writing to the
39 Unfortunately, this means that the probe for the DiskOnChip is unsafe,
40 because one of the first things it does is write to where it thinks
41 the DOCControl register should be - which may well be shared memory
42 for another device. I've had machines which lock up when this is
43 attempted. Hence the possibility to do a passive probe, which will fail
44 to detect a chip in reset mode, but is at least guaranteed not to lock
47 If you have this problem, uncomment the following line:
48 #define CFG_DOC_PASSIVE_PROBE
56 static struct DiskOnChip doc_dev_desc[CFG_MAX_DOC_DEVICE];
58 /* Current DOC Device */
59 static int curr_device = -1;
61 /* Supported NAND flash devices */
62 static struct nand_flash_dev nand_flash_ids[] = {
63 {"Toshiba TC5816BDC", NAND_MFR_TOSHIBA, 0x64, 21, 1, 2, 0x1000, 0},
64 {"Toshiba TC5832DC", NAND_MFR_TOSHIBA, 0x6b, 22, 0, 2, 0x2000, 0},
65 {"Toshiba TH58V128DC", NAND_MFR_TOSHIBA, 0x73, 24, 0, 2, 0x4000, 0},
66 {"Toshiba TC58256FT/DC", NAND_MFR_TOSHIBA, 0x75, 25, 0, 2, 0x4000, 0},
67 {"Toshiba TH58512FT", NAND_MFR_TOSHIBA, 0x76, 26, 0, 3, 0x4000, 0},
68 {"Toshiba TC58V32DC", NAND_MFR_TOSHIBA, 0xe5, 22, 0, 2, 0x2000, 0},
69 {"Toshiba TC58V64AFT/DC", NAND_MFR_TOSHIBA, 0xe6, 23, 0, 2, 0x2000, 0},
70 {"Toshiba TC58V16BDC", NAND_MFR_TOSHIBA, 0xea, 21, 1, 2, 0x1000, 0},
71 {"Toshiba TH58100FT", NAND_MFR_TOSHIBA, 0x79, 27, 0, 3, 0x4000, 0},
72 {"Samsung KM29N16000", NAND_MFR_SAMSUNG, 0x64, 21, 1, 2, 0x1000, 0},
73 {"Samsung unknown 4Mb", NAND_MFR_SAMSUNG, 0x6b, 22, 0, 2, 0x2000, 0},
74 {"Samsung KM29U128T", NAND_MFR_SAMSUNG, 0x73, 24, 0, 2, 0x4000, 0},
75 {"Samsung KM29U256T", NAND_MFR_SAMSUNG, 0x75, 25, 0, 2, 0x4000, 0},
76 {"Samsung unknown 64Mb", NAND_MFR_SAMSUNG, 0x76, 26, 0, 3, 0x4000, 0},
77 {"Samsung KM29W32000", NAND_MFR_SAMSUNG, 0xe3, 22, 0, 2, 0x2000, 0},
78 {"Samsung unknown 4Mb", NAND_MFR_SAMSUNG, 0xe5, 22, 0, 2, 0x2000, 0},
79 {"Samsung KM29U64000", NAND_MFR_SAMSUNG, 0xe6, 23, 0, 2, 0x2000, 0},
80 {"Samsung KM29W16000", NAND_MFR_SAMSUNG, 0xea, 21, 1, 2, 0x1000, 0},
81 {"Samsung K9F5616Q0C", NAND_MFR_SAMSUNG, 0x45, 25, 0, 2, 0x4000, 1},
82 {"Samsung K9K1216Q0C", NAND_MFR_SAMSUNG, 0x46, 26, 0, 3, 0x4000, 1},
83 {"Samsung K9F1G08U0M", NAND_MFR_SAMSUNG, 0xf1, 27, 0, 2, 0, 0},
87 /* ------------------------------------------------------------------------- */
89 int do_doc (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
96 printf ("Usage:\n%s\n", cmdtp->usage);
99 if (strcmp(argv[1],"info") == 0) {
104 for (i=0; i<CFG_MAX_DOC_DEVICE; ++i) {
105 if(doc_dev_desc[i].ChipID == DOC_ChipID_UNKNOWN)
106 continue; /* list only known devices */
107 printf ("Device %d: ", i);
108 doc_print(&doc_dev_desc[i]);
112 } else if (strcmp(argv[1],"device") == 0) {
113 if ((curr_device < 0) || (curr_device >= CFG_MAX_DOC_DEVICE)) {
114 puts ("\nno devices available\n");
117 printf ("\nDevice %d: ", curr_device);
118 doc_print(&doc_dev_desc[curr_device]);
121 printf ("Usage:\n%s\n", cmdtp->usage);
124 if (strcmp(argv[1],"device") == 0) {
125 int dev = (int)simple_strtoul(argv[2], NULL, 10);
127 printf ("\nDevice %d: ", dev);
128 if (dev >= CFG_MAX_DOC_DEVICE) {
129 puts ("unknown device\n");
132 doc_print(&doc_dev_desc[dev]);
135 if (doc_dev_desc[dev].ChipID == DOC_ChipID_UNKNOWN) {
141 puts ("... is now current device\n");
146 printf ("Usage:\n%s\n", cmdtp->usage);
149 /* at least 4 args */
151 if (strcmp(argv[1],"read") == 0 || strcmp(argv[1],"write") == 0) {
152 ulong addr = simple_strtoul(argv[2], NULL, 16);
153 ulong off = simple_strtoul(argv[3], NULL, 16);
154 ulong size = simple_strtoul(argv[4], NULL, 16);
155 int cmd = (strcmp(argv[1],"read") == 0);
158 printf ("\nDOC %s: device %d offset %ld, size %ld ... ",
159 cmd ? "read" : "write", curr_device, off, size);
161 ret = doc_rw(doc_dev_desc + curr_device, cmd, off, size,
162 (size_t *)&total, (u_char*)addr);
164 printf ("%d bytes %s: %s\n", total, cmd ? "read" : "write",
165 ret ? "ERROR" : "OK");
168 } else if (strcmp(argv[1],"erase") == 0) {
169 ulong off = simple_strtoul(argv[2], NULL, 16);
170 ulong size = simple_strtoul(argv[3], NULL, 16);
173 printf ("\nDOC erase: device %d offset %ld, size %ld ... ",
174 curr_device, off, size);
176 ret = doc_erase (doc_dev_desc + curr_device, off, size);
178 printf("%s\n", ret ? "ERROR" : "OK");
182 printf ("Usage:\n%s\n", cmdtp->usage);
191 "doc - Disk-On-Chip sub-system\n",
192 "info - show available DOC devices\n"
193 "doc device [dev] - show or set current device\n"
194 "doc read addr off size\n"
195 "doc write addr off size - read/write `size'"
196 " bytes starting at offset `off'\n"
197 " to/from memory address `addr'\n"
198 "doc erase off size - erase `size' bytes of DOC from offset `off'\n"
201 int do_docboot (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
203 char *boot_device = NULL;
212 show_boot_progress (34);
215 addr = CFG_LOAD_ADDR;
216 boot_device = getenv ("bootdevice");
219 addr = simple_strtoul(argv[1], NULL, 16);
220 boot_device = getenv ("bootdevice");
223 addr = simple_strtoul(argv[1], NULL, 16);
224 boot_device = argv[2];
227 addr = simple_strtoul(argv[1], NULL, 16);
228 boot_device = argv[2];
229 offset = simple_strtoul(argv[3], NULL, 16);
232 printf ("Usage:\n%s\n", cmdtp->usage);
233 show_boot_progress (-35);
237 show_boot_progress (35);
239 puts ("\n** No boot device **\n");
240 show_boot_progress (-36);
243 show_boot_progress (36);
245 dev = simple_strtoul(boot_device, &ep, 16);
247 if ((dev >= CFG_MAX_DOC_DEVICE) ||
248 (doc_dev_desc[dev].ChipID == DOC_ChipID_UNKNOWN)) {
249 printf ("\n** Device %d not available\n", dev);
250 show_boot_progress (-37);
253 show_boot_progress (37);
255 printf ("\nLoading from device %d: %s at 0x%lX (offset 0x%lX)\n",
256 dev, doc_dev_desc[dev].name, doc_dev_desc[dev].physadr,
259 if (doc_rw (doc_dev_desc + dev, 1, offset,
260 SECTORSIZE, NULL, (u_char *)addr)) {
261 printf ("** Read error on %d\n", dev);
262 show_boot_progress (-38);
265 show_boot_progress (38);
267 hdr = (image_header_t *)addr;
269 if (hdr->ih_magic == IH_MAGIC) {
271 print_image_hdr (hdr);
273 cnt = (ntohl(hdr->ih_size) + sizeof(image_header_t));
276 puts ("\n** Bad Magic Number **\n");
277 show_boot_progress (-39);
280 show_boot_progress (39);
282 if (doc_rw (doc_dev_desc + dev, 1, offset + SECTORSIZE, cnt,
283 NULL, (u_char *)(addr+SECTORSIZE))) {
284 printf ("** Read error on %d\n", dev);
285 show_boot_progress (-40);
288 show_boot_progress (40);
290 /* Loading ok, update default load address */
294 /* Check if we should attempt an auto-start */
295 if (((ep = getenv("autostart")) != NULL) && (strcmp(ep,"yes") == 0)) {
297 extern int do_bootm (cmd_tbl_t *, int, int, char *[]);
299 local_args[0] = argv[0];
300 local_args[1] = NULL;
302 printf ("Automatic boot of image at addr 0x%08lX ...\n", addr);
304 do_bootm (cmdtp, 0, 1, local_args);
311 docboot, 4, 1, do_docboot,
312 "docboot - boot from DOC device\n",
316 int doc_rw (struct DiskOnChip* this, int cmd,
317 loff_t from, size_t len,
318 size_t * retlen, u_char * buf)
320 int noecc, ret = 0, n, total = 0;
324 /* The ECC will not be calculated correctly if
325 less than 512 is written or read */
326 noecc = (from != (from | 0x1ff) + 1) || (len < 0x200);
329 ret = doc_read_ecc(this, from, len,
330 (size_t *)&n, (u_char*)buf,
331 noecc ? (uchar *)NULL : (uchar *)eccbuf);
333 ret = doc_write_ecc(this, from, len,
334 (size_t *)&n, (u_char*)buf,
335 noecc ? (uchar *)NULL : (uchar *)eccbuf);
352 void doc_print(struct DiskOnChip *this) {
353 printf("%s at 0x%lX,\n"
354 "\t %d chip%s %s, size %d MB, \n"
355 "\t total size %ld MB, sector size %ld kB\n",
356 this->name, this->physadr, this->numchips,
357 this->numchips>1 ? "s" : "", this->chips_name,
358 1 << (this->chipshift - 20),
359 this->totlen >> 20, this->erasesize >> 10);
361 if (this->nftl_found) {
362 struct NFTLrecord *nftl = &this->nftl;
363 unsigned long bin_size, flash_size;
365 bin_size = nftl->nb_boot_blocks * this->erasesize;
366 flash_size = (nftl->nb_blocks - nftl->nb_boot_blocks) * this->erasesize;
368 printf("\t NFTL boot record:\n"
369 "\t Binary partition: size %ld%s\n"
370 "\t Flash disk partition: size %ld%s, offset 0x%lx\n",
371 bin_size > (1 << 20) ? bin_size >> 20 : bin_size >> 10,
372 bin_size > (1 << 20) ? "MB" : "kB",
373 flash_size > (1 << 20) ? flash_size >> 20 : flash_size >> 10,
374 flash_size > (1 << 20) ? "MB" : "kB", bin_size);
376 puts ("\t No NFTL boot record found.\n");
380 /* ------------------------------------------------------------------------- */
382 /* This function is needed to avoid calls of the __ashrdi3 function. */
383 static int shr(int val, int shift) {
387 /* Perform the required delay cycles by reading from the appropriate register */
388 static void DoC_Delay(struct DiskOnChip *doc, unsigned short cycles)
393 for (i = 0; i < cycles; i++) {
394 if (DoC_is_Millennium(doc))
395 dummy = ReadDOC(doc->virtadr, NOP);
397 dummy = ReadDOC(doc->virtadr, DOCStatus);
402 /* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
403 static int _DoC_WaitReady(struct DiskOnChip *doc)
405 unsigned long docptr = doc->virtadr;
406 unsigned long start = get_timer(0);
409 puts ("_DoC_WaitReady called for out-of-line wait\n");
412 /* Out-of-line routine to wait for chip response */
413 while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
414 #ifdef CFG_DOC_SHORT_TIMEOUT
415 /* it seems that after a certain time the DoC deasserts
416 * the CDSN_CTRL_FR_B although it is not ready...
417 * using a short timout solve this (timer increments every ms) */
418 if (get_timer(start) > 10) {
422 if (get_timer(start) > 10 * 1000) {
423 puts ("_DoC_WaitReady timed out.\n");
433 static int DoC_WaitReady(struct DiskOnChip *doc)
435 unsigned long docptr = doc->virtadr;
436 /* This is inline, to optimise the common case, where it's ready instantly */
439 /* 4 read form NOP register should be issued in prior to the read from CDSNControl
440 see Software Requirement 11.4 item 2. */
443 if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
444 /* Call the out-of-line routine to wait */
445 ret = _DoC_WaitReady(doc);
447 /* issue 2 read from NOP register after reading from CDSNControl register
448 see Software Requirement 11.4 item 2. */
454 /* DoC_Command: Send a flash command to the flash chip through the CDSN Slow IO register to
455 bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is
456 required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */
458 static inline int DoC_Command(struct DiskOnChip *doc, unsigned char command,
459 unsigned char xtraflags)
461 unsigned long docptr = doc->virtadr;
463 if (DoC_is_2000(doc))
464 xtraflags |= CDSN_CTRL_FLASH_IO;
466 /* Assert the CLE (Command Latch Enable) line to the flash chip */
467 WriteDOC(xtraflags | CDSN_CTRL_CLE | CDSN_CTRL_CE, docptr, CDSNControl);
468 DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
470 if (DoC_is_Millennium(doc))
471 WriteDOC(command, docptr, CDSNSlowIO);
473 /* Send the command */
474 WriteDOC_(command, docptr, doc->ioreg);
476 /* Lower the CLE line */
477 WriteDOC(xtraflags | CDSN_CTRL_CE, docptr, CDSNControl);
478 DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
480 /* Wait for the chip to respond - Software requirement 11.4.1 (extended for any command) */
481 return DoC_WaitReady(doc);
484 /* DoC_Address: Set the current address for the flash chip through the CDSN Slow IO register to
485 bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is
486 required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */
488 static int DoC_Address(struct DiskOnChip *doc, int numbytes, unsigned long ofs,
489 unsigned char xtraflags1, unsigned char xtraflags2)
491 unsigned long docptr;
494 docptr = doc->virtadr;
496 if (DoC_is_2000(doc))
497 xtraflags1 |= CDSN_CTRL_FLASH_IO;
499 /* Assert the ALE (Address Latch Enable) line to the flash chip */
500 WriteDOC(xtraflags1 | CDSN_CTRL_ALE | CDSN_CTRL_CE, docptr, CDSNControl);
502 DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
504 /* Send the address */
505 /* Devices with 256-byte page are addressed as:
506 Column (bits 0-7), Page (bits 8-15, 16-23, 24-31)
507 * there is no device on the market with page256
508 and more than 24 bits.
509 Devices with 512-byte page are addressed as:
510 Column (bits 0-7), Page (bits 9-16, 17-24, 25-31)
511 * 25-31 is sent only if the chip support it.
512 * bit 8 changes the read command to be sent
513 (NAND_CMD_READ0 or NAND_CMD_READ1).
516 if (numbytes == ADDR_COLUMN || numbytes == ADDR_COLUMN_PAGE) {
517 if (DoC_is_Millennium(doc))
518 WriteDOC(ofs & 0xff, docptr, CDSNSlowIO);
519 WriteDOC_(ofs & 0xff, docptr, doc->ioreg);
528 if (numbytes == ADDR_PAGE || numbytes == ADDR_COLUMN_PAGE) {
529 for (i = 0; i < doc->pageadrlen; i++, ofs = ofs >> 8) {
530 if (DoC_is_Millennium(doc))
531 WriteDOC(ofs & 0xff, docptr, CDSNSlowIO);
532 WriteDOC_(ofs & 0xff, docptr, doc->ioreg);
536 DoC_Delay(doc, 2); /* Needed for some slow flash chips. mf. */
538 /* FIXME: The SlowIO's for millennium could be replaced by
539 a single WritePipeTerm here. mf. */
541 /* Lower the ALE line */
542 WriteDOC(xtraflags1 | xtraflags2 | CDSN_CTRL_CE, docptr,
545 DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
547 /* Wait for the chip to respond - Software requirement 11.4.1 */
548 return DoC_WaitReady(doc);
551 /* Read a buffer from DoC, taking care of Millennium oddities */
552 static void DoC_ReadBuf(struct DiskOnChip *doc, u_char * buf, int len)
555 int modulus = 0xffff;
556 unsigned long docptr;
559 docptr = doc->virtadr;
564 if (DoC_is_Millennium(doc)) {
565 /* Read the data via the internal pipeline through CDSN IO register,
566 see Pipelined Read Operations 11.3 */
567 dummy = ReadDOC(docptr, ReadPipeInit);
569 /* Millennium should use the LastDataRead register - Pipeline Reads */
572 /* This is needed for correctly ECC calculation */
576 for (i = 0; i < len; i++)
577 buf[i] = ReadDOC_(docptr, doc->ioreg + (i & modulus));
579 if (DoC_is_Millennium(doc)) {
580 buf[i] = ReadDOC(docptr, LastDataRead);
584 /* Write a buffer to DoC, taking care of Millennium oddities */
585 static void DoC_WriteBuf(struct DiskOnChip *doc, const u_char * buf, int len)
587 unsigned long docptr;
590 docptr = doc->virtadr;
595 for (i = 0; i < len; i++)
596 WriteDOC_(buf[i], docptr, doc->ioreg + i);
598 if (DoC_is_Millennium(doc)) {
599 WriteDOC(0x00, docptr, WritePipeTerm);
604 /* DoC_SelectChip: Select a given flash chip within the current floor */
606 static inline int DoC_SelectChip(struct DiskOnChip *doc, int chip)
608 unsigned long docptr = doc->virtadr;
610 /* Software requirement 11.4.4 before writing DeviceSelect */
611 /* Deassert the CE line to eliminate glitches on the FCE# outputs */
612 WriteDOC(CDSN_CTRL_WP, docptr, CDSNControl);
613 DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
615 /* Select the individual flash chip requested */
616 WriteDOC(chip, docptr, CDSNDeviceSelect);
619 /* Reassert the CE line */
620 WriteDOC(CDSN_CTRL_CE | CDSN_CTRL_FLASH_IO | CDSN_CTRL_WP, docptr,
622 DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
624 /* Wait for it to be ready */
625 return DoC_WaitReady(doc);
628 /* DoC_SelectFloor: Select a given floor (bank of flash chips) */
630 static inline int DoC_SelectFloor(struct DiskOnChip *doc, int floor)
632 unsigned long docptr = doc->virtadr;
634 /* Select the floor (bank) of chips required */
635 WriteDOC(floor, docptr, FloorSelect);
637 /* Wait for the chip to be ready */
638 return DoC_WaitReady(doc);
641 /* DoC_IdentChip: Identify a given NAND chip given {floor,chip} */
643 static int DoC_IdentChip(struct DiskOnChip *doc, int floor, int chip)
648 /* Page in the required floor/chip */
649 DoC_SelectFloor(doc, floor);
650 DoC_SelectChip(doc, chip);
653 if (DoC_Command(doc, NAND_CMD_RESET, CDSN_CTRL_WP)) {
655 printf("DoC_Command (reset) for %d,%d returned true\n",
662 /* Read the NAND chip ID: 1. Send ReadID command */
663 if (DoC_Command(doc, NAND_CMD_READID, CDSN_CTRL_WP)) {
665 printf("DoC_Command (ReadID) for %d,%d returned true\n",
671 /* Read the NAND chip ID: 2. Send address byte zero */
672 DoC_Address(doc, ADDR_COLUMN, 0, CDSN_CTRL_WP, 0);
674 /* Read the manufacturer and device id codes from the device */
676 /* CDSN Slow IO register see Software Requirement 11.4 item 5. */
677 dummy = ReadDOC(doc->virtadr, CDSNSlowIO);
679 mfr = ReadDOC_(doc->virtadr, doc->ioreg);
681 /* CDSN Slow IO register see Software Requirement 11.4 item 5. */
682 dummy = ReadDOC(doc->virtadr, CDSNSlowIO);
684 id = ReadDOC_(doc->virtadr, doc->ioreg);
686 /* No response - return failure */
687 if (mfr == 0xff || mfr == 0)
690 /* Check it's the same as the first chip we identified.
691 * M-Systems say that any given DiskOnChip device should only
692 * contain _one_ type of flash part, although that's not a
693 * hardware restriction. */
695 if (doc->mfr == mfr && doc->id == id)
696 return 1; /* This is another the same the first */
698 printf("Flash chip at floor %d, chip %d is different:\n",
702 /* Print and store the manufacturer and ID codes. */
703 for (i = 0; nand_flash_ids[i].name != NULL; i++) {
704 if (mfr == nand_flash_ids[i].manufacture_id &&
705 id == nand_flash_ids[i].model_id) {
707 printf("Flash chip found: Manufacturer ID: %2.2X, "
708 "Chip ID: %2.2X (%s)\n", mfr, id,
709 nand_flash_ids[i].name);
715 nand_flash_ids[i].chipshift;
716 doc->page256 = nand_flash_ids[i].page256;
718 nand_flash_ids[i].pageadrlen;
720 nand_flash_ids[i].erasesize;
722 nand_flash_ids[i].name;
731 /* We haven't fully identified the chip. Print as much as we know. */
732 printf("Unknown flash chip found: %2.2X %2.2X\n",
739 /* DoC_ScanChips: Find all NAND chips present in a DiskOnChip, and identify them */
741 static void DoC_ScanChips(struct DiskOnChip *this)
744 int numchips[MAX_FLOORS];
745 int maxchips = MAX_CHIPS;
752 if (DoC_is_Millennium(this))
753 maxchips = MAX_CHIPS_MIL;
755 /* For each floor, find the number of valid chips it contains */
756 for (floor = 0; floor < MAX_FLOORS; floor++) {
759 for (chip = 0; chip < maxchips && ret != 0; chip++) {
761 ret = DoC_IdentChip(this, floor, chip);
769 /* If there are none at all that we recognise, bail */
770 if (!this->numchips) {
771 puts ("No flash chips recognised.\n");
775 /* Allocate an array to hold the information for each chip */
776 this->chips = malloc(sizeof(struct Nand) * this->numchips);
778 puts ("No memory for allocating chip info structures\n");
784 /* Fill out the chip array with {floor, chipno} for each
785 * detected chip in the device. */
786 for (floor = 0; floor < MAX_FLOORS; floor++) {
787 for (chip = 0; chip < numchips[floor]; chip++) {
788 this->chips[ret].floor = floor;
789 this->chips[ret].chip = chip;
790 this->chips[ret].curadr = 0;
791 this->chips[ret].curmode = 0x50;
796 /* Calculate and print the total size of the device */
797 this->totlen = this->numchips * (1 << this->chipshift);
800 printf("%d flash chips found. Total DiskOnChip size: %ld MB\n",
801 this->numchips, this->totlen >> 20);
805 /* find_boot_record: Find the NFTL Media Header and its Spare copy which contains the
806 * various device information of the NFTL partition and Bad Unit Table. Update
807 * the ReplUnitTable[] table accroding to the Bad Unit Table. ReplUnitTable[]
808 * is used for management of Erase Unit in other routines in nftl.c and nftlmount.c
810 static int find_boot_record(struct NFTLrecord *nftl)
814 unsigned int block, boot_record_count = 0;
817 struct NFTLMediaHeader *mh = &nftl->MediaHdr;
820 nftl->MediaUnit = BLOCK_NIL;
821 nftl->SpareMediaUnit = BLOCK_NIL;
823 /* search for a valid boot record */
824 for (block = 0; block < nftl->nb_blocks; block++) {
827 /* Check for ANAND header first. Then can whinge if it's found but later
829 if ((ret = doc_read_ecc(nftl->mtd, block * nftl->EraseSize, SECTORSIZE,
830 (size_t *)&retlen, buf, NULL))) {
831 static int warncount = 5;
834 printf("Block read at 0x%x failed\n", block * nftl->EraseSize);
836 puts ("Further failures for this block will not be printed\n");
841 if (retlen < 6 || memcmp(buf, "ANAND", 6)) {
842 /* ANAND\0 not found. Continue */
844 printf("ANAND header not found at 0x%x\n", block * nftl->EraseSize);
850 printf("ANAND header found at 0x%x\n", block * nftl->EraseSize);
853 /* To be safer with BIOS, also use erase mark as discriminant */
854 if ((ret = doc_read_oob(nftl->mtd, block * nftl->EraseSize + SECTORSIZE + 8,
855 8, (size_t *)&retlen, (uchar *)&h1) < 0)) {
857 printf("ANAND header found at 0x%x, but OOB data read failed\n",
858 block * nftl->EraseSize);
863 /* OK, we like it. */
865 if (boot_record_count) {
866 /* We've already processed one. So we just check if
867 this one is the same as the first one we found */
868 if (memcmp(mh, buf, sizeof(struct NFTLMediaHeader))) {
870 printf("NFTL Media Headers at 0x%x and 0x%x disagree.\n",
871 nftl->MediaUnit * nftl->EraseSize, block * nftl->EraseSize);
873 /* if (debug) Print both side by side */
876 if (boot_record_count == 1)
877 nftl->SpareMediaUnit = block;
883 /* This is the first we've seen. Copy the media header structure into place */
884 memcpy(mh, buf, sizeof(struct NFTLMediaHeader));
886 /* Do some sanity checks on it */
887 if (mh->UnitSizeFactor == 0) {
889 puts ("UnitSizeFactor 0x00 detected.\n"
890 "This violates the spec but we think we know what it means...\n");
892 } else if (mh->UnitSizeFactor != 0xff) {
893 printf ("Sorry, we don't support UnitSizeFactor "
898 nftl->nb_boot_blocks = le16_to_cpu(mh->FirstPhysicalEUN);
899 if ((nftl->nb_boot_blocks + 2) >= nftl->nb_blocks) {
900 printf ("NFTL Media Header sanity check failed:\n"
901 "nb_boot_blocks (%d) + 2 > nb_blocks (%d)\n",
902 nftl->nb_boot_blocks, nftl->nb_blocks);
906 nftl->numvunits = le32_to_cpu(mh->FormattedSize) / nftl->EraseSize;
907 if (nftl->numvunits > (nftl->nb_blocks - nftl->nb_boot_blocks - 2)) {
908 printf ("NFTL Media Header sanity check failed:\n"
909 "numvunits (%d) > nb_blocks (%d) - nb_boot_blocks(%d) - 2\n",
912 nftl->nb_boot_blocks);
916 nftl->nr_sects = nftl->numvunits * (nftl->EraseSize / SECTORSIZE);
918 /* If we're not using the last sectors in the device for some reason,
919 reduce nb_blocks accordingly so we forget they're there */
920 nftl->nb_blocks = le16_to_cpu(mh->NumEraseUnits) + le16_to_cpu(mh->FirstPhysicalEUN);
922 /* read the Bad Erase Unit Table and modify ReplUnitTable[] accordingly */
923 for (i = 0; i < nftl->nb_blocks; i++) {
924 if ((i & (SECTORSIZE - 1)) == 0) {
925 /* read one sector for every SECTORSIZE of blocks */
926 if ((ret = doc_read_ecc(nftl->mtd, block * nftl->EraseSize +
927 i + SECTORSIZE, SECTORSIZE,
928 (size_t *)&retlen, buf, (uchar *)&oob)) < 0) {
929 puts ("Read of bad sector table failed\n");
933 /* mark the Bad Erase Unit as RESERVED in ReplUnitTable */
934 if (buf[i & (SECTORSIZE - 1)] != 0xff)
935 nftl->ReplUnitTable[i] = BLOCK_RESERVED;
938 nftl->MediaUnit = block;
941 } /* foreach (block) */
943 return boot_record_count?0:-1;
946 /* This routine is made available to other mtd code via
947 * inter_module_register. It must only be accessed through
948 * inter_module_get which will bump the use count of this module. The
949 * addresses passed back in mtd are valid as long as the use count of
950 * this module is non-zero, i.e. between inter_module_get and
951 * inter_module_put. Keith Owens <kaos@ocs.com.au> 29 Oct 2000.
953 static void DoC2k_init(struct DiskOnChip* this)
955 struct NFTLrecord *nftl;
957 switch (this->ChipID) {
958 case DOC_ChipID_Doc2k:
959 this->name = "DiskOnChip 2000";
960 this->ioreg = DoC_2k_CDSN_IO;
962 case DOC_ChipID_DocMil:
963 this->name = "DiskOnChip Millennium";
964 this->ioreg = DoC_Mil_CDSN_IO;
969 printf("%s found at address 0x%lX\n", this->name,
979 /* Ident all the chips present. */
981 if ((!this->numchips) || (!this->chips))
986 /* Get physical parameters */
987 nftl->EraseSize = this->erasesize;
988 nftl->nb_blocks = this->totlen / this->erasesize;
991 if (find_boot_record(nftl) != 0)
992 this->nftl_found = 0;
994 this->nftl_found = 1;
996 printf("%s @ 0x%lX, %ld MB\n", this->name, this->physadr, this->totlen >> 20);
999 int doc_read_ecc(struct DiskOnChip* this, loff_t from, size_t len,
1000 size_t * retlen, u_char * buf, u_char * eccbuf)
1002 unsigned long docptr;
1003 struct Nand *mychip;
1004 unsigned char syndrome[6];
1005 volatile char dummy;
1006 int i, len256 = 0, ret=0;
1008 docptr = this->virtadr;
1010 /* Don't allow read past end of device */
1011 if (from >= this->totlen) {
1012 puts ("Out of flash\n");
1016 /* Don't allow a single read to cross a 512-byte block boundary */
1017 if (from + len > ((from | 0x1ff) + 1))
1018 len = ((from | 0x1ff) + 1) - from;
1020 /* The ECC will not be calculated correctly if less than 512 is read */
1021 if (len != 0x200 && eccbuf)
1022 printf("ECC needs a full sector read (adr: %lx size %lx)\n",
1023 (long) from, (long) len);
1026 printf("DoC_Read (adr: %lx size %lx)\n", (long) from, (long) len);
1029 /* Find the chip which is to be used and select it */
1030 mychip = &this->chips[shr(from, this->chipshift)];
1032 if (this->curfloor != mychip->floor) {
1033 DoC_SelectFloor(this, mychip->floor);
1034 DoC_SelectChip(this, mychip->chip);
1035 } else if (this->curchip != mychip->chip) {
1036 DoC_SelectChip(this, mychip->chip);
1039 this->curfloor = mychip->floor;
1040 this->curchip = mychip->chip;
1044 && (from & 0x100)) ? NAND_CMD_READ1 : NAND_CMD_READ0,
1046 DoC_Address(this, ADDR_COLUMN_PAGE, from, CDSN_CTRL_WP,
1050 /* Prime the ECC engine */
1051 WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
1052 WriteDOC(DOC_ECC_EN, docptr, ECCConf);
1054 /* disable the ECC engine */
1055 WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
1056 WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
1059 /* treat crossing 256-byte sector for 2M x 8bits devices */
1060 if (this->page256 && from + len > (from | 0xff) + 1) {
1061 len256 = (from | 0xff) + 1 - from;
1062 DoC_ReadBuf(this, buf, len256);
1064 DoC_Command(this, NAND_CMD_READ0, CDSN_CTRL_WP);
1065 DoC_Address(this, ADDR_COLUMN_PAGE, from + len256,
1066 CDSN_CTRL_WP, CDSN_CTRL_ECC_IO);
1069 DoC_ReadBuf(this, &buf[len256], len - len256);
1071 /* Let the caller know we completed it */
1075 /* Read the ECC data through the DiskOnChip ECC logic */
1076 /* Note: this will work even with 2M x 8bit devices as */
1077 /* they have 8 bytes of OOB per 256 page. mf. */
1078 DoC_ReadBuf(this, eccbuf, 6);
1080 /* Flush the pipeline */
1081 if (DoC_is_Millennium(this)) {
1082 dummy = ReadDOC(docptr, ECCConf);
1083 dummy = ReadDOC(docptr, ECCConf);
1084 i = ReadDOC(docptr, ECCConf);
1086 dummy = ReadDOC(docptr, 2k_ECCStatus);
1087 dummy = ReadDOC(docptr, 2k_ECCStatus);
1088 i = ReadDOC(docptr, 2k_ECCStatus);
1091 /* Check the ECC Status */
1094 /* There was an ECC error */
1096 printf("DiskOnChip ECC Error: Read at %lx\n", (long)from);
1098 /* Read the ECC syndrom through the DiskOnChip ECC logic.
1099 These syndrome will be all ZERO when there is no error */
1100 for (i = 0; i < 6; i++) {
1102 ReadDOC(docptr, ECCSyndrome0 + i);
1104 nb_errors = doc_decode_ecc(buf, syndrome);
1107 printf("Errors corrected: %x\n", nb_errors);
1109 if (nb_errors < 0) {
1110 /* We return error, but have actually done the read. Not that
1111 this can be told to user-space, via sys_read(), but at least
1112 MTD-aware stuff can know about it by checking *retlen */
1113 printf("ECC Errors at %lx\n", (long)from);
1119 printf("ECC DATA at %lxB: %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n",
1120 (long)from, eccbuf[0], eccbuf[1], eccbuf[2],
1121 eccbuf[3], eccbuf[4], eccbuf[5]);
1124 /* disable the ECC engine */
1125 WriteDOC(DOC_ECC_DIS, docptr , ECCConf);
1128 /* according to 11.4.1, we need to wait for the busy line
1129 * drop if we read to the end of the page. */
1130 if(0 == ((from + *retlen) & 0x1ff))
1132 DoC_WaitReady(this);
1138 int doc_write_ecc(struct DiskOnChip* this, loff_t to, size_t len,
1139 size_t * retlen, const u_char * buf,
1142 int di; /* Yes, DI is a hangover from when I was disassembling the binary driver */
1143 unsigned long docptr;
1144 volatile char dummy;
1146 struct Nand *mychip;
1148 docptr = this->virtadr;
1150 /* Don't allow write past end of device */
1151 if (to >= this->totlen) {
1152 puts ("Out of flash\n");
1156 /* Don't allow a single write to cross a 512-byte block boundary */
1157 if (to + len > ((to | 0x1ff) + 1))
1158 len = ((to | 0x1ff) + 1) - to;
1160 /* The ECC will not be calculated correctly if less than 512 is written */
1161 if (len != 0x200 && eccbuf)
1162 printf("ECC needs a full sector write (adr: %lx size %lx)\n",
1163 (long) to, (long) len);
1165 /* printf("DoC_Write (adr: %lx size %lx)\n", (long) to, (long) len); */
1167 /* Find the chip which is to be used and select it */
1168 mychip = &this->chips[shr(to, this->chipshift)];
1170 if (this->curfloor != mychip->floor) {
1171 DoC_SelectFloor(this, mychip->floor);
1172 DoC_SelectChip(this, mychip->chip);
1173 } else if (this->curchip != mychip->chip) {
1174 DoC_SelectChip(this, mychip->chip);
1177 this->curfloor = mychip->floor;
1178 this->curchip = mychip->chip;
1180 /* Set device to main plane of flash */
1181 DoC_Command(this, NAND_CMD_RESET, CDSN_CTRL_WP);
1184 && (to & 0x100)) ? NAND_CMD_READ1 : NAND_CMD_READ0,
1187 DoC_Command(this, NAND_CMD_SEQIN, 0);
1188 DoC_Address(this, ADDR_COLUMN_PAGE, to, 0, CDSN_CTRL_ECC_IO);
1191 /* Prime the ECC engine */
1192 WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
1193 WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
1195 /* disable the ECC engine */
1196 WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
1197 WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
1200 /* treat crossing 256-byte sector for 2M x 8bits devices */
1201 if (this->page256 && to + len > (to | 0xff) + 1) {
1202 len256 = (to | 0xff) + 1 - to;
1203 DoC_WriteBuf(this, buf, len256);
1205 DoC_Command(this, NAND_CMD_PAGEPROG, 0);
1207 DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP);
1208 /* There's an implicit DoC_WaitReady() in DoC_Command */
1210 dummy = ReadDOC(docptr, CDSNSlowIO);
1213 if (ReadDOC_(docptr, this->ioreg) & 1) {
1214 puts ("Error programming flash\n");
1215 /* Error in programming */
1220 DoC_Command(this, NAND_CMD_SEQIN, 0);
1221 DoC_Address(this, ADDR_COLUMN_PAGE, to + len256, 0,
1225 DoC_WriteBuf(this, &buf[len256], len - len256);
1228 WriteDOC(CDSN_CTRL_ECC_IO | CDSN_CTRL_CE, docptr,
1231 if (DoC_is_Millennium(this)) {
1232 WriteDOC(0, docptr, NOP);
1233 WriteDOC(0, docptr, NOP);
1234 WriteDOC(0, docptr, NOP);
1236 WriteDOC_(0, docptr, this->ioreg);
1237 WriteDOC_(0, docptr, this->ioreg);
1238 WriteDOC_(0, docptr, this->ioreg);
1241 /* Read the ECC data through the DiskOnChip ECC logic */
1242 for (di = 0; di < 6; di++) {
1243 eccbuf[di] = ReadDOC(docptr, ECCSyndrome0 + di);
1246 /* Reset the ECC engine */
1247 WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
1251 ("OOB data at %lx is %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n",
1252 (long) to, eccbuf[0], eccbuf[1], eccbuf[2], eccbuf[3],
1253 eccbuf[4], eccbuf[5]);
1257 DoC_Command(this, NAND_CMD_PAGEPROG, 0);
1259 DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP);
1260 /* There's an implicit DoC_WaitReady() in DoC_Command */
1262 dummy = ReadDOC(docptr, CDSNSlowIO);
1265 if (ReadDOC_(docptr, this->ioreg) & 1) {
1266 puts ("Error programming flash\n");
1267 /* Error in programming */
1272 /* Let the caller know we completed it */
1280 /* Write the ECC data to flash */
1281 for (di=0; di<6; di++)
1287 ret = doc_write_oob(this, to, 8, &dummy, x);
1293 int doc_read_oob(struct DiskOnChip* this, loff_t ofs, size_t len,
1294 size_t * retlen, u_char * buf)
1296 int len256 = 0, ret;
1297 unsigned long docptr;
1298 struct Nand *mychip;
1300 docptr = this->virtadr;
1302 mychip = &this->chips[shr(ofs, this->chipshift)];
1304 if (this->curfloor != mychip->floor) {
1305 DoC_SelectFloor(this, mychip->floor);
1306 DoC_SelectChip(this, mychip->chip);
1307 } else if (this->curchip != mychip->chip) {
1308 DoC_SelectChip(this, mychip->chip);
1310 this->curfloor = mychip->floor;
1311 this->curchip = mychip->chip;
1313 /* update address for 2M x 8bit devices. OOB starts on the second */
1314 /* page to maintain compatibility with doc_read_ecc. */
1315 if (this->page256) {
1322 DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP);
1323 DoC_Address(this, ADDR_COLUMN_PAGE, ofs, CDSN_CTRL_WP, 0);
1325 /* treat crossing 8-byte OOB data for 2M x 8bit devices */
1326 /* Note: datasheet says it should automaticaly wrap to the */
1327 /* next OOB block, but it didn't work here. mf. */
1328 if (this->page256 && ofs + len > (ofs | 0x7) + 1) {
1329 len256 = (ofs | 0x7) + 1 - ofs;
1330 DoC_ReadBuf(this, buf, len256);
1332 DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP);
1333 DoC_Address(this, ADDR_COLUMN_PAGE, ofs & (~0x1ff),
1337 DoC_ReadBuf(this, &buf[len256], len - len256);
1340 /* Reading the full OOB data drops us off of the end of the page,
1341 * causing the flash device to go into busy mode, so we need
1342 * to wait until ready 11.4.1 and Toshiba TC58256FT docs */
1344 ret = DoC_WaitReady(this);
1350 int doc_write_oob(struct DiskOnChip* this, loff_t ofs, size_t len,
1351 size_t * retlen, const u_char * buf)
1354 unsigned long docptr = this->virtadr;
1355 struct Nand *mychip = &this->chips[shr(ofs, this->chipshift)];
1359 printf("doc_write_oob(%lx, %d): %2.2X %2.2X %2.2X %2.2X ... %2.2X %2.2X .. %2.2X %2.2X\n",
1360 (long)ofs, len, buf[0], buf[1], buf[2], buf[3],
1361 buf[8], buf[9], buf[14],buf[15]);
1364 /* Find the chip which is to be used and select it */
1365 if (this->curfloor != mychip->floor) {
1366 DoC_SelectFloor(this, mychip->floor);
1367 DoC_SelectChip(this, mychip->chip);
1368 } else if (this->curchip != mychip->chip) {
1369 DoC_SelectChip(this, mychip->chip);
1371 this->curfloor = mychip->floor;
1372 this->curchip = mychip->chip;
1374 /* disable the ECC engine */
1375 WriteDOC (DOC_ECC_RESET, docptr, ECCConf);
1376 WriteDOC (DOC_ECC_DIS, docptr, ECCConf);
1378 /* Reset the chip, see Software Requirement 11.4 item 1. */
1379 DoC_Command(this, NAND_CMD_RESET, CDSN_CTRL_WP);
1381 /* issue the Read2 command to set the pointer to the Spare Data Area. */
1382 DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP);
1384 /* update address for 2M x 8bit devices. OOB starts on the second */
1385 /* page to maintain compatibility with doc_read_ecc. */
1386 if (this->page256) {
1393 /* issue the Serial Data In command to initial the Page Program process */
1394 DoC_Command(this, NAND_CMD_SEQIN, 0);
1395 DoC_Address(this, ADDR_COLUMN_PAGE, ofs, 0, 0);
1397 /* treat crossing 8-byte OOB data for 2M x 8bit devices */
1398 /* Note: datasheet says it should automaticaly wrap to the */
1399 /* next OOB block, but it didn't work here. mf. */
1400 if (this->page256 && ofs + len > (ofs | 0x7) + 1) {
1401 len256 = (ofs | 0x7) + 1 - ofs;
1402 DoC_WriteBuf(this, buf, len256);
1404 DoC_Command(this, NAND_CMD_PAGEPROG, 0);
1405 DoC_Command(this, NAND_CMD_STATUS, 0);
1406 /* DoC_WaitReady() is implicit in DoC_Command */
1408 dummy = ReadDOC(docptr, CDSNSlowIO);
1411 if (ReadDOC_(docptr, this->ioreg) & 1) {
1412 puts ("Error programming oob data\n");
1413 /* There was an error */
1417 DoC_Command(this, NAND_CMD_SEQIN, 0);
1418 DoC_Address(this, ADDR_COLUMN_PAGE, ofs & (~0x1ff), 0, 0);
1421 DoC_WriteBuf(this, &buf[len256], len - len256);
1423 DoC_Command(this, NAND_CMD_PAGEPROG, 0);
1424 DoC_Command(this, NAND_CMD_STATUS, 0);
1425 /* DoC_WaitReady() is implicit in DoC_Command */
1427 dummy = ReadDOC(docptr, CDSNSlowIO);
1430 if (ReadDOC_(docptr, this->ioreg) & 1) {
1431 puts ("Error programming oob data\n");
1432 /* There was an error */
1442 int doc_erase(struct DiskOnChip* this, loff_t ofs, size_t len)
1445 unsigned long docptr;
1446 struct Nand *mychip;
1448 if (ofs & (this->erasesize-1) || len & (this->erasesize-1)) {
1449 puts ("Offset and size must be sector aligned\n");
1453 docptr = this->virtadr;
1455 /* FIXME: Do this in the background. Use timers or schedule_task() */
1457 mychip = &this->chips[shr(ofs, this->chipshift)];
1459 if (this->curfloor != mychip->floor) {
1460 DoC_SelectFloor(this, mychip->floor);
1461 DoC_SelectChip(this, mychip->chip);
1462 } else if (this->curchip != mychip->chip) {
1463 DoC_SelectChip(this, mychip->chip);
1465 this->curfloor = mychip->floor;
1466 this->curchip = mychip->chip;
1468 DoC_Command(this, NAND_CMD_ERASE1, 0);
1469 DoC_Address(this, ADDR_PAGE, ofs, 0, 0);
1470 DoC_Command(this, NAND_CMD_ERASE2, 0);
1472 DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP);
1474 dummy = ReadDOC(docptr, CDSNSlowIO);
1477 if (ReadDOC_(docptr, this->ioreg) & 1) {
1478 printf("Error erasing at 0x%lx\n", (long)ofs);
1479 /* There was an error */
1482 ofs += this->erasesize;
1483 len -= this->erasesize;
1490 static inline int doccheck(unsigned long potential, unsigned long physadr)
1492 unsigned long window=potential;
1493 unsigned char tmp, ChipID;
1494 #ifndef DOC_PASSIVE_PROBE
1498 /* Routine copied from the Linux DOC driver */
1500 #ifdef CFG_DOCPROBE_55AA
1501 /* Check for 0x55 0xAA signature at beginning of window,
1502 this is no longer true once we remove the IPL (for Millennium */
1503 if (ReadDOC(window, Sig1) != 0x55 || ReadDOC(window, Sig2) != 0xaa)
1505 #endif /* CFG_DOCPROBE_55AA */
1507 #ifndef DOC_PASSIVE_PROBE
1508 /* It's not possible to cleanly detect the DiskOnChip - the
1509 * bootup procedure will put the device into reset mode, and
1510 * it's not possible to talk to it without actually writing
1511 * to the DOCControl register. So we store the current contents
1512 * of the DOCControl register's location, in case we later decide
1513 * that it's not a DiskOnChip, and want to put it back how we
1516 tmp2 = ReadDOC(window, DOCControl);
1518 /* Reset the DiskOnChip ASIC */
1519 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET,
1520 window, DOCControl);
1521 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET,
1522 window, DOCControl);
1524 /* Enable the DiskOnChip ASIC */
1525 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL,
1526 window, DOCControl);
1527 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL,
1528 window, DOCControl);
1529 #endif /* !DOC_PASSIVE_PROBE */
1531 ChipID = ReadDOC(window, ChipID);
1534 case DOC_ChipID_Doc2k:
1535 /* Check the TOGGLE bit in the ECC register */
1536 tmp = ReadDOC(window, 2k_ECCStatus) & DOC_TOGGLE_BIT;
1537 if ((ReadDOC(window, 2k_ECCStatus) & DOC_TOGGLE_BIT) != tmp)
1541 case DOC_ChipID_DocMil:
1542 /* Check the TOGGLE bit in the ECC register */
1543 tmp = ReadDOC(window, ECCConf) & DOC_TOGGLE_BIT;
1544 if ((ReadDOC(window, ECCConf) & DOC_TOGGLE_BIT) != tmp)
1549 #ifndef CFG_DOCPROBE_55AA
1551 * if the ID isn't the DoC2000 or DoCMillenium ID, so we can assume
1552 * the DOC is missing
1555 printf("Possible DiskOnChip with unknown ChipID %2.2X found at 0x%lx\n",
1559 #ifndef DOC_PASSIVE_PROBE
1560 /* Put back the contents of the DOCControl register, in case it's not
1561 * actually a DiskOnChip.
1563 WriteDOC(tmp2, window, DOCControl);
1568 puts ("DiskOnChip failed TOGGLE test, dropping.\n");
1570 #ifndef DOC_PASSIVE_PROBE
1571 /* Put back the contents of the DOCControl register: it's not a DiskOnChip */
1572 WriteDOC(tmp2, window, DOCControl);
1577 void doc_probe(unsigned long physadr)
1579 struct DiskOnChip *this = NULL;
1582 if ((ChipID = doccheck(physadr, physadr))) {
1584 for (i=0; i<CFG_MAX_DOC_DEVICE; i++) {
1585 if (doc_dev_desc[i].ChipID == DOC_ChipID_UNKNOWN) {
1586 this = doc_dev_desc + i;
1592 puts ("Cannot allocate memory for data structures.\n");
1596 if (curr_device == -1)
1599 memset((char *)this, 0, sizeof(struct DiskOnChip));
1601 this->virtadr = physadr;
1602 this->physadr = physadr;
1603 this->ChipID = ChipID;
1607 puts ("No DiskOnChip found\n");