Btrfs-progs: fix compile warnings in i386 machine
[platform/upstream/btrfs-progs.git] / btrfs-image.c
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #define _XOPEN_SOURCE 500
20 #define _GNU_SOURCE 1
21 #include <pthread.h>
22 #include <stdio.h>
23 #include <stdlib.h>
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <fcntl.h>
27 #include <unistd.h>
28 #include <dirent.h>
29 #include <zlib.h>
30 #include "kerncompat.h"
31 #include "crc32c.h"
32 #include "ctree.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "utils.h"
36 #include "version.h"
37 #include "volumes.h"
38
39 #define HEADER_MAGIC            0xbd5c25e27295668bULL
40 #define MAX_PENDING_SIZE        (256 * 1024)
41 #define BLOCK_SIZE              1024
42 #define BLOCK_MASK              (BLOCK_SIZE - 1)
43
44 #define COMPRESS_NONE           0
45 #define COMPRESS_ZLIB           1
46
47 struct meta_cluster_item {
48         __le64 bytenr;
49         __le32 size;
50 } __attribute__ ((__packed__));
51
52 struct meta_cluster_header {
53         __le64 magic;
54         __le64 bytenr;
55         __le32 nritems;
56         u8 compress;
57 } __attribute__ ((__packed__));
58
59 /* cluster header + index items + buffers */
60 struct meta_cluster {
61         struct meta_cluster_header header;
62         struct meta_cluster_item items[];
63 } __attribute__ ((__packed__));
64
65 #define ITEMS_PER_CLUSTER ((BLOCK_SIZE - sizeof(struct meta_cluster)) / \
66                            sizeof(struct meta_cluster_item))
67
68 struct async_work {
69         struct list_head list;
70         struct list_head ordered;
71         u64 start;
72         u64 size;
73         u8 *buffer;
74         size_t bufsize;
75         int error;
76 };
77
78 struct metadump_struct {
79         struct btrfs_root *root;
80         FILE *out;
81
82         struct meta_cluster *cluster;
83
84         pthread_t *threads;
85         size_t num_threads;
86         pthread_mutex_t mutex;
87         pthread_cond_t cond;
88
89         struct list_head list;
90         struct list_head ordered;
91         size_t num_items;
92         size_t num_ready;
93
94         u64 pending_start;
95         u64 pending_size;
96
97         int compress_level;
98         int done;
99         int data;
100 };
101
102 struct mdrestore_struct {
103         FILE *in;
104         FILE *out;
105
106         pthread_t *threads;
107         size_t num_threads;
108         pthread_mutex_t mutex;
109         pthread_cond_t cond;
110
111         struct list_head list;
112         size_t num_items;
113         u64 leafsize;
114         u64 devid;
115         u8 uuid[BTRFS_UUID_SIZE];
116         u8 fsid[BTRFS_FSID_SIZE];
117
118         int compress_method;
119         int done;
120         int error;
121         int old_restore;
122 };
123
124 static void csum_block(u8 *buf, size_t len)
125 {
126         char result[BTRFS_CRC32_SIZE];
127         u32 crc = ~(u32)0;
128         crc = crc32c(crc, buf + BTRFS_CSUM_SIZE, len - BTRFS_CSUM_SIZE);
129         btrfs_csum_final(crc, result);
130         memcpy(buf, result, BTRFS_CRC32_SIZE);
131 }
132
133 /*
134  * zero inline extents and csum items
135  */
136 static void zero_items(u8 *dst, struct extent_buffer *src)
137 {
138         struct btrfs_file_extent_item *fi;
139         struct btrfs_item *item;
140         struct btrfs_key key;
141         u32 nritems = btrfs_header_nritems(src);
142         size_t size;
143         unsigned long ptr;
144         int i, extent_type;
145
146         for (i = 0; i < nritems; i++) {
147                 item = btrfs_item_nr(src, i);
148                 btrfs_item_key_to_cpu(src, &key, i);
149                 if (key.type == BTRFS_CSUM_ITEM_KEY) {
150                         size = btrfs_item_size_nr(src, i);
151                         memset(dst + btrfs_leaf_data(src) +
152                                btrfs_item_offset_nr(src, i), 0, size);
153                         continue;
154                 }
155                 if (key.type != BTRFS_EXTENT_DATA_KEY)
156                         continue;
157
158                 fi = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
159                 extent_type = btrfs_file_extent_type(src, fi);
160                 if (extent_type != BTRFS_FILE_EXTENT_INLINE)
161                         continue;
162
163                 ptr = btrfs_file_extent_inline_start(fi);
164                 size = btrfs_file_extent_inline_item_len(src, item);
165                 memset(dst + ptr, 0, size);
166         }
167 }
168
169 /*
170  * copy buffer and zero useless data in the buffer
171  */
172 static void copy_buffer(u8 *dst, struct extent_buffer *src)
173 {
174         int level;
175         size_t size;
176         u32 nritems;
177
178         memcpy(dst, src->data, src->len);
179         if (src->start == BTRFS_SUPER_INFO_OFFSET)
180                 return;
181
182         level = btrfs_header_level(src);
183         nritems = btrfs_header_nritems(src);
184
185         if (nritems == 0) {
186                 size = sizeof(struct btrfs_header);
187                 memset(dst + size, 0, src->len - size);
188         } else if (level == 0) {
189                 size = btrfs_leaf_data(src) +
190                         btrfs_item_offset_nr(src, nritems - 1) -
191                         btrfs_item_nr_offset(nritems);
192                 memset(dst + btrfs_item_nr_offset(nritems), 0, size);
193                 zero_items(dst, src);
194         } else {
195                 size = offsetof(struct btrfs_node, ptrs) +
196                         sizeof(struct btrfs_key_ptr) * nritems;
197                 memset(dst + size, 0, src->len - size);
198         }
199         csum_block(dst, src->len);
200 }
201
202 static void *dump_worker(void *data)
203 {
204         struct metadump_struct *md = (struct metadump_struct *)data;
205         struct async_work *async;
206         int ret;
207
208         while (1) {
209                 pthread_mutex_lock(&md->mutex);
210                 while (list_empty(&md->list)) {
211                         if (md->done) {
212                                 pthread_mutex_unlock(&md->mutex);
213                                 goto out;
214                         }
215                         pthread_cond_wait(&md->cond, &md->mutex);
216                 }
217                 async = list_entry(md->list.next, struct async_work, list);
218                 list_del_init(&async->list);
219                 pthread_mutex_unlock(&md->mutex);
220
221                 if (md->compress_level > 0) {
222                         u8 *orig = async->buffer;
223
224                         async->bufsize = compressBound(async->size);
225                         async->buffer = malloc(async->bufsize);
226
227                         ret = compress2(async->buffer,
228                                          (unsigned long *)&async->bufsize,
229                                          orig, async->size, md->compress_level);
230
231                         if (ret != Z_OK)
232                                 async->error = 1;
233
234                         free(orig);
235                 }
236
237                 pthread_mutex_lock(&md->mutex);
238                 md->num_ready++;
239                 pthread_mutex_unlock(&md->mutex);
240         }
241 out:
242         pthread_exit(NULL);
243 }
244
245 static void meta_cluster_init(struct metadump_struct *md, u64 start)
246 {
247         struct meta_cluster_header *header;
248
249         md->num_items = 0;
250         md->num_ready = 0;
251         header = &md->cluster->header;
252         header->magic = cpu_to_le64(HEADER_MAGIC);
253         header->bytenr = cpu_to_le64(start);
254         header->nritems = cpu_to_le32(0);
255         header->compress = md->compress_level > 0 ?
256                            COMPRESS_ZLIB : COMPRESS_NONE;
257 }
258
259 static int metadump_init(struct metadump_struct *md, struct btrfs_root *root,
260                          FILE *out, int num_threads, int compress_level)
261 {
262         int i, ret = 0;
263
264         memset(md, 0, sizeof(*md));
265         pthread_cond_init(&md->cond, NULL);
266         pthread_mutex_init(&md->mutex, NULL);
267         INIT_LIST_HEAD(&md->list);
268         INIT_LIST_HEAD(&md->ordered);
269         md->root = root;
270         md->out = out;
271         md->pending_start = (u64)-1;
272         md->compress_level = compress_level;
273         md->cluster = calloc(1, BLOCK_SIZE);
274         if (!md->cluster) {
275                 pthread_cond_destroy(&md->cond);
276                 pthread_mutex_destroy(&md->mutex);
277                 return -ENOMEM;
278         }
279
280         meta_cluster_init(md, 0);
281         if (!num_threads)
282                 return 0;
283
284         md->num_threads = num_threads;
285         md->threads = calloc(num_threads, sizeof(pthread_t));
286         if (!md->threads) {
287                 free(md->cluster);
288                 pthread_cond_destroy(&md->cond);
289                 pthread_mutex_destroy(&md->mutex);
290                 return -ENOMEM;
291         }
292
293         for (i = 0; i < num_threads; i++) {
294                 ret = pthread_create(md->threads + i, NULL, dump_worker, md);
295                 if (ret)
296                         break;
297         }
298
299         if (ret) {
300                 pthread_mutex_lock(&md->mutex);
301                 md->done = 1;
302                 pthread_cond_broadcast(&md->cond);
303                 pthread_mutex_unlock(&md->mutex);
304
305                 for (i--; i >= 0; i--)
306                         pthread_join(md->threads[i], NULL);
307
308                 pthread_cond_destroy(&md->cond);
309                 pthread_mutex_destroy(&md->mutex);
310                 free(md->cluster);
311                 free(md->threads);
312         }
313
314         return ret;
315 }
316
317 static void metadump_destroy(struct metadump_struct *md)
318 {
319         int i;
320         pthread_mutex_lock(&md->mutex);
321         md->done = 1;
322         pthread_cond_broadcast(&md->cond);
323         pthread_mutex_unlock(&md->mutex);
324
325         for (i = 0; i < md->num_threads; i++)
326                 pthread_join(md->threads[i], NULL);
327
328         pthread_cond_destroy(&md->cond);
329         pthread_mutex_destroy(&md->mutex);
330         free(md->threads);
331         free(md->cluster);
332 }
333
334 static int write_zero(FILE *out, size_t size)
335 {
336         static char zero[BLOCK_SIZE];
337         return fwrite(zero, size, 1, out);
338 }
339
340 static int write_buffers(struct metadump_struct *md, u64 *next)
341 {
342         struct meta_cluster_header *header = &md->cluster->header;
343         struct meta_cluster_item *item;
344         struct async_work *async;
345         u64 bytenr = 0;
346         u32 nritems = 0;
347         int ret;
348         int err = 0;
349
350         if (list_empty(&md->ordered))
351                 goto out;
352
353         /* wait until all buffers are compressed */
354         while (md->num_items > md->num_ready) {
355                 struct timespec ts = {
356                         .tv_sec = 0,
357                         .tv_nsec = 10000000,
358                 };
359                 pthread_mutex_unlock(&md->mutex);
360                 nanosleep(&ts, NULL);
361                 pthread_mutex_lock(&md->mutex);
362         }
363
364         /* setup and write index block */
365         list_for_each_entry(async, &md->ordered, ordered) {
366                 item = md->cluster->items + nritems;
367                 item->bytenr = cpu_to_le64(async->start);
368                 item->size = cpu_to_le32(async->bufsize);
369                 nritems++;
370         }
371         header->nritems = cpu_to_le32(nritems);
372
373         ret = fwrite(md->cluster, BLOCK_SIZE, 1, md->out);
374         if (ret != 1) {
375                 fprintf(stderr, "Error writing out cluster: %d\n", errno);
376                 return -EIO;
377         }
378
379         /* write buffers */
380         bytenr += le64_to_cpu(header->bytenr) + BLOCK_SIZE;
381         while (!list_empty(&md->ordered)) {
382                 async = list_entry(md->ordered.next, struct async_work,
383                                    ordered);
384                 list_del_init(&async->ordered);
385
386                 bytenr += async->bufsize;
387                 if (!err)
388                         ret = fwrite(async->buffer, async->bufsize, 1,
389                                      md->out);
390                 if (ret != 1) {
391                         err = -EIO;
392                         ret = 0;
393                         fprintf(stderr, "Error writing out cluster: %d\n",
394                                 errno);
395                 }
396
397                 free(async->buffer);
398                 free(async);
399         }
400
401         /* zero unused space in the last block */
402         if (!err && bytenr & BLOCK_MASK) {
403                 size_t size = BLOCK_SIZE - (bytenr & BLOCK_MASK);
404
405                 bytenr += size;
406                 ret = write_zero(md->out, size);
407                 if (ret != 1) {
408                         fprintf(stderr, "Error zeroing out buffer: %d\n",
409                                 errno);
410                         err = -EIO;
411                 }
412         }
413 out:
414         *next = bytenr;
415         return err;
416 }
417
418 static int read_data_extent(struct metadump_struct *md,
419                             struct async_work *async)
420 {
421         struct btrfs_multi_bio *multi = NULL;
422         struct btrfs_device *device;
423         u64 bytes_left = async->size;
424         u64 logical = async->start;
425         u64 offset = 0;
426         u64 bytenr;
427         u64 read_len;
428         ssize_t done;
429         int fd;
430         int ret;
431
432         while (bytes_left) {
433                 read_len = bytes_left;
434                 ret = btrfs_map_block(&md->root->fs_info->mapping_tree, READ,
435                                       logical, &read_len, &multi, 0, NULL);
436                 if (ret) {
437                         fprintf(stderr, "Couldn't map data block %d\n", ret);
438                         return ret;
439                 }
440
441                 device = multi->stripes[0].dev;
442
443                 if (device->fd == 0) {
444                         fprintf(stderr,
445                                 "Device we need to read from is not open\n");
446                         free(multi);
447                         return -EIO;
448                 }
449                 fd = device->fd;
450                 bytenr = multi->stripes[0].physical;
451                 free(multi);
452
453                 read_len = min(read_len, bytes_left);
454                 done = pread64(fd, async->buffer+offset, read_len, bytenr);
455                 if (done < read_len) {
456                         if (done < 0)
457                                 fprintf(stderr, "Error reading extent %d\n",
458                                         errno);
459                         else
460                                 fprintf(stderr, "Short read\n");
461                         return -EIO;
462                 }
463
464                 bytes_left -= done;
465                 offset += done;
466                 logical += done;
467         }
468
469         return 0;
470 }
471
472 static int flush_pending(struct metadump_struct *md, int done)
473 {
474         struct async_work *async = NULL;
475         struct extent_buffer *eb;
476         u64 blocksize = md->root->nodesize;
477         u64 start;
478         u64 size;
479         size_t offset;
480         int ret = 0;
481
482         if (md->pending_size) {
483                 async = calloc(1, sizeof(*async));
484                 if (!async)
485                         return -ENOMEM;
486
487                 async->start = md->pending_start;
488                 async->size = md->pending_size;
489                 async->bufsize = async->size;
490                 async->buffer = malloc(async->bufsize);
491                 if (!async->buffer) {
492                         free(async);
493                         return -ENOMEM;
494                 }
495                 offset = 0;
496                 start = async->start;
497                 size = async->size;
498
499                 if (md->data) {
500                         ret = read_data_extent(md, async);
501                         if (ret) {
502                                 free(async->buffer);
503                                 free(async);
504                                 return ret;
505                         }
506                 }
507
508                 while (!md->data && size > 0) {
509                         u64 this_read = min(blocksize, size);
510                         eb = read_tree_block(md->root, start, this_read, 0);
511                         if (!eb) {
512                                 free(async->buffer);
513                                 free(async);
514                                 fprintf(stderr,
515                                         "Error reading metadata block\n");
516                                 return -EIO;
517                         }
518                         copy_buffer(async->buffer + offset, eb);
519                         free_extent_buffer(eb);
520                         start += this_read;
521                         offset += this_read;
522                         size -= this_read;
523                 }
524
525                 md->pending_start = (u64)-1;
526                 md->pending_size = 0;
527         } else if (!done) {
528                 return 0;
529         }
530
531         pthread_mutex_lock(&md->mutex);
532         if (async) {
533                 list_add_tail(&async->ordered, &md->ordered);
534                 md->num_items++;
535                 if (md->compress_level > 0) {
536                         list_add_tail(&async->list, &md->list);
537                         pthread_cond_signal(&md->cond);
538                 } else {
539                         md->num_ready++;
540                 }
541         }
542         if (md->num_items >= ITEMS_PER_CLUSTER || done) {
543                 ret = write_buffers(md, &start);
544                 if (ret)
545                         fprintf(stderr, "Error writing buffers %d\n",
546                                 errno);
547                 else
548                         meta_cluster_init(md, start);
549         }
550         pthread_mutex_unlock(&md->mutex);
551         return ret;
552 }
553
554 static int add_extent(u64 start, u64 size, struct metadump_struct *md,
555                       int data)
556 {
557         int ret;
558         if (md->data != data ||
559             md->pending_size + size > MAX_PENDING_SIZE ||
560             md->pending_start + md->pending_size != start) {
561                 ret = flush_pending(md, 0);
562                 if (ret)
563                         return ret;
564                 md->pending_start = start;
565         }
566         readahead_tree_block(md->root, start, size, 0);
567         md->pending_size += size;
568         md->data = data;
569         return 0;
570 }
571
572 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
573 static int is_tree_block(struct btrfs_root *extent_root,
574                          struct btrfs_path *path, u64 bytenr)
575 {
576         struct extent_buffer *leaf;
577         struct btrfs_key key;
578         u64 ref_objectid;
579         int ret;
580
581         leaf = path->nodes[0];
582         while (1) {
583                 struct btrfs_extent_ref_v0 *ref_item;
584                 path->slots[0]++;
585                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
586                         ret = btrfs_next_leaf(extent_root, path);
587                         if (ret < 0)
588                                 return ret;
589                         if (ret > 0)
590                                 break;
591                         leaf = path->nodes[0];
592                 }
593                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
594                 if (key.objectid != bytenr)
595                         break;
596                 if (key.type != BTRFS_EXTENT_REF_V0_KEY)
597                         continue;
598                 ref_item = btrfs_item_ptr(leaf, path->slots[0],
599                                           struct btrfs_extent_ref_v0);
600                 ref_objectid = btrfs_ref_objectid_v0(leaf, ref_item);
601                 if (ref_objectid < BTRFS_FIRST_FREE_OBJECTID)
602                         return 1;
603                 break;
604         }
605         return 0;
606 }
607 #endif
608
609 static int copy_tree_blocks(struct btrfs_root *root, struct extent_buffer *eb,
610                             struct metadump_struct *metadump, int root_tree)
611 {
612         struct extent_buffer *tmp;
613         struct btrfs_root_item *ri;
614         struct btrfs_key key;
615         u64 bytenr;
616         int level;
617         int nritems = 0;
618         int i = 0;
619         int ret;
620
621         ret = add_extent(btrfs_header_bytenr(eb), root->leafsize, metadump, 0);
622         if (ret) {
623                 fprintf(stderr, "Error adding metadata block\n");
624                 return ret;
625         }
626
627         if (btrfs_header_level(eb) == 0 && !root_tree)
628                 return 0;
629
630         level = btrfs_header_level(eb);
631         nritems = btrfs_header_nritems(eb);
632         for (i = 0; i < nritems; i++) {
633                 if (level == 0) {
634                         btrfs_item_key_to_cpu(eb, &key, i);
635                         if (key.type != BTRFS_ROOT_ITEM_KEY)
636                                 continue;
637                         ri = btrfs_item_ptr(eb, i, struct btrfs_root_item);
638                         bytenr = btrfs_disk_root_bytenr(eb, ri);
639                         tmp = read_tree_block(root, bytenr, root->leafsize, 0);
640                         if (!tmp) {
641                                 fprintf(stderr,
642                                         "Error reading log root block\n");
643                                 return -EIO;
644                         }
645                         ret = copy_tree_blocks(root, tmp, metadump, 0);
646                         free_extent_buffer(tmp);
647                         if (ret)
648                                 return ret;
649                 } else {
650                         bytenr = btrfs_node_blockptr(eb, i);
651                         tmp = read_tree_block(root, bytenr, root->leafsize, 0);
652                         if (!tmp) {
653                                 fprintf(stderr, "Error reading log block\n");
654                                 return -EIO;
655                         }
656                         ret = copy_tree_blocks(root, tmp, metadump, root_tree);
657                         free_extent_buffer(tmp);
658                         if (ret)
659                                 return ret;
660                 }
661         }
662
663         return 0;
664 }
665
666 static int copy_log_trees(struct btrfs_root *root,
667                           struct metadump_struct *metadump,
668                           struct btrfs_path *path)
669 {
670         u64 blocknr = btrfs_super_log_root(root->fs_info->super_copy);
671
672         if (blocknr == 0)
673                 return 0;
674
675         if (!root->fs_info->log_root_tree ||
676             !root->fs_info->log_root_tree->node) {
677                 fprintf(stderr, "Error copying tree log, it wasn't setup\n");
678                 return -EIO;
679         }
680
681         return copy_tree_blocks(root, root->fs_info->log_root_tree->node,
682                                 metadump, 1);
683 }
684
685 static int copy_space_cache(struct btrfs_root *root,
686                             struct metadump_struct *metadump,
687                             struct btrfs_path *path)
688 {
689         struct extent_buffer *leaf;
690         struct btrfs_file_extent_item *fi;
691         struct btrfs_key key;
692         u64 bytenr, num_bytes;
693         int ret;
694
695         root = root->fs_info->tree_root;
696
697         key.objectid = 0;
698         key.type = BTRFS_EXTENT_DATA_KEY;
699         key.offset = 0;
700
701         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
702         if (ret < 0) {
703                 fprintf(stderr, "Error searching for free space inode %d\n",
704                         ret);
705                 return ret;
706         }
707
708         while (1) {
709                 leaf = path->nodes[0];
710                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
711                         ret = btrfs_next_leaf(root, path);
712                         if (ret < 0) {
713                                 fprintf(stderr, "Error going to next leaf "
714                                         "%d\n", ret);
715                                 return ret;
716                         }
717                         if (ret > 0)
718                                 break;
719                         leaf = path->nodes[0];
720                 }
721
722                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
723                 if (key.type != BTRFS_EXTENT_DATA_KEY) {
724                         path->slots[0]++;
725                         continue;
726                 }
727
728                 fi = btrfs_item_ptr(leaf, path->slots[0],
729                                     struct btrfs_file_extent_item);
730                 if (btrfs_file_extent_type(leaf, fi) !=
731                     BTRFS_FILE_EXTENT_REG) {
732                         path->slots[0]++;
733                         continue;
734                 }
735
736                 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
737                 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
738                 ret = add_extent(bytenr, num_bytes, metadump, 1);
739                 if (ret) {
740                         fprintf(stderr, "Error adding space cache blocks %d\n",
741                                 ret);
742                         btrfs_release_path(root, path);
743                         return ret;
744                 }
745                 path->slots[0]++;
746         }
747
748         return 0;
749 }
750
751 static int copy_from_extent_tree(struct metadump_struct *metadump,
752                                  struct btrfs_path *path)
753 {
754         struct btrfs_root *extent_root;
755         struct extent_buffer *leaf;
756         struct btrfs_extent_item *ei;
757         struct btrfs_key key;
758         u64 bytenr;
759         u64 num_bytes;
760         int ret;
761
762         extent_root = metadump->root->fs_info->extent_root;
763         bytenr = BTRFS_SUPER_INFO_OFFSET + 4096;
764         key.objectid = bytenr;
765         key.type = BTRFS_EXTENT_ITEM_KEY;
766         key.offset = 0;
767
768         ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
769         if (ret < 0) {
770                 fprintf(stderr, "Error searching extent root %d\n", ret);
771                 return ret;
772         }
773         ret = 0;
774
775         while (1) {
776                 leaf = path->nodes[0];
777                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
778                         ret = btrfs_next_leaf(extent_root, path);
779                         if (ret < 0) {
780                                 fprintf(stderr, "Error going to next leaf %d"
781                                         "\n", ret);
782                                 break;
783                         }
784                         if (ret > 0) {
785                                 ret = 0;
786                                 break;
787                         }
788                         leaf = path->nodes[0];
789                 }
790
791                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
792                 if (key.objectid < bytenr ||
793                     (key.type != BTRFS_EXTENT_ITEM_KEY &&
794                      key.type != BTRFS_METADATA_ITEM_KEY)) {
795                         path->slots[0]++;
796                         continue;
797                 }
798
799                 bytenr = key.objectid;
800                 if (key.type == BTRFS_METADATA_ITEM_KEY)
801                         num_bytes = key.offset;
802                 else
803                         num_bytes = extent_root->leafsize;
804
805                 if (btrfs_item_size_nr(leaf, path->slots[0]) > sizeof(*ei)) {
806                         ei = btrfs_item_ptr(leaf, path->slots[0],
807                                             struct btrfs_extent_item);
808                         if (btrfs_extent_flags(leaf, ei) &
809                             BTRFS_EXTENT_FLAG_TREE_BLOCK) {
810                                 ret = add_extent(bytenr, num_bytes, metadump,
811                                                  0);
812                                 if (ret) {
813                                         fprintf(stderr, "Error adding block "
814                                                 "%d\n", ret);
815                                         break;
816                                 }
817                         }
818                 } else {
819 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
820                         ret = is_tree_block(extent_root, path, bytenr);
821                         if (ret < 0) {
822                                 fprintf(stderr, "Error checking tree block "
823                                         "%d\n", ret);
824                                 break;
825                         }
826
827                         if (ret) {
828                                 ret = add_extent(bytenr, num_bytes, metadump,
829                                                  0);
830                                 if (ret) {
831                                         fprintf(stderr, "Error adding block "
832                                                 "%d\n", ret);
833                                         break;
834                                 }
835                         }
836                         ret = 0;
837 #else
838                         fprintf(stderr, "Either extent tree corruption or "
839                                 "you haven't built with V0 support\n");
840                         ret = -EIO;
841                         break;
842 #endif
843                 }
844                 bytenr += num_bytes;
845         }
846
847         btrfs_release_path(extent_root, path);
848
849         return ret;
850 }
851
852 static int create_metadump(const char *input, FILE *out, int num_threads,
853                            int compress_level, int walk_trees)
854 {
855         struct btrfs_root *root;
856         struct btrfs_path *path = NULL;
857         struct metadump_struct metadump;
858         int ret;
859         int err = 0;
860
861         root = open_ctree(input, 0, 0);
862         if (!root) {
863                 fprintf(stderr, "Open ctree failed\n");
864                 return -EIO;
865         }
866
867         BUG_ON(root->nodesize != root->leafsize);
868
869         ret = metadump_init(&metadump, root, out, num_threads,
870                             compress_level);
871         if (ret) {
872                 fprintf(stderr, "Error initing metadump %d\n", ret);
873                 close_ctree(root);
874                 return ret;
875         }
876
877         ret = add_extent(BTRFS_SUPER_INFO_OFFSET, 4096, &metadump, 0);
878         if (ret) {
879                 fprintf(stderr, "Error adding metadata %d\n", ret);
880                 err = ret;
881                 goto out;
882         }
883
884         path = btrfs_alloc_path();
885         if (!path) {
886                 fprintf(stderr, "Out of memory allocing path\n");
887                 err = -ENOMEM;
888                 goto out;
889         }
890
891         if (walk_trees) {
892                 ret = copy_tree_blocks(root, root->fs_info->chunk_root->node,
893                                        &metadump, 1);
894                 if (ret) {
895                         err = ret;
896                         goto out;
897                 }
898
899                 ret = copy_tree_blocks(root, root->fs_info->tree_root->node,
900                                        &metadump, 1);
901                 if (ret) {
902                         err = ret;
903                         goto out;
904                 }
905         } else {
906                 ret = copy_from_extent_tree(&metadump, path);
907                 if (ret) {
908                         err = ret;
909                         goto out;
910                 }
911         }
912
913         ret = copy_log_trees(root, &metadump, path);
914         if (ret) {
915                 err = ret;
916                 goto out;
917         }
918
919         ret = copy_space_cache(root, &metadump, path);
920 out:
921         ret = flush_pending(&metadump, 1);
922         if (ret) {
923                 if (!err)
924                         err = ret;
925                 fprintf(stderr, "Error flushing pending %d\n", ret);
926         }
927
928         metadump_destroy(&metadump);
929
930         btrfs_free_path(path);
931         ret = close_ctree(root);
932         return err ? err : ret;
933 }
934
935 static void update_super_old(u8 *buffer)
936 {
937         struct btrfs_super_block *super = (struct btrfs_super_block *)buffer;
938         struct btrfs_chunk *chunk;
939         struct btrfs_disk_key *key;
940         u32 sectorsize = btrfs_super_sectorsize(super);
941         u64 flags = btrfs_super_flags(super);
942
943         flags |= BTRFS_SUPER_FLAG_METADUMP;
944         btrfs_set_super_flags(super, flags);
945
946         key = (struct btrfs_disk_key *)(super->sys_chunk_array);
947         chunk = (struct btrfs_chunk *)(super->sys_chunk_array +
948                                        sizeof(struct btrfs_disk_key));
949
950         btrfs_set_disk_key_objectid(key, BTRFS_FIRST_CHUNK_TREE_OBJECTID);
951         btrfs_set_disk_key_type(key, BTRFS_CHUNK_ITEM_KEY);
952         btrfs_set_disk_key_offset(key, 0);
953
954         btrfs_set_stack_chunk_length(chunk, (u64)-1);
955         btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
956         btrfs_set_stack_chunk_stripe_len(chunk, 64 * 1024);
957         btrfs_set_stack_chunk_type(chunk, BTRFS_BLOCK_GROUP_SYSTEM);
958         btrfs_set_stack_chunk_io_align(chunk, sectorsize);
959         btrfs_set_stack_chunk_io_width(chunk, sectorsize);
960         btrfs_set_stack_chunk_sector_size(chunk, sectorsize);
961         btrfs_set_stack_chunk_num_stripes(chunk, 1);
962         btrfs_set_stack_chunk_sub_stripes(chunk, 0);
963         chunk->stripe.devid = super->dev_item.devid;
964         chunk->stripe.offset = cpu_to_le64(0);
965         memcpy(chunk->stripe.dev_uuid, super->dev_item.uuid, BTRFS_UUID_SIZE);
966         btrfs_set_super_sys_array_size(super, sizeof(*key) + sizeof(*chunk));
967         csum_block(buffer, 4096);
968 }
969
970 static int update_super(u8 *buffer)
971 {
972         struct btrfs_super_block *super = (struct btrfs_super_block *)buffer;
973         struct btrfs_chunk *chunk;
974         struct btrfs_disk_key *disk_key;
975         struct btrfs_key key;
976         u32 new_array_size = 0;
977         u32 array_size;
978         u32 cur = 0;
979         u32 new_cur = 0;
980         u8 *ptr, *write_ptr;
981         int old_num_stripes;
982
983         write_ptr = ptr = super->sys_chunk_array;
984         array_size = btrfs_super_sys_array_size(super);
985
986         while (cur < array_size) {
987                 disk_key = (struct btrfs_disk_key *)ptr;
988                 btrfs_disk_key_to_cpu(&key, disk_key);
989
990                 new_array_size += sizeof(*disk_key);
991                 memmove(write_ptr, ptr, sizeof(*disk_key));
992
993                 write_ptr += sizeof(*disk_key);
994                 ptr += sizeof(*disk_key);
995                 cur += sizeof(*disk_key);
996                 new_cur += sizeof(*disk_key);
997
998                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
999                         chunk = (struct btrfs_chunk *)ptr;
1000                         old_num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1001                         chunk = (struct btrfs_chunk *)write_ptr;
1002
1003                         memmove(write_ptr, ptr, sizeof(*chunk));
1004                         btrfs_set_stack_chunk_num_stripes(chunk, 1);
1005                         btrfs_set_stack_chunk_sub_stripes(chunk, 0);
1006                         btrfs_set_stack_chunk_type(chunk,
1007                                                    BTRFS_BLOCK_GROUP_SYSTEM);
1008                         chunk->stripe.devid = super->dev_item.devid;
1009                         chunk->stripe.offset = cpu_to_le64(key.offset);
1010                         memcpy(chunk->stripe.dev_uuid, super->dev_item.uuid,
1011                                BTRFS_UUID_SIZE);
1012                         new_array_size += sizeof(*chunk);
1013                         new_cur += sizeof(*chunk);
1014                 } else {
1015                         fprintf(stderr, "Bogus key in the sys chunk array "
1016                                 "%d\n", key.type);
1017                         return -EIO;
1018                 }
1019                 write_ptr += sizeof(*chunk);
1020                 ptr += btrfs_chunk_item_size(old_num_stripes);
1021                 cur += btrfs_chunk_item_size(old_num_stripes);
1022         }
1023
1024         btrfs_set_super_sys_array_size(super, new_array_size);
1025         csum_block(buffer, 4096);
1026
1027         return 0;
1028 }
1029
1030 static struct extent_buffer *alloc_dummy_eb(u64 bytenr, u32 size)
1031 {
1032         struct extent_buffer *eb;
1033
1034         eb = malloc(sizeof(struct extent_buffer) + size);
1035         if (!eb)
1036                 return NULL;
1037         memset(eb, 0, sizeof(struct extent_buffer) + size);
1038
1039         eb->start = bytenr;
1040         eb->len = size;
1041         return eb;
1042 }
1043
1044 static void truncate_item(struct extent_buffer *eb, int slot, u32 new_size)
1045 {
1046         struct btrfs_item *item;
1047         u32 nritems;
1048         u32 old_size;
1049         u32 old_data_start;
1050         u32 size_diff;
1051         u32 data_end;
1052         int i;
1053
1054         old_size = btrfs_item_size_nr(eb, slot);
1055         if (old_size == new_size)
1056                 return;
1057
1058         nritems = btrfs_header_nritems(eb);
1059         data_end = btrfs_item_offset_nr(eb, nritems - 1);
1060
1061         old_data_start = btrfs_item_offset_nr(eb, slot);
1062         size_diff = old_size - new_size;
1063
1064         for (i = slot; i < nritems; i++) {
1065                 u32 ioff;
1066                 item = btrfs_item_nr(eb, i);
1067                 ioff = btrfs_item_offset(eb, item);
1068                 btrfs_set_item_offset(eb, item, ioff + size_diff);
1069         }
1070
1071         memmove_extent_buffer(eb, btrfs_leaf_data(eb) + data_end + size_diff,
1072                               btrfs_leaf_data(eb) + data_end,
1073                               old_data_start + new_size - data_end);
1074         item = btrfs_item_nr(eb, slot);
1075         btrfs_set_item_size(eb, item, new_size);
1076 }
1077
1078 static int fixup_chunk_tree_block(struct mdrestore_struct *mdres,
1079                                   struct async_work *async, u8 *buffer,
1080                                   size_t size)
1081 {
1082         struct extent_buffer *eb;
1083         size_t size_left = size;
1084         u64 bytenr = async->start;
1085         int i;
1086
1087         if (size_left % mdres->leafsize)
1088                 return 0;
1089
1090         eb = alloc_dummy_eb(bytenr, mdres->leafsize);
1091         if (!eb)
1092                 return -ENOMEM;
1093
1094         while (size_left) {
1095                 eb->start = bytenr;
1096                 memcpy(eb->data, buffer, mdres->leafsize);
1097
1098                 if (btrfs_header_bytenr(eb) != bytenr)
1099                         break;
1100                 if (memcmp(mdres->fsid,
1101                            eb->data + offsetof(struct btrfs_header, fsid),
1102                            BTRFS_FSID_SIZE))
1103                         break;
1104
1105                 if (btrfs_header_owner(eb) != BTRFS_CHUNK_TREE_OBJECTID)
1106                         goto next;
1107
1108                 if (btrfs_header_level(eb) != 0)
1109                         goto next;
1110
1111                 for (i = 0; i < btrfs_header_nritems(eb); i++) {
1112                         struct btrfs_chunk chunk;
1113                         struct btrfs_key key;
1114                         u64 type;
1115
1116                         btrfs_item_key_to_cpu(eb, &key, i);
1117                         if (key.type != BTRFS_CHUNK_ITEM_KEY)
1118                                 continue;
1119                         truncate_item(eb, i, sizeof(chunk));
1120                         read_extent_buffer(eb, &chunk,
1121                                            btrfs_item_ptr_offset(eb, i),
1122                                            sizeof(chunk));
1123
1124                         /* Zero out the RAID profile */
1125                         type = btrfs_stack_chunk_type(&chunk);
1126                         type &= (BTRFS_BLOCK_GROUP_DATA |
1127                                  BTRFS_BLOCK_GROUP_SYSTEM |
1128                                  BTRFS_BLOCK_GROUP_METADATA);
1129                         btrfs_set_stack_chunk_type(&chunk, type);
1130
1131                         btrfs_set_stack_chunk_num_stripes(&chunk, 1);
1132                         btrfs_set_stack_chunk_sub_stripes(&chunk, 0);
1133                         btrfs_set_stack_stripe_devid(&chunk.stripe, mdres->devid);
1134                         btrfs_set_stack_stripe_offset(&chunk.stripe, key.offset);
1135                         memcpy(chunk.stripe.dev_uuid, mdres->uuid,
1136                                BTRFS_UUID_SIZE);
1137                         write_extent_buffer(eb, &chunk,
1138                                             btrfs_item_ptr_offset(eb, i),
1139                                             sizeof(chunk));
1140                 }
1141                 memcpy(buffer, eb->data, eb->len);
1142                 csum_block(buffer, eb->len);
1143 next:
1144                 size_left -= mdres->leafsize;
1145                 buffer += mdres->leafsize;
1146                 bytenr += mdres->leafsize;
1147         }
1148
1149         return 0;
1150 }
1151
1152 static void write_backup_supers(int fd, u8 *buf)
1153 {
1154         struct stat st;
1155         u64 size;
1156         u64 bytenr;
1157         int i;
1158         int ret;
1159
1160         if (fstat(fd, &st)) {
1161                 fprintf(stderr, "Couldn't stat restore point, won't be able "
1162                         "to write backup supers: %d\n", errno);
1163                 return;
1164         }
1165
1166         size = btrfs_device_size(fd, &st);
1167
1168         for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1169                 bytenr = btrfs_sb_offset(i);
1170                 if (bytenr + 4096 > size)
1171                         break;
1172                 ret = pwrite64(fd, buf, 4096, bytenr);
1173                 if (ret < 4096) {
1174                         if (ret < 0)
1175                                 fprintf(stderr, "Problem writing out backup "
1176                                         "super block %d, err %d\n", i, errno);
1177                         else
1178                                 fprintf(stderr, "Short write writing out "
1179                                         "backup super block\n");
1180                         break;
1181                 }
1182         }
1183 }
1184
1185 static void *restore_worker(void *data)
1186 {
1187         struct mdrestore_struct *mdres = (struct mdrestore_struct *)data;
1188         struct async_work *async;
1189         size_t size;
1190         u8 *buffer;
1191         u8 *outbuf;
1192         int outfd;
1193         int ret;
1194
1195         outfd = fileno(mdres->out);
1196         buffer = malloc(MAX_PENDING_SIZE * 2);
1197         if (!buffer) {
1198                 fprintf(stderr, "Error allocing buffer\n");
1199                 pthread_mutex_lock(&mdres->mutex);
1200                 if (!mdres->error)
1201                         mdres->error = -ENOMEM;
1202                 pthread_mutex_unlock(&mdres->mutex);
1203                 goto out;
1204         }
1205
1206         while (1) {
1207                 int err = 0;
1208
1209                 pthread_mutex_lock(&mdres->mutex);
1210                 while (!mdres->leafsize || list_empty(&mdres->list)) {
1211                         if (mdres->done) {
1212                                 pthread_mutex_unlock(&mdres->mutex);
1213                                 goto out;
1214                         }
1215                         pthread_cond_wait(&mdres->cond, &mdres->mutex);
1216                 }
1217                 async = list_entry(mdres->list.next, struct async_work, list);
1218                 list_del_init(&async->list);
1219                 pthread_mutex_unlock(&mdres->mutex);
1220
1221                 if (mdres->compress_method == COMPRESS_ZLIB) {
1222                         size = MAX_PENDING_SIZE * 2;
1223                         ret = uncompress(buffer, (unsigned long *)&size,
1224                                          async->buffer, async->bufsize);
1225                         if (ret != Z_OK) {
1226                                 fprintf(stderr, "Error decompressing %d\n",
1227                                         ret);
1228                                 err = -EIO;
1229                         }
1230                         outbuf = buffer;
1231                 } else {
1232                         outbuf = async->buffer;
1233                         size = async->bufsize;
1234                 }
1235
1236                 if (async->start == BTRFS_SUPER_INFO_OFFSET) {
1237                         if (mdres->old_restore) {
1238                                 update_super_old(outbuf);
1239                         } else {
1240                                 ret = update_super(outbuf);
1241                                 if (ret)
1242                                         err = ret;
1243                         }
1244                 } else if (!mdres->old_restore) {
1245                         ret = fixup_chunk_tree_block(mdres, async, outbuf, size);
1246                         if (ret)
1247                                 err = ret;
1248                 }
1249
1250                 ret = pwrite64(outfd, outbuf, size, async->start);
1251                 if (ret < size) {
1252                         if (ret < 0) {
1253                                 fprintf(stderr, "Error writing to device %d\n",
1254                                         errno);
1255                                 err = errno;
1256                         } else {
1257                                 fprintf(stderr, "Short write\n");
1258                                 err = -EIO;
1259                         }
1260                 }
1261
1262                 if (async->start == BTRFS_SUPER_INFO_OFFSET)
1263                         write_backup_supers(outfd, outbuf);
1264
1265                 pthread_mutex_lock(&mdres->mutex);
1266                 if (err && !mdres->error)
1267                         mdres->error = err;
1268                 mdres->num_items--;
1269                 pthread_mutex_unlock(&mdres->mutex);
1270
1271                 free(async->buffer);
1272                 free(async);
1273         }
1274 out:
1275         free(buffer);
1276         pthread_exit(NULL);
1277 }
1278
1279 static void mdrestore_destroy(struct mdrestore_struct *mdres)
1280 {
1281         int i;
1282         pthread_mutex_lock(&mdres->mutex);
1283         mdres->done = 1;
1284         pthread_cond_broadcast(&mdres->cond);
1285         pthread_mutex_unlock(&mdres->mutex);
1286
1287         for (i = 0; i < mdres->num_threads; i++)
1288                 pthread_join(mdres->threads[i], NULL);
1289
1290         pthread_cond_destroy(&mdres->cond);
1291         pthread_mutex_destroy(&mdres->mutex);
1292         free(mdres->threads);
1293 }
1294
1295 static int mdrestore_init(struct mdrestore_struct *mdres,
1296                           FILE *in, FILE *out, int old_restore,
1297                           int num_threads)
1298 {
1299         int i, ret = 0;
1300
1301         memset(mdres, 0, sizeof(*mdres));
1302         pthread_cond_init(&mdres->cond, NULL);
1303         pthread_mutex_init(&mdres->mutex, NULL);
1304         INIT_LIST_HEAD(&mdres->list);
1305         mdres->in = in;
1306         mdres->out = out;
1307         mdres->old_restore = old_restore;
1308
1309         if (!num_threads)
1310                 return 0;
1311
1312         mdres->num_threads = num_threads;
1313         mdres->threads = calloc(num_threads, sizeof(pthread_t));
1314         if (!mdres->threads)
1315                 return -ENOMEM;
1316         for (i = 0; i < num_threads; i++) {
1317                 ret = pthread_create(mdres->threads + i, NULL, restore_worker,
1318                                      mdres);
1319                 if (ret)
1320                         break;
1321         }
1322         if (ret)
1323                 mdrestore_destroy(mdres);
1324         return ret;
1325 }
1326
1327 static int fill_mdres_info(struct mdrestore_struct *mdres,
1328                            struct async_work *async)
1329 {
1330         struct btrfs_super_block *super;
1331         u8 *buffer = NULL;
1332         u8 *outbuf;
1333         int ret;
1334
1335         if (mdres->compress_method == COMPRESS_ZLIB) {
1336                 size_t size = MAX_PENDING_SIZE * 2;
1337
1338                 buffer = malloc(MAX_PENDING_SIZE * 2);
1339                 if (!buffer)
1340                         return -ENOMEM;
1341                 ret = uncompress(buffer, (unsigned long *)&size,
1342                                  async->buffer, async->bufsize);
1343                 if (ret != Z_OK) {
1344                         fprintf(stderr, "Error decompressing %d\n", ret);
1345                         free(buffer);
1346                         return -EIO;
1347                 }
1348                 outbuf = buffer;
1349         } else {
1350                 outbuf = async->buffer;
1351         }
1352
1353         super = (struct btrfs_super_block *)outbuf;
1354         mdres->leafsize = btrfs_super_leafsize(super);
1355         memcpy(mdres->fsid, super->fsid, BTRFS_FSID_SIZE);
1356         memcpy(mdres->uuid, super->dev_item.uuid,
1357                        BTRFS_UUID_SIZE);
1358         mdres->devid = le64_to_cpu(super->dev_item.devid);
1359         free(buffer);
1360         return 0;
1361 }
1362
1363 static int add_cluster(struct meta_cluster *cluster,
1364                        struct mdrestore_struct *mdres, u64 *next)
1365 {
1366         struct meta_cluster_item *item;
1367         struct meta_cluster_header *header = &cluster->header;
1368         struct async_work *async;
1369         u64 bytenr;
1370         u32 i, nritems;
1371         int ret;
1372
1373         BUG_ON(mdres->num_items);
1374         mdres->compress_method = header->compress;
1375
1376         bytenr = le64_to_cpu(header->bytenr) + BLOCK_SIZE;
1377         nritems = le32_to_cpu(header->nritems);
1378         for (i = 0; i < nritems; i++) {
1379                 item = &cluster->items[i];
1380                 async = calloc(1, sizeof(*async));
1381                 if (!async) {
1382                         fprintf(stderr, "Error allocating async\n");
1383                         return -ENOMEM;
1384                 }
1385                 async->start = le64_to_cpu(item->bytenr);
1386                 async->bufsize = le32_to_cpu(item->size);
1387                 async->buffer = malloc(async->bufsize);
1388                 if (!async->buffer) {
1389                         fprintf(stderr, "Error allocing async buffer\n");
1390                         free(async);
1391                         return -ENOMEM;
1392                 }
1393                 ret = fread(async->buffer, async->bufsize, 1, mdres->in);
1394                 if (ret != 1) {
1395                         fprintf(stderr, "Error reading buffer %d\n", errno);
1396                         free(async->buffer);
1397                         free(async);
1398                         return -EIO;
1399                 }
1400                 bytenr += async->bufsize;
1401
1402                 pthread_mutex_lock(&mdres->mutex);
1403                 if (async->start == BTRFS_SUPER_INFO_OFFSET) {
1404                         ret = fill_mdres_info(mdres, async);
1405                         if (ret) {
1406                                 fprintf(stderr, "Error setting up restore\n");
1407                                 pthread_mutex_unlock(&mdres->mutex);
1408                                 free(async->buffer);
1409                                 free(async);
1410                                 return ret;
1411                         }
1412                 }
1413                 list_add_tail(&async->list, &mdres->list);
1414                 mdres->num_items++;
1415                 pthread_cond_signal(&mdres->cond);
1416                 pthread_mutex_unlock(&mdres->mutex);
1417         }
1418         if (bytenr & BLOCK_MASK) {
1419                 char buffer[BLOCK_MASK];
1420                 size_t size = BLOCK_SIZE - (bytenr & BLOCK_MASK);
1421
1422                 bytenr += size;
1423                 ret = fread(buffer, size, 1, mdres->in);
1424                 if (ret != 1) {
1425                         fprintf(stderr, "Error reading in buffer %d\n", errno);
1426                         return -EIO;
1427                 }
1428         }
1429         *next = bytenr;
1430         return 0;
1431 }
1432
1433 static int wait_for_worker(struct mdrestore_struct *mdres)
1434 {
1435         int ret = 0;
1436
1437         pthread_mutex_lock(&mdres->mutex);
1438         ret = mdres->error;
1439         while (!ret && mdres->num_items > 0) {
1440                 struct timespec ts = {
1441                         .tv_sec = 0,
1442                         .tv_nsec = 10000000,
1443                 };
1444                 pthread_mutex_unlock(&mdres->mutex);
1445                 nanosleep(&ts, NULL);
1446                 pthread_mutex_lock(&mdres->mutex);
1447                 ret = mdres->error;
1448         }
1449         pthread_mutex_unlock(&mdres->mutex);
1450         return ret;
1451 }
1452
1453 static int restore_metadump(const char *input, FILE *out, int old_restore,
1454                             int num_threads)
1455 {
1456         struct meta_cluster *cluster = NULL;
1457         struct meta_cluster_header *header;
1458         struct mdrestore_struct mdrestore;
1459         u64 bytenr = 0;
1460         FILE *in = NULL;
1461         int ret = 0;
1462
1463         if (!strcmp(input, "-")) {
1464                 in = stdin;
1465         } else {
1466                 in = fopen(input, "r");
1467                 if (!in) {
1468                         perror("unable to open metadump image");
1469                         return 1;
1470                 }
1471         }
1472
1473         cluster = malloc(BLOCK_SIZE);
1474         if (!cluster) {
1475                 fprintf(stderr, "Error allocating cluster\n");
1476                 if (in != stdin)
1477                         fclose(in);
1478                 return -ENOMEM;
1479         }
1480
1481         ret = mdrestore_init(&mdrestore, in, out, old_restore, num_threads);
1482         if (ret) {
1483                 fprintf(stderr, "Error initing mdrestore %d\n", ret);
1484                 if (in != stdin)
1485                         fclose(in);
1486                 free(cluster);
1487                 return ret;
1488         }
1489
1490         while (1) {
1491                 ret = fread(cluster, BLOCK_SIZE, 1, in);
1492                 if (!ret)
1493                         break;
1494
1495                 header = &cluster->header;
1496                 if (le64_to_cpu(header->magic) != HEADER_MAGIC ||
1497                     le64_to_cpu(header->bytenr) != bytenr) {
1498                         fprintf(stderr, "bad header in metadump image\n");
1499                         ret = -EIO;
1500                         break;
1501                 }
1502                 ret = add_cluster(cluster, &mdrestore, &bytenr);
1503                 if (ret) {
1504                         fprintf(stderr, "Error adding cluster\n");
1505                         break;
1506                 }
1507
1508                 ret = wait_for_worker(&mdrestore);
1509                 if (ret) {
1510                         fprintf(stderr, "One of the threads errored out %d\n",
1511                                 ret);
1512                         break;
1513                 }
1514         }
1515
1516         mdrestore_destroy(&mdrestore);
1517         free(cluster);
1518         if (in != stdin)
1519                 fclose(in);
1520         return ret;
1521 }
1522
1523 static void print_usage(void)
1524 {
1525         fprintf(stderr, "usage: btrfs-image [options] source target\n");
1526         fprintf(stderr, "\t-r      \trestore metadump image\n");
1527         fprintf(stderr, "\t-c value\tcompression level (0 ~ 9)\n");
1528         fprintf(stderr, "\t-t value\tnumber of threads (1 ~ 32)\n");
1529         fprintf(stderr, "\t-o      \tdon't mess with the chunk tree when restoring\n");
1530         fprintf(stderr, "\t-w      \twalk all trees instead of using extent tree, do this if your extent tree is broken\n");
1531         exit(1);
1532 }
1533
1534 int main(int argc, char *argv[])
1535 {
1536         char *source;
1537         char *target;
1538         int num_threads = 0;
1539         int compress_level = 0;
1540         int create = 1;
1541         int old_restore = 0;
1542         int walk_trees = 0;
1543         int ret;
1544         FILE *out;
1545
1546         while (1) {
1547                 int c = getopt(argc, argv, "rc:t:ow");
1548                 if (c < 0)
1549                         break;
1550                 switch (c) {
1551                 case 'r':
1552                         create = 0;
1553                         break;
1554                 case 't':
1555                         num_threads = atoi(optarg);
1556                         if (num_threads <= 0 || num_threads > 32)
1557                                 print_usage();
1558                         break;
1559                 case 'c':
1560                         compress_level = atoi(optarg);
1561                         if (compress_level < 0 || compress_level > 9)
1562                                 print_usage();
1563                         break;
1564                 case 'o':
1565                         old_restore = 1;
1566                         break;
1567                 case 'w':
1568                         walk_trees = 1;
1569                         break;
1570                 default:
1571                         print_usage();
1572                 }
1573         }
1574
1575         if (old_restore && create)
1576                 print_usage();
1577
1578         argc = argc - optind;
1579         if (argc != 2)
1580                 print_usage();
1581         source = argv[optind];
1582         target = argv[optind + 1];
1583
1584         if (create && !strcmp(target, "-")) {
1585                 out = stdout;
1586         } else {
1587                 out = fopen(target, "w+");
1588                 if (!out) {
1589                         perror("unable to create target file");
1590                         exit(1);
1591                 }
1592         }
1593
1594         if (num_threads == 0 && compress_level > 0) {
1595                 num_threads = sysconf(_SC_NPROCESSORS_ONLN);
1596                 if (num_threads <= 0)
1597                         num_threads = 1;
1598         }
1599
1600         if (create)
1601                 ret = create_metadump(source, out, num_threads,
1602                                       compress_level, walk_trees);
1603         else
1604                 ret = restore_metadump(source, out, old_restore, 1);
1605
1606         if (out == stdout)
1607                 fflush(out);
1608         else
1609                 fclose(out);
1610
1611         return ret;
1612 }