btrfs-progs: typo review of strings and comments
[platform/upstream/btrfs-progs.git] / btrfs-image.c
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <pthread.h>
20 #include <stdio.h>
21 #include <stdlib.h>
22 #include <sys/types.h>
23 #include <sys/stat.h>
24 #include <fcntl.h>
25 #include <unistd.h>
26 #include <dirent.h>
27 #include <zlib.h>
28 #include <getopt.h>
29
30 #include "kerncompat.h"
31 #include "crc32c.h"
32 #include "ctree.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "utils.h"
36 #include "volumes.h"
37 #include "extent_io.h"
38
39 #define HEADER_MAGIC            0xbd5c25e27295668bULL
40 #define MAX_PENDING_SIZE        (256 * 1024)
41 #define BLOCK_SIZE              1024
42 #define BLOCK_MASK              (BLOCK_SIZE - 1)
43
44 #define COMPRESS_NONE           0
45 #define COMPRESS_ZLIB           1
46
47 struct meta_cluster_item {
48         __le64 bytenr;
49         __le32 size;
50 } __attribute__ ((__packed__));
51
52 struct meta_cluster_header {
53         __le64 magic;
54         __le64 bytenr;
55         __le32 nritems;
56         u8 compress;
57 } __attribute__ ((__packed__));
58
59 /* cluster header + index items + buffers */
60 struct meta_cluster {
61         struct meta_cluster_header header;
62         struct meta_cluster_item items[];
63 } __attribute__ ((__packed__));
64
65 #define ITEMS_PER_CLUSTER ((BLOCK_SIZE - sizeof(struct meta_cluster)) / \
66                            sizeof(struct meta_cluster_item))
67
68 struct fs_chunk {
69         u64 logical;
70         u64 physical;
71         u64 bytes;
72         struct rb_node l;
73         struct rb_node p;
74         struct list_head list;
75 };
76
77 struct async_work {
78         struct list_head list;
79         struct list_head ordered;
80         u64 start;
81         u64 size;
82         u8 *buffer;
83         size_t bufsize;
84         int error;
85 };
86
87 struct metadump_struct {
88         struct btrfs_root *root;
89         FILE *out;
90
91         struct meta_cluster *cluster;
92
93         pthread_t *threads;
94         size_t num_threads;
95         pthread_mutex_t mutex;
96         pthread_cond_t cond;
97         struct rb_root name_tree;
98
99         struct list_head list;
100         struct list_head ordered;
101         size_t num_items;
102         size_t num_ready;
103
104         u64 pending_start;
105         u64 pending_size;
106
107         int compress_level;
108         int done;
109         int data;
110         int sanitize_names;
111
112         int error;
113 };
114
115 struct name {
116         struct rb_node n;
117         char *val;
118         char *sub;
119         u32 len;
120 };
121
122 struct mdrestore_struct {
123         FILE *in;
124         FILE *out;
125
126         pthread_t *threads;
127         size_t num_threads;
128         pthread_mutex_t mutex;
129         pthread_cond_t cond;
130
131         struct rb_root chunk_tree;
132         struct rb_root physical_tree;
133         struct list_head list;
134         struct list_head overlapping_chunks;
135         size_t num_items;
136         u32 nodesize;
137         u64 devid;
138         u64 alloced_chunks;
139         u64 last_physical_offset;
140         u8 uuid[BTRFS_UUID_SIZE];
141         u8 fsid[BTRFS_FSID_SIZE];
142
143         int compress_method;
144         int done;
145         int error;
146         int old_restore;
147         int fixup_offset;
148         int multi_devices;
149         int clear_space_cache;
150         struct btrfs_fs_info *info;
151 };
152
153 static int search_for_chunk_blocks(struct mdrestore_struct *mdres,
154                                    u64 search, u64 cluster_bytenr);
155 static struct extent_buffer *alloc_dummy_eb(u64 bytenr, u32 size);
156
157 static void csum_block(u8 *buf, size_t len)
158 {
159         char result[BTRFS_CRC32_SIZE];
160         u32 crc = ~(u32)0;
161         crc = crc32c(crc, buf + BTRFS_CSUM_SIZE, len - BTRFS_CSUM_SIZE);
162         btrfs_csum_final(crc, result);
163         memcpy(buf, result, BTRFS_CRC32_SIZE);
164 }
165
166 static int has_name(struct btrfs_key *key)
167 {
168         switch (key->type) {
169         case BTRFS_DIR_ITEM_KEY:
170         case BTRFS_DIR_INDEX_KEY:
171         case BTRFS_INODE_REF_KEY:
172         case BTRFS_INODE_EXTREF_KEY:
173         case BTRFS_XATTR_ITEM_KEY:
174                 return 1;
175         default:
176                 break;
177         }
178
179         return 0;
180 }
181
182 static char *generate_garbage(u32 name_len)
183 {
184         char *buf = malloc(name_len);
185         int i;
186
187         if (!buf)
188                 return NULL;
189
190         for (i = 0; i < name_len; i++) {
191                 char c = rand() % 94 + 33;
192
193                 if (c == '/')
194                         c++;
195                 buf[i] = c;
196         }
197
198         return buf;
199 }
200
201 static int name_cmp(struct rb_node *a, struct rb_node *b, int fuzz)
202 {
203         struct name *entry = rb_entry(a, struct name, n);
204         struct name *ins = rb_entry(b, struct name, n);
205         u32 len;
206
207         len = min(ins->len, entry->len);
208         return memcmp(ins->val, entry->val, len);
209 }
210
211 static int chunk_cmp(struct rb_node *a, struct rb_node *b, int fuzz)
212 {
213         struct fs_chunk *entry = rb_entry(a, struct fs_chunk, l);
214         struct fs_chunk *ins = rb_entry(b, struct fs_chunk, l);
215
216         if (fuzz && ins->logical >= entry->logical &&
217             ins->logical < entry->logical + entry->bytes)
218                 return 0;
219
220         if (ins->logical < entry->logical)
221                 return -1;
222         else if (ins->logical > entry->logical)
223                 return 1;
224         return 0;
225 }
226
227 static int physical_cmp(struct rb_node *a, struct rb_node *b, int fuzz)
228 {
229         struct fs_chunk *entry = rb_entry(a, struct fs_chunk, p);
230         struct fs_chunk *ins = rb_entry(b, struct fs_chunk, p);
231
232         if (fuzz && ins->physical >= entry->physical &&
233             ins->physical < entry->physical + entry->bytes)
234                 return 0;
235
236         if (fuzz && entry->physical >= ins->physical &&
237             entry->physical < ins->physical + ins->bytes)
238                 return 0;
239
240         if (ins->physical < entry->physical)
241                 return -1;
242         else if (ins->physical > entry->physical)
243                 return 1;
244         return 0;
245 }
246
247 static void tree_insert(struct rb_root *root, struct rb_node *ins,
248                         int (*cmp)(struct rb_node *a, struct rb_node *b,
249                                    int fuzz))
250 {
251         struct rb_node ** p = &root->rb_node;
252         struct rb_node * parent = NULL;
253         int dir;
254
255         while(*p) {
256                 parent = *p;
257
258                 dir = cmp(*p, ins, 1);
259                 if (dir < 0)
260                         p = &(*p)->rb_left;
261                 else if (dir > 0)
262                         p = &(*p)->rb_right;
263                 else
264                         BUG();
265         }
266
267         rb_link_node(ins, parent, p);
268         rb_insert_color(ins, root);
269 }
270
271 static struct rb_node *tree_search(struct rb_root *root,
272                                    struct rb_node *search,
273                                    int (*cmp)(struct rb_node *a,
274                                               struct rb_node *b, int fuzz),
275                                    int fuzz)
276 {
277         struct rb_node *n = root->rb_node;
278         int dir;
279
280         while (n) {
281                 dir = cmp(n, search, fuzz);
282                 if (dir < 0)
283                         n = n->rb_left;
284                 else if (dir > 0)
285                         n = n->rb_right;
286                 else
287                         return n;
288         }
289
290         return NULL;
291 }
292
293 static u64 logical_to_physical(struct mdrestore_struct *mdres, u64 logical, u64 *size)
294 {
295         struct fs_chunk *fs_chunk;
296         struct rb_node *entry;
297         struct fs_chunk search;
298         u64 offset;
299
300         if (logical == BTRFS_SUPER_INFO_OFFSET)
301                 return logical;
302
303         search.logical = logical;
304         entry = tree_search(&mdres->chunk_tree, &search.l, chunk_cmp, 1);
305         if (!entry) {
306                 if (mdres->in != stdin)
307                         printf("Couldn't find a chunk, using logical\n");
308                 return logical;
309         }
310         fs_chunk = rb_entry(entry, struct fs_chunk, l);
311         if (fs_chunk->logical > logical || fs_chunk->logical + fs_chunk->bytes < logical)
312                 BUG();
313         offset = search.logical - fs_chunk->logical;
314
315         *size = min(*size, fs_chunk->bytes + fs_chunk->logical - logical);
316         return fs_chunk->physical + offset;
317 }
318
319
320 static char *find_collision(struct metadump_struct *md, char *name,
321                             u32 name_len)
322 {
323         struct name *val;
324         struct rb_node *entry;
325         struct name tmp;
326         unsigned long checksum;
327         int found = 0;
328         int i;
329
330         tmp.val = name;
331         tmp.len = name_len;
332         entry = tree_search(&md->name_tree, &tmp.n, name_cmp, 0);
333         if (entry) {
334                 val = rb_entry(entry, struct name, n);
335                 free(name);
336                 return val->sub;
337         }
338
339         val = malloc(sizeof(struct name));
340         if (!val) {
341                 fprintf(stderr, "Couldn't sanitize name, enomem\n");
342                 free(name);
343                 return NULL;
344         }
345
346         memset(val, 0, sizeof(*val));
347
348         val->val = name;
349         val->len = name_len;
350         val->sub = malloc(name_len);
351         if (!val->sub) {
352                 fprintf(stderr, "Couldn't sanitize name, enomem\n");
353                 free(val);
354                 free(name);
355                 return NULL;
356         }
357
358         checksum = crc32c(~1, val->val, name_len);
359         memset(val->sub, ' ', name_len);
360         i = 0;
361         while (1) {
362                 if (crc32c(~1, val->sub, name_len) == checksum &&
363                     memcmp(val->sub, val->val, val->len)) {
364                         found = 1;
365                         break;
366                 }
367
368                 if (val->sub[i] == 127) {
369                         do {
370                                 i++;
371                                 if (i >= name_len)
372                                         break;
373                         } while (val->sub[i] == 127);
374
375                         if (i >= name_len)
376                                 break;
377                         val->sub[i]++;
378                         if (val->sub[i] == '/')
379                                 val->sub[i]++;
380                         memset(val->sub, ' ', i);
381                         i = 0;
382                         continue;
383                 } else {
384                         val->sub[i]++;
385                         if (val->sub[i] == '/')
386                                 val->sub[i]++;
387                 }
388         }
389
390         if (!found) {
391                 fprintf(stderr, "Couldn't find a collision for '%.*s', "
392                         "generating normal garbage, it won't match indexes\n",
393                         val->len, val->val);
394                 for (i = 0; i < name_len; i++) {
395                         char c = rand() % 94 + 33;
396
397                         if (c == '/')
398                                 c++;
399                         val->sub[i] = c;
400                 }
401         }
402
403         tree_insert(&md->name_tree, &val->n, name_cmp);
404         return val->sub;
405 }
406
407 static void sanitize_dir_item(struct metadump_struct *md, struct extent_buffer *eb,
408                               int slot)
409 {
410         struct btrfs_dir_item *dir_item;
411         char *buf;
412         char *garbage;
413         unsigned long name_ptr;
414         u32 total_len;
415         u32 cur = 0;
416         u32 this_len;
417         u32 name_len;
418         int free_garbage = (md->sanitize_names == 1);
419
420         dir_item = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
421         total_len = btrfs_item_size_nr(eb, slot);
422         while (cur < total_len) {
423                 this_len = sizeof(*dir_item) +
424                         btrfs_dir_name_len(eb, dir_item) +
425                         btrfs_dir_data_len(eb, dir_item);
426                 name_ptr = (unsigned long)(dir_item + 1);
427                 name_len = btrfs_dir_name_len(eb, dir_item);
428
429                 if (md->sanitize_names > 1) {
430                         buf = malloc(name_len);
431                         if (!buf) {
432                                 fprintf(stderr, "Couldn't sanitize name, "
433                                         "enomem\n");
434                                 return;
435                         }
436                         read_extent_buffer(eb, buf, name_ptr, name_len);
437                         garbage = find_collision(md, buf, name_len);
438                 } else {
439                         garbage = generate_garbage(name_len);
440                 }
441                 if (!garbage) {
442                         fprintf(stderr, "Couldn't sanitize name, enomem\n");
443                         return;
444                 }
445                 write_extent_buffer(eb, garbage, name_ptr, name_len);
446                 cur += this_len;
447                 dir_item = (struct btrfs_dir_item *)((char *)dir_item +
448                                                      this_len);
449                 if (free_garbage)
450                         free(garbage);
451         }
452 }
453
454 static void sanitize_inode_ref(struct metadump_struct *md,
455                                struct extent_buffer *eb, int slot, int ext)
456 {
457         struct btrfs_inode_extref *extref;
458         struct btrfs_inode_ref *ref;
459         char *garbage, *buf;
460         unsigned long ptr;
461         unsigned long name_ptr;
462         u32 item_size;
463         u32 cur_offset = 0;
464         int len;
465         int free_garbage = (md->sanitize_names == 1);
466
467         item_size = btrfs_item_size_nr(eb, slot);
468         ptr = btrfs_item_ptr_offset(eb, slot);
469         while (cur_offset < item_size) {
470                 if (ext) {
471                         extref = (struct btrfs_inode_extref *)(ptr +
472                                                                cur_offset);
473                         name_ptr = (unsigned long)(&extref->name);
474                         len = btrfs_inode_extref_name_len(eb, extref);
475                         cur_offset += sizeof(*extref);
476                 } else {
477                         ref = (struct btrfs_inode_ref *)(ptr + cur_offset);
478                         len = btrfs_inode_ref_name_len(eb, ref);
479                         name_ptr = (unsigned long)(ref + 1);
480                         cur_offset += sizeof(*ref);
481                 }
482                 cur_offset += len;
483
484                 if (md->sanitize_names > 1) {
485                         buf = malloc(len);
486                         if (!buf) {
487                                 fprintf(stderr, "Couldn't sanitize name, "
488                                         "enomem\n");
489                                 return;
490                         }
491                         read_extent_buffer(eb, buf, name_ptr, len);
492                         garbage = find_collision(md, buf, len);
493                 } else {
494                         garbage = generate_garbage(len);
495                 }
496
497                 if (!garbage) {
498                         fprintf(stderr, "Couldn't sanitize name, enomem\n");
499                         return;
500                 }
501                 write_extent_buffer(eb, garbage, name_ptr, len);
502                 if (free_garbage)
503                         free(garbage);
504         }
505 }
506
507 static void sanitize_xattr(struct metadump_struct *md,
508                            struct extent_buffer *eb, int slot)
509 {
510         struct btrfs_dir_item *dir_item;
511         unsigned long data_ptr;
512         u32 data_len;
513
514         dir_item = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
515         data_len = btrfs_dir_data_len(eb, dir_item);
516
517         data_ptr = (unsigned long)((char *)(dir_item + 1) +
518                                    btrfs_dir_name_len(eb, dir_item));
519         memset_extent_buffer(eb, 0, data_ptr, data_len);
520 }
521
522 static void sanitize_name(struct metadump_struct *md, u8 *dst,
523                           struct extent_buffer *src, struct btrfs_key *key,
524                           int slot)
525 {
526         struct extent_buffer *eb;
527
528         eb = alloc_dummy_eb(src->start, src->len);
529         if (!eb) {
530                 fprintf(stderr, "Couldn't sanitize name, no memory\n");
531                 return;
532         }
533
534         memcpy(eb->data, dst, eb->len);
535
536         switch (key->type) {
537         case BTRFS_DIR_ITEM_KEY:
538         case BTRFS_DIR_INDEX_KEY:
539                 sanitize_dir_item(md, eb, slot);
540                 break;
541         case BTRFS_INODE_REF_KEY:
542                 sanitize_inode_ref(md, eb, slot, 0);
543                 break;
544         case BTRFS_INODE_EXTREF_KEY:
545                 sanitize_inode_ref(md, eb, slot, 1);
546                 break;
547         case BTRFS_XATTR_ITEM_KEY:
548                 sanitize_xattr(md, eb, slot);
549                 break;
550         default:
551                 break;
552         }
553
554         memcpy(dst, eb->data, eb->len);
555         free(eb);
556 }
557
558 /*
559  * zero inline extents and csum items
560  */
561 static void zero_items(struct metadump_struct *md, u8 *dst,
562                        struct extent_buffer *src)
563 {
564         struct btrfs_file_extent_item *fi;
565         struct btrfs_item *item;
566         struct btrfs_key key;
567         u32 nritems = btrfs_header_nritems(src);
568         size_t size;
569         unsigned long ptr;
570         int i, extent_type;
571
572         for (i = 0; i < nritems; i++) {
573                 item = btrfs_item_nr(i);
574                 btrfs_item_key_to_cpu(src, &key, i);
575                 if (key.type == BTRFS_CSUM_ITEM_KEY) {
576                         size = btrfs_item_size_nr(src, i);
577                         memset(dst + btrfs_leaf_data(src) +
578                                btrfs_item_offset_nr(src, i), 0, size);
579                         continue;
580                 }
581
582                 if (md->sanitize_names && has_name(&key)) {
583                         sanitize_name(md, dst, src, &key, i);
584                         continue;
585                 }
586
587                 if (key.type != BTRFS_EXTENT_DATA_KEY)
588                         continue;
589
590                 fi = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
591                 extent_type = btrfs_file_extent_type(src, fi);
592                 if (extent_type != BTRFS_FILE_EXTENT_INLINE)
593                         continue;
594
595                 ptr = btrfs_file_extent_inline_start(fi);
596                 size = btrfs_file_extent_inline_item_len(src, item);
597                 memset(dst + ptr, 0, size);
598         }
599 }
600
601 /*
602  * copy buffer and zero useless data in the buffer
603  */
604 static void copy_buffer(struct metadump_struct *md, u8 *dst,
605                         struct extent_buffer *src)
606 {
607         int level;
608         size_t size;
609         u32 nritems;
610
611         memcpy(dst, src->data, src->len);
612         if (src->start == BTRFS_SUPER_INFO_OFFSET)
613                 return;
614
615         level = btrfs_header_level(src);
616         nritems = btrfs_header_nritems(src);
617
618         if (nritems == 0) {
619                 size = sizeof(struct btrfs_header);
620                 memset(dst + size, 0, src->len - size);
621         } else if (level == 0) {
622                 size = btrfs_leaf_data(src) +
623                         btrfs_item_offset_nr(src, nritems - 1) -
624                         btrfs_item_nr_offset(nritems);
625                 memset(dst + btrfs_item_nr_offset(nritems), 0, size);
626                 zero_items(md, dst, src);
627         } else {
628                 size = offsetof(struct btrfs_node, ptrs) +
629                         sizeof(struct btrfs_key_ptr) * nritems;
630                 memset(dst + size, 0, src->len - size);
631         }
632         csum_block(dst, src->len);
633 }
634
635 static void *dump_worker(void *data)
636 {
637         struct metadump_struct *md = (struct metadump_struct *)data;
638         struct async_work *async;
639         int ret;
640
641         while (1) {
642                 pthread_mutex_lock(&md->mutex);
643                 while (list_empty(&md->list)) {
644                         if (md->done) {
645                                 pthread_mutex_unlock(&md->mutex);
646                                 goto out;
647                         }
648                         pthread_cond_wait(&md->cond, &md->mutex);
649                 }
650                 async = list_entry(md->list.next, struct async_work, list);
651                 list_del_init(&async->list);
652                 pthread_mutex_unlock(&md->mutex);
653
654                 if (md->compress_level > 0) {
655                         u8 *orig = async->buffer;
656
657                         async->bufsize = compressBound(async->size);
658                         async->buffer = malloc(async->bufsize);
659                         if (!async->buffer) {
660                                 fprintf(stderr, "Error allocating buffer\n");
661                                 pthread_mutex_lock(&md->mutex);
662                                 if (!md->error)
663                                         md->error = -ENOMEM;
664                                 pthread_mutex_unlock(&md->mutex);
665                                 pthread_exit(NULL);
666                         }
667
668                         ret = compress2(async->buffer,
669                                          (unsigned long *)&async->bufsize,
670                                          orig, async->size, md->compress_level);
671
672                         if (ret != Z_OK)
673                                 async->error = 1;
674
675                         free(orig);
676                 }
677
678                 pthread_mutex_lock(&md->mutex);
679                 md->num_ready++;
680                 pthread_mutex_unlock(&md->mutex);
681         }
682 out:
683         pthread_exit(NULL);
684 }
685
686 static void meta_cluster_init(struct metadump_struct *md, u64 start)
687 {
688         struct meta_cluster_header *header;
689
690         md->num_items = 0;
691         md->num_ready = 0;
692         header = &md->cluster->header;
693         header->magic = cpu_to_le64(HEADER_MAGIC);
694         header->bytenr = cpu_to_le64(start);
695         header->nritems = cpu_to_le32(0);
696         header->compress = md->compress_level > 0 ?
697                            COMPRESS_ZLIB : COMPRESS_NONE;
698 }
699
700 static void metadump_destroy(struct metadump_struct *md, int num_threads)
701 {
702         int i;
703         struct rb_node *n;
704
705         pthread_mutex_lock(&md->mutex);
706         md->done = 1;
707         pthread_cond_broadcast(&md->cond);
708         pthread_mutex_unlock(&md->mutex);
709
710         for (i = 0; i < num_threads; i++)
711                 pthread_join(md->threads[i], NULL);
712
713         pthread_cond_destroy(&md->cond);
714         pthread_mutex_destroy(&md->mutex);
715
716         while ((n = rb_first(&md->name_tree))) {
717                 struct name *name;
718
719                 name = rb_entry(n, struct name, n);
720                 rb_erase(n, &md->name_tree);
721                 free(name->val);
722                 free(name->sub);
723                 free(name);
724         }
725         free(md->threads);
726         free(md->cluster);
727 }
728
729 static int metadump_init(struct metadump_struct *md, struct btrfs_root *root,
730                          FILE *out, int num_threads, int compress_level,
731                          int sanitize_names)
732 {
733         int i, ret = 0;
734
735         memset(md, 0, sizeof(*md));
736         md->cluster = calloc(1, BLOCK_SIZE);
737         if (!md->cluster)
738                 return -ENOMEM;
739         md->threads = calloc(num_threads, sizeof(pthread_t));
740         if (!md->threads) {
741                 free(md->cluster);
742                 return -ENOMEM;
743         }
744         INIT_LIST_HEAD(&md->list);
745         INIT_LIST_HEAD(&md->ordered);
746         md->root = root;
747         md->out = out;
748         md->pending_start = (u64)-1;
749         md->compress_level = compress_level;
750         md->sanitize_names = sanitize_names;
751         if (sanitize_names > 1)
752                 crc32c_optimization_init();
753
754         md->name_tree.rb_node = NULL;
755         md->num_threads = num_threads;
756         pthread_cond_init(&md->cond, NULL);
757         pthread_mutex_init(&md->mutex, NULL);
758         meta_cluster_init(md, 0);
759
760         if (!num_threads)
761                 return 0;
762
763         for (i = 0; i < num_threads; i++) {
764                 ret = pthread_create(md->threads + i, NULL, dump_worker, md);
765                 if (ret)
766                         break;
767         }
768
769         if (ret)
770                 metadump_destroy(md, i + 1);
771
772         return ret;
773 }
774
775 static int write_zero(FILE *out, size_t size)
776 {
777         static char zero[BLOCK_SIZE];
778         return fwrite(zero, size, 1, out);
779 }
780
781 static int write_buffers(struct metadump_struct *md, u64 *next)
782 {
783         struct meta_cluster_header *header = &md->cluster->header;
784         struct meta_cluster_item *item;
785         struct async_work *async;
786         u64 bytenr = 0;
787         u32 nritems = 0;
788         int ret;
789         int err = 0;
790
791         if (list_empty(&md->ordered))
792                 goto out;
793
794         /* wait until all buffers are compressed */
795         while (!err && md->num_items > md->num_ready) {
796                 struct timespec ts = {
797                         .tv_sec = 0,
798                         .tv_nsec = 10000000,
799                 };
800                 pthread_mutex_unlock(&md->mutex);
801                 nanosleep(&ts, NULL);
802                 pthread_mutex_lock(&md->mutex);
803                 err = md->error;
804         }
805
806         if (err) {
807                 fprintf(stderr, "One of the threads errored out %s\n",
808                                 strerror(err));
809                 goto out;
810         }
811
812         /* setup and write index block */
813         list_for_each_entry(async, &md->ordered, ordered) {
814                 item = md->cluster->items + nritems;
815                 item->bytenr = cpu_to_le64(async->start);
816                 item->size = cpu_to_le32(async->bufsize);
817                 nritems++;
818         }
819         header->nritems = cpu_to_le32(nritems);
820
821         ret = fwrite(md->cluster, BLOCK_SIZE, 1, md->out);
822         if (ret != 1) {
823                 fprintf(stderr, "Error writing out cluster: %d\n", errno);
824                 return -EIO;
825         }
826
827         /* write buffers */
828         bytenr += le64_to_cpu(header->bytenr) + BLOCK_SIZE;
829         while (!list_empty(&md->ordered)) {
830                 async = list_entry(md->ordered.next, struct async_work,
831                                    ordered);
832                 list_del_init(&async->ordered);
833
834                 bytenr += async->bufsize;
835                 if (!err)
836                         ret = fwrite(async->buffer, async->bufsize, 1,
837                                      md->out);
838                 if (ret != 1) {
839                         err = -EIO;
840                         ret = 0;
841                         fprintf(stderr, "Error writing out cluster: %d\n",
842                                 errno);
843                 }
844
845                 free(async->buffer);
846                 free(async);
847         }
848
849         /* zero unused space in the last block */
850         if (!err && bytenr & BLOCK_MASK) {
851                 size_t size = BLOCK_SIZE - (bytenr & BLOCK_MASK);
852
853                 bytenr += size;
854                 ret = write_zero(md->out, size);
855                 if (ret != 1) {
856                         fprintf(stderr, "Error zeroing out buffer: %d\n",
857                                 errno);
858                         err = -EIO;
859                 }
860         }
861 out:
862         *next = bytenr;
863         return err;
864 }
865
866 static int read_data_extent(struct metadump_struct *md,
867                             struct async_work *async)
868 {
869         struct btrfs_root *root = md->root;
870         u64 bytes_left = async->size;
871         u64 logical = async->start;
872         u64 offset = 0;
873         u64 read_len;
874         int num_copies;
875         int cur_mirror;
876         int ret;
877
878         num_copies = btrfs_num_copies(&root->fs_info->mapping_tree, logical,
879                                       bytes_left);
880
881         /* Try our best to read data, just like read_tree_block() */
882         for (cur_mirror = 0; cur_mirror < num_copies; cur_mirror++) {
883                 while (bytes_left) {
884                         read_len = bytes_left;
885                         ret = read_extent_data(root,
886                                         (char *)(async->buffer + offset),
887                                         logical, &read_len, cur_mirror);
888                         if (ret < 0)
889                                 break;
890                         offset += read_len;
891                         logical += read_len;
892                         bytes_left -= read_len;
893                 }
894         }
895         if (bytes_left)
896                 return -EIO;
897         return 0;
898 }
899
900 static int get_dev_fd(struct btrfs_root *root)
901 {
902         struct btrfs_device *dev;
903
904         dev = list_first_entry(&root->fs_info->fs_devices->devices,
905                                struct btrfs_device, dev_list);
906         return dev->fd;
907 }
908
909 static int flush_pending(struct metadump_struct *md, int done)
910 {
911         struct async_work *async = NULL;
912         struct extent_buffer *eb;
913         u64 blocksize = md->root->nodesize;
914         u64 start;
915         u64 size;
916         size_t offset;
917         int ret = 0;
918
919         if (md->pending_size) {
920                 async = calloc(1, sizeof(*async));
921                 if (!async)
922                         return -ENOMEM;
923
924                 async->start = md->pending_start;
925                 async->size = md->pending_size;
926                 async->bufsize = async->size;
927                 async->buffer = malloc(async->bufsize);
928                 if (!async->buffer) {
929                         free(async);
930                         return -ENOMEM;
931                 }
932                 offset = 0;
933                 start = async->start;
934                 size = async->size;
935
936                 if (md->data) {
937                         ret = read_data_extent(md, async);
938                         if (ret) {
939                                 free(async->buffer);
940                                 free(async);
941                                 return ret;
942                         }
943                 }
944
945                 /*
946                  * Balance can make the mapping not cover the super block, so
947                  * just copy directly from one of the devices.
948                  */
949                 if (start == BTRFS_SUPER_INFO_OFFSET) {
950                         int fd = get_dev_fd(md->root);
951
952                         ret = pread64(fd, async->buffer, size, start);
953                         if (ret < size) {
954                                 free(async->buffer);
955                                 free(async);
956                                 fprintf(stderr, "Error reading superblock\n");
957                                 return -EIO;
958                         }
959                         size = 0;
960                         ret = 0;
961                 }
962
963                 while (!md->data && size > 0) {
964                         u64 this_read = min(blocksize, size);
965                         eb = read_tree_block(md->root, start, this_read, 0);
966                         if (!extent_buffer_uptodate(eb)) {
967                                 free(async->buffer);
968                                 free(async);
969                                 fprintf(stderr,
970                                         "Error reading metadata block\n");
971                                 return -EIO;
972                         }
973                         copy_buffer(md, async->buffer + offset, eb);
974                         free_extent_buffer(eb);
975                         start += this_read;
976                         offset += this_read;
977                         size -= this_read;
978                 }
979
980                 md->pending_start = (u64)-1;
981                 md->pending_size = 0;
982         } else if (!done) {
983                 return 0;
984         }
985
986         pthread_mutex_lock(&md->mutex);
987         if (async) {
988                 list_add_tail(&async->ordered, &md->ordered);
989                 md->num_items++;
990                 if (md->compress_level > 0) {
991                         list_add_tail(&async->list, &md->list);
992                         pthread_cond_signal(&md->cond);
993                 } else {
994                         md->num_ready++;
995                 }
996         }
997         if (md->num_items >= ITEMS_PER_CLUSTER || done) {
998                 ret = write_buffers(md, &start);
999                 if (ret)
1000                         fprintf(stderr, "Error writing buffers %d\n",
1001                                 errno);
1002                 else
1003                         meta_cluster_init(md, start);
1004         }
1005         pthread_mutex_unlock(&md->mutex);
1006         return ret;
1007 }
1008
1009 static int add_extent(u64 start, u64 size, struct metadump_struct *md,
1010                       int data)
1011 {
1012         int ret;
1013         if (md->data != data ||
1014             md->pending_size + size > MAX_PENDING_SIZE ||
1015             md->pending_start + md->pending_size != start) {
1016                 ret = flush_pending(md, 0);
1017                 if (ret)
1018                         return ret;
1019                 md->pending_start = start;
1020         }
1021         readahead_tree_block(md->root, start, size, 0);
1022         md->pending_size += size;
1023         md->data = data;
1024         return 0;
1025 }
1026
1027 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1028 static int is_tree_block(struct btrfs_root *extent_root,
1029                          struct btrfs_path *path, u64 bytenr)
1030 {
1031         struct extent_buffer *leaf;
1032         struct btrfs_key key;
1033         u64 ref_objectid;
1034         int ret;
1035
1036         leaf = path->nodes[0];
1037         while (1) {
1038                 struct btrfs_extent_ref_v0 *ref_item;
1039                 path->slots[0]++;
1040                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1041                         ret = btrfs_next_leaf(extent_root, path);
1042                         if (ret < 0)
1043                                 return ret;
1044                         if (ret > 0)
1045                                 break;
1046                         leaf = path->nodes[0];
1047                 }
1048                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1049                 if (key.objectid != bytenr)
1050                         break;
1051                 if (key.type != BTRFS_EXTENT_REF_V0_KEY)
1052                         continue;
1053                 ref_item = btrfs_item_ptr(leaf, path->slots[0],
1054                                           struct btrfs_extent_ref_v0);
1055                 ref_objectid = btrfs_ref_objectid_v0(leaf, ref_item);
1056                 if (ref_objectid < BTRFS_FIRST_FREE_OBJECTID)
1057                         return 1;
1058                 break;
1059         }
1060         return 0;
1061 }
1062 #endif
1063
1064 static int copy_tree_blocks(struct btrfs_root *root, struct extent_buffer *eb,
1065                             struct metadump_struct *metadump, int root_tree)
1066 {
1067         struct extent_buffer *tmp;
1068         struct btrfs_root_item *ri;
1069         struct btrfs_key key;
1070         u64 bytenr;
1071         int level;
1072         int nritems = 0;
1073         int i = 0;
1074         int ret;
1075
1076         ret = add_extent(btrfs_header_bytenr(eb), root->nodesize, metadump, 0);
1077         if (ret) {
1078                 fprintf(stderr, "Error adding metadata block\n");
1079                 return ret;
1080         }
1081
1082         if (btrfs_header_level(eb) == 0 && !root_tree)
1083                 return 0;
1084
1085         level = btrfs_header_level(eb);
1086         nritems = btrfs_header_nritems(eb);
1087         for (i = 0; i < nritems; i++) {
1088                 if (level == 0) {
1089                         btrfs_item_key_to_cpu(eb, &key, i);
1090                         if (key.type != BTRFS_ROOT_ITEM_KEY)
1091                                 continue;
1092                         ri = btrfs_item_ptr(eb, i, struct btrfs_root_item);
1093                         bytenr = btrfs_disk_root_bytenr(eb, ri);
1094                         tmp = read_tree_block(root, bytenr, root->nodesize, 0);
1095                         if (!extent_buffer_uptodate(tmp)) {
1096                                 fprintf(stderr,
1097                                         "Error reading log root block\n");
1098                                 return -EIO;
1099                         }
1100                         ret = copy_tree_blocks(root, tmp, metadump, 0);
1101                         free_extent_buffer(tmp);
1102                         if (ret)
1103                                 return ret;
1104                 } else {
1105                         bytenr = btrfs_node_blockptr(eb, i);
1106                         tmp = read_tree_block(root, bytenr, root->nodesize, 0);
1107                         if (!extent_buffer_uptodate(tmp)) {
1108                                 fprintf(stderr, "Error reading log block\n");
1109                                 return -EIO;
1110                         }
1111                         ret = copy_tree_blocks(root, tmp, metadump, root_tree);
1112                         free_extent_buffer(tmp);
1113                         if (ret)
1114                                 return ret;
1115                 }
1116         }
1117
1118         return 0;
1119 }
1120
1121 static int copy_log_trees(struct btrfs_root *root,
1122                           struct metadump_struct *metadump,
1123                           struct btrfs_path *path)
1124 {
1125         u64 blocknr = btrfs_super_log_root(root->fs_info->super_copy);
1126
1127         if (blocknr == 0)
1128                 return 0;
1129
1130         if (!root->fs_info->log_root_tree ||
1131             !root->fs_info->log_root_tree->node) {
1132                 fprintf(stderr, "Error copying tree log, it wasn't setup\n");
1133                 return -EIO;
1134         }
1135
1136         return copy_tree_blocks(root, root->fs_info->log_root_tree->node,
1137                                 metadump, 1);
1138 }
1139
1140 static int copy_space_cache(struct btrfs_root *root,
1141                             struct metadump_struct *metadump,
1142                             struct btrfs_path *path)
1143 {
1144         struct extent_buffer *leaf;
1145         struct btrfs_file_extent_item *fi;
1146         struct btrfs_key key;
1147         u64 bytenr, num_bytes;
1148         int ret;
1149
1150         root = root->fs_info->tree_root;
1151
1152         key.objectid = 0;
1153         key.type = BTRFS_EXTENT_DATA_KEY;
1154         key.offset = 0;
1155
1156         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1157         if (ret < 0) {
1158                 fprintf(stderr, "Error searching for free space inode %d\n",
1159                         ret);
1160                 return ret;
1161         }
1162
1163         leaf = path->nodes[0];
1164
1165         while (1) {
1166                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1167                         ret = btrfs_next_leaf(root, path);
1168                         if (ret < 0) {
1169                                 fprintf(stderr, "Error going to next leaf "
1170                                         "%d\n", ret);
1171                                 return ret;
1172                         }
1173                         if (ret > 0)
1174                                 break;
1175                         leaf = path->nodes[0];
1176                 }
1177
1178                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1179                 if (key.type != BTRFS_EXTENT_DATA_KEY) {
1180                         path->slots[0]++;
1181                         continue;
1182                 }
1183
1184                 fi = btrfs_item_ptr(leaf, path->slots[0],
1185                                     struct btrfs_file_extent_item);
1186                 if (btrfs_file_extent_type(leaf, fi) !=
1187                     BTRFS_FILE_EXTENT_REG) {
1188                         path->slots[0]++;
1189                         continue;
1190                 }
1191
1192                 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1193                 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1194                 ret = add_extent(bytenr, num_bytes, metadump, 1);
1195                 if (ret) {
1196                         fprintf(stderr, "Error adding space cache blocks %d\n",
1197                                 ret);
1198                         btrfs_release_path(path);
1199                         return ret;
1200                 }
1201                 path->slots[0]++;
1202         }
1203
1204         return 0;
1205 }
1206
1207 static int copy_from_extent_tree(struct metadump_struct *metadump,
1208                                  struct btrfs_path *path)
1209 {
1210         struct btrfs_root *extent_root;
1211         struct extent_buffer *leaf;
1212         struct btrfs_extent_item *ei;
1213         struct btrfs_key key;
1214         u64 bytenr;
1215         u64 num_bytes;
1216         int ret;
1217
1218         extent_root = metadump->root->fs_info->extent_root;
1219         bytenr = BTRFS_SUPER_INFO_OFFSET + BTRFS_SUPER_INFO_SIZE;
1220         key.objectid = bytenr;
1221         key.type = BTRFS_EXTENT_ITEM_KEY;
1222         key.offset = 0;
1223
1224         ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
1225         if (ret < 0) {
1226                 fprintf(stderr, "Error searching extent root %d\n", ret);
1227                 return ret;
1228         }
1229         ret = 0;
1230
1231         leaf = path->nodes[0];
1232
1233         while (1) {
1234                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1235                         ret = btrfs_next_leaf(extent_root, path);
1236                         if (ret < 0) {
1237                                 fprintf(stderr, "Error going to next leaf %d"
1238                                         "\n", ret);
1239                                 break;
1240                         }
1241                         if (ret > 0) {
1242                                 ret = 0;
1243                                 break;
1244                         }
1245                         leaf = path->nodes[0];
1246                 }
1247
1248                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1249                 if (key.objectid < bytenr ||
1250                     (key.type != BTRFS_EXTENT_ITEM_KEY &&
1251                      key.type != BTRFS_METADATA_ITEM_KEY)) {
1252                         path->slots[0]++;
1253                         continue;
1254                 }
1255
1256                 bytenr = key.objectid;
1257                 if (key.type == BTRFS_METADATA_ITEM_KEY)
1258                         num_bytes = extent_root->nodesize;
1259                 else
1260                         num_bytes = key.offset;
1261
1262                 if (btrfs_item_size_nr(leaf, path->slots[0]) > sizeof(*ei)) {
1263                         ei = btrfs_item_ptr(leaf, path->slots[0],
1264                                             struct btrfs_extent_item);
1265                         if (btrfs_extent_flags(leaf, ei) &
1266                             BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1267                                 ret = add_extent(bytenr, num_bytes, metadump,
1268                                                  0);
1269                                 if (ret) {
1270                                         fprintf(stderr, "Error adding block "
1271                                                 "%d\n", ret);
1272                                         break;
1273                                 }
1274                         }
1275                 } else {
1276 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1277                         ret = is_tree_block(extent_root, path, bytenr);
1278                         if (ret < 0) {
1279                                 fprintf(stderr, "Error checking tree block "
1280                                         "%d\n", ret);
1281                                 break;
1282                         }
1283
1284                         if (ret) {
1285                                 ret = add_extent(bytenr, num_bytes, metadump,
1286                                                  0);
1287                                 if (ret) {
1288                                         fprintf(stderr, "Error adding block "
1289                                                 "%d\n", ret);
1290                                         break;
1291                                 }
1292                         }
1293                         ret = 0;
1294 #else
1295                         fprintf(stderr, "Either extent tree corruption or "
1296                                 "you haven't built with V0 support\n");
1297                         ret = -EIO;
1298                         break;
1299 #endif
1300                 }
1301                 bytenr += num_bytes;
1302         }
1303
1304         btrfs_release_path(path);
1305
1306         return ret;
1307 }
1308
1309 static int create_metadump(const char *input, FILE *out, int num_threads,
1310                            int compress_level, int sanitize, int walk_trees)
1311 {
1312         struct btrfs_root *root;
1313         struct btrfs_path *path = NULL;
1314         struct metadump_struct metadump;
1315         int ret;
1316         int err = 0;
1317
1318         root = open_ctree(input, 0, 0);
1319         if (!root) {
1320                 fprintf(stderr, "Open ctree failed\n");
1321                 return -EIO;
1322         }
1323
1324         ret = metadump_init(&metadump, root, out, num_threads,
1325                             compress_level, sanitize);
1326         if (ret) {
1327                 fprintf(stderr, "Error initializing metadump %d\n", ret);
1328                 close_ctree(root);
1329                 return ret;
1330         }
1331
1332         ret = add_extent(BTRFS_SUPER_INFO_OFFSET, BTRFS_SUPER_INFO_SIZE,
1333                         &metadump, 0);
1334         if (ret) {
1335                 fprintf(stderr, "Error adding metadata %d\n", ret);
1336                 err = ret;
1337                 goto out;
1338         }
1339
1340         path = btrfs_alloc_path();
1341         if (!path) {
1342                 fprintf(stderr, "Out of memory allocating path\n");
1343                 err = -ENOMEM;
1344                 goto out;
1345         }
1346
1347         if (walk_trees) {
1348                 ret = copy_tree_blocks(root, root->fs_info->chunk_root->node,
1349                                        &metadump, 1);
1350                 if (ret) {
1351                         err = ret;
1352                         goto out;
1353                 }
1354
1355                 ret = copy_tree_blocks(root, root->fs_info->tree_root->node,
1356                                        &metadump, 1);
1357                 if (ret) {
1358                         err = ret;
1359                         goto out;
1360                 }
1361         } else {
1362                 ret = copy_from_extent_tree(&metadump, path);
1363                 if (ret) {
1364                         err = ret;
1365                         goto out;
1366                 }
1367         }
1368
1369         ret = copy_log_trees(root, &metadump, path);
1370         if (ret) {
1371                 err = ret;
1372                 goto out;
1373         }
1374
1375         ret = copy_space_cache(root, &metadump, path);
1376 out:
1377         ret = flush_pending(&metadump, 1);
1378         if (ret) {
1379                 if (!err)
1380                         err = ret;
1381                 fprintf(stderr, "Error flushing pending %d\n", ret);
1382         }
1383
1384         metadump_destroy(&metadump, num_threads);
1385
1386         btrfs_free_path(path);
1387         ret = close_ctree(root);
1388         return err ? err : ret;
1389 }
1390
1391 static void update_super_old(u8 *buffer)
1392 {
1393         struct btrfs_super_block *super = (struct btrfs_super_block *)buffer;
1394         struct btrfs_chunk *chunk;
1395         struct btrfs_disk_key *key;
1396         u32 sectorsize = btrfs_super_sectorsize(super);
1397         u64 flags = btrfs_super_flags(super);
1398
1399         flags |= BTRFS_SUPER_FLAG_METADUMP;
1400         btrfs_set_super_flags(super, flags);
1401
1402         key = (struct btrfs_disk_key *)(super->sys_chunk_array);
1403         chunk = (struct btrfs_chunk *)(super->sys_chunk_array +
1404                                        sizeof(struct btrfs_disk_key));
1405
1406         btrfs_set_disk_key_objectid(key, BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1407         btrfs_set_disk_key_type(key, BTRFS_CHUNK_ITEM_KEY);
1408         btrfs_set_disk_key_offset(key, 0);
1409
1410         btrfs_set_stack_chunk_length(chunk, (u64)-1);
1411         btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
1412         btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
1413         btrfs_set_stack_chunk_type(chunk, BTRFS_BLOCK_GROUP_SYSTEM);
1414         btrfs_set_stack_chunk_io_align(chunk, sectorsize);
1415         btrfs_set_stack_chunk_io_width(chunk, sectorsize);
1416         btrfs_set_stack_chunk_sector_size(chunk, sectorsize);
1417         btrfs_set_stack_chunk_num_stripes(chunk, 1);
1418         btrfs_set_stack_chunk_sub_stripes(chunk, 0);
1419         chunk->stripe.devid = super->dev_item.devid;
1420         btrfs_set_stack_stripe_offset(&chunk->stripe, 0);
1421         memcpy(chunk->stripe.dev_uuid, super->dev_item.uuid, BTRFS_UUID_SIZE);
1422         btrfs_set_super_sys_array_size(super, sizeof(*key) + sizeof(*chunk));
1423         csum_block(buffer, BTRFS_SUPER_INFO_SIZE);
1424 }
1425
1426 static int update_super(struct mdrestore_struct *mdres, u8 *buffer)
1427 {
1428         struct btrfs_super_block *super = (struct btrfs_super_block *)buffer;
1429         struct btrfs_chunk *chunk;
1430         struct btrfs_disk_key *disk_key;
1431         struct btrfs_key key;
1432         u64 flags = btrfs_super_flags(super);
1433         u32 new_array_size = 0;
1434         u32 array_size;
1435         u32 cur = 0;
1436         u8 *ptr, *write_ptr;
1437         int old_num_stripes;
1438
1439         write_ptr = ptr = super->sys_chunk_array;
1440         array_size = btrfs_super_sys_array_size(super);
1441
1442         while (cur < array_size) {
1443                 disk_key = (struct btrfs_disk_key *)ptr;
1444                 btrfs_disk_key_to_cpu(&key, disk_key);
1445
1446                 new_array_size += sizeof(*disk_key);
1447                 memmove(write_ptr, ptr, sizeof(*disk_key));
1448
1449                 write_ptr += sizeof(*disk_key);
1450                 ptr += sizeof(*disk_key);
1451                 cur += sizeof(*disk_key);
1452
1453                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1454                         u64 physical, size = 0;
1455
1456                         chunk = (struct btrfs_chunk *)ptr;
1457                         old_num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1458                         chunk = (struct btrfs_chunk *)write_ptr;
1459
1460                         memmove(write_ptr, ptr, sizeof(*chunk));
1461                         btrfs_set_stack_chunk_num_stripes(chunk, 1);
1462                         btrfs_set_stack_chunk_sub_stripes(chunk, 0);
1463                         btrfs_set_stack_chunk_type(chunk,
1464                                                    BTRFS_BLOCK_GROUP_SYSTEM);
1465                         chunk->stripe.devid = super->dev_item.devid;
1466                         physical = logical_to_physical(mdres, key.offset,
1467                                                        &size);
1468                         if (size != (u64)-1)
1469                                 btrfs_set_stack_stripe_offset(&chunk->stripe,
1470                                                               physical);
1471                         memcpy(chunk->stripe.dev_uuid, super->dev_item.uuid,
1472                                BTRFS_UUID_SIZE);
1473                         new_array_size += sizeof(*chunk);
1474                 } else {
1475                         fprintf(stderr, "Bogus key in the sys chunk array "
1476                                 "%d\n", key.type);
1477                         return -EIO;
1478                 }
1479                 write_ptr += sizeof(*chunk);
1480                 ptr += btrfs_chunk_item_size(old_num_stripes);
1481                 cur += btrfs_chunk_item_size(old_num_stripes);
1482         }
1483
1484         if (mdres->clear_space_cache)
1485                 btrfs_set_super_cache_generation(super, 0);
1486
1487         flags |= BTRFS_SUPER_FLAG_METADUMP_V2;
1488         btrfs_set_super_flags(super, flags);
1489         btrfs_set_super_sys_array_size(super, new_array_size);
1490         csum_block(buffer, BTRFS_SUPER_INFO_SIZE);
1491
1492         return 0;
1493 }
1494
1495 static struct extent_buffer *alloc_dummy_eb(u64 bytenr, u32 size)
1496 {
1497         struct extent_buffer *eb;
1498
1499         eb = calloc(1, sizeof(struct extent_buffer) + size);
1500         if (!eb)
1501                 return NULL;
1502
1503         eb->start = bytenr;
1504         eb->len = size;
1505         return eb;
1506 }
1507
1508 static void truncate_item(struct extent_buffer *eb, int slot, u32 new_size)
1509 {
1510         struct btrfs_item *item;
1511         u32 nritems;
1512         u32 old_size;
1513         u32 old_data_start;
1514         u32 size_diff;
1515         u32 data_end;
1516         int i;
1517
1518         old_size = btrfs_item_size_nr(eb, slot);
1519         if (old_size == new_size)
1520                 return;
1521
1522         nritems = btrfs_header_nritems(eb);
1523         data_end = btrfs_item_offset_nr(eb, nritems - 1);
1524
1525         old_data_start = btrfs_item_offset_nr(eb, slot);
1526         size_diff = old_size - new_size;
1527
1528         for (i = slot; i < nritems; i++) {
1529                 u32 ioff;
1530                 item = btrfs_item_nr(i);
1531                 ioff = btrfs_item_offset(eb, item);
1532                 btrfs_set_item_offset(eb, item, ioff + size_diff);
1533         }
1534
1535         memmove_extent_buffer(eb, btrfs_leaf_data(eb) + data_end + size_diff,
1536                               btrfs_leaf_data(eb) + data_end,
1537                               old_data_start + new_size - data_end);
1538         item = btrfs_item_nr(slot);
1539         btrfs_set_item_size(eb, item, new_size);
1540 }
1541
1542 static int fixup_chunk_tree_block(struct mdrestore_struct *mdres,
1543                                   struct async_work *async, u8 *buffer,
1544                                   size_t size)
1545 {
1546         struct extent_buffer *eb;
1547         size_t size_left = size;
1548         u64 bytenr = async->start;
1549         int i;
1550
1551         if (size_left % mdres->nodesize)
1552                 return 0;
1553
1554         eb = alloc_dummy_eb(bytenr, mdres->nodesize);
1555         if (!eb)
1556                 return -ENOMEM;
1557
1558         while (size_left) {
1559                 eb->start = bytenr;
1560                 memcpy(eb->data, buffer, mdres->nodesize);
1561
1562                 if (btrfs_header_bytenr(eb) != bytenr)
1563                         break;
1564                 if (memcmp(mdres->fsid,
1565                            eb->data + offsetof(struct btrfs_header, fsid),
1566                            BTRFS_FSID_SIZE))
1567                         break;
1568
1569                 if (btrfs_header_owner(eb) != BTRFS_CHUNK_TREE_OBJECTID)
1570                         goto next;
1571
1572                 if (btrfs_header_level(eb) != 0)
1573                         goto next;
1574
1575                 for (i = 0; i < btrfs_header_nritems(eb); i++) {
1576                         struct btrfs_chunk chunk;
1577                         struct btrfs_key key;
1578                         u64 type, physical, size = (u64)-1;
1579
1580                         btrfs_item_key_to_cpu(eb, &key, i);
1581                         if (key.type != BTRFS_CHUNK_ITEM_KEY)
1582                                 continue;
1583                         truncate_item(eb, i, sizeof(chunk));
1584                         read_extent_buffer(eb, &chunk,
1585                                            btrfs_item_ptr_offset(eb, i),
1586                                            sizeof(chunk));
1587
1588                         size = 0;
1589                         physical = logical_to_physical(mdres, key.offset,
1590                                                        &size);
1591
1592                         /* Zero out the RAID profile */
1593                         type = btrfs_stack_chunk_type(&chunk);
1594                         type &= (BTRFS_BLOCK_GROUP_DATA |
1595                                  BTRFS_BLOCK_GROUP_SYSTEM |
1596                                  BTRFS_BLOCK_GROUP_METADATA |
1597                                  BTRFS_BLOCK_GROUP_DUP);
1598                         btrfs_set_stack_chunk_type(&chunk, type);
1599
1600                         btrfs_set_stack_chunk_num_stripes(&chunk, 1);
1601                         btrfs_set_stack_chunk_sub_stripes(&chunk, 0);
1602                         btrfs_set_stack_stripe_devid(&chunk.stripe, mdres->devid);
1603                         if (size != (u64)-1)
1604                                 btrfs_set_stack_stripe_offset(&chunk.stripe,
1605                                                               physical);
1606                         memcpy(chunk.stripe.dev_uuid, mdres->uuid,
1607                                BTRFS_UUID_SIZE);
1608                         write_extent_buffer(eb, &chunk,
1609                                             btrfs_item_ptr_offset(eb, i),
1610                                             sizeof(chunk));
1611                 }
1612                 memcpy(buffer, eb->data, eb->len);
1613                 csum_block(buffer, eb->len);
1614 next:
1615                 size_left -= mdres->nodesize;
1616                 buffer += mdres->nodesize;
1617                 bytenr += mdres->nodesize;
1618         }
1619
1620         free(eb);
1621         return 0;
1622 }
1623
1624 static void write_backup_supers(int fd, u8 *buf)
1625 {
1626         struct btrfs_super_block *super = (struct btrfs_super_block *)buf;
1627         struct stat st;
1628         u64 size;
1629         u64 bytenr;
1630         int i;
1631         int ret;
1632
1633         if (fstat(fd, &st)) {
1634                 fprintf(stderr, "Couldn't stat restore point, won't be able "
1635                         "to write backup supers: %d\n", errno);
1636                 return;
1637         }
1638
1639         size = btrfs_device_size(fd, &st);
1640
1641         for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1642                 bytenr = btrfs_sb_offset(i);
1643                 if (bytenr + BTRFS_SUPER_INFO_SIZE > size)
1644                         break;
1645                 btrfs_set_super_bytenr(super, bytenr);
1646                 csum_block(buf, BTRFS_SUPER_INFO_SIZE);
1647                 ret = pwrite64(fd, buf, BTRFS_SUPER_INFO_SIZE, bytenr);
1648                 if (ret < BTRFS_SUPER_INFO_SIZE) {
1649                         if (ret < 0)
1650                                 fprintf(stderr, "Problem writing out backup "
1651                                         "super block %d, err %d\n", i, errno);
1652                         else
1653                                 fprintf(stderr, "Short write writing out "
1654                                         "backup super block\n");
1655                         break;
1656                 }
1657         }
1658 }
1659
1660 static void *restore_worker(void *data)
1661 {
1662         struct mdrestore_struct *mdres = (struct mdrestore_struct *)data;
1663         struct async_work *async;
1664         size_t size;
1665         u8 *buffer;
1666         u8 *outbuf;
1667         int outfd;
1668         int ret;
1669         int compress_size = MAX_PENDING_SIZE * 4;
1670
1671         outfd = fileno(mdres->out);
1672         buffer = malloc(compress_size);
1673         if (!buffer) {
1674                 fprintf(stderr, "Error allocating buffer\n");
1675                 pthread_mutex_lock(&mdres->mutex);
1676                 if (!mdres->error)
1677                         mdres->error = -ENOMEM;
1678                 pthread_mutex_unlock(&mdres->mutex);
1679                 pthread_exit(NULL);
1680         }
1681
1682         while (1) {
1683                 u64 bytenr;
1684                 off_t offset = 0;
1685                 int err = 0;
1686
1687                 pthread_mutex_lock(&mdres->mutex);
1688                 while (!mdres->nodesize || list_empty(&mdres->list)) {
1689                         if (mdres->done) {
1690                                 pthread_mutex_unlock(&mdres->mutex);
1691                                 goto out;
1692                         }
1693                         pthread_cond_wait(&mdres->cond, &mdres->mutex);
1694                 }
1695                 async = list_entry(mdres->list.next, struct async_work, list);
1696                 list_del_init(&async->list);
1697                 pthread_mutex_unlock(&mdres->mutex);
1698
1699                 if (mdres->compress_method == COMPRESS_ZLIB) {
1700                         size = compress_size; 
1701                         ret = uncompress(buffer, (unsigned long *)&size,
1702                                          async->buffer, async->bufsize);
1703                         if (ret != Z_OK) {
1704                                 fprintf(stderr, "Error decompressing %d\n",
1705                                         ret);
1706                                 err = -EIO;
1707                         }
1708                         outbuf = buffer;
1709                 } else {
1710                         outbuf = async->buffer;
1711                         size = async->bufsize;
1712                 }
1713
1714                 if (!mdres->multi_devices) {
1715                         if (async->start == BTRFS_SUPER_INFO_OFFSET) {
1716                                 if (mdres->old_restore) {
1717                                         update_super_old(outbuf);
1718                                 } else {
1719                                         ret = update_super(mdres, outbuf);
1720                                         if (ret)
1721                                                 err = ret;
1722                                 }
1723                         } else if (!mdres->old_restore) {
1724                                 ret = fixup_chunk_tree_block(mdres, async, outbuf, size);
1725                                 if (ret)
1726                                         err = ret;
1727                         }
1728                 }
1729
1730                 if (!mdres->fixup_offset) {
1731                         while (size) {
1732                                 u64 chunk_size = size;
1733                                 if (!mdres->multi_devices && !mdres->old_restore)
1734                                         bytenr = logical_to_physical(mdres,
1735                                                                      async->start + offset,
1736                                                                      &chunk_size);
1737                                 else
1738                                         bytenr = async->start + offset;
1739
1740                                 ret = pwrite64(outfd, outbuf+offset, chunk_size,
1741                                                bytenr);
1742                                 if (ret != chunk_size) {
1743                                         if (ret < 0) {
1744                                                 fprintf(stderr, "Error writing to "
1745                                                         "device %d\n", errno);
1746                                                 err = errno;
1747                                                 break;
1748                                         } else {
1749                                                 fprintf(stderr, "Short write\n");
1750                                                 err = -EIO;
1751                                                 break;
1752                                         }
1753                                 }
1754                                 size -= chunk_size;
1755                                 offset += chunk_size;
1756                         }
1757                 } else if (async->start != BTRFS_SUPER_INFO_OFFSET) {
1758                         ret = write_data_to_disk(mdres->info, outbuf, async->start, size, 0);
1759                         if (ret) {
1760                                 printk("Error write data\n");
1761                                 exit(1);
1762                         }
1763                 }
1764
1765
1766                 /* backup super blocks are already there at fixup_offset stage */
1767                 if (!mdres->multi_devices && async->start == BTRFS_SUPER_INFO_OFFSET)
1768                         write_backup_supers(outfd, outbuf);
1769
1770                 pthread_mutex_lock(&mdres->mutex);
1771                 if (err && !mdres->error)
1772                         mdres->error = err;
1773                 mdres->num_items--;
1774                 pthread_mutex_unlock(&mdres->mutex);
1775
1776                 free(async->buffer);
1777                 free(async);
1778         }
1779 out:
1780         free(buffer);
1781         pthread_exit(NULL);
1782 }
1783
1784 static void mdrestore_destroy(struct mdrestore_struct *mdres, int num_threads)
1785 {
1786         struct rb_node *n;
1787         int i;
1788
1789         while ((n = rb_first(&mdres->chunk_tree))) {
1790                 struct fs_chunk *entry;
1791
1792                 entry = rb_entry(n, struct fs_chunk, l);
1793                 rb_erase(n, &mdres->chunk_tree);
1794                 rb_erase(&entry->p, &mdres->physical_tree);
1795                 free(entry);
1796         }
1797         pthread_mutex_lock(&mdres->mutex);
1798         mdres->done = 1;
1799         pthread_cond_broadcast(&mdres->cond);
1800         pthread_mutex_unlock(&mdres->mutex);
1801
1802         for (i = 0; i < num_threads; i++)
1803                 pthread_join(mdres->threads[i], NULL);
1804
1805         pthread_cond_destroy(&mdres->cond);
1806         pthread_mutex_destroy(&mdres->mutex);
1807         free(mdres->threads);
1808 }
1809
1810 static int mdrestore_init(struct mdrestore_struct *mdres,
1811                           FILE *in, FILE *out, int old_restore,
1812                           int num_threads, int fixup_offset,
1813                           struct btrfs_fs_info *info, int multi_devices)
1814 {
1815         int i, ret = 0;
1816
1817         memset(mdres, 0, sizeof(*mdres));
1818         pthread_cond_init(&mdres->cond, NULL);
1819         pthread_mutex_init(&mdres->mutex, NULL);
1820         INIT_LIST_HEAD(&mdres->list);
1821         INIT_LIST_HEAD(&mdres->overlapping_chunks);
1822         mdres->in = in;
1823         mdres->out = out;
1824         mdres->old_restore = old_restore;
1825         mdres->chunk_tree.rb_node = NULL;
1826         mdres->fixup_offset = fixup_offset;
1827         mdres->info = info;
1828         mdres->multi_devices = multi_devices;
1829         mdres->clear_space_cache = 0;
1830         mdres->last_physical_offset = 0;
1831         mdres->alloced_chunks = 0;
1832
1833         if (!num_threads)
1834                 return 0;
1835
1836         mdres->num_threads = num_threads;
1837         mdres->threads = calloc(num_threads, sizeof(pthread_t));
1838         if (!mdres->threads)
1839                 return -ENOMEM;
1840         for (i = 0; i < num_threads; i++) {
1841                 ret = pthread_create(mdres->threads + i, NULL, restore_worker,
1842                                      mdres);
1843                 if (ret)
1844                         break;
1845         }
1846         if (ret)
1847                 mdrestore_destroy(mdres, i + 1);
1848         return ret;
1849 }
1850
1851 static int fill_mdres_info(struct mdrestore_struct *mdres,
1852                            struct async_work *async)
1853 {
1854         struct btrfs_super_block *super;
1855         u8 *buffer = NULL;
1856         u8 *outbuf;
1857         int ret;
1858
1859         /* We've already been initialized */
1860         if (mdres->nodesize)
1861                 return 0;
1862
1863         if (mdres->compress_method == COMPRESS_ZLIB) {
1864                 size_t size = MAX_PENDING_SIZE * 2;
1865
1866                 buffer = malloc(MAX_PENDING_SIZE * 2);
1867                 if (!buffer)
1868                         return -ENOMEM;
1869                 ret = uncompress(buffer, (unsigned long *)&size,
1870                                  async->buffer, async->bufsize);
1871                 if (ret != Z_OK) {
1872                         fprintf(stderr, "Error decompressing %d\n", ret);
1873                         free(buffer);
1874                         return -EIO;
1875                 }
1876                 outbuf = buffer;
1877         } else {
1878                 outbuf = async->buffer;
1879         }
1880
1881         super = (struct btrfs_super_block *)outbuf;
1882         mdres->nodesize = btrfs_super_nodesize(super);
1883         memcpy(mdres->fsid, super->fsid, BTRFS_FSID_SIZE);
1884         memcpy(mdres->uuid, super->dev_item.uuid,
1885                        BTRFS_UUID_SIZE);
1886         mdres->devid = le64_to_cpu(super->dev_item.devid);
1887         free(buffer);
1888         return 0;
1889 }
1890
1891 static int add_cluster(struct meta_cluster *cluster,
1892                        struct mdrestore_struct *mdres, u64 *next)
1893 {
1894         struct meta_cluster_item *item;
1895         struct meta_cluster_header *header = &cluster->header;
1896         struct async_work *async;
1897         u64 bytenr;
1898         u32 i, nritems;
1899         int ret;
1900
1901         mdres->compress_method = header->compress;
1902
1903         bytenr = le64_to_cpu(header->bytenr) + BLOCK_SIZE;
1904         nritems = le32_to_cpu(header->nritems);
1905         for (i = 0; i < nritems; i++) {
1906                 item = &cluster->items[i];
1907                 async = calloc(1, sizeof(*async));
1908                 if (!async) {
1909                         fprintf(stderr, "Error allocating async\n");
1910                         return -ENOMEM;
1911                 }
1912                 async->start = le64_to_cpu(item->bytenr);
1913                 async->bufsize = le32_to_cpu(item->size);
1914                 async->buffer = malloc(async->bufsize);
1915                 if (!async->buffer) {
1916                         fprintf(stderr, "Error allocating async buffer\n");
1917                         free(async);
1918                         return -ENOMEM;
1919                 }
1920                 ret = fread(async->buffer, async->bufsize, 1, mdres->in);
1921                 if (ret != 1) {
1922                         fprintf(stderr, "Error reading buffer %d\n", errno);
1923                         free(async->buffer);
1924                         free(async);
1925                         return -EIO;
1926                 }
1927                 bytenr += async->bufsize;
1928
1929                 pthread_mutex_lock(&mdres->mutex);
1930                 if (async->start == BTRFS_SUPER_INFO_OFFSET) {
1931                         ret = fill_mdres_info(mdres, async);
1932                         if (ret) {
1933                                 fprintf(stderr, "Error setting up restore\n");
1934                                 pthread_mutex_unlock(&mdres->mutex);
1935                                 free(async->buffer);
1936                                 free(async);
1937                                 return ret;
1938                         }
1939                 }
1940                 list_add_tail(&async->list, &mdres->list);
1941                 mdres->num_items++;
1942                 pthread_cond_signal(&mdres->cond);
1943                 pthread_mutex_unlock(&mdres->mutex);
1944         }
1945         if (bytenr & BLOCK_MASK) {
1946                 char buffer[BLOCK_MASK];
1947                 size_t size = BLOCK_SIZE - (bytenr & BLOCK_MASK);
1948
1949                 bytenr += size;
1950                 ret = fread(buffer, size, 1, mdres->in);
1951                 if (ret != 1) {
1952                         fprintf(stderr, "Error reading in buffer %d\n", errno);
1953                         return -EIO;
1954                 }
1955         }
1956         *next = bytenr;
1957         return 0;
1958 }
1959
1960 static int wait_for_worker(struct mdrestore_struct *mdres)
1961 {
1962         int ret = 0;
1963
1964         pthread_mutex_lock(&mdres->mutex);
1965         ret = mdres->error;
1966         while (!ret && mdres->num_items > 0) {
1967                 struct timespec ts = {
1968                         .tv_sec = 0,
1969                         .tv_nsec = 10000000,
1970                 };
1971                 pthread_mutex_unlock(&mdres->mutex);
1972                 nanosleep(&ts, NULL);
1973                 pthread_mutex_lock(&mdres->mutex);
1974                 ret = mdres->error;
1975         }
1976         pthread_mutex_unlock(&mdres->mutex);
1977         return ret;
1978 }
1979
1980 static int read_chunk_block(struct mdrestore_struct *mdres, u8 *buffer,
1981                             u64 bytenr, u64 item_bytenr, u32 bufsize,
1982                             u64 cluster_bytenr)
1983 {
1984         struct extent_buffer *eb;
1985         int ret = 0;
1986         int i;
1987
1988         eb = alloc_dummy_eb(bytenr, mdres->nodesize);
1989         if (!eb) {
1990                 ret = -ENOMEM;
1991                 goto out;
1992         }
1993
1994         while (item_bytenr != bytenr) {
1995                 buffer += mdres->nodesize;
1996                 item_bytenr += mdres->nodesize;
1997         }
1998
1999         memcpy(eb->data, buffer, mdres->nodesize);
2000         if (btrfs_header_bytenr(eb) != bytenr) {
2001                 fprintf(stderr, "Eb bytenr doesn't match found bytenr\n");
2002                 ret = -EIO;
2003                 goto out;
2004         }
2005
2006         if (memcmp(mdres->fsid, eb->data + offsetof(struct btrfs_header, fsid),
2007                    BTRFS_FSID_SIZE)) {
2008                 fprintf(stderr, "Fsid doesn't match\n");
2009                 ret = -EIO;
2010                 goto out;
2011         }
2012
2013         if (btrfs_header_owner(eb) != BTRFS_CHUNK_TREE_OBJECTID) {
2014                 fprintf(stderr, "Does not belong to the chunk tree\n");
2015                 ret = -EIO;
2016                 goto out;
2017         }
2018
2019         for (i = 0; i < btrfs_header_nritems(eb); i++) {
2020                 struct btrfs_chunk chunk;
2021                 struct fs_chunk *fs_chunk;
2022                 struct btrfs_key key;
2023
2024                 if (btrfs_header_level(eb)) {
2025                         u64 blockptr = btrfs_node_blockptr(eb, i);
2026
2027                         ret = search_for_chunk_blocks(mdres, blockptr,
2028                                                       cluster_bytenr);
2029                         if (ret)
2030                                 break;
2031                         continue;
2032                 }
2033
2034                 /* Yay a leaf!  We loves leafs! */
2035                 btrfs_item_key_to_cpu(eb, &key, i);
2036                 if (key.type != BTRFS_CHUNK_ITEM_KEY)
2037                         continue;
2038
2039                 fs_chunk = malloc(sizeof(struct fs_chunk));
2040                 if (!fs_chunk) {
2041                         fprintf(stderr, "Error allocating chunk\n");
2042                         ret = -ENOMEM;
2043                         break;
2044                 }
2045                 memset(fs_chunk, 0, sizeof(*fs_chunk));
2046                 read_extent_buffer(eb, &chunk, btrfs_item_ptr_offset(eb, i),
2047                                    sizeof(chunk));
2048
2049                 fs_chunk->logical = key.offset;
2050                 fs_chunk->physical = btrfs_stack_stripe_offset(&chunk.stripe);
2051                 fs_chunk->bytes = btrfs_stack_chunk_length(&chunk);
2052                 INIT_LIST_HEAD(&fs_chunk->list);
2053                 if (tree_search(&mdres->physical_tree, &fs_chunk->p,
2054                                 physical_cmp, 1) != NULL)
2055                         list_add(&fs_chunk->list, &mdres->overlapping_chunks);
2056                 else
2057                         tree_insert(&mdres->physical_tree, &fs_chunk->p,
2058                                     physical_cmp);
2059                 if (fs_chunk->physical + fs_chunk->bytes >
2060                     mdres->last_physical_offset)
2061                         mdres->last_physical_offset = fs_chunk->physical +
2062                                 fs_chunk->bytes;
2063                 mdres->alloced_chunks += fs_chunk->bytes;
2064                 tree_insert(&mdres->chunk_tree, &fs_chunk->l, chunk_cmp);
2065         }
2066 out:
2067         free(eb);
2068         return ret;
2069 }
2070
2071 /* If you have to ask you aren't worthy */
2072 static int search_for_chunk_blocks(struct mdrestore_struct *mdres,
2073                                    u64 search, u64 cluster_bytenr)
2074 {
2075         struct meta_cluster *cluster;
2076         struct meta_cluster_header *header;
2077         struct meta_cluster_item *item;
2078         u64 current_cluster = cluster_bytenr, bytenr;
2079         u64 item_bytenr;
2080         u32 bufsize, nritems, i;
2081         u32 max_size = MAX_PENDING_SIZE * 2;
2082         u8 *buffer, *tmp = NULL;
2083         int ret = 0;
2084
2085         cluster = malloc(BLOCK_SIZE);
2086         if (!cluster) {
2087                 fprintf(stderr, "Error allocating cluster\n");
2088                 return -ENOMEM;
2089         }
2090
2091         buffer = malloc(max_size);
2092         if (!buffer) {
2093                 fprintf(stderr, "Error allocating buffer\n");
2094                 free(cluster);
2095                 return -ENOMEM;
2096         }
2097
2098         if (mdres->compress_method == COMPRESS_ZLIB) {
2099                 tmp = malloc(max_size);
2100                 if (!tmp) {
2101                         fprintf(stderr, "Error allocating tmp buffer\n");
2102                         free(cluster);
2103                         free(buffer);
2104                         return -ENOMEM;
2105                 }
2106         }
2107
2108         bytenr = current_cluster;
2109         while (1) {
2110                 if (fseek(mdres->in, current_cluster, SEEK_SET)) {
2111                         fprintf(stderr, "Error seeking: %d\n", errno);
2112                         ret = -EIO;
2113                         break;
2114                 }
2115
2116                 ret = fread(cluster, BLOCK_SIZE, 1, mdres->in);
2117                 if (ret == 0) {
2118                         if (cluster_bytenr != 0) {
2119                                 cluster_bytenr = 0;
2120                                 current_cluster = 0;
2121                                 bytenr = 0;
2122                                 continue;
2123                         }
2124                         printf("ok this is where we screwed up?\n");
2125                         ret = -EIO;
2126                         break;
2127                 } else if (ret < 0) {
2128                         fprintf(stderr, "Error reading image\n");
2129                         break;
2130                 }
2131                 ret = 0;
2132
2133                 header = &cluster->header;
2134                 if (le64_to_cpu(header->magic) != HEADER_MAGIC ||
2135                     le64_to_cpu(header->bytenr) != current_cluster) {
2136                         fprintf(stderr, "bad header in metadump image\n");
2137                         ret = -EIO;
2138                         break;
2139                 }
2140
2141                 bytenr += BLOCK_SIZE;
2142                 nritems = le32_to_cpu(header->nritems);
2143                 for (i = 0; i < nritems; i++) {
2144                         size_t size;
2145
2146                         item = &cluster->items[i];
2147                         bufsize = le32_to_cpu(item->size);
2148                         item_bytenr = le64_to_cpu(item->bytenr);
2149
2150                         if (bufsize > max_size) {
2151                                 fprintf(stderr, "item %u size %u too big\n",
2152                                         i, bufsize);
2153                                 ret = -EIO;
2154                                 break;
2155                         }
2156
2157                         if (mdres->compress_method == COMPRESS_ZLIB) {
2158                                 ret = fread(tmp, bufsize, 1, mdres->in);
2159                                 if (ret != 1) {
2160                                         fprintf(stderr, "Error reading: %d\n",
2161                                                 errno);
2162                                         ret = -EIO;
2163                                         break;
2164                                 }
2165
2166                                 size = max_size;
2167                                 ret = uncompress(buffer,
2168                                                  (unsigned long *)&size, tmp,
2169                                                  bufsize);
2170                                 if (ret != Z_OK) {
2171                                         fprintf(stderr, "Error decompressing "
2172                                                 "%d\n", ret);
2173                                         ret = -EIO;
2174                                         break;
2175                                 }
2176                         } else {
2177                                 ret = fread(buffer, bufsize, 1, mdres->in);
2178                                 if (ret != 1) {
2179                                         fprintf(stderr, "Error reading: %d\n",
2180                                                 errno);
2181                                         ret = -EIO;
2182                                         break;
2183                                 }
2184                                 size = bufsize;
2185                         }
2186                         ret = 0;
2187
2188                         if (item_bytenr <= search &&
2189                             item_bytenr + size > search) {
2190                                 ret = read_chunk_block(mdres, buffer, search,
2191                                                        item_bytenr, size,
2192                                                        current_cluster);
2193                                 if (!ret)
2194                                         ret = 1;
2195                                 break;
2196                         }
2197                         bytenr += bufsize;
2198                 }
2199                 if (ret) {
2200                         if (ret > 0)
2201                                 ret = 0;
2202                         break;
2203                 }
2204                 if (bytenr & BLOCK_MASK)
2205                         bytenr += BLOCK_SIZE - (bytenr & BLOCK_MASK);
2206                 current_cluster = bytenr;
2207         }
2208
2209         free(tmp);
2210         free(buffer);
2211         free(cluster);
2212         return ret;
2213 }
2214
2215 static int build_chunk_tree(struct mdrestore_struct *mdres,
2216                             struct meta_cluster *cluster)
2217 {
2218         struct btrfs_super_block *super;
2219         struct meta_cluster_header *header;
2220         struct meta_cluster_item *item = NULL;
2221         u64 chunk_root_bytenr = 0;
2222         u32 i, nritems;
2223         u64 bytenr = 0;
2224         u8 *buffer;
2225         int ret;
2226
2227         /* We can't seek with stdin so don't bother doing this */
2228         if (mdres->in == stdin)
2229                 return 0;
2230
2231         ret = fread(cluster, BLOCK_SIZE, 1, mdres->in);
2232         if (ret <= 0) {
2233                 fprintf(stderr, "Error reading in cluster: %d\n", errno);
2234                 return -EIO;
2235         }
2236         ret = 0;
2237
2238         header = &cluster->header;
2239         if (le64_to_cpu(header->magic) != HEADER_MAGIC ||
2240             le64_to_cpu(header->bytenr) != 0) {
2241                 fprintf(stderr, "bad header in metadump image\n");
2242                 return -EIO;
2243         }
2244
2245         bytenr += BLOCK_SIZE;
2246         mdres->compress_method = header->compress;
2247         nritems = le32_to_cpu(header->nritems);
2248         for (i = 0; i < nritems; i++) {
2249                 item = &cluster->items[i];
2250
2251                 if (le64_to_cpu(item->bytenr) == BTRFS_SUPER_INFO_OFFSET)
2252                         break;
2253                 bytenr += le32_to_cpu(item->size);
2254                 if (fseek(mdres->in, le32_to_cpu(item->size), SEEK_CUR)) {
2255                         fprintf(stderr, "Error seeking: %d\n", errno);
2256                         return -EIO;
2257                 }
2258         }
2259
2260         if (!item || le64_to_cpu(item->bytenr) != BTRFS_SUPER_INFO_OFFSET) {
2261                 fprintf(stderr, "Huh, didn't find the super?\n");
2262                 return -EINVAL;
2263         }
2264
2265         buffer = malloc(le32_to_cpu(item->size));
2266         if (!buffer) {
2267                 fprintf(stderr, "Error allocating buffer\n");
2268                 return -ENOMEM;
2269         }
2270
2271         ret = fread(buffer, le32_to_cpu(item->size), 1, mdres->in);
2272         if (ret != 1) {
2273                 fprintf(stderr, "Error reading buffer: %d\n", errno);
2274                 free(buffer);
2275                 return -EIO;
2276         }
2277
2278         if (mdres->compress_method == COMPRESS_ZLIB) {
2279                 size_t size = MAX_PENDING_SIZE * 2;
2280                 u8 *tmp;
2281
2282                 tmp = malloc(MAX_PENDING_SIZE * 2);
2283                 if (!tmp) {
2284                         free(buffer);
2285                         return -ENOMEM;
2286                 }
2287                 ret = uncompress(tmp, (unsigned long *)&size,
2288                                  buffer, le32_to_cpu(item->size));
2289                 if (ret != Z_OK) {
2290                         fprintf(stderr, "Error decompressing %d\n", ret);
2291                         free(buffer);
2292                         free(tmp);
2293                         return -EIO;
2294                 }
2295                 free(buffer);
2296                 buffer = tmp;
2297         }
2298
2299         pthread_mutex_lock(&mdres->mutex);
2300         super = (struct btrfs_super_block *)buffer;
2301         chunk_root_bytenr = btrfs_super_chunk_root(super);
2302         mdres->nodesize = btrfs_super_nodesize(super);
2303         memcpy(mdres->fsid, super->fsid, BTRFS_FSID_SIZE);
2304         memcpy(mdres->uuid, super->dev_item.uuid,
2305                        BTRFS_UUID_SIZE);
2306         mdres->devid = le64_to_cpu(super->dev_item.devid);
2307         free(buffer);
2308         pthread_mutex_unlock(&mdres->mutex);
2309
2310         return search_for_chunk_blocks(mdres, chunk_root_bytenr, 0);
2311 }
2312
2313 static int range_contains_super(u64 physical, u64 bytes)
2314 {
2315         u64 super_bytenr;
2316         int i;
2317
2318         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2319                 super_bytenr = btrfs_sb_offset(i);
2320                 if (super_bytenr >= physical &&
2321                     super_bytenr < physical + bytes)
2322                         return 1;
2323         }
2324
2325         return 0;
2326 }
2327
2328 static void remap_overlapping_chunks(struct mdrestore_struct *mdres)
2329 {
2330         struct fs_chunk *fs_chunk;
2331
2332         while (!list_empty(&mdres->overlapping_chunks)) {
2333                 fs_chunk = list_first_entry(&mdres->overlapping_chunks,
2334                                             struct fs_chunk, list);
2335                 list_del_init(&fs_chunk->list);
2336                 if (range_contains_super(fs_chunk->physical,
2337                                          fs_chunk->bytes)) {
2338                         fprintf(stderr, "Remapping a chunk that had a super "
2339                                 "mirror inside of it, clearing space cache "
2340                                 "so we don't end up with corruption\n");
2341                         mdres->clear_space_cache = 1;
2342                 }
2343                 fs_chunk->physical = mdres->last_physical_offset;
2344                 tree_insert(&mdres->physical_tree, &fs_chunk->p, physical_cmp);
2345                 mdres->last_physical_offset += fs_chunk->bytes;
2346         }
2347 }
2348
2349 static int fixup_devices(struct btrfs_fs_info *fs_info,
2350                          struct mdrestore_struct *mdres, off_t dev_size)
2351 {
2352         struct btrfs_trans_handle *trans;
2353         struct btrfs_dev_item *dev_item;
2354         struct btrfs_path *path;
2355         struct extent_buffer *leaf;
2356         struct btrfs_root *root = fs_info->chunk_root;
2357         struct btrfs_key key;
2358         u64 devid, cur_devid;
2359         int ret;
2360
2361         path = btrfs_alloc_path();
2362         if (!path) {
2363                 fprintf(stderr, "Error allocating path\n");
2364                 return -ENOMEM;
2365         }
2366
2367         trans = btrfs_start_transaction(fs_info->tree_root, 1);
2368         if (IS_ERR(trans)) {
2369                 fprintf(stderr, "Error starting transaction %ld\n",
2370                         PTR_ERR(trans));
2371                 btrfs_free_path(path);
2372                 return PTR_ERR(trans);
2373         }
2374
2375         dev_item = &fs_info->super_copy->dev_item;
2376
2377         devid = btrfs_stack_device_id(dev_item);
2378
2379         btrfs_set_stack_device_total_bytes(dev_item, dev_size);
2380         btrfs_set_stack_device_bytes_used(dev_item, mdres->alloced_chunks);
2381
2382         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2383         key.type = BTRFS_DEV_ITEM_KEY;
2384         key.offset = 0;
2385
2386 again:
2387         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2388         if (ret < 0) {
2389                 fprintf(stderr, "search failed %d\n", ret);
2390                 exit(1);
2391         }
2392
2393         while (1) {
2394                 leaf = path->nodes[0];
2395                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2396                         ret = btrfs_next_leaf(root, path);
2397                         if (ret < 0) {
2398                                 fprintf(stderr, "Error going to next leaf "
2399                                         "%d\n", ret);
2400                                 exit(1);
2401                         }
2402                         if (ret > 0) {
2403                                 ret = 0;
2404                                 break;
2405                         }
2406                         leaf = path->nodes[0];
2407                 }
2408
2409                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2410                 if (key.type > BTRFS_DEV_ITEM_KEY)
2411                         break;
2412                 if (key.type != BTRFS_DEV_ITEM_KEY) {
2413                         path->slots[0]++;
2414                         continue;
2415                 }
2416
2417                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2418                                           struct btrfs_dev_item);
2419                 cur_devid = btrfs_device_id(leaf, dev_item);
2420                 if (devid != cur_devid) {
2421                         ret = btrfs_del_item(trans, root, path);
2422                         if (ret) {
2423                                 fprintf(stderr, "Error deleting item %d\n",
2424                                         ret);
2425                                 exit(1);
2426                         }
2427                         btrfs_release_path(path);
2428                         goto again;
2429                 }
2430
2431                 btrfs_set_device_total_bytes(leaf, dev_item, dev_size);
2432                 btrfs_set_device_bytes_used(leaf, dev_item,
2433                                             mdres->alloced_chunks);
2434                 btrfs_mark_buffer_dirty(leaf);
2435                 path->slots[0]++;
2436         }
2437
2438         btrfs_free_path(path);
2439         ret = btrfs_commit_transaction(trans, fs_info->tree_root);
2440         if (ret) {
2441                 fprintf(stderr, "Commit failed %d\n", ret);
2442                 return ret;
2443         }
2444         return 0;
2445 }
2446
2447 static int restore_metadump(const char *input, FILE *out, int old_restore,
2448                             int num_threads, int fixup_offset,
2449                             const char *target, int multi_devices)
2450 {
2451         struct meta_cluster *cluster = NULL;
2452         struct meta_cluster_header *header;
2453         struct mdrestore_struct mdrestore;
2454         struct btrfs_fs_info *info = NULL;
2455         u64 bytenr = 0;
2456         FILE *in = NULL;
2457         int ret = 0;
2458
2459         if (!strcmp(input, "-")) {
2460                 in = stdin;
2461         } else {
2462                 in = fopen(input, "r");
2463                 if (!in) {
2464                         perror("unable to open metadump image");
2465                         return 1;
2466                 }
2467         }
2468
2469         /* NOTE: open with write mode */
2470         if (fixup_offset) {
2471                 BUG_ON(!target);
2472                 info = open_ctree_fs_info(target, 0, 0, 0,
2473                                           OPEN_CTREE_WRITES |
2474                                           OPEN_CTREE_RESTORE |
2475                                           OPEN_CTREE_PARTIAL);
2476                 if (!info) {
2477                         fprintf(stderr, "%s: open ctree failed\n", __func__);
2478                         ret = -EIO;
2479                         goto failed_open;
2480                 }
2481         }
2482
2483         cluster = malloc(BLOCK_SIZE);
2484         if (!cluster) {
2485                 fprintf(stderr, "Error allocating cluster\n");
2486                 ret = -ENOMEM;
2487                 goto failed_info;
2488         }
2489
2490         ret = mdrestore_init(&mdrestore, in, out, old_restore, num_threads,
2491                              fixup_offset, info, multi_devices);
2492         if (ret) {
2493                 fprintf(stderr, "Error initializing mdrestore %d\n", ret);
2494                 goto failed_cluster;
2495         }
2496
2497         if (!multi_devices && !old_restore) {
2498                 ret = build_chunk_tree(&mdrestore, cluster);
2499                 if (ret)
2500                         goto out;
2501                 if (!list_empty(&mdrestore.overlapping_chunks))
2502                         remap_overlapping_chunks(&mdrestore);
2503         }
2504
2505         if (in != stdin && fseek(in, 0, SEEK_SET)) {
2506                 fprintf(stderr, "Error seeking %d\n", errno);
2507                 goto out;
2508         }
2509
2510         while (!mdrestore.error) {
2511                 ret = fread(cluster, BLOCK_SIZE, 1, in);
2512                 if (!ret)
2513                         break;
2514
2515                 header = &cluster->header;
2516                 if (le64_to_cpu(header->magic) != HEADER_MAGIC ||
2517                     le64_to_cpu(header->bytenr) != bytenr) {
2518                         fprintf(stderr, "bad header in metadump image\n");
2519                         ret = -EIO;
2520                         break;
2521                 }
2522                 ret = add_cluster(cluster, &mdrestore, &bytenr);
2523                 if (ret) {
2524                         fprintf(stderr, "Error adding cluster\n");
2525                         break;
2526                 }
2527         }
2528         ret = wait_for_worker(&mdrestore);
2529
2530         if (!ret && !multi_devices && !old_restore) {
2531                 struct btrfs_root *root;
2532                 struct stat st;
2533
2534                 root = open_ctree_fd(fileno(out), target, 0,
2535                                           OPEN_CTREE_PARTIAL |
2536                                           OPEN_CTREE_WRITES |
2537                                           OPEN_CTREE_NO_DEVICES);
2538                 if (!root) {
2539                         fprintf(stderr, "unable to open %s\n", target);
2540                         ret = -EIO;
2541                         goto out;
2542                 }
2543                 info = root->fs_info;
2544
2545                 if (stat(target, &st)) {
2546                         fprintf(stderr, "statting %s failed\n", target);
2547                         close_ctree(info->chunk_root);
2548                         return 1;
2549                 }
2550
2551                 ret = fixup_devices(info, &mdrestore, st.st_size);
2552                 close_ctree(info->chunk_root);
2553                 if (ret)
2554                         goto out;
2555         }
2556 out:
2557         mdrestore_destroy(&mdrestore, num_threads);
2558 failed_cluster:
2559         free(cluster);
2560 failed_info:
2561         if (fixup_offset && info)
2562                 close_ctree(info->chunk_root);
2563 failed_open:
2564         if (in != stdin)
2565                 fclose(in);
2566         return ret;
2567 }
2568
2569 static int update_disk_super_on_device(struct btrfs_fs_info *info,
2570                                        const char *other_dev, u64 cur_devid)
2571 {
2572         struct btrfs_key key;
2573         struct extent_buffer *leaf;
2574         struct btrfs_path path;
2575         struct btrfs_dev_item *dev_item;
2576         struct btrfs_super_block *disk_super;
2577         char dev_uuid[BTRFS_UUID_SIZE];
2578         char fs_uuid[BTRFS_UUID_SIZE];
2579         u64 devid, type, io_align, io_width;
2580         u64 sector_size, total_bytes, bytes_used;
2581         char buf[BTRFS_SUPER_INFO_SIZE];
2582         int fp = -1;
2583         int ret;
2584
2585         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2586         key.type = BTRFS_DEV_ITEM_KEY;
2587         key.offset = cur_devid;
2588
2589         btrfs_init_path(&path);
2590         ret = btrfs_search_slot(NULL, info->chunk_root, &key, &path, 0, 0); 
2591         if (ret) {
2592                 fprintf(stderr, "ERROR: search key failed\n");
2593                 ret = -EIO;
2594                 goto out;
2595         }
2596
2597         leaf = path.nodes[0];
2598         dev_item = btrfs_item_ptr(leaf, path.slots[0],
2599                                   struct btrfs_dev_item);
2600
2601         devid = btrfs_device_id(leaf, dev_item);
2602         if (devid != cur_devid) {
2603                 printk("ERROR: devid %llu mismatch with %llu\n", devid, cur_devid);
2604                 ret = -EIO;
2605                 goto out;
2606         }
2607
2608         type = btrfs_device_type(leaf, dev_item);
2609         io_align = btrfs_device_io_align(leaf, dev_item);
2610         io_width = btrfs_device_io_width(leaf, dev_item);
2611         sector_size = btrfs_device_sector_size(leaf, dev_item);
2612         total_bytes = btrfs_device_total_bytes(leaf, dev_item);
2613         bytes_used = btrfs_device_bytes_used(leaf, dev_item);
2614         read_extent_buffer(leaf, dev_uuid, (unsigned long)btrfs_device_uuid(dev_item), BTRFS_UUID_SIZE);
2615         read_extent_buffer(leaf, fs_uuid, (unsigned long)btrfs_device_fsid(dev_item), BTRFS_UUID_SIZE);
2616
2617         btrfs_release_path(&path);
2618
2619         printk("update disk super on %s devid=%llu\n", other_dev, devid);
2620
2621         /* update other devices' super block */
2622         fp = open(other_dev, O_CREAT | O_RDWR, 0600);
2623         if (fp < 0) {
2624                 fprintf(stderr, "ERROR: could not open %s\n", other_dev);
2625                 ret = -EIO;
2626                 goto out;
2627         }
2628
2629         memcpy(buf, info->super_copy, BTRFS_SUPER_INFO_SIZE);
2630
2631         disk_super = (struct btrfs_super_block *)buf;
2632         dev_item = &disk_super->dev_item;
2633
2634         btrfs_set_stack_device_type(dev_item, type);
2635         btrfs_set_stack_device_id(dev_item, devid);
2636         btrfs_set_stack_device_total_bytes(dev_item, total_bytes);
2637         btrfs_set_stack_device_bytes_used(dev_item, bytes_used);
2638         btrfs_set_stack_device_io_align(dev_item, io_align);
2639         btrfs_set_stack_device_io_width(dev_item, io_width);
2640         btrfs_set_stack_device_sector_size(dev_item, sector_size);
2641         memcpy(dev_item->uuid, dev_uuid, BTRFS_UUID_SIZE);
2642         memcpy(dev_item->fsid, fs_uuid, BTRFS_UUID_SIZE);
2643         csum_block((u8 *)buf, BTRFS_SUPER_INFO_SIZE);
2644
2645         ret = pwrite64(fp, buf, BTRFS_SUPER_INFO_SIZE, BTRFS_SUPER_INFO_OFFSET);
2646         if (ret != BTRFS_SUPER_INFO_SIZE) {
2647                 if (ret < 0)
2648                         fprintf(stderr, "ERROR: cannot write superblock: %s\n", strerror(ret));
2649                 else
2650                         fprintf(stderr, "ERROR: cannot write superblock\n");
2651                 ret = -EIO;
2652                 goto out;
2653         }
2654
2655         write_backup_supers(fp, (u8 *)buf);
2656
2657 out:
2658         if (fp != -1)
2659                 close(fp);
2660         return ret;
2661 }
2662
2663 static void print_usage(int ret)
2664 {
2665         fprintf(stderr, "usage: btrfs-image [options] source target\n");
2666         fprintf(stderr, "\t-r      \trestore metadump image\n");
2667         fprintf(stderr, "\t-c value\tcompression level (0 ~ 9)\n");
2668         fprintf(stderr, "\t-t value\tnumber of threads (1 ~ 32)\n");
2669         fprintf(stderr, "\t-o      \tdon't mess with the chunk tree when restoring\n");
2670         fprintf(stderr, "\t-s      \tsanitize file names, use once to just use garbage, use twice if you want crc collisions\n");
2671         fprintf(stderr, "\t-w      \twalk all trees instead of using extent tree, do this if your extent tree is broken\n");
2672         fprintf(stderr, "\t-m      \trestore for multiple devices\n");
2673         fprintf(stderr, "\n");
2674         fprintf(stderr, "\tIn the dump mode, source is the btrfs device and target is the output file (use '-' for stdout).\n");
2675         fprintf(stderr, "\tIn the restore mode, source is the dumped image and target is the btrfs device/file.\n");
2676         exit(ret);
2677 }
2678
2679 int main(int argc, char *argv[])
2680 {
2681         char *source;
2682         char *target;
2683         u64 num_threads = 0;
2684         u64 compress_level = 0;
2685         int create = 1;
2686         int old_restore = 0;
2687         int walk_trees = 0;
2688         int multi_devices = 0;
2689         int ret;
2690         int sanitize = 0;
2691         int dev_cnt = 0;
2692         int usage_error = 0;
2693         FILE *out;
2694
2695         while (1) {
2696                 static const struct option long_options[] = {
2697                         { "help", no_argument, NULL, GETOPT_VAL_HELP},
2698                         { NULL, 0, NULL, 0 }
2699                 };
2700                 int c = getopt_long(argc, argv, "rc:t:oswm", long_options, NULL);
2701                 if (c < 0)
2702                         break;
2703                 switch (c) {
2704                 case 'r':
2705                         create = 0;
2706                         break;
2707                 case 't':
2708                         num_threads = arg_strtou64(optarg);
2709                         if (num_threads > 32)
2710                                 print_usage(1);
2711                         break;
2712                 case 'c':
2713                         compress_level = arg_strtou64(optarg);
2714                         if (compress_level > 9)
2715                                 print_usage(1);
2716                         break;
2717                 case 'o':
2718                         old_restore = 1;
2719                         break;
2720                 case 's':
2721                         sanitize++;
2722                         break;
2723                 case 'w':
2724                         walk_trees = 1;
2725                         break;
2726                 case 'm':
2727                         create = 0;
2728                         multi_devices = 1;
2729                         break;
2730                         case GETOPT_VAL_HELP:
2731                 default:
2732                         print_usage(c != GETOPT_VAL_HELP);
2733                 }
2734         }
2735
2736         set_argv0(argv);
2737         if (check_argc_min(argc - optind, 2))
2738                 print_usage(1);
2739
2740         dev_cnt = argc - optind - 1;
2741
2742         if (create) {
2743                 if (old_restore) {
2744                         fprintf(stderr, "Usage error: create and restore cannot be used at the same time\n");
2745                         usage_error++;
2746                 }
2747         } else {
2748                 if (walk_trees || sanitize || compress_level) {
2749                         fprintf(stderr, "Usage error: use -w, -s, -c options for restore makes no sense\n");
2750                         usage_error++;
2751                 }
2752                 if (multi_devices && dev_cnt < 2) {
2753                         fprintf(stderr, "Usage error: not enough devices specified for -m option\n");
2754                         usage_error++;
2755                 }
2756                 if (!multi_devices && dev_cnt != 1) {
2757                         fprintf(stderr, "Usage error: accepts only 1 device without -m option\n");
2758                         usage_error++;
2759                 }
2760         }
2761
2762         if (usage_error)
2763                 print_usage(1);
2764
2765         source = argv[optind];
2766         target = argv[optind + 1];
2767
2768         if (create && !strcmp(target, "-")) {
2769                 out = stdout;
2770         } else {
2771                 out = fopen(target, "w+");
2772                 if (!out) {
2773                         perror("unable to create target file");
2774                         exit(1);
2775                 }
2776         }
2777
2778         if (compress_level > 0 || create == 0) {
2779                 if (num_threads == 0) {
2780                         long tmp = sysconf(_SC_NPROCESSORS_ONLN);
2781
2782                         if (tmp <= 0)
2783                                 tmp = 1;
2784                         num_threads = tmp;
2785                 }
2786         } else {
2787                 num_threads = 0;
2788         }
2789
2790         if (create) {
2791                 ret = check_mounted(source);
2792                 if (ret < 0) {
2793                         fprintf(stderr, "Could not check mount status: %s\n",
2794                                 strerror(-ret));
2795                         exit(1);
2796                 } else if (ret)
2797                         fprintf(stderr,
2798                 "WARNING: The device is mounted. Make sure the filesystem is quiescent.\n");
2799
2800                 ret = create_metadump(source, out, num_threads,
2801                                       compress_level, sanitize, walk_trees);
2802         } else {
2803                 ret = restore_metadump(source, out, old_restore, num_threads,
2804                                        0, target, multi_devices);
2805         }
2806         if (ret) {
2807                 printk("%s failed (%s)\n", (create) ? "create" : "restore",
2808                        strerror(errno));
2809                 goto out;
2810         }
2811
2812          /* extended support for multiple devices */
2813         if (!create && multi_devices) {
2814                 struct btrfs_fs_info *info;
2815                 u64 total_devs;
2816                 int i;
2817
2818                 info = open_ctree_fs_info(target, 0, 0, 0,
2819                                           OPEN_CTREE_PARTIAL |
2820                                           OPEN_CTREE_RESTORE);
2821                 if (!info) {
2822                         fprintf(stderr, "unable to open %s error = %s\n",
2823                                 target, strerror(errno));
2824                         return 1;
2825                 }
2826
2827                 total_devs = btrfs_super_num_devices(info->super_copy);
2828                 if (total_devs != dev_cnt) {
2829                         printk("it needs %llu devices but has only %d\n",
2830                                 total_devs, dev_cnt);
2831                         close_ctree(info->chunk_root);
2832                         goto out;
2833                 }
2834
2835                 /* update super block on other disks */
2836                 for (i = 2; i <= dev_cnt; i++) {
2837                         ret = update_disk_super_on_device(info,
2838                                         argv[optind + i], (u64)i);
2839                         if (ret) {
2840                                 printk("update disk super failed devid=%d (error=%d)\n",
2841                                         i, ret);
2842                                 close_ctree(info->chunk_root);
2843                                 exit(1);
2844                         }
2845                 }
2846
2847                 close_ctree(info->chunk_root);
2848
2849                 /* fix metadata block to map correct chunk */
2850                 ret = restore_metadump(source, out, 0, num_threads, 1,
2851                                        target, 1);
2852                 if (ret) {
2853                         fprintf(stderr, "fix metadump failed (error=%d)\n",
2854                                 ret);
2855                         exit(1);
2856                 }
2857         }
2858 out:
2859         if (out == stdout) {
2860                 fflush(out);
2861         } else {
2862                 fclose(out);
2863                 if (ret && create) {
2864                         int unlink_ret;
2865
2866                         unlink_ret = unlink(target);
2867                         if (unlink_ret)
2868                                 fprintf(stderr,
2869                                         "unlink output file failed : %s\n",
2870                                         strerror(errno));
2871                 }
2872         }
2873
2874         btrfs_close_all_devices();
2875
2876         return !!ret;
2877 }