btrfs-progs: fi usage: cleanup, print header in one go
[platform/upstream/btrfs-progs.git] / btrfs-image.c
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <pthread.h>
20 #include <stdio.h>
21 #include <stdlib.h>
22 #include <sys/types.h>
23 #include <sys/stat.h>
24 #include <fcntl.h>
25 #include <unistd.h>
26 #include <dirent.h>
27 #include <zlib.h>
28 #include <getopt.h>
29
30 #include "kerncompat.h"
31 #include "crc32c.h"
32 #include "ctree.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "utils.h"
36 #include "volumes.h"
37 #include "extent_io.h"
38
39 #define HEADER_MAGIC            0xbd5c25e27295668bULL
40 #define MAX_PENDING_SIZE        (256 * 1024)
41 #define BLOCK_SIZE              1024
42 #define BLOCK_MASK              (BLOCK_SIZE - 1)
43
44 #define COMPRESS_NONE           0
45 #define COMPRESS_ZLIB           1
46
47 struct meta_cluster_item {
48         __le64 bytenr;
49         __le32 size;
50 } __attribute__ ((__packed__));
51
52 struct meta_cluster_header {
53         __le64 magic;
54         __le64 bytenr;
55         __le32 nritems;
56         u8 compress;
57 } __attribute__ ((__packed__));
58
59 /* cluster header + index items + buffers */
60 struct meta_cluster {
61         struct meta_cluster_header header;
62         struct meta_cluster_item items[];
63 } __attribute__ ((__packed__));
64
65 #define ITEMS_PER_CLUSTER ((BLOCK_SIZE - sizeof(struct meta_cluster)) / \
66                            sizeof(struct meta_cluster_item))
67
68 struct fs_chunk {
69         u64 logical;
70         u64 physical;
71         u64 bytes;
72         struct rb_node l;
73         struct rb_node p;
74         struct list_head list;
75 };
76
77 struct async_work {
78         struct list_head list;
79         struct list_head ordered;
80         u64 start;
81         u64 size;
82         u8 *buffer;
83         size_t bufsize;
84         int error;
85 };
86
87 struct metadump_struct {
88         struct btrfs_root *root;
89         FILE *out;
90
91         struct meta_cluster *cluster;
92
93         pthread_t *threads;
94         size_t num_threads;
95         pthread_mutex_t mutex;
96         pthread_cond_t cond;
97         struct rb_root name_tree;
98
99         struct list_head list;
100         struct list_head ordered;
101         size_t num_items;
102         size_t num_ready;
103
104         u64 pending_start;
105         u64 pending_size;
106
107         int compress_level;
108         int done;
109         int data;
110         int sanitize_names;
111
112         int error;
113 };
114
115 struct name {
116         struct rb_node n;
117         char *val;
118         char *sub;
119         u32 len;
120 };
121
122 struct mdrestore_struct {
123         FILE *in;
124         FILE *out;
125
126         pthread_t *threads;
127         size_t num_threads;
128         pthread_mutex_t mutex;
129         pthread_cond_t cond;
130
131         struct rb_root chunk_tree;
132         struct rb_root physical_tree;
133         struct list_head list;
134         struct list_head overlapping_chunks;
135         size_t num_items;
136         u32 leafsize;
137         u64 devid;
138         u64 alloced_chunks;
139         u64 last_physical_offset;
140         u8 uuid[BTRFS_UUID_SIZE];
141         u8 fsid[BTRFS_FSID_SIZE];
142
143         int compress_method;
144         int done;
145         int error;
146         int old_restore;
147         int fixup_offset;
148         int multi_devices;
149         int clear_space_cache;
150         struct btrfs_fs_info *info;
151 };
152
153 static int search_for_chunk_blocks(struct mdrestore_struct *mdres,
154                                    u64 search, u64 cluster_bytenr);
155 static struct extent_buffer *alloc_dummy_eb(u64 bytenr, u32 size);
156
157 static void csum_block(u8 *buf, size_t len)
158 {
159         char result[BTRFS_CRC32_SIZE];
160         u32 crc = ~(u32)0;
161         crc = crc32c(crc, buf + BTRFS_CSUM_SIZE, len - BTRFS_CSUM_SIZE);
162         btrfs_csum_final(crc, result);
163         memcpy(buf, result, BTRFS_CRC32_SIZE);
164 }
165
166 static int has_name(struct btrfs_key *key)
167 {
168         switch (key->type) {
169         case BTRFS_DIR_ITEM_KEY:
170         case BTRFS_DIR_INDEX_KEY:
171         case BTRFS_INODE_REF_KEY:
172         case BTRFS_INODE_EXTREF_KEY:
173         case BTRFS_XATTR_ITEM_KEY:
174                 return 1;
175         default:
176                 break;
177         }
178
179         return 0;
180 }
181
182 static char *generate_garbage(u32 name_len)
183 {
184         char *buf = malloc(name_len);
185         int i;
186
187         if (!buf)
188                 return NULL;
189
190         for (i = 0; i < name_len; i++) {
191                 char c = rand() % 94 + 33;
192
193                 if (c == '/')
194                         c++;
195                 buf[i] = c;
196         }
197
198         return buf;
199 }
200
201 static int name_cmp(struct rb_node *a, struct rb_node *b, int fuzz)
202 {
203         struct name *entry = rb_entry(a, struct name, n);
204         struct name *ins = rb_entry(b, struct name, n);
205         u32 len;
206
207         len = min(ins->len, entry->len);
208         return memcmp(ins->val, entry->val, len);
209 }
210
211 static int chunk_cmp(struct rb_node *a, struct rb_node *b, int fuzz)
212 {
213         struct fs_chunk *entry = rb_entry(a, struct fs_chunk, l);
214         struct fs_chunk *ins = rb_entry(b, struct fs_chunk, l);
215
216         if (fuzz && ins->logical >= entry->logical &&
217             ins->logical < entry->logical + entry->bytes)
218                 return 0;
219
220         if (ins->logical < entry->logical)
221                 return -1;
222         else if (ins->logical > entry->logical)
223                 return 1;
224         return 0;
225 }
226
227 static int physical_cmp(struct rb_node *a, struct rb_node *b, int fuzz)
228 {
229         struct fs_chunk *entry = rb_entry(a, struct fs_chunk, p);
230         struct fs_chunk *ins = rb_entry(b, struct fs_chunk, p);
231
232         if (fuzz && ins->physical >= entry->physical &&
233             ins->physical < entry->physical + entry->bytes)
234                 return 0;
235
236         if (fuzz && entry->physical >= ins->physical &&
237             entry->physical < ins->physical + ins->bytes)
238                 return 0;
239
240         if (ins->physical < entry->physical)
241                 return -1;
242         else if (ins->physical > entry->physical)
243                 return 1;
244         return 0;
245 }
246
247 static void tree_insert(struct rb_root *root, struct rb_node *ins,
248                         int (*cmp)(struct rb_node *a, struct rb_node *b,
249                                    int fuzz))
250 {
251         struct rb_node ** p = &root->rb_node;
252         struct rb_node * parent = NULL;
253         int dir;
254
255         while(*p) {
256                 parent = *p;
257
258                 dir = cmp(*p, ins, 1);
259                 if (dir < 0)
260                         p = &(*p)->rb_left;
261                 else if (dir > 0)
262                         p = &(*p)->rb_right;
263                 else
264                         BUG();
265         }
266
267         rb_link_node(ins, parent, p);
268         rb_insert_color(ins, root);
269 }
270
271 static struct rb_node *tree_search(struct rb_root *root,
272                                    struct rb_node *search,
273                                    int (*cmp)(struct rb_node *a,
274                                               struct rb_node *b, int fuzz),
275                                    int fuzz)
276 {
277         struct rb_node *n = root->rb_node;
278         int dir;
279
280         while (n) {
281                 dir = cmp(n, search, fuzz);
282                 if (dir < 0)
283                         n = n->rb_left;
284                 else if (dir > 0)
285                         n = n->rb_right;
286                 else
287                         return n;
288         }
289
290         return NULL;
291 }
292
293 static u64 logical_to_physical(struct mdrestore_struct *mdres, u64 logical, u64 *size)
294 {
295         struct fs_chunk *fs_chunk;
296         struct rb_node *entry;
297         struct fs_chunk search;
298         u64 offset;
299
300         if (logical == BTRFS_SUPER_INFO_OFFSET)
301                 return logical;
302
303         search.logical = logical;
304         entry = tree_search(&mdres->chunk_tree, &search.l, chunk_cmp, 1);
305         if (!entry) {
306                 if (mdres->in != stdin)
307                         printf("Couldn't find a chunk, using logical\n");
308                 return logical;
309         }
310         fs_chunk = rb_entry(entry, struct fs_chunk, l);
311         if (fs_chunk->logical > logical || fs_chunk->logical + fs_chunk->bytes < logical)
312                 BUG();
313         offset = search.logical - fs_chunk->logical;
314
315         *size = min(*size, fs_chunk->bytes + fs_chunk->logical - logical);
316         return fs_chunk->physical + offset;
317 }
318
319
320 static char *find_collision(struct metadump_struct *md, char *name,
321                             u32 name_len)
322 {
323         struct name *val;
324         struct rb_node *entry;
325         struct name tmp;
326         unsigned long checksum;
327         int found = 0;
328         int i;
329
330         tmp.val = name;
331         tmp.len = name_len;
332         entry = tree_search(&md->name_tree, &tmp.n, name_cmp, 0);
333         if (entry) {
334                 val = rb_entry(entry, struct name, n);
335                 free(name);
336                 return val->sub;
337         }
338
339         val = malloc(sizeof(struct name));
340         if (!val) {
341                 fprintf(stderr, "Couldn't sanitize name, enomem\n");
342                 free(name);
343                 return NULL;
344         }
345
346         memset(val, 0, sizeof(*val));
347
348         val->val = name;
349         val->len = name_len;
350         val->sub = malloc(name_len);
351         if (!val->sub) {
352                 fprintf(stderr, "Couldn't sanitize name, enomem\n");
353                 free(val);
354                 free(name);
355                 return NULL;
356         }
357
358         checksum = crc32c(~1, val->val, name_len);
359         memset(val->sub, ' ', name_len);
360         i = 0;
361         while (1) {
362                 if (crc32c(~1, val->sub, name_len) == checksum &&
363                     memcmp(val->sub, val->val, val->len)) {
364                         found = 1;
365                         break;
366                 }
367
368                 if (val->sub[i] == 127) {
369                         do {
370                                 i++;
371                                 if (i >= name_len)
372                                         break;
373                         } while (val->sub[i] == 127);
374
375                         if (i >= name_len)
376                                 break;
377                         val->sub[i]++;
378                         if (val->sub[i] == '/')
379                                 val->sub[i]++;
380                         memset(val->sub, ' ', i);
381                         i = 0;
382                         continue;
383                 } else {
384                         val->sub[i]++;
385                         if (val->sub[i] == '/')
386                                 val->sub[i]++;
387                 }
388         }
389
390         if (!found) {
391                 fprintf(stderr, "Couldn't find a collision for '%.*s', "
392                         "generating normal garbage, it won't match indexes\n",
393                         val->len, val->val);
394                 for (i = 0; i < name_len; i++) {
395                         char c = rand() % 94 + 33;
396
397                         if (c == '/')
398                                 c++;
399                         val->sub[i] = c;
400                 }
401         }
402
403         tree_insert(&md->name_tree, &val->n, name_cmp);
404         return val->sub;
405 }
406
407 static void sanitize_dir_item(struct metadump_struct *md, struct extent_buffer *eb,
408                               int slot)
409 {
410         struct btrfs_dir_item *dir_item;
411         char *buf;
412         char *garbage;
413         unsigned long name_ptr;
414         u32 total_len;
415         u32 cur = 0;
416         u32 this_len;
417         u32 name_len;
418         int free_garbage = (md->sanitize_names == 1);
419
420         dir_item = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
421         total_len = btrfs_item_size_nr(eb, slot);
422         while (cur < total_len) {
423                 this_len = sizeof(*dir_item) +
424                         btrfs_dir_name_len(eb, dir_item) +
425                         btrfs_dir_data_len(eb, dir_item);
426                 name_ptr = (unsigned long)(dir_item + 1);
427                 name_len = btrfs_dir_name_len(eb, dir_item);
428
429                 if (md->sanitize_names > 1) {
430                         buf = malloc(name_len);
431                         if (!buf) {
432                                 fprintf(stderr, "Couldn't sanitize name, "
433                                         "enomem\n");
434                                 return;
435                         }
436                         read_extent_buffer(eb, buf, name_ptr, name_len);
437                         garbage = find_collision(md, buf, name_len);
438                 } else {
439                         garbage = generate_garbage(name_len);
440                 }
441                 if (!garbage) {
442                         fprintf(stderr, "Couldn't sanitize name, enomem\n");
443                         return;
444                 }
445                 write_extent_buffer(eb, garbage, name_ptr, name_len);
446                 cur += this_len;
447                 dir_item = (struct btrfs_dir_item *)((char *)dir_item +
448                                                      this_len);
449                 if (free_garbage)
450                         free(garbage);
451         }
452 }
453
454 static void sanitize_inode_ref(struct metadump_struct *md,
455                                struct extent_buffer *eb, int slot, int ext)
456 {
457         struct btrfs_inode_extref *extref;
458         struct btrfs_inode_ref *ref;
459         char *garbage, *buf;
460         unsigned long ptr;
461         unsigned long name_ptr;
462         u32 item_size;
463         u32 cur_offset = 0;
464         int len;
465         int free_garbage = (md->sanitize_names == 1);
466
467         item_size = btrfs_item_size_nr(eb, slot);
468         ptr = btrfs_item_ptr_offset(eb, slot);
469         while (cur_offset < item_size) {
470                 if (ext) {
471                         extref = (struct btrfs_inode_extref *)(ptr +
472                                                                cur_offset);
473                         name_ptr = (unsigned long)(&extref->name);
474                         len = btrfs_inode_extref_name_len(eb, extref);
475                         cur_offset += sizeof(*extref);
476                 } else {
477                         ref = (struct btrfs_inode_ref *)(ptr + cur_offset);
478                         len = btrfs_inode_ref_name_len(eb, ref);
479                         name_ptr = (unsigned long)(ref + 1);
480                         cur_offset += sizeof(*ref);
481                 }
482                 cur_offset += len;
483
484                 if (md->sanitize_names > 1) {
485                         buf = malloc(len);
486                         if (!buf) {
487                                 fprintf(stderr, "Couldn't sanitize name, "
488                                         "enomem\n");
489                                 return;
490                         }
491                         read_extent_buffer(eb, buf, name_ptr, len);
492                         garbage = find_collision(md, buf, len);
493                 } else {
494                         garbage = generate_garbage(len);
495                 }
496
497                 if (!garbage) {
498                         fprintf(stderr, "Couldn't sanitize name, enomem\n");
499                         return;
500                 }
501                 write_extent_buffer(eb, garbage, name_ptr, len);
502                 if (free_garbage)
503                         free(garbage);
504         }
505 }
506
507 static void sanitize_xattr(struct metadump_struct *md,
508                            struct extent_buffer *eb, int slot)
509 {
510         struct btrfs_dir_item *dir_item;
511         unsigned long data_ptr;
512         u32 data_len;
513
514         dir_item = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
515         data_len = btrfs_dir_data_len(eb, dir_item);
516
517         data_ptr = (unsigned long)((char *)(dir_item + 1) +
518                                    btrfs_dir_name_len(eb, dir_item));
519         memset_extent_buffer(eb, 0, data_ptr, data_len);
520 }
521
522 static void sanitize_name(struct metadump_struct *md, u8 *dst,
523                           struct extent_buffer *src, struct btrfs_key *key,
524                           int slot)
525 {
526         struct extent_buffer *eb;
527
528         eb = alloc_dummy_eb(src->start, src->len);
529         if (!eb) {
530                 fprintf(stderr, "Couldn't sanitize name, no memory\n");
531                 return;
532         }
533
534         memcpy(eb->data, dst, eb->len);
535
536         switch (key->type) {
537         case BTRFS_DIR_ITEM_KEY:
538         case BTRFS_DIR_INDEX_KEY:
539                 sanitize_dir_item(md, eb, slot);
540                 break;
541         case BTRFS_INODE_REF_KEY:
542                 sanitize_inode_ref(md, eb, slot, 0);
543                 break;
544         case BTRFS_INODE_EXTREF_KEY:
545                 sanitize_inode_ref(md, eb, slot, 1);
546                 break;
547         case BTRFS_XATTR_ITEM_KEY:
548                 sanitize_xattr(md, eb, slot);
549                 break;
550         default:
551                 break;
552         }
553
554         memcpy(dst, eb->data, eb->len);
555         free(eb);
556 }
557
558 /*
559  * zero inline extents and csum items
560  */
561 static void zero_items(struct metadump_struct *md, u8 *dst,
562                        struct extent_buffer *src)
563 {
564         struct btrfs_file_extent_item *fi;
565         struct btrfs_item *item;
566         struct btrfs_key key;
567         u32 nritems = btrfs_header_nritems(src);
568         size_t size;
569         unsigned long ptr;
570         int i, extent_type;
571
572         for (i = 0; i < nritems; i++) {
573                 item = btrfs_item_nr(i);
574                 btrfs_item_key_to_cpu(src, &key, i);
575                 if (key.type == BTRFS_CSUM_ITEM_KEY) {
576                         size = btrfs_item_size_nr(src, i);
577                         memset(dst + btrfs_leaf_data(src) +
578                                btrfs_item_offset_nr(src, i), 0, size);
579                         continue;
580                 }
581
582                 if (md->sanitize_names && has_name(&key)) {
583                         sanitize_name(md, dst, src, &key, i);
584                         continue;
585                 }
586
587                 if (key.type != BTRFS_EXTENT_DATA_KEY)
588                         continue;
589
590                 fi = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
591                 extent_type = btrfs_file_extent_type(src, fi);
592                 if (extent_type != BTRFS_FILE_EXTENT_INLINE)
593                         continue;
594
595                 ptr = btrfs_file_extent_inline_start(fi);
596                 size = btrfs_file_extent_inline_item_len(src, item);
597                 memset(dst + ptr, 0, size);
598         }
599 }
600
601 /*
602  * copy buffer and zero useless data in the buffer
603  */
604 static void copy_buffer(struct metadump_struct *md, u8 *dst,
605                         struct extent_buffer *src)
606 {
607         int level;
608         size_t size;
609         u32 nritems;
610
611         memcpy(dst, src->data, src->len);
612         if (src->start == BTRFS_SUPER_INFO_OFFSET)
613                 return;
614
615         level = btrfs_header_level(src);
616         nritems = btrfs_header_nritems(src);
617
618         if (nritems == 0) {
619                 size = sizeof(struct btrfs_header);
620                 memset(dst + size, 0, src->len - size);
621         } else if (level == 0) {
622                 size = btrfs_leaf_data(src) +
623                         btrfs_item_offset_nr(src, nritems - 1) -
624                         btrfs_item_nr_offset(nritems);
625                 memset(dst + btrfs_item_nr_offset(nritems), 0, size);
626                 zero_items(md, dst, src);
627         } else {
628                 size = offsetof(struct btrfs_node, ptrs) +
629                         sizeof(struct btrfs_key_ptr) * nritems;
630                 memset(dst + size, 0, src->len - size);
631         }
632         csum_block(dst, src->len);
633 }
634
635 static void *dump_worker(void *data)
636 {
637         struct metadump_struct *md = (struct metadump_struct *)data;
638         struct async_work *async;
639         int ret;
640
641         while (1) {
642                 pthread_mutex_lock(&md->mutex);
643                 while (list_empty(&md->list)) {
644                         if (md->done) {
645                                 pthread_mutex_unlock(&md->mutex);
646                                 goto out;
647                         }
648                         pthread_cond_wait(&md->cond, &md->mutex);
649                 }
650                 async = list_entry(md->list.next, struct async_work, list);
651                 list_del_init(&async->list);
652                 pthread_mutex_unlock(&md->mutex);
653
654                 if (md->compress_level > 0) {
655                         u8 *orig = async->buffer;
656
657                         async->bufsize = compressBound(async->size);
658                         async->buffer = malloc(async->bufsize);
659                         if (!async->buffer) {
660                                 fprintf(stderr, "Error allocing buffer\n");
661                                 pthread_mutex_lock(&md->mutex);
662                                 if (!md->error)
663                                         md->error = -ENOMEM;
664                                 pthread_mutex_unlock(&md->mutex);
665                                 pthread_exit(NULL);
666                         }
667
668                         ret = compress2(async->buffer,
669                                          (unsigned long *)&async->bufsize,
670                                          orig, async->size, md->compress_level);
671
672                         if (ret != Z_OK)
673                                 async->error = 1;
674
675                         free(orig);
676                 }
677
678                 pthread_mutex_lock(&md->mutex);
679                 md->num_ready++;
680                 pthread_mutex_unlock(&md->mutex);
681         }
682 out:
683         pthread_exit(NULL);
684 }
685
686 static void meta_cluster_init(struct metadump_struct *md, u64 start)
687 {
688         struct meta_cluster_header *header;
689
690         md->num_items = 0;
691         md->num_ready = 0;
692         header = &md->cluster->header;
693         header->magic = cpu_to_le64(HEADER_MAGIC);
694         header->bytenr = cpu_to_le64(start);
695         header->nritems = cpu_to_le32(0);
696         header->compress = md->compress_level > 0 ?
697                            COMPRESS_ZLIB : COMPRESS_NONE;
698 }
699
700 static void metadump_destroy(struct metadump_struct *md, int num_threads)
701 {
702         int i;
703         struct rb_node *n;
704
705         pthread_mutex_lock(&md->mutex);
706         md->done = 1;
707         pthread_cond_broadcast(&md->cond);
708         pthread_mutex_unlock(&md->mutex);
709
710         for (i = 0; i < num_threads; i++)
711                 pthread_join(md->threads[i], NULL);
712
713         pthread_cond_destroy(&md->cond);
714         pthread_mutex_destroy(&md->mutex);
715
716         while ((n = rb_first(&md->name_tree))) {
717                 struct name *name;
718
719                 name = rb_entry(n, struct name, n);
720                 rb_erase(n, &md->name_tree);
721                 free(name->val);
722                 free(name->sub);
723                 free(name);
724         }
725         free(md->threads);
726         free(md->cluster);
727 }
728
729 static int metadump_init(struct metadump_struct *md, struct btrfs_root *root,
730                          FILE *out, int num_threads, int compress_level,
731                          int sanitize_names)
732 {
733         int i, ret = 0;
734
735         memset(md, 0, sizeof(*md));
736         pthread_cond_init(&md->cond, NULL);
737         pthread_mutex_init(&md->mutex, NULL);
738         INIT_LIST_HEAD(&md->list);
739         INIT_LIST_HEAD(&md->ordered);
740         md->root = root;
741         md->out = out;
742         md->pending_start = (u64)-1;
743         md->compress_level = compress_level;
744         md->cluster = calloc(1, BLOCK_SIZE);
745         md->sanitize_names = sanitize_names;
746         if (sanitize_names > 1)
747                 crc32c_optimization_init();
748
749         if (!md->cluster) {
750                 pthread_cond_destroy(&md->cond);
751                 pthread_mutex_destroy(&md->mutex);
752                 return -ENOMEM;
753         }
754
755         meta_cluster_init(md, 0);
756         if (!num_threads)
757                 return 0;
758
759         md->name_tree.rb_node = NULL;
760         md->num_threads = num_threads;
761         md->threads = calloc(num_threads, sizeof(pthread_t));
762         if (!md->threads) {
763                 free(md->cluster);
764                 pthread_cond_destroy(&md->cond);
765                 pthread_mutex_destroy(&md->mutex);
766                 return -ENOMEM;
767         }
768
769         for (i = 0; i < num_threads; i++) {
770                 ret = pthread_create(md->threads + i, NULL, dump_worker, md);
771                 if (ret)
772                         break;
773         }
774
775         if (ret)
776                 metadump_destroy(md, i + 1);
777
778         return ret;
779 }
780
781 static int write_zero(FILE *out, size_t size)
782 {
783         static char zero[BLOCK_SIZE];
784         return fwrite(zero, size, 1, out);
785 }
786
787 static int write_buffers(struct metadump_struct *md, u64 *next)
788 {
789         struct meta_cluster_header *header = &md->cluster->header;
790         struct meta_cluster_item *item;
791         struct async_work *async;
792         u64 bytenr = 0;
793         u32 nritems = 0;
794         int ret;
795         int err = 0;
796
797         if (list_empty(&md->ordered))
798                 goto out;
799
800         /* wait until all buffers are compressed */
801         while (!err && md->num_items > md->num_ready) {
802                 struct timespec ts = {
803                         .tv_sec = 0,
804                         .tv_nsec = 10000000,
805                 };
806                 pthread_mutex_unlock(&md->mutex);
807                 nanosleep(&ts, NULL);
808                 pthread_mutex_lock(&md->mutex);
809                 err = md->error;
810         }
811
812         if (err) {
813                 fprintf(stderr, "One of the threads errored out %s\n",
814                                 strerror(err));
815                 goto out;
816         }
817
818         /* setup and write index block */
819         list_for_each_entry(async, &md->ordered, ordered) {
820                 item = md->cluster->items + nritems;
821                 item->bytenr = cpu_to_le64(async->start);
822                 item->size = cpu_to_le32(async->bufsize);
823                 nritems++;
824         }
825         header->nritems = cpu_to_le32(nritems);
826
827         ret = fwrite(md->cluster, BLOCK_SIZE, 1, md->out);
828         if (ret != 1) {
829                 fprintf(stderr, "Error writing out cluster: %d\n", errno);
830                 return -EIO;
831         }
832
833         /* write buffers */
834         bytenr += le64_to_cpu(header->bytenr) + BLOCK_SIZE;
835         while (!list_empty(&md->ordered)) {
836                 async = list_entry(md->ordered.next, struct async_work,
837                                    ordered);
838                 list_del_init(&async->ordered);
839
840                 bytenr += async->bufsize;
841                 if (!err)
842                         ret = fwrite(async->buffer, async->bufsize, 1,
843                                      md->out);
844                 if (ret != 1) {
845                         err = -EIO;
846                         ret = 0;
847                         fprintf(stderr, "Error writing out cluster: %d\n",
848                                 errno);
849                 }
850
851                 free(async->buffer);
852                 free(async);
853         }
854
855         /* zero unused space in the last block */
856         if (!err && bytenr & BLOCK_MASK) {
857                 size_t size = BLOCK_SIZE - (bytenr & BLOCK_MASK);
858
859                 bytenr += size;
860                 ret = write_zero(md->out, size);
861                 if (ret != 1) {
862                         fprintf(stderr, "Error zeroing out buffer: %d\n",
863                                 errno);
864                         err = -EIO;
865                 }
866         }
867 out:
868         *next = bytenr;
869         return err;
870 }
871
872 static int read_data_extent(struct metadump_struct *md,
873                             struct async_work *async)
874 {
875         struct btrfs_root *root = md->root;
876         u64 bytes_left = async->size;
877         u64 logical = async->start;
878         u64 offset = 0;
879         u64 read_len;
880         int num_copies;
881         int cur_mirror;
882         int ret;
883
884         num_copies = btrfs_num_copies(&root->fs_info->mapping_tree, logical,
885                                       bytes_left);
886
887         /* Try our best to read data, just like read_tree_block() */
888         for (cur_mirror = 0; cur_mirror < num_copies; cur_mirror++) {
889                 while (bytes_left) {
890                         read_len = bytes_left;
891                         ret = read_extent_data(root,
892                                         (char *)(async->buffer + offset),
893                                         logical, &read_len, cur_mirror);
894                         if (ret < 0)
895                                 break;
896                         offset += read_len;
897                         logical += read_len;
898                         bytes_left -= read_len;
899                 }
900         }
901         if (bytes_left)
902                 return -EIO;
903         return 0;
904 }
905
906 static int get_dev_fd(struct btrfs_root *root)
907 {
908         struct btrfs_device *dev;
909
910         dev = list_first_entry(&root->fs_info->fs_devices->devices,
911                                struct btrfs_device, dev_list);
912         return dev->fd;
913 }
914
915 static int flush_pending(struct metadump_struct *md, int done)
916 {
917         struct async_work *async = NULL;
918         struct extent_buffer *eb;
919         u64 blocksize = md->root->nodesize;
920         u64 start;
921         u64 size;
922         size_t offset;
923         int ret = 0;
924
925         if (md->pending_size) {
926                 async = calloc(1, sizeof(*async));
927                 if (!async)
928                         return -ENOMEM;
929
930                 async->start = md->pending_start;
931                 async->size = md->pending_size;
932                 async->bufsize = async->size;
933                 async->buffer = malloc(async->bufsize);
934                 if (!async->buffer) {
935                         free(async);
936                         return -ENOMEM;
937                 }
938                 offset = 0;
939                 start = async->start;
940                 size = async->size;
941
942                 if (md->data) {
943                         ret = read_data_extent(md, async);
944                         if (ret) {
945                                 free(async->buffer);
946                                 free(async);
947                                 return ret;
948                         }
949                 }
950
951                 /*
952                  * Balance can make the mapping not cover the super block, so
953                  * just copy directly from one of the devices.
954                  */
955                 if (start == BTRFS_SUPER_INFO_OFFSET) {
956                         int fd = get_dev_fd(md->root);
957
958                         ret = pread64(fd, async->buffer, size, start);
959                         if (ret < size) {
960                                 free(async->buffer);
961                                 free(async);
962                                 fprintf(stderr, "Error reading superblock\n");
963                                 return -EIO;
964                         }
965                         size = 0;
966                         ret = 0;
967                 }
968
969                 while (!md->data && size > 0) {
970                         u64 this_read = min(blocksize, size);
971                         eb = read_tree_block(md->root, start, this_read, 0);
972                         if (!extent_buffer_uptodate(eb)) {
973                                 free(async->buffer);
974                                 free(async);
975                                 fprintf(stderr,
976                                         "Error reading metadata block\n");
977                                 return -EIO;
978                         }
979                         copy_buffer(md, async->buffer + offset, eb);
980                         free_extent_buffer(eb);
981                         start += this_read;
982                         offset += this_read;
983                         size -= this_read;
984                 }
985
986                 md->pending_start = (u64)-1;
987                 md->pending_size = 0;
988         } else if (!done) {
989                 return 0;
990         }
991
992         pthread_mutex_lock(&md->mutex);
993         if (async) {
994                 list_add_tail(&async->ordered, &md->ordered);
995                 md->num_items++;
996                 if (md->compress_level > 0) {
997                         list_add_tail(&async->list, &md->list);
998                         pthread_cond_signal(&md->cond);
999                 } else {
1000                         md->num_ready++;
1001                 }
1002         }
1003         if (md->num_items >= ITEMS_PER_CLUSTER || done) {
1004                 ret = write_buffers(md, &start);
1005                 if (ret)
1006                         fprintf(stderr, "Error writing buffers %d\n",
1007                                 errno);
1008                 else
1009                         meta_cluster_init(md, start);
1010         }
1011         pthread_mutex_unlock(&md->mutex);
1012         return ret;
1013 }
1014
1015 static int add_extent(u64 start, u64 size, struct metadump_struct *md,
1016                       int data)
1017 {
1018         int ret;
1019         if (md->data != data ||
1020             md->pending_size + size > MAX_PENDING_SIZE ||
1021             md->pending_start + md->pending_size != start) {
1022                 ret = flush_pending(md, 0);
1023                 if (ret)
1024                         return ret;
1025                 md->pending_start = start;
1026         }
1027         readahead_tree_block(md->root, start, size, 0);
1028         md->pending_size += size;
1029         md->data = data;
1030         return 0;
1031 }
1032
1033 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1034 static int is_tree_block(struct btrfs_root *extent_root,
1035                          struct btrfs_path *path, u64 bytenr)
1036 {
1037         struct extent_buffer *leaf;
1038         struct btrfs_key key;
1039         u64 ref_objectid;
1040         int ret;
1041
1042         leaf = path->nodes[0];
1043         while (1) {
1044                 struct btrfs_extent_ref_v0 *ref_item;
1045                 path->slots[0]++;
1046                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1047                         ret = btrfs_next_leaf(extent_root, path);
1048                         if (ret < 0)
1049                                 return ret;
1050                         if (ret > 0)
1051                                 break;
1052                         leaf = path->nodes[0];
1053                 }
1054                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1055                 if (key.objectid != bytenr)
1056                         break;
1057                 if (key.type != BTRFS_EXTENT_REF_V0_KEY)
1058                         continue;
1059                 ref_item = btrfs_item_ptr(leaf, path->slots[0],
1060                                           struct btrfs_extent_ref_v0);
1061                 ref_objectid = btrfs_ref_objectid_v0(leaf, ref_item);
1062                 if (ref_objectid < BTRFS_FIRST_FREE_OBJECTID)
1063                         return 1;
1064                 break;
1065         }
1066         return 0;
1067 }
1068 #endif
1069
1070 static int copy_tree_blocks(struct btrfs_root *root, struct extent_buffer *eb,
1071                             struct metadump_struct *metadump, int root_tree)
1072 {
1073         struct extent_buffer *tmp;
1074         struct btrfs_root_item *ri;
1075         struct btrfs_key key;
1076         u64 bytenr;
1077         int level;
1078         int nritems = 0;
1079         int i = 0;
1080         int ret;
1081
1082         ret = add_extent(btrfs_header_bytenr(eb), root->leafsize, metadump, 0);
1083         if (ret) {
1084                 fprintf(stderr, "Error adding metadata block\n");
1085                 return ret;
1086         }
1087
1088         if (btrfs_header_level(eb) == 0 && !root_tree)
1089                 return 0;
1090
1091         level = btrfs_header_level(eb);
1092         nritems = btrfs_header_nritems(eb);
1093         for (i = 0; i < nritems; i++) {
1094                 if (level == 0) {
1095                         btrfs_item_key_to_cpu(eb, &key, i);
1096                         if (key.type != BTRFS_ROOT_ITEM_KEY)
1097                                 continue;
1098                         ri = btrfs_item_ptr(eb, i, struct btrfs_root_item);
1099                         bytenr = btrfs_disk_root_bytenr(eb, ri);
1100                         tmp = read_tree_block(root, bytenr, root->leafsize, 0);
1101                         if (!extent_buffer_uptodate(tmp)) {
1102                                 fprintf(stderr,
1103                                         "Error reading log root block\n");
1104                                 return -EIO;
1105                         }
1106                         ret = copy_tree_blocks(root, tmp, metadump, 0);
1107                         free_extent_buffer(tmp);
1108                         if (ret)
1109                                 return ret;
1110                 } else {
1111                         bytenr = btrfs_node_blockptr(eb, i);
1112                         tmp = read_tree_block(root, bytenr, root->leafsize, 0);
1113                         if (!extent_buffer_uptodate(tmp)) {
1114                                 fprintf(stderr, "Error reading log block\n");
1115                                 return -EIO;
1116                         }
1117                         ret = copy_tree_blocks(root, tmp, metadump, root_tree);
1118                         free_extent_buffer(tmp);
1119                         if (ret)
1120                                 return ret;
1121                 }
1122         }
1123
1124         return 0;
1125 }
1126
1127 static int copy_log_trees(struct btrfs_root *root,
1128                           struct metadump_struct *metadump,
1129                           struct btrfs_path *path)
1130 {
1131         u64 blocknr = btrfs_super_log_root(root->fs_info->super_copy);
1132
1133         if (blocknr == 0)
1134                 return 0;
1135
1136         if (!root->fs_info->log_root_tree ||
1137             !root->fs_info->log_root_tree->node) {
1138                 fprintf(stderr, "Error copying tree log, it wasn't setup\n");
1139                 return -EIO;
1140         }
1141
1142         return copy_tree_blocks(root, root->fs_info->log_root_tree->node,
1143                                 metadump, 1);
1144 }
1145
1146 static int copy_space_cache(struct btrfs_root *root,
1147                             struct metadump_struct *metadump,
1148                             struct btrfs_path *path)
1149 {
1150         struct extent_buffer *leaf;
1151         struct btrfs_file_extent_item *fi;
1152         struct btrfs_key key;
1153         u64 bytenr, num_bytes;
1154         int ret;
1155
1156         root = root->fs_info->tree_root;
1157
1158         key.objectid = 0;
1159         key.type = BTRFS_EXTENT_DATA_KEY;
1160         key.offset = 0;
1161
1162         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1163         if (ret < 0) {
1164                 fprintf(stderr, "Error searching for free space inode %d\n",
1165                         ret);
1166                 return ret;
1167         }
1168
1169         leaf = path->nodes[0];
1170
1171         while (1) {
1172                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1173                         ret = btrfs_next_leaf(root, path);
1174                         if (ret < 0) {
1175                                 fprintf(stderr, "Error going to next leaf "
1176                                         "%d\n", ret);
1177                                 return ret;
1178                         }
1179                         if (ret > 0)
1180                                 break;
1181                         leaf = path->nodes[0];
1182                 }
1183
1184                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1185                 if (key.type != BTRFS_EXTENT_DATA_KEY) {
1186                         path->slots[0]++;
1187                         continue;
1188                 }
1189
1190                 fi = btrfs_item_ptr(leaf, path->slots[0],
1191                                     struct btrfs_file_extent_item);
1192                 if (btrfs_file_extent_type(leaf, fi) !=
1193                     BTRFS_FILE_EXTENT_REG) {
1194                         path->slots[0]++;
1195                         continue;
1196                 }
1197
1198                 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1199                 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1200                 ret = add_extent(bytenr, num_bytes, metadump, 1);
1201                 if (ret) {
1202                         fprintf(stderr, "Error adding space cache blocks %d\n",
1203                                 ret);
1204                         btrfs_release_path(path);
1205                         return ret;
1206                 }
1207                 path->slots[0]++;
1208         }
1209
1210         return 0;
1211 }
1212
1213 static int copy_from_extent_tree(struct metadump_struct *metadump,
1214                                  struct btrfs_path *path)
1215 {
1216         struct btrfs_root *extent_root;
1217         struct extent_buffer *leaf;
1218         struct btrfs_extent_item *ei;
1219         struct btrfs_key key;
1220         u64 bytenr;
1221         u64 num_bytes;
1222         int ret;
1223
1224         extent_root = metadump->root->fs_info->extent_root;
1225         bytenr = BTRFS_SUPER_INFO_OFFSET + BTRFS_SUPER_INFO_SIZE;
1226         key.objectid = bytenr;
1227         key.type = BTRFS_EXTENT_ITEM_KEY;
1228         key.offset = 0;
1229
1230         ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
1231         if (ret < 0) {
1232                 fprintf(stderr, "Error searching extent root %d\n", ret);
1233                 return ret;
1234         }
1235         ret = 0;
1236
1237         leaf = path->nodes[0];
1238
1239         while (1) {
1240                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1241                         ret = btrfs_next_leaf(extent_root, path);
1242                         if (ret < 0) {
1243                                 fprintf(stderr, "Error going to next leaf %d"
1244                                         "\n", ret);
1245                                 break;
1246                         }
1247                         if (ret > 0) {
1248                                 ret = 0;
1249                                 break;
1250                         }
1251                         leaf = path->nodes[0];
1252                 }
1253
1254                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1255                 if (key.objectid < bytenr ||
1256                     (key.type != BTRFS_EXTENT_ITEM_KEY &&
1257                      key.type != BTRFS_METADATA_ITEM_KEY)) {
1258                         path->slots[0]++;
1259                         continue;
1260                 }
1261
1262                 bytenr = key.objectid;
1263                 if (key.type == BTRFS_METADATA_ITEM_KEY)
1264                         num_bytes = extent_root->leafsize;
1265                 else
1266                         num_bytes = key.offset;
1267
1268                 if (btrfs_item_size_nr(leaf, path->slots[0]) > sizeof(*ei)) {
1269                         ei = btrfs_item_ptr(leaf, path->slots[0],
1270                                             struct btrfs_extent_item);
1271                         if (btrfs_extent_flags(leaf, ei) &
1272                             BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1273                                 ret = add_extent(bytenr, num_bytes, metadump,
1274                                                  0);
1275                                 if (ret) {
1276                                         fprintf(stderr, "Error adding block "
1277                                                 "%d\n", ret);
1278                                         break;
1279                                 }
1280                         }
1281                 } else {
1282 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1283                         ret = is_tree_block(extent_root, path, bytenr);
1284                         if (ret < 0) {
1285                                 fprintf(stderr, "Error checking tree block "
1286                                         "%d\n", ret);
1287                                 break;
1288                         }
1289
1290                         if (ret) {
1291                                 ret = add_extent(bytenr, num_bytes, metadump,
1292                                                  0);
1293                                 if (ret) {
1294                                         fprintf(stderr, "Error adding block "
1295                                                 "%d\n", ret);
1296                                         break;
1297                                 }
1298                         }
1299                         ret = 0;
1300 #else
1301                         fprintf(stderr, "Either extent tree corruption or "
1302                                 "you haven't built with V0 support\n");
1303                         ret = -EIO;
1304                         break;
1305 #endif
1306                 }
1307                 bytenr += num_bytes;
1308         }
1309
1310         btrfs_release_path(path);
1311
1312         return ret;
1313 }
1314
1315 static int create_metadump(const char *input, FILE *out, int num_threads,
1316                            int compress_level, int sanitize, int walk_trees)
1317 {
1318         struct btrfs_root *root;
1319         struct btrfs_path *path = NULL;
1320         struct metadump_struct metadump;
1321         int ret;
1322         int err = 0;
1323
1324         root = open_ctree(input, 0, 0);
1325         if (!root) {
1326                 fprintf(stderr, "Open ctree failed\n");
1327                 return -EIO;
1328         }
1329
1330         BUG_ON(root->nodesize != root->leafsize);
1331
1332         ret = metadump_init(&metadump, root, out, num_threads,
1333                             compress_level, sanitize);
1334         if (ret) {
1335                 fprintf(stderr, "Error initing metadump %d\n", ret);
1336                 close_ctree(root);
1337                 return ret;
1338         }
1339
1340         ret = add_extent(BTRFS_SUPER_INFO_OFFSET, BTRFS_SUPER_INFO_SIZE,
1341                         &metadump, 0);
1342         if (ret) {
1343                 fprintf(stderr, "Error adding metadata %d\n", ret);
1344                 err = ret;
1345                 goto out;
1346         }
1347
1348         path = btrfs_alloc_path();
1349         if (!path) {
1350                 fprintf(stderr, "Out of memory allocing path\n");
1351                 err = -ENOMEM;
1352                 goto out;
1353         }
1354
1355         if (walk_trees) {
1356                 ret = copy_tree_blocks(root, root->fs_info->chunk_root->node,
1357                                        &metadump, 1);
1358                 if (ret) {
1359                         err = ret;
1360                         goto out;
1361                 }
1362
1363                 ret = copy_tree_blocks(root, root->fs_info->tree_root->node,
1364                                        &metadump, 1);
1365                 if (ret) {
1366                         err = ret;
1367                         goto out;
1368                 }
1369         } else {
1370                 ret = copy_from_extent_tree(&metadump, path);
1371                 if (ret) {
1372                         err = ret;
1373                         goto out;
1374                 }
1375         }
1376
1377         ret = copy_log_trees(root, &metadump, path);
1378         if (ret) {
1379                 err = ret;
1380                 goto out;
1381         }
1382
1383         ret = copy_space_cache(root, &metadump, path);
1384 out:
1385         ret = flush_pending(&metadump, 1);
1386         if (ret) {
1387                 if (!err)
1388                         err = ret;
1389                 fprintf(stderr, "Error flushing pending %d\n", ret);
1390         }
1391
1392         metadump_destroy(&metadump, num_threads);
1393
1394         btrfs_free_path(path);
1395         ret = close_ctree(root);
1396         return err ? err : ret;
1397 }
1398
1399 static void update_super_old(u8 *buffer)
1400 {
1401         struct btrfs_super_block *super = (struct btrfs_super_block *)buffer;
1402         struct btrfs_chunk *chunk;
1403         struct btrfs_disk_key *key;
1404         u32 sectorsize = btrfs_super_sectorsize(super);
1405         u64 flags = btrfs_super_flags(super);
1406
1407         flags |= BTRFS_SUPER_FLAG_METADUMP;
1408         btrfs_set_super_flags(super, flags);
1409
1410         key = (struct btrfs_disk_key *)(super->sys_chunk_array);
1411         chunk = (struct btrfs_chunk *)(super->sys_chunk_array +
1412                                        sizeof(struct btrfs_disk_key));
1413
1414         btrfs_set_disk_key_objectid(key, BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1415         btrfs_set_disk_key_type(key, BTRFS_CHUNK_ITEM_KEY);
1416         btrfs_set_disk_key_offset(key, 0);
1417
1418         btrfs_set_stack_chunk_length(chunk, (u64)-1);
1419         btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
1420         btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
1421         btrfs_set_stack_chunk_type(chunk, BTRFS_BLOCK_GROUP_SYSTEM);
1422         btrfs_set_stack_chunk_io_align(chunk, sectorsize);
1423         btrfs_set_stack_chunk_io_width(chunk, sectorsize);
1424         btrfs_set_stack_chunk_sector_size(chunk, sectorsize);
1425         btrfs_set_stack_chunk_num_stripes(chunk, 1);
1426         btrfs_set_stack_chunk_sub_stripes(chunk, 0);
1427         chunk->stripe.devid = super->dev_item.devid;
1428         btrfs_set_stack_stripe_offset(&chunk->stripe, 0);
1429         memcpy(chunk->stripe.dev_uuid, super->dev_item.uuid, BTRFS_UUID_SIZE);
1430         btrfs_set_super_sys_array_size(super, sizeof(*key) + sizeof(*chunk));
1431         csum_block(buffer, BTRFS_SUPER_INFO_SIZE);
1432 }
1433
1434 static int update_super(struct mdrestore_struct *mdres, u8 *buffer)
1435 {
1436         struct btrfs_super_block *super = (struct btrfs_super_block *)buffer;
1437         struct btrfs_chunk *chunk;
1438         struct btrfs_disk_key *disk_key;
1439         struct btrfs_key key;
1440         u64 flags = btrfs_super_flags(super);
1441         u32 new_array_size = 0;
1442         u32 array_size;
1443         u32 cur = 0;
1444         u8 *ptr, *write_ptr;
1445         int old_num_stripes;
1446
1447         write_ptr = ptr = super->sys_chunk_array;
1448         array_size = btrfs_super_sys_array_size(super);
1449
1450         while (cur < array_size) {
1451                 disk_key = (struct btrfs_disk_key *)ptr;
1452                 btrfs_disk_key_to_cpu(&key, disk_key);
1453
1454                 new_array_size += sizeof(*disk_key);
1455                 memmove(write_ptr, ptr, sizeof(*disk_key));
1456
1457                 write_ptr += sizeof(*disk_key);
1458                 ptr += sizeof(*disk_key);
1459                 cur += sizeof(*disk_key);
1460
1461                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1462                         u64 physical, size = 0;
1463
1464                         chunk = (struct btrfs_chunk *)ptr;
1465                         old_num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1466                         chunk = (struct btrfs_chunk *)write_ptr;
1467
1468                         memmove(write_ptr, ptr, sizeof(*chunk));
1469                         btrfs_set_stack_chunk_num_stripes(chunk, 1);
1470                         btrfs_set_stack_chunk_sub_stripes(chunk, 0);
1471                         btrfs_set_stack_chunk_type(chunk,
1472                                                    BTRFS_BLOCK_GROUP_SYSTEM);
1473                         btrfs_set_stack_stripe_devid(&chunk->stripe,
1474                                                      super->dev_item.devid);
1475                         physical = logical_to_physical(mdres, key.offset,
1476                                                        &size);
1477                         if (size != (u64)-1)
1478                                 btrfs_set_stack_stripe_offset(&chunk->stripe,
1479                                                               physical);
1480                         memcpy(chunk->stripe.dev_uuid, super->dev_item.uuid,
1481                                BTRFS_UUID_SIZE);
1482                         new_array_size += sizeof(*chunk);
1483                 } else {
1484                         fprintf(stderr, "Bogus key in the sys chunk array "
1485                                 "%d\n", key.type);
1486                         return -EIO;
1487                 }
1488                 write_ptr += sizeof(*chunk);
1489                 ptr += btrfs_chunk_item_size(old_num_stripes);
1490                 cur += btrfs_chunk_item_size(old_num_stripes);
1491         }
1492
1493         if (mdres->clear_space_cache)
1494                 btrfs_set_super_cache_generation(super, 0);
1495
1496         flags |= BTRFS_SUPER_FLAG_METADUMP_V2;
1497         btrfs_set_super_flags(super, flags);
1498         btrfs_set_super_sys_array_size(super, new_array_size);
1499         csum_block(buffer, BTRFS_SUPER_INFO_SIZE);
1500
1501         return 0;
1502 }
1503
1504 static struct extent_buffer *alloc_dummy_eb(u64 bytenr, u32 size)
1505 {
1506         struct extent_buffer *eb;
1507
1508         eb = calloc(1, sizeof(struct extent_buffer) + size);
1509         if (!eb)
1510                 return NULL;
1511
1512         eb->start = bytenr;
1513         eb->len = size;
1514         return eb;
1515 }
1516
1517 static void truncate_item(struct extent_buffer *eb, int slot, u32 new_size)
1518 {
1519         struct btrfs_item *item;
1520         u32 nritems;
1521         u32 old_size;
1522         u32 old_data_start;
1523         u32 size_diff;
1524         u32 data_end;
1525         int i;
1526
1527         old_size = btrfs_item_size_nr(eb, slot);
1528         if (old_size == new_size)
1529                 return;
1530
1531         nritems = btrfs_header_nritems(eb);
1532         data_end = btrfs_item_offset_nr(eb, nritems - 1);
1533
1534         old_data_start = btrfs_item_offset_nr(eb, slot);
1535         size_diff = old_size - new_size;
1536
1537         for (i = slot; i < nritems; i++) {
1538                 u32 ioff;
1539                 item = btrfs_item_nr(i);
1540                 ioff = btrfs_item_offset(eb, item);
1541                 btrfs_set_item_offset(eb, item, ioff + size_diff);
1542         }
1543
1544         memmove_extent_buffer(eb, btrfs_leaf_data(eb) + data_end + size_diff,
1545                               btrfs_leaf_data(eb) + data_end,
1546                               old_data_start + new_size - data_end);
1547         item = btrfs_item_nr(slot);
1548         btrfs_set_item_size(eb, item, new_size);
1549 }
1550
1551 static int fixup_chunk_tree_block(struct mdrestore_struct *mdres,
1552                                   struct async_work *async, u8 *buffer,
1553                                   size_t size)
1554 {
1555         struct extent_buffer *eb;
1556         size_t size_left = size;
1557         u64 bytenr = async->start;
1558         int i;
1559
1560         if (size_left % mdres->leafsize)
1561                 return 0;
1562
1563         eb = alloc_dummy_eb(bytenr, mdres->leafsize);
1564         if (!eb)
1565                 return -ENOMEM;
1566
1567         while (size_left) {
1568                 eb->start = bytenr;
1569                 memcpy(eb->data, buffer, mdres->leafsize);
1570
1571                 if (btrfs_header_bytenr(eb) != bytenr)
1572                         break;
1573                 if (memcmp(mdres->fsid,
1574                            eb->data + offsetof(struct btrfs_header, fsid),
1575                            BTRFS_FSID_SIZE))
1576                         break;
1577
1578                 if (btrfs_header_owner(eb) != BTRFS_CHUNK_TREE_OBJECTID)
1579                         goto next;
1580
1581                 if (btrfs_header_level(eb) != 0)
1582                         goto next;
1583
1584                 for (i = 0; i < btrfs_header_nritems(eb); i++) {
1585                         struct btrfs_chunk chunk;
1586                         struct btrfs_key key;
1587                         u64 type, physical, size = (u64)-1;
1588
1589                         btrfs_item_key_to_cpu(eb, &key, i);
1590                         if (key.type != BTRFS_CHUNK_ITEM_KEY)
1591                                 continue;
1592                         truncate_item(eb, i, sizeof(chunk));
1593                         read_extent_buffer(eb, &chunk,
1594                                            btrfs_item_ptr_offset(eb, i),
1595                                            sizeof(chunk));
1596
1597                         size = 0;
1598                         physical = logical_to_physical(mdres, key.offset,
1599                                                        &size);
1600
1601                         /* Zero out the RAID profile */
1602                         type = btrfs_stack_chunk_type(&chunk);
1603                         type &= (BTRFS_BLOCK_GROUP_DATA |
1604                                  BTRFS_BLOCK_GROUP_SYSTEM |
1605                                  BTRFS_BLOCK_GROUP_METADATA |
1606                                  BTRFS_BLOCK_GROUP_DUP);
1607                         btrfs_set_stack_chunk_type(&chunk, type);
1608
1609                         btrfs_set_stack_chunk_num_stripes(&chunk, 1);
1610                         btrfs_set_stack_chunk_sub_stripes(&chunk, 0);
1611                         btrfs_set_stack_stripe_devid(&chunk.stripe, mdres->devid);
1612                         if (size != (u64)-1)
1613                                 btrfs_set_stack_stripe_offset(&chunk.stripe,
1614                                                               physical);
1615                         memcpy(chunk.stripe.dev_uuid, mdres->uuid,
1616                                BTRFS_UUID_SIZE);
1617                         write_extent_buffer(eb, &chunk,
1618                                             btrfs_item_ptr_offset(eb, i),
1619                                             sizeof(chunk));
1620                 }
1621                 memcpy(buffer, eb->data, eb->len);
1622                 csum_block(buffer, eb->len);
1623 next:
1624                 size_left -= mdres->leafsize;
1625                 buffer += mdres->leafsize;
1626                 bytenr += mdres->leafsize;
1627         }
1628
1629         free(eb);
1630         return 0;
1631 }
1632
1633 static void write_backup_supers(int fd, u8 *buf)
1634 {
1635         struct btrfs_super_block *super = (struct btrfs_super_block *)buf;
1636         struct stat st;
1637         u64 size;
1638         u64 bytenr;
1639         int i;
1640         int ret;
1641
1642         if (fstat(fd, &st)) {
1643                 fprintf(stderr, "Couldn't stat restore point, won't be able "
1644                         "to write backup supers: %d\n", errno);
1645                 return;
1646         }
1647
1648         size = btrfs_device_size(fd, &st);
1649
1650         for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1651                 bytenr = btrfs_sb_offset(i);
1652                 if (bytenr + BTRFS_SUPER_INFO_SIZE > size)
1653                         break;
1654                 btrfs_set_super_bytenr(super, bytenr);
1655                 csum_block(buf, BTRFS_SUPER_INFO_SIZE);
1656                 ret = pwrite64(fd, buf, BTRFS_SUPER_INFO_SIZE, bytenr);
1657                 if (ret < BTRFS_SUPER_INFO_SIZE) {
1658                         if (ret < 0)
1659                                 fprintf(stderr, "Problem writing out backup "
1660                                         "super block %d, err %d\n", i, errno);
1661                         else
1662                                 fprintf(stderr, "Short write writing out "
1663                                         "backup super block\n");
1664                         break;
1665                 }
1666         }
1667 }
1668
1669 static void *restore_worker(void *data)
1670 {
1671         struct mdrestore_struct *mdres = (struct mdrestore_struct *)data;
1672         struct async_work *async;
1673         size_t size;
1674         u8 *buffer;
1675         u8 *outbuf;
1676         int outfd;
1677         int ret;
1678         int compress_size = MAX_PENDING_SIZE * 4;
1679
1680         outfd = fileno(mdres->out);
1681         buffer = malloc(compress_size);
1682         if (!buffer) {
1683                 fprintf(stderr, "Error allocing buffer\n");
1684                 pthread_mutex_lock(&mdres->mutex);
1685                 if (!mdres->error)
1686                         mdres->error = -ENOMEM;
1687                 pthread_mutex_unlock(&mdres->mutex);
1688                 pthread_exit(NULL);
1689         }
1690
1691         while (1) {
1692                 u64 bytenr;
1693                 off_t offset = 0;
1694                 int err = 0;
1695
1696                 pthread_mutex_lock(&mdres->mutex);
1697                 while (!mdres->leafsize || list_empty(&mdres->list)) {
1698                         if (mdres->done) {
1699                                 pthread_mutex_unlock(&mdres->mutex);
1700                                 goto out;
1701                         }
1702                         pthread_cond_wait(&mdres->cond, &mdres->mutex);
1703                 }
1704                 async = list_entry(mdres->list.next, struct async_work, list);
1705                 list_del_init(&async->list);
1706                 pthread_mutex_unlock(&mdres->mutex);
1707
1708                 if (mdres->compress_method == COMPRESS_ZLIB) {
1709                         size = compress_size; 
1710                         ret = uncompress(buffer, (unsigned long *)&size,
1711                                          async->buffer, async->bufsize);
1712                         if (ret != Z_OK) {
1713                                 fprintf(stderr, "Error decompressing %d\n",
1714                                         ret);
1715                                 err = -EIO;
1716                         }
1717                         outbuf = buffer;
1718                 } else {
1719                         outbuf = async->buffer;
1720                         size = async->bufsize;
1721                 }
1722
1723                 if (!mdres->multi_devices) {
1724                         if (async->start == BTRFS_SUPER_INFO_OFFSET) {
1725                                 if (mdres->old_restore) {
1726                                         update_super_old(outbuf);
1727                                 } else {
1728                                         ret = update_super(mdres, outbuf);
1729                                         if (ret)
1730                                                 err = ret;
1731                                 }
1732                         } else if (!mdres->old_restore) {
1733                                 ret = fixup_chunk_tree_block(mdres, async, outbuf, size);
1734                                 if (ret)
1735                                         err = ret;
1736                         }
1737                 }
1738
1739                 if (!mdres->fixup_offset) {
1740                         while (size) {
1741                                 u64 chunk_size = size;
1742                                 if (!mdres->multi_devices && !mdres->old_restore)
1743                                         bytenr = logical_to_physical(mdres,
1744                                                                      async->start + offset,
1745                                                                      &chunk_size);
1746                                 else
1747                                         bytenr = async->start + offset;
1748
1749                                 ret = pwrite64(outfd, outbuf+offset, chunk_size,
1750                                                bytenr);
1751                                 if (ret != chunk_size) {
1752                                         if (ret < 0) {
1753                                                 fprintf(stderr, "Error writing to "
1754                                                         "device %d\n", errno);
1755                                                 err = errno;
1756                                                 break;
1757                                         } else {
1758                                                 fprintf(stderr, "Short write\n");
1759                                                 err = -EIO;
1760                                                 break;
1761                                         }
1762                                 }
1763                                 size -= chunk_size;
1764                                 offset += chunk_size;
1765                         }
1766                 } else if (async->start != BTRFS_SUPER_INFO_OFFSET) {
1767                         ret = write_data_to_disk(mdres->info, outbuf, async->start, size, 0);
1768                         if (ret) {
1769                                 printk("Error write data\n");
1770                                 exit(1);
1771                         }
1772                 }
1773
1774
1775                 /* backup super blocks are already there at fixup_offset stage */
1776                 if (!mdres->multi_devices && async->start == BTRFS_SUPER_INFO_OFFSET)
1777                         write_backup_supers(outfd, outbuf);
1778
1779                 pthread_mutex_lock(&mdres->mutex);
1780                 if (err && !mdres->error)
1781                         mdres->error = err;
1782                 mdres->num_items--;
1783                 pthread_mutex_unlock(&mdres->mutex);
1784
1785                 free(async->buffer);
1786                 free(async);
1787         }
1788 out:
1789         free(buffer);
1790         pthread_exit(NULL);
1791 }
1792
1793 static void mdrestore_destroy(struct mdrestore_struct *mdres, int num_threads)
1794 {
1795         struct rb_node *n;
1796         int i;
1797
1798         while ((n = rb_first(&mdres->chunk_tree))) {
1799                 struct fs_chunk *entry;
1800
1801                 entry = rb_entry(n, struct fs_chunk, l);
1802                 rb_erase(n, &mdres->chunk_tree);
1803                 rb_erase(&entry->p, &mdres->physical_tree);
1804                 free(entry);
1805         }
1806         pthread_mutex_lock(&mdres->mutex);
1807         mdres->done = 1;
1808         pthread_cond_broadcast(&mdres->cond);
1809         pthread_mutex_unlock(&mdres->mutex);
1810
1811         for (i = 0; i < num_threads; i++)
1812                 pthread_join(mdres->threads[i], NULL);
1813
1814         pthread_cond_destroy(&mdres->cond);
1815         pthread_mutex_destroy(&mdres->mutex);
1816         free(mdres->threads);
1817 }
1818
1819 static int mdrestore_init(struct mdrestore_struct *mdres,
1820                           FILE *in, FILE *out, int old_restore,
1821                           int num_threads, int fixup_offset,
1822                           struct btrfs_fs_info *info, int multi_devices)
1823 {
1824         int i, ret = 0;
1825
1826         memset(mdres, 0, sizeof(*mdres));
1827         pthread_cond_init(&mdres->cond, NULL);
1828         pthread_mutex_init(&mdres->mutex, NULL);
1829         INIT_LIST_HEAD(&mdres->list);
1830         INIT_LIST_HEAD(&mdres->overlapping_chunks);
1831         mdres->in = in;
1832         mdres->out = out;
1833         mdres->old_restore = old_restore;
1834         mdres->chunk_tree.rb_node = NULL;
1835         mdres->fixup_offset = fixup_offset;
1836         mdres->info = info;
1837         mdres->multi_devices = multi_devices;
1838         mdres->clear_space_cache = 0;
1839         mdres->last_physical_offset = 0;
1840         mdres->alloced_chunks = 0;
1841
1842         if (!num_threads)
1843                 return 0;
1844
1845         mdres->num_threads = num_threads;
1846         mdres->threads = calloc(num_threads, sizeof(pthread_t));
1847         if (!mdres->threads)
1848                 return -ENOMEM;
1849         for (i = 0; i < num_threads; i++) {
1850                 ret = pthread_create(mdres->threads + i, NULL, restore_worker,
1851                                      mdres);
1852                 if (ret)
1853                         break;
1854         }
1855         if (ret)
1856                 mdrestore_destroy(mdres, i + 1);
1857         return ret;
1858 }
1859
1860 static int fill_mdres_info(struct mdrestore_struct *mdres,
1861                            struct async_work *async)
1862 {
1863         struct btrfs_super_block *super;
1864         u8 *buffer = NULL;
1865         u8 *outbuf;
1866         int ret;
1867
1868         /* We've already been initialized */
1869         if (mdres->leafsize)
1870                 return 0;
1871
1872         if (mdres->compress_method == COMPRESS_ZLIB) {
1873                 size_t size = MAX_PENDING_SIZE * 2;
1874
1875                 buffer = malloc(MAX_PENDING_SIZE * 2);
1876                 if (!buffer)
1877                         return -ENOMEM;
1878                 ret = uncompress(buffer, (unsigned long *)&size,
1879                                  async->buffer, async->bufsize);
1880                 if (ret != Z_OK) {
1881                         fprintf(stderr, "Error decompressing %d\n", ret);
1882                         free(buffer);
1883                         return -EIO;
1884                 }
1885                 outbuf = buffer;
1886         } else {
1887                 outbuf = async->buffer;
1888         }
1889
1890         super = (struct btrfs_super_block *)outbuf;
1891         mdres->leafsize = btrfs_super_leafsize(super);
1892         memcpy(mdres->fsid, super->fsid, BTRFS_FSID_SIZE);
1893         memcpy(mdres->uuid, super->dev_item.uuid,
1894                        BTRFS_UUID_SIZE);
1895         mdres->devid = le64_to_cpu(super->dev_item.devid);
1896         free(buffer);
1897         return 0;
1898 }
1899
1900 static int add_cluster(struct meta_cluster *cluster,
1901                        struct mdrestore_struct *mdres, u64 *next)
1902 {
1903         struct meta_cluster_item *item;
1904         struct meta_cluster_header *header = &cluster->header;
1905         struct async_work *async;
1906         u64 bytenr;
1907         u32 i, nritems;
1908         int ret;
1909
1910         mdres->compress_method = header->compress;
1911
1912         bytenr = le64_to_cpu(header->bytenr) + BLOCK_SIZE;
1913         nritems = le32_to_cpu(header->nritems);
1914         for (i = 0; i < nritems; i++) {
1915                 item = &cluster->items[i];
1916                 async = calloc(1, sizeof(*async));
1917                 if (!async) {
1918                         fprintf(stderr, "Error allocating async\n");
1919                         return -ENOMEM;
1920                 }
1921                 async->start = le64_to_cpu(item->bytenr);
1922                 async->bufsize = le32_to_cpu(item->size);
1923                 async->buffer = malloc(async->bufsize);
1924                 if (!async->buffer) {
1925                         fprintf(stderr, "Error allocing async buffer\n");
1926                         free(async);
1927                         return -ENOMEM;
1928                 }
1929                 ret = fread(async->buffer, async->bufsize, 1, mdres->in);
1930                 if (ret != 1) {
1931                         fprintf(stderr, "Error reading buffer %d\n", errno);
1932                         free(async->buffer);
1933                         free(async);
1934                         return -EIO;
1935                 }
1936                 bytenr += async->bufsize;
1937
1938                 pthread_mutex_lock(&mdres->mutex);
1939                 if (async->start == BTRFS_SUPER_INFO_OFFSET) {
1940                         ret = fill_mdres_info(mdres, async);
1941                         if (ret) {
1942                                 fprintf(stderr, "Error setting up restore\n");
1943                                 pthread_mutex_unlock(&mdres->mutex);
1944                                 free(async->buffer);
1945                                 free(async);
1946                                 return ret;
1947                         }
1948                 }
1949                 list_add_tail(&async->list, &mdres->list);
1950                 mdres->num_items++;
1951                 pthread_cond_signal(&mdres->cond);
1952                 pthread_mutex_unlock(&mdres->mutex);
1953         }
1954         if (bytenr & BLOCK_MASK) {
1955                 char buffer[BLOCK_MASK];
1956                 size_t size = BLOCK_SIZE - (bytenr & BLOCK_MASK);
1957
1958                 bytenr += size;
1959                 ret = fread(buffer, size, 1, mdres->in);
1960                 if (ret != 1) {
1961                         fprintf(stderr, "Error reading in buffer %d\n", errno);
1962                         return -EIO;
1963                 }
1964         }
1965         *next = bytenr;
1966         return 0;
1967 }
1968
1969 static int wait_for_worker(struct mdrestore_struct *mdres)
1970 {
1971         int ret = 0;
1972
1973         pthread_mutex_lock(&mdres->mutex);
1974         ret = mdres->error;
1975         while (!ret && mdres->num_items > 0) {
1976                 struct timespec ts = {
1977                         .tv_sec = 0,
1978                         .tv_nsec = 10000000,
1979                 };
1980                 pthread_mutex_unlock(&mdres->mutex);
1981                 nanosleep(&ts, NULL);
1982                 pthread_mutex_lock(&mdres->mutex);
1983                 ret = mdres->error;
1984         }
1985         pthread_mutex_unlock(&mdres->mutex);
1986         return ret;
1987 }
1988
1989 static int read_chunk_block(struct mdrestore_struct *mdres, u8 *buffer,
1990                             u64 bytenr, u64 item_bytenr, u32 bufsize,
1991                             u64 cluster_bytenr)
1992 {
1993         struct extent_buffer *eb;
1994         int ret = 0;
1995         int i;
1996
1997         eb = alloc_dummy_eb(bytenr, mdres->leafsize);
1998         if (!eb) {
1999                 ret = -ENOMEM;
2000                 goto out;
2001         }
2002
2003         while (item_bytenr != bytenr) {
2004                 buffer += mdres->leafsize;
2005                 item_bytenr += mdres->leafsize;
2006         }
2007
2008         memcpy(eb->data, buffer, mdres->leafsize);
2009         if (btrfs_header_bytenr(eb) != bytenr) {
2010                 fprintf(stderr, "Eb bytenr doesn't match found bytenr\n");
2011                 ret = -EIO;
2012                 goto out;
2013         }
2014
2015         if (memcmp(mdres->fsid, eb->data + offsetof(struct btrfs_header, fsid),
2016                    BTRFS_FSID_SIZE)) {
2017                 fprintf(stderr, "Fsid doesn't match\n");
2018                 ret = -EIO;
2019                 goto out;
2020         }
2021
2022         if (btrfs_header_owner(eb) != BTRFS_CHUNK_TREE_OBJECTID) {
2023                 fprintf(stderr, "Does not belong to the chunk tree\n");
2024                 ret = -EIO;
2025                 goto out;
2026         }
2027
2028         for (i = 0; i < btrfs_header_nritems(eb); i++) {
2029                 struct btrfs_chunk chunk;
2030                 struct fs_chunk *fs_chunk;
2031                 struct btrfs_key key;
2032
2033                 if (btrfs_header_level(eb)) {
2034                         u64 blockptr = btrfs_node_blockptr(eb, i);
2035
2036                         ret = search_for_chunk_blocks(mdres, blockptr,
2037                                                       cluster_bytenr);
2038                         if (ret)
2039                                 break;
2040                         continue;
2041                 }
2042
2043                 /* Yay a leaf!  We loves leafs! */
2044                 btrfs_item_key_to_cpu(eb, &key, i);
2045                 if (key.type != BTRFS_CHUNK_ITEM_KEY)
2046                         continue;
2047
2048                 fs_chunk = malloc(sizeof(struct fs_chunk));
2049                 if (!fs_chunk) {
2050                         fprintf(stderr, "Erorr allocating chunk\n");
2051                         ret = -ENOMEM;
2052                         break;
2053                 }
2054                 memset(fs_chunk, 0, sizeof(*fs_chunk));
2055                 read_extent_buffer(eb, &chunk, btrfs_item_ptr_offset(eb, i),
2056                                    sizeof(chunk));
2057
2058                 fs_chunk->logical = key.offset;
2059                 fs_chunk->physical = btrfs_stack_stripe_offset(&chunk.stripe);
2060                 fs_chunk->bytes = btrfs_stack_chunk_length(&chunk);
2061                 INIT_LIST_HEAD(&fs_chunk->list);
2062                 if (tree_search(&mdres->physical_tree, &fs_chunk->p,
2063                                 physical_cmp, 1) != NULL)
2064                         list_add(&fs_chunk->list, &mdres->overlapping_chunks);
2065                 else
2066                         tree_insert(&mdres->physical_tree, &fs_chunk->p,
2067                                     physical_cmp);
2068                 if (fs_chunk->physical + fs_chunk->bytes >
2069                     mdres->last_physical_offset)
2070                         mdres->last_physical_offset = fs_chunk->physical +
2071                                 fs_chunk->bytes;
2072                 mdres->alloced_chunks += fs_chunk->bytes;
2073                 tree_insert(&mdres->chunk_tree, &fs_chunk->l, chunk_cmp);
2074         }
2075 out:
2076         free(eb);
2077         return ret;
2078 }
2079
2080 /* If you have to ask you aren't worthy */
2081 static int search_for_chunk_blocks(struct mdrestore_struct *mdres,
2082                                    u64 search, u64 cluster_bytenr)
2083 {
2084         struct meta_cluster *cluster;
2085         struct meta_cluster_header *header;
2086         struct meta_cluster_item *item;
2087         u64 current_cluster = cluster_bytenr, bytenr;
2088         u64 item_bytenr;
2089         u32 bufsize, nritems, i;
2090         u32 max_size = MAX_PENDING_SIZE * 2;
2091         u8 *buffer, *tmp = NULL;
2092         int ret = 0;
2093
2094         cluster = malloc(BLOCK_SIZE);
2095         if (!cluster) {
2096                 fprintf(stderr, "Error allocating cluster\n");
2097                 return -ENOMEM;
2098         }
2099
2100         buffer = malloc(max_size);
2101         if (!buffer) {
2102                 fprintf(stderr, "Error allocing buffer\n");
2103                 free(cluster);
2104                 return -ENOMEM;
2105         }
2106
2107         if (mdres->compress_method == COMPRESS_ZLIB) {
2108                 tmp = malloc(max_size);
2109                 if (!tmp) {
2110                         fprintf(stderr, "Error allocing tmp buffer\n");
2111                         free(cluster);
2112                         free(buffer);
2113                         return -ENOMEM;
2114                 }
2115         }
2116
2117         bytenr = current_cluster;
2118         while (1) {
2119                 if (fseek(mdres->in, current_cluster, SEEK_SET)) {
2120                         fprintf(stderr, "Error seeking: %d\n", errno);
2121                         ret = -EIO;
2122                         break;
2123                 }
2124
2125                 ret = fread(cluster, BLOCK_SIZE, 1, mdres->in);
2126                 if (ret == 0) {
2127                         if (cluster_bytenr != 0) {
2128                                 cluster_bytenr = 0;
2129                                 current_cluster = 0;
2130                                 bytenr = 0;
2131                                 continue;
2132                         }
2133                         printf("ok this is where we screwed up?\n");
2134                         ret = -EIO;
2135                         break;
2136                 } else if (ret < 0) {
2137                         fprintf(stderr, "Error reading image\n");
2138                         break;
2139                 }
2140                 ret = 0;
2141
2142                 header = &cluster->header;
2143                 if (le64_to_cpu(header->magic) != HEADER_MAGIC ||
2144                     le64_to_cpu(header->bytenr) != current_cluster) {
2145                         fprintf(stderr, "bad header in metadump image\n");
2146                         ret = -EIO;
2147                         break;
2148                 }
2149
2150                 bytenr += BLOCK_SIZE;
2151                 nritems = le32_to_cpu(header->nritems);
2152                 for (i = 0; i < nritems; i++) {
2153                         size_t size;
2154
2155                         item = &cluster->items[i];
2156                         bufsize = le32_to_cpu(item->size);
2157                         item_bytenr = le64_to_cpu(item->bytenr);
2158
2159                         if (bufsize > max_size) {
2160                                 fprintf(stderr, "item %u size %u too big\n",
2161                                         i, bufsize);
2162                                 ret = -EIO;
2163                                 break;
2164                         }
2165
2166                         if (mdres->compress_method == COMPRESS_ZLIB) {
2167                                 ret = fread(tmp, bufsize, 1, mdres->in);
2168                                 if (ret != 1) {
2169                                         fprintf(stderr, "Error reading: %d\n",
2170                                                 errno);
2171                                         ret = -EIO;
2172                                         break;
2173                                 }
2174
2175                                 size = max_size;
2176                                 ret = uncompress(buffer,
2177                                                  (unsigned long *)&size, tmp,
2178                                                  bufsize);
2179                                 if (ret != Z_OK) {
2180                                         fprintf(stderr, "Error decompressing "
2181                                                 "%d\n", ret);
2182                                         ret = -EIO;
2183                                         break;
2184                                 }
2185                         } else {
2186                                 ret = fread(buffer, bufsize, 1, mdres->in);
2187                                 if (ret != 1) {
2188                                         fprintf(stderr, "Error reading: %d\n",
2189                                                 errno);
2190                                         ret = -EIO;
2191                                         break;
2192                                 }
2193                                 size = bufsize;
2194                         }
2195                         ret = 0;
2196
2197                         if (item_bytenr <= search &&
2198                             item_bytenr + size > search) {
2199                                 ret = read_chunk_block(mdres, buffer, search,
2200                                                        item_bytenr, size,
2201                                                        current_cluster);
2202                                 if (!ret)
2203                                         ret = 1;
2204                                 break;
2205                         }
2206                         bytenr += bufsize;
2207                 }
2208                 if (ret) {
2209                         if (ret > 0)
2210                                 ret = 0;
2211                         break;
2212                 }
2213                 if (bytenr & BLOCK_MASK)
2214                         bytenr += BLOCK_SIZE - (bytenr & BLOCK_MASK);
2215                 current_cluster = bytenr;
2216         }
2217
2218         free(tmp);
2219         free(buffer);
2220         free(cluster);
2221         return ret;
2222 }
2223
2224 static int build_chunk_tree(struct mdrestore_struct *mdres,
2225                             struct meta_cluster *cluster)
2226 {
2227         struct btrfs_super_block *super;
2228         struct meta_cluster_header *header;
2229         struct meta_cluster_item *item = NULL;
2230         u64 chunk_root_bytenr = 0;
2231         u32 i, nritems;
2232         u64 bytenr = 0;
2233         u8 *buffer;
2234         int ret;
2235
2236         /* We can't seek with stdin so don't bother doing this */
2237         if (mdres->in == stdin)
2238                 return 0;
2239
2240         ret = fread(cluster, BLOCK_SIZE, 1, mdres->in);
2241         if (ret <= 0) {
2242                 fprintf(stderr, "Error reading in cluster: %d\n", errno);
2243                 return -EIO;
2244         }
2245         ret = 0;
2246
2247         header = &cluster->header;
2248         if (le64_to_cpu(header->magic) != HEADER_MAGIC ||
2249             le64_to_cpu(header->bytenr) != 0) {
2250                 fprintf(stderr, "bad header in metadump image\n");
2251                 return -EIO;
2252         }
2253
2254         bytenr += BLOCK_SIZE;
2255         mdres->compress_method = header->compress;
2256         nritems = le32_to_cpu(header->nritems);
2257         for (i = 0; i < nritems; i++) {
2258                 item = &cluster->items[i];
2259
2260                 if (le64_to_cpu(item->bytenr) == BTRFS_SUPER_INFO_OFFSET)
2261                         break;
2262                 bytenr += le32_to_cpu(item->size);
2263                 if (fseek(mdres->in, le32_to_cpu(item->size), SEEK_CUR)) {
2264                         fprintf(stderr, "Error seeking: %d\n", errno);
2265                         return -EIO;
2266                 }
2267         }
2268
2269         if (!item || le64_to_cpu(item->bytenr) != BTRFS_SUPER_INFO_OFFSET) {
2270                 fprintf(stderr, "Huh, didn't find the super?\n");
2271                 return -EINVAL;
2272         }
2273
2274         buffer = malloc(le32_to_cpu(item->size));
2275         if (!buffer) {
2276                 fprintf(stderr, "Error allocing buffer\n");
2277                 return -ENOMEM;
2278         }
2279
2280         ret = fread(buffer, le32_to_cpu(item->size), 1, mdres->in);
2281         if (ret != 1) {
2282                 fprintf(stderr, "Error reading buffer: %d\n", errno);
2283                 free(buffer);
2284                 return -EIO;
2285         }
2286
2287         if (mdres->compress_method == COMPRESS_ZLIB) {
2288                 size_t size = MAX_PENDING_SIZE * 2;
2289                 u8 *tmp;
2290
2291                 tmp = malloc(MAX_PENDING_SIZE * 2);
2292                 if (!tmp) {
2293                         free(buffer);
2294                         return -ENOMEM;
2295                 }
2296                 ret = uncompress(tmp, (unsigned long *)&size,
2297                                  buffer, le32_to_cpu(item->size));
2298                 if (ret != Z_OK) {
2299                         fprintf(stderr, "Error decompressing %d\n", ret);
2300                         free(buffer);
2301                         free(tmp);
2302                         return -EIO;
2303                 }
2304                 free(buffer);
2305                 buffer = tmp;
2306         }
2307
2308         pthread_mutex_lock(&mdres->mutex);
2309         super = (struct btrfs_super_block *)buffer;
2310         chunk_root_bytenr = btrfs_super_chunk_root(super);
2311         mdres->leafsize = btrfs_super_leafsize(super);
2312         memcpy(mdres->fsid, super->fsid, BTRFS_FSID_SIZE);
2313         memcpy(mdres->uuid, super->dev_item.uuid,
2314                        BTRFS_UUID_SIZE);
2315         mdres->devid = le64_to_cpu(super->dev_item.devid);
2316         free(buffer);
2317         pthread_mutex_unlock(&mdres->mutex);
2318
2319         return search_for_chunk_blocks(mdres, chunk_root_bytenr, 0);
2320 }
2321
2322 static int range_contains_super(u64 physical, u64 bytes)
2323 {
2324         u64 super_bytenr;
2325         int i;
2326
2327         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2328                 super_bytenr = btrfs_sb_offset(i);
2329                 if (super_bytenr >= physical &&
2330                     super_bytenr < physical + bytes)
2331                         return 1;
2332         }
2333
2334         return 0;
2335 }
2336
2337 static void remap_overlapping_chunks(struct mdrestore_struct *mdres)
2338 {
2339         struct fs_chunk *fs_chunk;
2340
2341         while (!list_empty(&mdres->overlapping_chunks)) {
2342                 fs_chunk = list_first_entry(&mdres->overlapping_chunks,
2343                                             struct fs_chunk, list);
2344                 list_del_init(&fs_chunk->list);
2345                 if (range_contains_super(fs_chunk->physical,
2346                                          fs_chunk->bytes)) {
2347                         fprintf(stderr, "Remapping a chunk that had a super "
2348                                 "mirror inside of it, clearing space cache "
2349                                 "so we don't end up with corruption\n");
2350                         mdres->clear_space_cache = 1;
2351                 }
2352                 fs_chunk->physical = mdres->last_physical_offset;
2353                 tree_insert(&mdres->physical_tree, &fs_chunk->p, physical_cmp);
2354                 mdres->last_physical_offset += fs_chunk->bytes;
2355         }
2356 }
2357
2358 static int fixup_devices(struct btrfs_fs_info *fs_info,
2359                          struct mdrestore_struct *mdres, off_t dev_size)
2360 {
2361         struct btrfs_trans_handle *trans;
2362         struct btrfs_dev_item *dev_item;
2363         struct btrfs_path *path;
2364         struct extent_buffer *leaf;
2365         struct btrfs_root *root = fs_info->chunk_root;
2366         struct btrfs_key key;
2367         u64 devid, cur_devid;
2368         int ret;
2369
2370         path = btrfs_alloc_path();
2371         if (!path) {
2372                 fprintf(stderr, "Error alloc'ing path\n");
2373                 return -ENOMEM;
2374         }
2375
2376         trans = btrfs_start_transaction(fs_info->tree_root, 1);
2377         if (IS_ERR(trans)) {
2378                 fprintf(stderr, "Error starting transaction %ld\n",
2379                         PTR_ERR(trans));
2380                 btrfs_free_path(path);
2381                 return PTR_ERR(trans);
2382         }
2383
2384         dev_item = &fs_info->super_copy->dev_item;
2385
2386         devid = btrfs_stack_device_id(dev_item);
2387
2388         btrfs_set_stack_device_total_bytes(dev_item, dev_size);
2389         btrfs_set_stack_device_bytes_used(dev_item, mdres->alloced_chunks);
2390
2391         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2392         key.type = BTRFS_DEV_ITEM_KEY;
2393         key.offset = 0;
2394
2395 again:
2396         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2397         if (ret < 0) {
2398                 fprintf(stderr, "search failed %d\n", ret);
2399                 exit(1);
2400         }
2401
2402         while (1) {
2403                 leaf = path->nodes[0];
2404                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2405                         ret = btrfs_next_leaf(root, path);
2406                         if (ret < 0) {
2407                                 fprintf(stderr, "Error going to next leaf "
2408                                         "%d\n", ret);
2409                                 exit(1);
2410                         }
2411                         if (ret > 0) {
2412                                 ret = 0;
2413                                 break;
2414                         }
2415                         leaf = path->nodes[0];
2416                 }
2417
2418                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2419                 if (key.type > BTRFS_DEV_ITEM_KEY)
2420                         break;
2421                 if (key.type != BTRFS_DEV_ITEM_KEY) {
2422                         path->slots[0]++;
2423                         continue;
2424                 }
2425
2426                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2427                                           struct btrfs_dev_item);
2428                 cur_devid = btrfs_device_id(leaf, dev_item);
2429                 if (devid != cur_devid) {
2430                         ret = btrfs_del_item(trans, root, path);
2431                         if (ret) {
2432                                 fprintf(stderr, "Error deleting item %d\n",
2433                                         ret);
2434                                 exit(1);
2435                         }
2436                         btrfs_release_path(path);
2437                         goto again;
2438                 }
2439
2440                 btrfs_set_device_total_bytes(leaf, dev_item, dev_size);
2441                 btrfs_set_device_bytes_used(leaf, dev_item,
2442                                             mdres->alloced_chunks);
2443                 btrfs_mark_buffer_dirty(leaf);
2444                 path->slots[0]++;
2445         }
2446
2447         btrfs_free_path(path);
2448         ret = btrfs_commit_transaction(trans, fs_info->tree_root);
2449         if (ret) {
2450                 fprintf(stderr, "Commit failed %d\n", ret);
2451                 return ret;
2452         }
2453         return 0;
2454 }
2455
2456 static int restore_metadump(const char *input, FILE *out, int old_restore,
2457                             int num_threads, int fixup_offset,
2458                             const char *target, int multi_devices)
2459 {
2460         struct meta_cluster *cluster = NULL;
2461         struct meta_cluster_header *header;
2462         struct mdrestore_struct mdrestore;
2463         struct btrfs_fs_info *info = NULL;
2464         u64 bytenr = 0;
2465         FILE *in = NULL;
2466         int ret = 0;
2467
2468         if (!strcmp(input, "-")) {
2469                 in = stdin;
2470         } else {
2471                 in = fopen(input, "r");
2472                 if (!in) {
2473                         perror("unable to open metadump image");
2474                         return 1;
2475                 }
2476         }
2477
2478         /* NOTE: open with write mode */
2479         if (fixup_offset) {
2480                 BUG_ON(!target);
2481                 info = open_ctree_fs_info(target, 0, 0,
2482                                           OPEN_CTREE_WRITES |
2483                                           OPEN_CTREE_RESTORE |
2484                                           OPEN_CTREE_PARTIAL);
2485                 if (!info) {
2486                         fprintf(stderr, "%s: open ctree failed\n", __func__);
2487                         ret = -EIO;
2488                         goto failed_open;
2489                 }
2490         }
2491
2492         cluster = malloc(BLOCK_SIZE);
2493         if (!cluster) {
2494                 fprintf(stderr, "Error allocating cluster\n");
2495                 ret = -ENOMEM;
2496                 goto failed_info;
2497         }
2498
2499         ret = mdrestore_init(&mdrestore, in, out, old_restore, num_threads,
2500                              fixup_offset, info, multi_devices);
2501         if (ret) {
2502                 fprintf(stderr, "Error initing mdrestore %d\n", ret);
2503                 goto failed_cluster;
2504         }
2505
2506         if (!multi_devices && !old_restore) {
2507                 ret = build_chunk_tree(&mdrestore, cluster);
2508                 if (ret)
2509                         goto out;
2510                 if (!list_empty(&mdrestore.overlapping_chunks))
2511                         remap_overlapping_chunks(&mdrestore);
2512         }
2513
2514         if (in != stdin && fseek(in, 0, SEEK_SET)) {
2515                 fprintf(stderr, "Error seeking %d\n", errno);
2516                 goto out;
2517         }
2518
2519         while (!mdrestore.error) {
2520                 ret = fread(cluster, BLOCK_SIZE, 1, in);
2521                 if (!ret)
2522                         break;
2523
2524                 header = &cluster->header;
2525                 if (le64_to_cpu(header->magic) != HEADER_MAGIC ||
2526                     le64_to_cpu(header->bytenr) != bytenr) {
2527                         fprintf(stderr, "bad header in metadump image\n");
2528                         ret = -EIO;
2529                         break;
2530                 }
2531                 ret = add_cluster(cluster, &mdrestore, &bytenr);
2532                 if (ret) {
2533                         fprintf(stderr, "Error adding cluster\n");
2534                         break;
2535                 }
2536         }
2537         ret = wait_for_worker(&mdrestore);
2538
2539         if (!ret && !multi_devices && !old_restore) {
2540                 struct btrfs_root *root;
2541                 struct stat st;
2542
2543                 root = open_ctree_fd(fileno(out), target, 0,
2544                                           OPEN_CTREE_PARTIAL |
2545                                           OPEN_CTREE_WRITES |
2546                                           OPEN_CTREE_NO_DEVICES);
2547                 if (!root) {
2548                         fprintf(stderr, "unable to open %s\n", target);
2549                         ret = -EIO;
2550                         goto out;
2551                 }
2552                 info = root->fs_info;
2553
2554                 if (stat(target, &st)) {
2555                         fprintf(stderr, "statting %s failed\n", target);
2556                         close_ctree(info->chunk_root);
2557                         return 1;
2558                 }
2559
2560                 ret = fixup_devices(info, &mdrestore, st.st_size);
2561                 close_ctree(info->chunk_root);
2562                 if (ret)
2563                         goto out;
2564         }
2565 out:
2566         mdrestore_destroy(&mdrestore, num_threads);
2567 failed_cluster:
2568         free(cluster);
2569 failed_info:
2570         if (fixup_offset && info)
2571                 close_ctree(info->chunk_root);
2572 failed_open:
2573         if (in != stdin)
2574                 fclose(in);
2575         return ret;
2576 }
2577
2578 static int update_disk_super_on_device(struct btrfs_fs_info *info,
2579                                        const char *other_dev, u64 cur_devid)
2580 {
2581         struct btrfs_key key;
2582         struct extent_buffer *leaf;
2583         struct btrfs_path path;
2584         struct btrfs_dev_item *dev_item;
2585         struct btrfs_super_block *disk_super;
2586         char dev_uuid[BTRFS_UUID_SIZE];
2587         char fs_uuid[BTRFS_UUID_SIZE];
2588         u64 devid, type, io_align, io_width;
2589         u64 sector_size, total_bytes, bytes_used;
2590         char buf[BTRFS_SUPER_INFO_SIZE];
2591         int fp = -1;
2592         int ret;
2593
2594         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2595         key.type = BTRFS_DEV_ITEM_KEY;
2596         key.offset = cur_devid;
2597
2598         btrfs_init_path(&path);
2599         ret = btrfs_search_slot(NULL, info->chunk_root, &key, &path, 0, 0); 
2600         if (ret) {
2601                 fprintf(stderr, "ERROR: search key failed\n");
2602                 ret = -EIO;
2603                 goto out;
2604         }
2605
2606         leaf = path.nodes[0];
2607         dev_item = btrfs_item_ptr(leaf, path.slots[0],
2608                                   struct btrfs_dev_item);
2609
2610         devid = btrfs_device_id(leaf, dev_item);
2611         if (devid != cur_devid) {
2612                 printk("ERROR: devid %llu mismatch with %llu\n", devid, cur_devid);
2613                 ret = -EIO;
2614                 goto out;
2615         }
2616
2617         type = btrfs_device_type(leaf, dev_item);
2618         io_align = btrfs_device_io_align(leaf, dev_item);
2619         io_width = btrfs_device_io_width(leaf, dev_item);
2620         sector_size = btrfs_device_sector_size(leaf, dev_item);
2621         total_bytes = btrfs_device_total_bytes(leaf, dev_item);
2622         bytes_used = btrfs_device_bytes_used(leaf, dev_item);
2623         read_extent_buffer(leaf, dev_uuid, (unsigned long)btrfs_device_uuid(dev_item), BTRFS_UUID_SIZE);
2624         read_extent_buffer(leaf, fs_uuid, (unsigned long)btrfs_device_fsid(dev_item), BTRFS_UUID_SIZE);
2625
2626         btrfs_release_path(&path);
2627
2628         printk("update disk super on %s devid=%llu\n", other_dev, devid);
2629
2630         /* update other devices' super block */
2631         fp = open(other_dev, O_CREAT | O_RDWR, 0600);
2632         if (fp < 0) {
2633                 fprintf(stderr, "ERROR: could not open %s\n", other_dev);
2634                 ret = -EIO;
2635                 goto out;
2636         }
2637
2638         memcpy(buf, info->super_copy, BTRFS_SUPER_INFO_SIZE);
2639
2640         disk_super = (struct btrfs_super_block *)buf;
2641         dev_item = &disk_super->dev_item;
2642
2643         btrfs_set_stack_device_type(dev_item, type);
2644         btrfs_set_stack_device_id(dev_item, devid);
2645         btrfs_set_stack_device_total_bytes(dev_item, total_bytes);
2646         btrfs_set_stack_device_bytes_used(dev_item, bytes_used);
2647         btrfs_set_stack_device_io_align(dev_item, io_align);
2648         btrfs_set_stack_device_io_width(dev_item, io_width);
2649         btrfs_set_stack_device_sector_size(dev_item, sector_size);
2650         memcpy(dev_item->uuid, dev_uuid, BTRFS_UUID_SIZE);
2651         memcpy(dev_item->fsid, fs_uuid, BTRFS_UUID_SIZE);
2652         csum_block((u8 *)buf, BTRFS_SUPER_INFO_SIZE);
2653
2654         ret = pwrite64(fp, buf, BTRFS_SUPER_INFO_SIZE, BTRFS_SUPER_INFO_OFFSET);
2655         if (ret != BTRFS_SUPER_INFO_SIZE) {
2656                 if (ret < 0)
2657                         fprintf(stderr, "ERROR: cannot write superblock: %s\n", strerror(ret));
2658                 else
2659                         fprintf(stderr, "ERROR: cannot write superblock\n");
2660                 ret = -EIO;
2661                 goto out;
2662         }
2663
2664         write_backup_supers(fp, (u8 *)buf);
2665
2666 out:
2667         if (fp != -1)
2668                 close(fp);
2669         return ret;
2670 }
2671
2672 static void print_usage(int ret)
2673 {
2674         fprintf(stderr, "usage: btrfs-image [options] source target\n");
2675         fprintf(stderr, "\t-r      \trestore metadump image\n");
2676         fprintf(stderr, "\t-c value\tcompression level (0 ~ 9)\n");
2677         fprintf(stderr, "\t-t value\tnumber of threads (1 ~ 32)\n");
2678         fprintf(stderr, "\t-o      \tdon't mess with the chunk tree when restoring\n");
2679         fprintf(stderr, "\t-s      \tsanitize file names, use once to just use garbage, use twice if you want crc collisions\n");
2680         fprintf(stderr, "\t-w      \twalk all trees instead of using extent tree, do this if your extent tree is broken\n");
2681         fprintf(stderr, "\t-m      \trestore for multiple devices\n");
2682         fprintf(stderr, "\n");
2683         fprintf(stderr, "\tIn the dump mode, source is the btrfs device and target is the output file (use '-' for stdout).\n");
2684         fprintf(stderr, "\tIn the restore mode, source is the dumped image and target is the btrfs device/file.\n");
2685         exit(ret);
2686 }
2687
2688 int main(int argc, char *argv[])
2689 {
2690         char *source;
2691         char *target;
2692         u64 num_threads = 0;
2693         u64 compress_level = 0;
2694         int create = 1;
2695         int old_restore = 0;
2696         int walk_trees = 0;
2697         int multi_devices = 0;
2698         int ret;
2699         int sanitize = 0;
2700         int dev_cnt = 0;
2701         int usage_error = 0;
2702         FILE *out;
2703
2704         while (1) {
2705                 static const struct option long_options[] = {
2706                         { "help", no_argument, NULL, GETOPT_VAL_HELP},
2707                         { NULL, 0, NULL, 0 }
2708                 };
2709                 int c = getopt_long(argc, argv, "rc:t:oswm", long_options, NULL);
2710                 if (c < 0)
2711                         break;
2712                 switch (c) {
2713                 case 'r':
2714                         create = 0;
2715                         break;
2716                 case 't':
2717                         num_threads = arg_strtou64(optarg);
2718                         if (num_threads > 32)
2719                                 print_usage(1);
2720                         break;
2721                 case 'c':
2722                         compress_level = arg_strtou64(optarg);
2723                         if (compress_level > 9)
2724                                 print_usage(1);
2725                         break;
2726                 case 'o':
2727                         old_restore = 1;
2728                         break;
2729                 case 's':
2730                         sanitize++;
2731                         break;
2732                 case 'w':
2733                         walk_trees = 1;
2734                         break;
2735                 case 'm':
2736                         create = 0;
2737                         multi_devices = 1;
2738                         break;
2739                         case GETOPT_VAL_HELP:
2740                 default:
2741                         print_usage(c != GETOPT_VAL_HELP);
2742                 }
2743         }
2744
2745         argc = argc - optind;
2746         set_argv0(argv);
2747         if (check_argc_min(argc, 2))
2748                 print_usage(1);
2749
2750         dev_cnt = argc - 1;
2751
2752         if (create) {
2753                 if (old_restore) {
2754                         fprintf(stderr, "Usage error: create and restore cannot be used at the same time\n");
2755                         usage_error++;
2756                 }
2757         } else {
2758                 if (walk_trees || sanitize || compress_level) {
2759                         fprintf(stderr, "Usage error: use -w, -s, -c options for restore makes no sense\n");
2760                         usage_error++;
2761                 }
2762                 if (multi_devices && dev_cnt < 2) {
2763                         fprintf(stderr, "Usage error: not enough devices specified for -m option\n");
2764                         usage_error++;
2765                 }
2766                 if (!multi_devices && dev_cnt != 1) {
2767                         fprintf(stderr, "Usage error: accepts only 1 device without -m option\n");
2768                         usage_error++;
2769                 }
2770         }
2771
2772         if (usage_error)
2773                 print_usage(1);
2774
2775         source = argv[optind];
2776         target = argv[optind + 1];
2777
2778         if (create && !strcmp(target, "-")) {
2779                 out = stdout;
2780         } else {
2781                 out = fopen(target, "w+");
2782                 if (!out) {
2783                         perror("unable to create target file");
2784                         exit(1);
2785                 }
2786         }
2787
2788         if (compress_level > 0 || create == 0) {
2789                 if (num_threads == 0) {
2790                         long tmp = sysconf(_SC_NPROCESSORS_ONLN);
2791
2792                         if (tmp <= 0)
2793                                 tmp = 1;
2794                         num_threads = tmp;
2795                 }
2796         } else {
2797                 num_threads = 0;
2798         }
2799
2800         if (create) {
2801                 ret = check_mounted(source);
2802                 if (ret < 0) {
2803                         fprintf(stderr, "Could not check mount status: %s\n",
2804                                 strerror(-ret));
2805                         exit(1);
2806                 } else if (ret)
2807                         fprintf(stderr,
2808                 "WARNING: The device is mounted. Make sure the filesystem is quiescent.\n");
2809
2810                 ret = create_metadump(source, out, num_threads,
2811                                       compress_level, sanitize, walk_trees);
2812         } else {
2813                 ret = restore_metadump(source, out, old_restore, num_threads,
2814                                        0, target, multi_devices);
2815         }
2816         if (ret) {
2817                 printk("%s failed (%s)\n", (create) ? "create" : "restore",
2818                        strerror(errno));
2819                 goto out;
2820         }
2821
2822          /* extended support for multiple devices */
2823         if (!create && multi_devices) {
2824                 struct btrfs_fs_info *info;
2825                 u64 total_devs;
2826                 int i;
2827
2828                 info = open_ctree_fs_info(target, 0, 0,
2829                                           OPEN_CTREE_PARTIAL |
2830                                           OPEN_CTREE_RESTORE);
2831                 if (!info) {
2832                         int e = errno;
2833                         fprintf(stderr, "unable to open %s error = %s\n",
2834                                 target, strerror(e));
2835                         return 1;
2836                 }
2837
2838                 total_devs = btrfs_super_num_devices(info->super_copy);
2839                 if (total_devs != dev_cnt) {
2840                         printk("it needs %llu devices but has only %d\n",
2841                                 total_devs, dev_cnt);
2842                         close_ctree(info->chunk_root);
2843                         goto out;
2844                 }
2845
2846                 /* update super block on other disks */
2847                 for (i = 2; i <= dev_cnt; i++) {
2848                         ret = update_disk_super_on_device(info,
2849                                         argv[optind + i], (u64)i);
2850                         if (ret) {
2851                                 printk("update disk super failed devid=%d (error=%d)\n",
2852                                         i, ret);
2853                                 close_ctree(info->chunk_root);
2854                                 exit(1);
2855                         }
2856                 }
2857
2858                 close_ctree(info->chunk_root);
2859
2860                 /* fix metadata block to map correct chunk */
2861                 ret = restore_metadump(source, out, 0, num_threads, 1,
2862                                        target, 1);
2863                 if (ret) {
2864                         fprintf(stderr, "fix metadump failed (error=%d)\n",
2865                                 ret);
2866                         exit(1);
2867                 }
2868         }
2869 out:
2870         if (out == stdout) {
2871                 fflush(out);
2872         } else {
2873                 fclose(out);
2874                 if (ret && create) {
2875                         int unlink_ret;
2876
2877                         unlink_ret = unlink(target);
2878                         if (unlink_ret)
2879                                 fprintf(stderr,
2880                                         "unlink output file failed : %s\n",
2881                                         strerror(errno));
2882                 }
2883         }
2884
2885         btrfs_close_all_devices();
2886
2887         return !!ret;
2888 }