Btrfs-progs: record errno for ioctl DEFRAG_RANGE
[platform/upstream/btrfs-progs.git] / btrfs-image.c
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #define _XOPEN_SOURCE 500
20 #define _GNU_SOURCE 1
21 #include <pthread.h>
22 #include <stdio.h>
23 #include <stdlib.h>
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <fcntl.h>
27 #include <unistd.h>
28 #include <dirent.h>
29 #include <zlib.h>
30 #include "kerncompat.h"
31 #include "crc32c.h"
32 #include "ctree.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "utils.h"
36 #include "version.h"
37 #include "volumes.h"
38
39 #define HEADER_MAGIC            0xbd5c25e27295668bULL
40 #define MAX_PENDING_SIZE        (256 * 1024)
41 #define BLOCK_SIZE              1024
42 #define BLOCK_MASK              (BLOCK_SIZE - 1)
43
44 #define COMPRESS_NONE           0
45 #define COMPRESS_ZLIB           1
46
47 struct meta_cluster_item {
48         __le64 bytenr;
49         __le32 size;
50 } __attribute__ ((__packed__));
51
52 struct meta_cluster_header {
53         __le64 magic;
54         __le64 bytenr;
55         __le32 nritems;
56         u8 compress;
57 } __attribute__ ((__packed__));
58
59 /* cluster header + index items + buffers */
60 struct meta_cluster {
61         struct meta_cluster_header header;
62         struct meta_cluster_item items[];
63 } __attribute__ ((__packed__));
64
65 #define ITEMS_PER_CLUSTER ((BLOCK_SIZE - sizeof(struct meta_cluster)) / \
66                            sizeof(struct meta_cluster_item))
67
68 struct async_work {
69         struct list_head list;
70         struct list_head ordered;
71         u64 start;
72         u64 size;
73         u8 *buffer;
74         size_t bufsize;
75         int error;
76 };
77
78 struct metadump_struct {
79         struct btrfs_root *root;
80         FILE *out;
81
82         struct meta_cluster *cluster;
83
84         pthread_t *threads;
85         size_t num_threads;
86         pthread_mutex_t mutex;
87         pthread_cond_t cond;
88
89         struct list_head list;
90         struct list_head ordered;
91         size_t num_items;
92         size_t num_ready;
93
94         u64 pending_start;
95         u64 pending_size;
96
97         int compress_level;
98         int done;
99         int data;
100 };
101
102 struct mdrestore_struct {
103         FILE *in;
104         FILE *out;
105
106         pthread_t *threads;
107         size_t num_threads;
108         pthread_mutex_t mutex;
109         pthread_cond_t cond;
110
111         struct list_head list;
112         size_t num_items;
113         u64 leafsize;
114         u64 devid;
115         u8 uuid[BTRFS_UUID_SIZE];
116         u8 fsid[BTRFS_FSID_SIZE];
117
118         int compress_method;
119         int done;
120         int error;
121         int old_restore;
122 };
123
124 static void csum_block(u8 *buf, size_t len)
125 {
126         char result[BTRFS_CRC32_SIZE];
127         u32 crc = ~(u32)0;
128         crc = crc32c(crc, buf + BTRFS_CSUM_SIZE, len - BTRFS_CSUM_SIZE);
129         btrfs_csum_final(crc, result);
130         memcpy(buf, result, BTRFS_CRC32_SIZE);
131 }
132
133 /*
134  * zero inline extents and csum items
135  */
136 static void zero_items(u8 *dst, struct extent_buffer *src)
137 {
138         struct btrfs_file_extent_item *fi;
139         struct btrfs_item *item;
140         struct btrfs_key key;
141         u32 nritems = btrfs_header_nritems(src);
142         size_t size;
143         unsigned long ptr;
144         int i, extent_type;
145
146         for (i = 0; i < nritems; i++) {
147                 item = btrfs_item_nr(src, i);
148                 btrfs_item_key_to_cpu(src, &key, i);
149                 if (key.type == BTRFS_CSUM_ITEM_KEY) {
150                         size = btrfs_item_size_nr(src, i);
151                         memset(dst + btrfs_leaf_data(src) +
152                                btrfs_item_offset_nr(src, i), 0, size);
153                         continue;
154                 }
155                 if (key.type != BTRFS_EXTENT_DATA_KEY)
156                         continue;
157
158                 fi = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
159                 extent_type = btrfs_file_extent_type(src, fi);
160                 if (extent_type != BTRFS_FILE_EXTENT_INLINE)
161                         continue;
162
163                 ptr = btrfs_file_extent_inline_start(fi);
164                 size = btrfs_file_extent_inline_item_len(src, item);
165                 memset(dst + ptr, 0, size);
166         }
167 }
168
169 /*
170  * copy buffer and zero useless data in the buffer
171  */
172 static void copy_buffer(u8 *dst, struct extent_buffer *src)
173 {
174         int level;
175         size_t size;
176         u32 nritems;
177
178         memcpy(dst, src->data, src->len);
179         if (src->start == BTRFS_SUPER_INFO_OFFSET)
180                 return;
181
182         level = btrfs_header_level(src);
183         nritems = btrfs_header_nritems(src);
184
185         if (nritems == 0) {
186                 size = sizeof(struct btrfs_header);
187                 memset(dst + size, 0, src->len - size);
188         } else if (level == 0) {
189                 size = btrfs_leaf_data(src) +
190                         btrfs_item_offset_nr(src, nritems - 1) -
191                         btrfs_item_nr_offset(nritems);
192                 memset(dst + btrfs_item_nr_offset(nritems), 0, size);
193                 zero_items(dst, src);
194         } else {
195                 size = offsetof(struct btrfs_node, ptrs) +
196                         sizeof(struct btrfs_key_ptr) * nritems;
197                 memset(dst + size, 0, src->len - size);
198         }
199         csum_block(dst, src->len);
200 }
201
202 static void *dump_worker(void *data)
203 {
204         struct metadump_struct *md = (struct metadump_struct *)data;
205         struct async_work *async;
206         int ret;
207
208         while (1) {
209                 pthread_mutex_lock(&md->mutex);
210                 while (list_empty(&md->list)) {
211                         if (md->done) {
212                                 pthread_mutex_unlock(&md->mutex);
213                                 goto out;
214                         }
215                         pthread_cond_wait(&md->cond, &md->mutex);
216                 }
217                 async = list_entry(md->list.next, struct async_work, list);
218                 list_del_init(&async->list);
219                 pthread_mutex_unlock(&md->mutex);
220
221                 if (md->compress_level > 0) {
222                         u8 *orig = async->buffer;
223
224                         async->bufsize = compressBound(async->size);
225                         async->buffer = malloc(async->bufsize);
226
227                         ret = compress2(async->buffer,
228                                          (unsigned long *)&async->bufsize,
229                                          orig, async->size, md->compress_level);
230
231                         if (ret != Z_OK)
232                                 async->error = 1;
233
234                         free(orig);
235                 }
236
237                 pthread_mutex_lock(&md->mutex);
238                 md->num_ready++;
239                 pthread_mutex_unlock(&md->mutex);
240         }
241 out:
242         pthread_exit(NULL);
243 }
244
245 static void meta_cluster_init(struct metadump_struct *md, u64 start)
246 {
247         struct meta_cluster_header *header;
248
249         md->num_items = 0;
250         md->num_ready = 0;
251         header = &md->cluster->header;
252         header->magic = cpu_to_le64(HEADER_MAGIC);
253         header->bytenr = cpu_to_le64(start);
254         header->nritems = cpu_to_le32(0);
255         header->compress = md->compress_level > 0 ?
256                            COMPRESS_ZLIB : COMPRESS_NONE;
257 }
258
259 static int metadump_init(struct metadump_struct *md, struct btrfs_root *root,
260                          FILE *out, int num_threads, int compress_level)
261 {
262         int i, ret = 0;
263
264         memset(md, 0, sizeof(*md));
265         pthread_cond_init(&md->cond, NULL);
266         pthread_mutex_init(&md->mutex, NULL);
267         INIT_LIST_HEAD(&md->list);
268         INIT_LIST_HEAD(&md->ordered);
269         md->root = root;
270         md->out = out;
271         md->pending_start = (u64)-1;
272         md->compress_level = compress_level;
273         md->cluster = calloc(1, BLOCK_SIZE);
274         if (!md->cluster) {
275                 pthread_cond_destroy(&md->cond);
276                 pthread_mutex_destroy(&md->mutex);
277                 return -ENOMEM;
278         }
279
280         meta_cluster_init(md, 0);
281         if (!num_threads)
282                 return 0;
283
284         md->num_threads = num_threads;
285         md->threads = calloc(num_threads, sizeof(pthread_t));
286         if (!md->threads) {
287                 free(md->cluster);
288                 pthread_cond_destroy(&md->cond);
289                 pthread_mutex_destroy(&md->mutex);
290                 return -ENOMEM;
291         }
292
293         for (i = 0; i < num_threads; i++) {
294                 ret = pthread_create(md->threads + i, NULL, dump_worker, md);
295                 if (ret)
296                         break;
297         }
298
299         if (ret) {
300                 pthread_mutex_lock(&md->mutex);
301                 md->done = 1;
302                 pthread_cond_broadcast(&md->cond);
303                 pthread_mutex_unlock(&md->mutex);
304
305                 for (i--; i >= 0; i--)
306                         pthread_join(md->threads[i], NULL);
307
308                 pthread_cond_destroy(&md->cond);
309                 pthread_mutex_destroy(&md->mutex);
310                 free(md->cluster);
311                 free(md->threads);
312         }
313
314         return ret;
315 }
316
317 static void metadump_destroy(struct metadump_struct *md)
318 {
319         int i;
320         pthread_mutex_lock(&md->mutex);
321         md->done = 1;
322         pthread_cond_broadcast(&md->cond);
323         pthread_mutex_unlock(&md->mutex);
324
325         for (i = 0; i < md->num_threads; i++)
326                 pthread_join(md->threads[i], NULL);
327
328         pthread_cond_destroy(&md->cond);
329         pthread_mutex_destroy(&md->mutex);
330         free(md->threads);
331         free(md->cluster);
332 }
333
334 static int write_zero(FILE *out, size_t size)
335 {
336         static char zero[BLOCK_SIZE];
337         return fwrite(zero, size, 1, out);
338 }
339
340 static int write_buffers(struct metadump_struct *md, u64 *next)
341 {
342         struct meta_cluster_header *header = &md->cluster->header;
343         struct meta_cluster_item *item;
344         struct async_work *async;
345         u64 bytenr = 0;
346         u32 nritems = 0;
347         int ret;
348         int err = 0;
349
350         if (list_empty(&md->ordered))
351                 goto out;
352
353         /* wait until all buffers are compressed */
354         while (md->num_items > md->num_ready) {
355                 struct timespec ts = {
356                         .tv_sec = 0,
357                         .tv_nsec = 10000000,
358                 };
359                 pthread_mutex_unlock(&md->mutex);
360                 nanosleep(&ts, NULL);
361                 pthread_mutex_lock(&md->mutex);
362         }
363
364         /* setup and write index block */
365         list_for_each_entry(async, &md->ordered, ordered) {
366                 item = md->cluster->items + nritems;
367                 item->bytenr = cpu_to_le64(async->start);
368                 item->size = cpu_to_le32(async->bufsize);
369                 nritems++;
370         }
371         header->nritems = cpu_to_le32(nritems);
372
373         ret = fwrite(md->cluster, BLOCK_SIZE, 1, md->out);
374         if (ret != 1) {
375                 fprintf(stderr, "Error writing out cluster: %d\n", errno);
376                 return -EIO;
377         }
378
379         /* write buffers */
380         bytenr += le64_to_cpu(header->bytenr) + BLOCK_SIZE;
381         while (!list_empty(&md->ordered)) {
382                 async = list_entry(md->ordered.next, struct async_work,
383                                    ordered);
384                 list_del_init(&async->ordered);
385
386                 bytenr += async->bufsize;
387                 if (!err)
388                         ret = fwrite(async->buffer, async->bufsize, 1,
389                                      md->out);
390                 if (ret != 1) {
391                         err = -EIO;
392                         ret = 0;
393                         fprintf(stderr, "Error writing out cluster: %d\n",
394                                 errno);
395                 }
396
397                 free(async->buffer);
398                 free(async);
399         }
400
401         /* zero unused space in the last block */
402         if (!err && bytenr & BLOCK_MASK) {
403                 size_t size = BLOCK_SIZE - (bytenr & BLOCK_MASK);
404
405                 bytenr += size;
406                 ret = write_zero(md->out, size);
407                 if (ret != 1) {
408                         fprintf(stderr, "Error zeroing out buffer: %d\n",
409                                 errno);
410                         err = -EIO;
411                 }
412         }
413 out:
414         *next = bytenr;
415         return err;
416 }
417
418 static int read_data_extent(struct metadump_struct *md,
419                             struct async_work *async)
420 {
421         struct btrfs_multi_bio *multi = NULL;
422         struct btrfs_device *device;
423         u64 bytes_left = async->size;
424         u64 logical = async->start;
425         u64 offset = 0;
426         u64 bytenr;
427         u64 read_len;
428         ssize_t done;
429         int fd;
430         int ret;
431
432         while (bytes_left) {
433                 read_len = bytes_left;
434                 ret = btrfs_map_block(&md->root->fs_info->mapping_tree, READ,
435                                       logical, &read_len, &multi, 0, NULL);
436                 if (ret) {
437                         fprintf(stderr, "Couldn't map data block %d\n", ret);
438                         return ret;
439                 }
440
441                 device = multi->stripes[0].dev;
442
443                 if (device->fd == 0) {
444                         fprintf(stderr,
445                                 "Device we need to read from is not open\n");
446                         free(multi);
447                         return -EIO;
448                 }
449                 fd = device->fd;
450                 bytenr = multi->stripes[0].physical;
451                 free(multi);
452
453                 read_len = min(read_len, bytes_left);
454                 done = pread64(fd, async->buffer+offset, read_len, bytenr);
455                 if (done < read_len) {
456                         if (done < 0)
457                                 fprintf(stderr, "Error reading extent %d\n",
458                                         errno);
459                         else
460                                 fprintf(stderr, "Short read\n");
461                         return -EIO;
462                 }
463
464                 bytes_left -= done;
465                 offset += done;
466                 logical += done;
467         }
468
469         return 0;
470 }
471
472 static int flush_pending(struct metadump_struct *md, int done)
473 {
474         struct async_work *async = NULL;
475         struct extent_buffer *eb;
476         u64 blocksize = md->root->nodesize;
477         u64 start;
478         u64 size;
479         size_t offset;
480         int ret = 0;
481
482         if (md->pending_size) {
483                 async = calloc(1, sizeof(*async));
484                 if (!async)
485                         return -ENOMEM;
486
487                 async->start = md->pending_start;
488                 async->size = md->pending_size;
489                 async->bufsize = async->size;
490                 async->buffer = malloc(async->bufsize);
491                 if (!async->buffer) {
492                         free(async);
493                         return -ENOMEM;
494                 }
495                 offset = 0;
496                 start = async->start;
497                 size = async->size;
498
499                 if (md->data) {
500                         ret = read_data_extent(md, async);
501                         if (ret) {
502                                 free(async->buffer);
503                                 free(async);
504                                 return ret;
505                         }
506                 }
507
508                 while (!md->data && size > 0) {
509                         eb = read_tree_block(md->root, start, blocksize, 0);
510                         if (!eb) {
511                                 free(async->buffer);
512                                 free(async);
513                                 fprintf(stderr,
514                                         "Error reading metadata block\n");
515                                 return -EIO;
516                         }
517                         copy_buffer(async->buffer + offset, eb);
518                         free_extent_buffer(eb);
519                         start += blocksize;
520                         offset += blocksize;
521                         size -= blocksize;
522                 }
523
524                 md->pending_start = (u64)-1;
525                 md->pending_size = 0;
526         } else if (!done) {
527                 return 0;
528         }
529
530         pthread_mutex_lock(&md->mutex);
531         if (async) {
532                 list_add_tail(&async->ordered, &md->ordered);
533                 md->num_items++;
534                 if (md->compress_level > 0) {
535                         list_add_tail(&async->list, &md->list);
536                         pthread_cond_signal(&md->cond);
537                 } else {
538                         md->num_ready++;
539                 }
540         }
541         if (md->num_items >= ITEMS_PER_CLUSTER || done) {
542                 ret = write_buffers(md, &start);
543                 if (ret)
544                         fprintf(stderr, "Error writing buffers %d\n",
545                                 errno);
546                 else
547                         meta_cluster_init(md, start);
548         }
549         pthread_mutex_unlock(&md->mutex);
550         return ret;
551 }
552
553 static int add_extent(u64 start, u64 size, struct metadump_struct *md,
554                       int data)
555 {
556         int ret;
557         if (md->data != data ||
558             md->pending_size + size > MAX_PENDING_SIZE ||
559             md->pending_start + md->pending_size != start) {
560                 ret = flush_pending(md, 0);
561                 if (ret)
562                         return ret;
563                 md->pending_start = start;
564         }
565         readahead_tree_block(md->root, start, size, 0);
566         md->pending_size += size;
567         md->data = data;
568         return 0;
569 }
570
571 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
572 static int is_tree_block(struct btrfs_root *extent_root,
573                          struct btrfs_path *path, u64 bytenr)
574 {
575         struct extent_buffer *leaf;
576         struct btrfs_key key;
577         u64 ref_objectid;
578         int ret;
579
580         leaf = path->nodes[0];
581         while (1) {
582                 struct btrfs_extent_ref_v0 *ref_item;
583                 path->slots[0]++;
584                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
585                         ret = btrfs_next_leaf(extent_root, path);
586                         if (ret < 0)
587                                 return ret;
588                         if (ret > 0)
589                                 break;
590                         leaf = path->nodes[0];
591                 }
592                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
593                 if (key.objectid != bytenr)
594                         break;
595                 if (key.type != BTRFS_EXTENT_REF_V0_KEY)
596                         continue;
597                 ref_item = btrfs_item_ptr(leaf, path->slots[0],
598                                           struct btrfs_extent_ref_v0);
599                 ref_objectid = btrfs_ref_objectid_v0(leaf, ref_item);
600                 if (ref_objectid < BTRFS_FIRST_FREE_OBJECTID)
601                         return 1;
602                 break;
603         }
604         return 0;
605 }
606 #endif
607
608 static int copy_tree_blocks(struct btrfs_root *root, struct extent_buffer *eb,
609                             struct metadump_struct *metadump, int root_tree)
610 {
611         struct extent_buffer *tmp;
612         struct btrfs_root_item *ri;
613         struct btrfs_key key;
614         u64 bytenr;
615         int level;
616         int nritems = 0;
617         int i = 0;
618         int ret;
619
620         ret = add_extent(btrfs_header_bytenr(eb), root->leafsize, metadump, 0);
621         if (ret) {
622                 fprintf(stderr, "Error adding metadata block\n");
623                 return ret;
624         }
625
626         if (btrfs_header_level(eb) == 0 && !root_tree)
627                 return 0;
628
629         level = btrfs_header_level(eb);
630         nritems = btrfs_header_nritems(eb);
631         for (i = 0; i < nritems; i++) {
632                 if (level == 0) {
633                         btrfs_item_key_to_cpu(eb, &key, i);
634                         if (key.type != BTRFS_ROOT_ITEM_KEY)
635                                 continue;
636                         ri = btrfs_item_ptr(eb, i, struct btrfs_root_item);
637                         bytenr = btrfs_disk_root_bytenr(eb, ri);
638                         tmp = read_tree_block(root, bytenr, root->leafsize, 0);
639                         if (!tmp) {
640                                 fprintf(stderr,
641                                         "Error reading log root block\n");
642                                 return -EIO;
643                         }
644                         ret = copy_tree_blocks(root, tmp, metadump, 0);
645                         free_extent_buffer(tmp);
646                         if (ret)
647                                 return ret;
648                 } else {
649                         bytenr = btrfs_node_blockptr(eb, i);
650                         tmp = read_tree_block(root, bytenr, root->leafsize, 0);
651                         if (!tmp) {
652                                 fprintf(stderr, "Error reading log block\n");
653                                 return -EIO;
654                         }
655                         ret = copy_tree_blocks(root, tmp, metadump, root_tree);
656                         free_extent_buffer(tmp);
657                         if (ret)
658                                 return ret;
659                 }
660         }
661
662         return 0;
663 }
664
665 static int copy_log_trees(struct btrfs_root *root,
666                           struct metadump_struct *metadump,
667                           struct btrfs_path *path)
668 {
669         u64 blocknr = btrfs_super_log_root(root->fs_info->super_copy);
670
671         if (blocknr == 0)
672                 return 0;
673
674         if (!root->fs_info->log_root_tree ||
675             !root->fs_info->log_root_tree->node) {
676                 fprintf(stderr, "Error copying tree log, it wasn't setup\n");
677                 return -EIO;
678         }
679
680         return copy_tree_blocks(root, root->fs_info->log_root_tree->node,
681                                 metadump, 1);
682 }
683
684 static int copy_space_cache(struct btrfs_root *root,
685                             struct metadump_struct *metadump,
686                             struct btrfs_path *path)
687 {
688         struct extent_buffer *leaf;
689         struct btrfs_file_extent_item *fi;
690         struct btrfs_key key;
691         u64 bytenr, num_bytes;
692         int ret;
693
694         root = root->fs_info->tree_root;
695
696         key.objectid = 0;
697         key.type = BTRFS_EXTENT_DATA_KEY;
698         key.offset = 0;
699
700         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
701         if (ret < 0) {
702                 fprintf(stderr, "Error searching for free space inode %d\n",
703                         ret);
704                 return ret;
705         }
706
707         while (1) {
708                 leaf = path->nodes[0];
709                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
710                         ret = btrfs_next_leaf(root, path);
711                         if (ret < 0) {
712                                 fprintf(stderr, "Error going to next leaf "
713                                         "%d\n", ret);
714                                 return ret;
715                         }
716                         if (ret > 0)
717                                 break;
718                         leaf = path->nodes[0];
719                 }
720
721                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
722                 if (key.type != BTRFS_EXTENT_DATA_KEY) {
723                         path->slots[0]++;
724                         continue;
725                 }
726
727                 fi = btrfs_item_ptr(leaf, path->slots[0],
728                                     struct btrfs_file_extent_item);
729                 if (btrfs_file_extent_type(leaf, fi) !=
730                     BTRFS_FILE_EXTENT_REG) {
731                         path->slots[0]++;
732                         continue;
733                 }
734
735                 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
736                 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
737                 ret = add_extent(bytenr, num_bytes, metadump, 1);
738                 if (ret) {
739                         fprintf(stderr, "Error adding space cache blocks %d\n",
740                                 ret);
741                         btrfs_release_path(root, path);
742                         return ret;
743                 }
744                 path->slots[0]++;
745         }
746
747         return 0;
748 }
749
750 static int copy_from_extent_tree(struct metadump_struct *metadump,
751                                  struct btrfs_path *path)
752 {
753         struct btrfs_root *extent_root;
754         struct extent_buffer *leaf;
755         struct btrfs_extent_item *ei;
756         struct btrfs_key key;
757         u64 bytenr;
758         u64 num_bytes;
759         int ret;
760
761         extent_root = metadump->root->fs_info->extent_root;
762         bytenr = BTRFS_SUPER_INFO_OFFSET + 4096;
763         key.objectid = bytenr;
764         key.type = BTRFS_EXTENT_ITEM_KEY;
765         key.offset = 0;
766
767         ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
768         if (ret < 0) {
769                 fprintf(stderr, "Error searching extent root %d\n", ret);
770                 return ret;
771         }
772         ret = 0;
773
774         while (1) {
775                 leaf = path->nodes[0];
776                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
777                         ret = btrfs_next_leaf(extent_root, path);
778                         if (ret < 0) {
779                                 fprintf(stderr, "Error going to next leaf %d"
780                                         "\n", ret);
781                                 break;
782                         }
783                         if (ret > 0) {
784                                 ret = 0;
785                                 break;
786                         }
787                         leaf = path->nodes[0];
788                 }
789
790                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
791                 if (key.objectid < bytenr ||
792                     (key.type != BTRFS_EXTENT_ITEM_KEY &&
793                      key.type != BTRFS_METADATA_ITEM_KEY)) {
794                         path->slots[0]++;
795                         continue;
796                 }
797
798                 bytenr = key.objectid;
799                 if (key.type == BTRFS_METADATA_ITEM_KEY)
800                         num_bytes = key.offset;
801                 else
802                         num_bytes = extent_root->leafsize;
803
804                 if (btrfs_item_size_nr(leaf, path->slots[0]) > sizeof(*ei)) {
805                         ei = btrfs_item_ptr(leaf, path->slots[0],
806                                             struct btrfs_extent_item);
807                         if (btrfs_extent_flags(leaf, ei) &
808                             BTRFS_EXTENT_FLAG_TREE_BLOCK) {
809                                 ret = add_extent(bytenr, num_bytes, metadump,
810                                                  0);
811                                 if (ret) {
812                                         fprintf(stderr, "Error adding block "
813                                                 "%d\n", ret);
814                                         break;
815                                 }
816                         }
817                 } else {
818 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
819                         ret = is_tree_block(extent_root, path, bytenr);
820                         if (ret < 0) {
821                                 fprintf(stderr, "Error checking tree block "
822                                         "%d\n", ret);
823                                 break;
824                         }
825
826                         if (ret) {
827                                 ret = add_extent(bytenr, num_bytes, metadump,
828                                                  0);
829                                 if (ret) {
830                                         fprintf(stderr, "Error adding block "
831                                                 "%d\n", ret);
832                                         break;
833                                 }
834                         }
835                         ret = 0;
836 #else
837                         fprintf(stderr, "Either extent tree corruption or "
838                                 "you haven't built with V0 support\n");
839                         ret = -EIO;
840                         break;
841 #endif
842                 }
843                 bytenr += num_bytes;
844         }
845
846         btrfs_release_path(extent_root, path);
847
848         return ret;
849 }
850
851 static int create_metadump(const char *input, FILE *out, int num_threads,
852                            int compress_level, int walk_trees)
853 {
854         struct btrfs_root *root;
855         struct btrfs_path *path = NULL;
856         struct metadump_struct metadump;
857         int ret;
858         int err = 0;
859
860         root = open_ctree(input, 0, 0);
861         if (!root) {
862                 fprintf(stderr, "Open ctree failed\n");
863                 return -EIO;
864         }
865
866         BUG_ON(root->nodesize != root->leafsize);
867
868         ret = metadump_init(&metadump, root, out, num_threads,
869                             compress_level);
870         if (ret) {
871                 fprintf(stderr, "Error initing metadump %d\n", ret);
872                 close_ctree(root);
873                 return ret;
874         }
875
876         ret = add_extent(BTRFS_SUPER_INFO_OFFSET, 4096, &metadump, 0);
877         if (ret) {
878                 fprintf(stderr, "Error adding metadata %d\n", ret);
879                 err = ret;
880                 goto out;
881         }
882
883         path = btrfs_alloc_path();
884         if (!path) {
885                 fprintf(stderr, "Out of memory allocing path\n");
886                 err = -ENOMEM;
887                 goto out;
888         }
889
890         if (walk_trees) {
891                 ret = copy_tree_blocks(root, root->fs_info->chunk_root->node,
892                                        &metadump, 1);
893                 if (ret) {
894                         err = ret;
895                         goto out;
896                 }
897
898                 ret = copy_tree_blocks(root, root->fs_info->tree_root->node,
899                                        &metadump, 1);
900                 if (ret) {
901                         err = ret;
902                         goto out;
903                 }
904         } else {
905                 ret = copy_from_extent_tree(&metadump, path);
906                 if (ret) {
907                         err = ret;
908                         goto out;
909                 }
910         }
911
912         ret = copy_log_trees(root, &metadump, path);
913         if (ret) {
914                 err = ret;
915                 goto out;
916         }
917
918         ret = copy_space_cache(root, &metadump, path);
919 out:
920         ret = flush_pending(&metadump, 1);
921         if (ret) {
922                 if (!err)
923                         err = ret;
924                 fprintf(stderr, "Error flushing pending %d\n", ret);
925         }
926
927         metadump_destroy(&metadump);
928
929         btrfs_free_path(path);
930         ret = close_ctree(root);
931         return err ? err : ret;
932 }
933
934 static void update_super_old(u8 *buffer)
935 {
936         struct btrfs_super_block *super = (struct btrfs_super_block *)buffer;
937         struct btrfs_chunk *chunk;
938         struct btrfs_disk_key *key;
939         u32 sectorsize = btrfs_super_sectorsize(super);
940         u64 flags = btrfs_super_flags(super);
941
942         flags |= BTRFS_SUPER_FLAG_METADUMP;
943         btrfs_set_super_flags(super, flags);
944
945         key = (struct btrfs_disk_key *)(super->sys_chunk_array);
946         chunk = (struct btrfs_chunk *)(super->sys_chunk_array +
947                                        sizeof(struct btrfs_disk_key));
948
949         btrfs_set_disk_key_objectid(key, BTRFS_FIRST_CHUNK_TREE_OBJECTID);
950         btrfs_set_disk_key_type(key, BTRFS_CHUNK_ITEM_KEY);
951         btrfs_set_disk_key_offset(key, 0);
952
953         btrfs_set_stack_chunk_length(chunk, (u64)-1);
954         btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
955         btrfs_set_stack_chunk_stripe_len(chunk, 64 * 1024);
956         btrfs_set_stack_chunk_type(chunk, BTRFS_BLOCK_GROUP_SYSTEM);
957         btrfs_set_stack_chunk_io_align(chunk, sectorsize);
958         btrfs_set_stack_chunk_io_width(chunk, sectorsize);
959         btrfs_set_stack_chunk_sector_size(chunk, sectorsize);
960         btrfs_set_stack_chunk_num_stripes(chunk, 1);
961         btrfs_set_stack_chunk_sub_stripes(chunk, 0);
962         chunk->stripe.devid = super->dev_item.devid;
963         chunk->stripe.offset = cpu_to_le64(0);
964         memcpy(chunk->stripe.dev_uuid, super->dev_item.uuid, BTRFS_UUID_SIZE);
965         btrfs_set_super_sys_array_size(super, sizeof(*key) + sizeof(*chunk));
966         csum_block(buffer, 4096);
967 }
968
969 static int update_super(u8 *buffer)
970 {
971         struct btrfs_super_block *super = (struct btrfs_super_block *)buffer;
972         struct btrfs_chunk *chunk;
973         struct btrfs_disk_key *disk_key;
974         struct btrfs_key key;
975         u32 new_array_size = 0;
976         u32 array_size;
977         u32 cur = 0;
978         u32 new_cur = 0;
979         u8 *ptr, *write_ptr;
980         int old_num_stripes;
981
982         write_ptr = ptr = super->sys_chunk_array;
983         array_size = btrfs_super_sys_array_size(super);
984
985         while (cur < array_size) {
986                 disk_key = (struct btrfs_disk_key *)ptr;
987                 btrfs_disk_key_to_cpu(&key, disk_key);
988
989                 new_array_size += sizeof(*disk_key);
990                 memmove(write_ptr, ptr, sizeof(*disk_key));
991
992                 write_ptr += sizeof(*disk_key);
993                 ptr += sizeof(*disk_key);
994                 cur += sizeof(*disk_key);
995                 new_cur += sizeof(*disk_key);
996
997                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
998                         chunk = (struct btrfs_chunk *)ptr;
999                         old_num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1000                         chunk = (struct btrfs_chunk *)write_ptr;
1001
1002                         memmove(write_ptr, ptr, sizeof(*chunk));
1003                         btrfs_set_stack_chunk_num_stripes(chunk, 1);
1004                         btrfs_set_stack_chunk_sub_stripes(chunk, 0);
1005                         btrfs_set_stack_chunk_type(chunk,
1006                                                    BTRFS_BLOCK_GROUP_SYSTEM);
1007                         chunk->stripe.devid = super->dev_item.devid;
1008                         chunk->stripe.offset = cpu_to_le64(key.offset);
1009                         memcpy(chunk->stripe.dev_uuid, super->dev_item.uuid,
1010                                BTRFS_UUID_SIZE);
1011                         new_array_size += sizeof(*chunk);
1012                         new_cur += sizeof(*chunk);
1013                 } else {
1014                         fprintf(stderr, "Bogus key in the sys chunk array "
1015                                 "%d\n", key.type);
1016                         return -EIO;
1017                 }
1018                 write_ptr += sizeof(*chunk);
1019                 ptr += btrfs_chunk_item_size(old_num_stripes);
1020                 cur += btrfs_chunk_item_size(old_num_stripes);
1021         }
1022
1023         btrfs_set_super_sys_array_size(super, new_array_size);
1024         csum_block(buffer, 4096);
1025
1026         return 0;
1027 }
1028
1029 static struct extent_buffer *alloc_dummy_eb(u64 bytenr, u32 size)
1030 {
1031         struct extent_buffer *eb;
1032
1033         eb = malloc(sizeof(struct extent_buffer) + size);
1034         if (!eb)
1035                 return NULL;
1036         memset(eb, 0, sizeof(struct extent_buffer) + size);
1037
1038         eb->start = bytenr;
1039         eb->len = size;
1040         return eb;
1041 }
1042
1043 static void truncate_item(struct extent_buffer *eb, int slot, u32 new_size)
1044 {
1045         struct btrfs_item *item;
1046         u32 nritems;
1047         u32 old_size;
1048         u32 old_data_start;
1049         u32 size_diff;
1050         u32 data_end;
1051         int i;
1052
1053         old_size = btrfs_item_size_nr(eb, slot);
1054         if (old_size == new_size)
1055                 return;
1056
1057         nritems = btrfs_header_nritems(eb);
1058         data_end = btrfs_item_offset_nr(eb, nritems - 1);
1059
1060         old_data_start = btrfs_item_offset_nr(eb, slot);
1061         size_diff = old_size - new_size;
1062
1063         for (i = slot; i < nritems; i++) {
1064                 u32 ioff;
1065                 item = btrfs_item_nr(eb, i);
1066                 ioff = btrfs_item_offset(eb, item);
1067                 btrfs_set_item_offset(eb, item, ioff + size_diff);
1068         }
1069
1070         memmove_extent_buffer(eb, btrfs_leaf_data(eb) + data_end + size_diff,
1071                               btrfs_leaf_data(eb) + data_end,
1072                               old_data_start + new_size - data_end);
1073         item = btrfs_item_nr(eb, slot);
1074         btrfs_set_item_size(eb, item, new_size);
1075 }
1076
1077 static int fixup_chunk_tree_block(struct mdrestore_struct *mdres,
1078                                   struct async_work *async, u8 *buffer,
1079                                   size_t size)
1080 {
1081         struct extent_buffer *eb;
1082         size_t size_left = size;
1083         u64 bytenr = async->start;
1084         int i;
1085
1086         if (size_left % mdres->leafsize)
1087                 return 0;
1088
1089         eb = alloc_dummy_eb(bytenr, mdres->leafsize);
1090         if (!eb)
1091                 return -ENOMEM;
1092
1093         while (size_left) {
1094                 eb->start = bytenr;
1095                 memcpy(eb->data, buffer, mdres->leafsize);
1096
1097                 if (btrfs_header_bytenr(eb) != bytenr)
1098                         break;
1099                 if (memcmp(mdres->fsid,
1100                            eb->data + offsetof(struct btrfs_header, fsid),
1101                            BTRFS_FSID_SIZE))
1102                         break;
1103
1104                 if (btrfs_header_owner(eb) != BTRFS_CHUNK_TREE_OBJECTID)
1105                         goto next;
1106
1107                 if (btrfs_header_level(eb) != 0)
1108                         goto next;
1109
1110                 for (i = 0; i < btrfs_header_nritems(eb); i++) {
1111                         struct btrfs_chunk chunk;
1112                         struct btrfs_key key;
1113                         u64 type;
1114
1115                         btrfs_item_key_to_cpu(eb, &key, i);
1116                         if (key.type != BTRFS_CHUNK_ITEM_KEY)
1117                                 continue;
1118                         truncate_item(eb, i, sizeof(chunk));
1119                         read_extent_buffer(eb, &chunk,
1120                                            btrfs_item_ptr_offset(eb, i),
1121                                            sizeof(chunk));
1122
1123                         /* Zero out the RAID profile */
1124                         type = btrfs_stack_chunk_type(&chunk);
1125                         type &= (BTRFS_BLOCK_GROUP_DATA |
1126                                  BTRFS_BLOCK_GROUP_SYSTEM |
1127                                  BTRFS_BLOCK_GROUP_METADATA);
1128                         btrfs_set_stack_chunk_type(&chunk, type);
1129
1130                         btrfs_set_stack_chunk_num_stripes(&chunk, 1);
1131                         btrfs_set_stack_chunk_sub_stripes(&chunk, 0);
1132                         btrfs_set_stack_stripe_devid(&chunk.stripe, mdres->devid);
1133                         btrfs_set_stack_stripe_offset(&chunk.stripe, key.offset);
1134                         memcpy(chunk.stripe.dev_uuid, mdres->uuid,
1135                                BTRFS_UUID_SIZE);
1136                         write_extent_buffer(eb, &chunk,
1137                                             btrfs_item_ptr_offset(eb, i),
1138                                             sizeof(chunk));
1139                 }
1140                 memcpy(buffer, eb->data, eb->len);
1141                 csum_block(buffer, eb->len);
1142 next:
1143                 size_left -= mdres->leafsize;
1144                 buffer += mdres->leafsize;
1145                 bytenr += mdres->leafsize;
1146         }
1147
1148         return 0;
1149 }
1150
1151 static void write_backup_supers(int fd, u8 *buf)
1152 {
1153         struct stat st;
1154         u64 size;
1155         u64 bytenr;
1156         int i;
1157         int ret;
1158
1159         if (fstat(fd, &st)) {
1160                 fprintf(stderr, "Couldn't stat restore point, won't be able "
1161                         "to write backup supers: %d\n", errno);
1162                 return;
1163         }
1164
1165         size = btrfs_device_size(fd, &st);
1166
1167         for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1168                 bytenr = btrfs_sb_offset(i);
1169                 if (bytenr + 4096 > size)
1170                         break;
1171                 ret = pwrite64(fd, buf, 4096, bytenr);
1172                 if (ret < 4096) {
1173                         if (ret < 0)
1174                                 fprintf(stderr, "Problem writing out backup "
1175                                         "super block %d, err %d\n", i, errno);
1176                         else
1177                                 fprintf(stderr, "Short write writing out "
1178                                         "backup super block\n");
1179                         break;
1180                 }
1181         }
1182 }
1183
1184 static void *restore_worker(void *data)
1185 {
1186         struct mdrestore_struct *mdres = (struct mdrestore_struct *)data;
1187         struct async_work *async;
1188         size_t size;
1189         u8 *buffer;
1190         u8 *outbuf;
1191         int outfd;
1192         int ret;
1193
1194         outfd = fileno(mdres->out);
1195         buffer = malloc(MAX_PENDING_SIZE * 2);
1196         if (!buffer) {
1197                 fprintf(stderr, "Error allocing buffer\n");
1198                 pthread_mutex_lock(&mdres->mutex);
1199                 if (!mdres->error)
1200                         mdres->error = -ENOMEM;
1201                 pthread_mutex_unlock(&mdres->mutex);
1202                 goto out;
1203         }
1204
1205         while (1) {
1206                 int err = 0;
1207
1208                 pthread_mutex_lock(&mdres->mutex);
1209                 while (!mdres->leafsize || list_empty(&mdres->list)) {
1210                         if (mdres->done) {
1211                                 pthread_mutex_unlock(&mdres->mutex);
1212                                 goto out;
1213                         }
1214                         pthread_cond_wait(&mdres->cond, &mdres->mutex);
1215                 }
1216                 async = list_entry(mdres->list.next, struct async_work, list);
1217                 list_del_init(&async->list);
1218                 pthread_mutex_unlock(&mdres->mutex);
1219
1220                 if (mdres->compress_method == COMPRESS_ZLIB) {
1221                         size = MAX_PENDING_SIZE * 2;
1222                         ret = uncompress(buffer, (unsigned long *)&size,
1223                                          async->buffer, async->bufsize);
1224                         if (ret != Z_OK) {
1225                                 fprintf(stderr, "Error decompressing %d\n",
1226                                         ret);
1227                                 err = -EIO;
1228                         }
1229                         outbuf = buffer;
1230                 } else {
1231                         outbuf = async->buffer;
1232                         size = async->bufsize;
1233                 }
1234
1235                 if (async->start == BTRFS_SUPER_INFO_OFFSET) {
1236                         if (mdres->old_restore) {
1237                                 update_super_old(outbuf);
1238                         } else {
1239                                 ret = update_super(outbuf);
1240                                 if (ret)
1241                                         err = ret;
1242                         }
1243                 } else if (!mdres->old_restore) {
1244                         ret = fixup_chunk_tree_block(mdres, async, outbuf, size);
1245                         if (ret)
1246                                 err = ret;
1247                 }
1248
1249                 ret = pwrite64(outfd, outbuf, size, async->start);
1250                 if (ret < size) {
1251                         if (ret < 0) {
1252                                 fprintf(stderr, "Error writing to device %d\n",
1253                                         errno);
1254                                 err = errno;
1255                         } else {
1256                                 fprintf(stderr, "Short write\n");
1257                                 err = -EIO;
1258                         }
1259                 }
1260
1261                 if (async->start == BTRFS_SUPER_INFO_OFFSET)
1262                         write_backup_supers(outfd, outbuf);
1263
1264                 pthread_mutex_lock(&mdres->mutex);
1265                 if (err && !mdres->error)
1266                         mdres->error = err;
1267                 mdres->num_items--;
1268                 pthread_mutex_unlock(&mdres->mutex);
1269
1270                 free(async->buffer);
1271                 free(async);
1272         }
1273 out:
1274         free(buffer);
1275         pthread_exit(NULL);
1276 }
1277
1278 static void mdrestore_destroy(struct mdrestore_struct *mdres)
1279 {
1280         int i;
1281         pthread_mutex_lock(&mdres->mutex);
1282         mdres->done = 1;
1283         pthread_cond_broadcast(&mdres->cond);
1284         pthread_mutex_unlock(&mdres->mutex);
1285
1286         for (i = 0; i < mdres->num_threads; i++)
1287                 pthread_join(mdres->threads[i], NULL);
1288
1289         pthread_cond_destroy(&mdres->cond);
1290         pthread_mutex_destroy(&mdres->mutex);
1291         free(mdres->threads);
1292 }
1293
1294 static int mdrestore_init(struct mdrestore_struct *mdres,
1295                           FILE *in, FILE *out, int old_restore,
1296                           int num_threads)
1297 {
1298         int i, ret = 0;
1299
1300         memset(mdres, 0, sizeof(*mdres));
1301         pthread_cond_init(&mdres->cond, NULL);
1302         pthread_mutex_init(&mdres->mutex, NULL);
1303         INIT_LIST_HEAD(&mdres->list);
1304         mdres->in = in;
1305         mdres->out = out;
1306         mdres->old_restore = old_restore;
1307
1308         if (!num_threads)
1309                 return 0;
1310
1311         mdres->num_threads = num_threads;
1312         mdres->threads = calloc(num_threads, sizeof(pthread_t));
1313         if (!mdres->threads)
1314                 return -ENOMEM;
1315         for (i = 0; i < num_threads; i++) {
1316                 ret = pthread_create(mdres->threads + i, NULL, restore_worker,
1317                                      mdres);
1318                 if (ret)
1319                         break;
1320         }
1321         if (ret)
1322                 mdrestore_destroy(mdres);
1323         return ret;
1324 }
1325
1326 static int fill_mdres_info(struct mdrestore_struct *mdres,
1327                            struct async_work *async)
1328 {
1329         struct btrfs_super_block *super;
1330         u8 *buffer = NULL;
1331         u8 *outbuf;
1332         int ret;
1333
1334         if (mdres->compress_method == COMPRESS_ZLIB) {
1335                 size_t size = MAX_PENDING_SIZE * 2;
1336
1337                 buffer = malloc(MAX_PENDING_SIZE * 2);
1338                 if (!buffer)
1339                         return -ENOMEM;
1340                 ret = uncompress(buffer, (unsigned long *)&size,
1341                                  async->buffer, async->bufsize);
1342                 if (ret != Z_OK) {
1343                         fprintf(stderr, "Error decompressing %d\n", ret);
1344                         free(buffer);
1345                         return -EIO;
1346                 }
1347                 outbuf = buffer;
1348         } else {
1349                 outbuf = async->buffer;
1350         }
1351
1352         super = (struct btrfs_super_block *)outbuf;
1353         mdres->leafsize = btrfs_super_leafsize(super);
1354         memcpy(mdres->fsid, super->fsid, BTRFS_FSID_SIZE);
1355         memcpy(mdres->uuid, super->dev_item.uuid,
1356                        BTRFS_UUID_SIZE);
1357         mdres->devid = le64_to_cpu(super->dev_item.devid);
1358         free(buffer);
1359         return 0;
1360 }
1361
1362 static int add_cluster(struct meta_cluster *cluster,
1363                        struct mdrestore_struct *mdres, u64 *next)
1364 {
1365         struct meta_cluster_item *item;
1366         struct meta_cluster_header *header = &cluster->header;
1367         struct async_work *async;
1368         u64 bytenr;
1369         u32 i, nritems;
1370         int ret;
1371
1372         BUG_ON(mdres->num_items);
1373         mdres->compress_method = header->compress;
1374
1375         bytenr = le64_to_cpu(header->bytenr) + BLOCK_SIZE;
1376         nritems = le32_to_cpu(header->nritems);
1377         for (i = 0; i < nritems; i++) {
1378                 item = &cluster->items[i];
1379                 async = calloc(1, sizeof(*async));
1380                 if (!async) {
1381                         fprintf(stderr, "Error allocating async\n");
1382                         return -ENOMEM;
1383                 }
1384                 async->start = le64_to_cpu(item->bytenr);
1385                 async->bufsize = le32_to_cpu(item->size);
1386                 async->buffer = malloc(async->bufsize);
1387                 if (!async->buffer) {
1388                         fprintf(stderr, "Error allocing async buffer\n");
1389                         free(async);
1390                         return -ENOMEM;
1391                 }
1392                 ret = fread(async->buffer, async->bufsize, 1, mdres->in);
1393                 if (ret != 1) {
1394                         fprintf(stderr, "Error reading buffer %d\n", errno);
1395                         free(async->buffer);
1396                         free(async);
1397                         return -EIO;
1398                 }
1399                 bytenr += async->bufsize;
1400
1401                 pthread_mutex_lock(&mdres->mutex);
1402                 if (async->start == BTRFS_SUPER_INFO_OFFSET) {
1403                         ret = fill_mdres_info(mdres, async);
1404                         if (ret) {
1405                                 fprintf(stderr, "Error setting up restore\n");
1406                                 pthread_mutex_unlock(&mdres->mutex);
1407                                 free(async->buffer);
1408                                 free(async);
1409                                 return ret;
1410                         }
1411                 }
1412                 list_add_tail(&async->list, &mdres->list);
1413                 mdres->num_items++;
1414                 pthread_cond_signal(&mdres->cond);
1415                 pthread_mutex_unlock(&mdres->mutex);
1416         }
1417         if (bytenr & BLOCK_MASK) {
1418                 char buffer[BLOCK_MASK];
1419                 size_t size = BLOCK_SIZE - (bytenr & BLOCK_MASK);
1420
1421                 bytenr += size;
1422                 ret = fread(buffer, size, 1, mdres->in);
1423                 if (ret != 1) {
1424                         fprintf(stderr, "Error reading in buffer %d\n", errno);
1425                         return -EIO;
1426                 }
1427         }
1428         *next = bytenr;
1429         return 0;
1430 }
1431
1432 static int wait_for_worker(struct mdrestore_struct *mdres)
1433 {
1434         int ret = 0;
1435
1436         pthread_mutex_lock(&mdres->mutex);
1437         ret = mdres->error;
1438         while (!ret && mdres->num_items > 0) {
1439                 struct timespec ts = {
1440                         .tv_sec = 0,
1441                         .tv_nsec = 10000000,
1442                 };
1443                 pthread_mutex_unlock(&mdres->mutex);
1444                 nanosleep(&ts, NULL);
1445                 pthread_mutex_lock(&mdres->mutex);
1446                 ret = mdres->error;
1447         }
1448         pthread_mutex_unlock(&mdres->mutex);
1449         return ret;
1450 }
1451
1452 static int restore_metadump(const char *input, FILE *out, int old_restore,
1453                             int num_threads)
1454 {
1455         struct meta_cluster *cluster = NULL;
1456         struct meta_cluster_header *header;
1457         struct mdrestore_struct mdrestore;
1458         u64 bytenr = 0;
1459         FILE *in = NULL;
1460         int ret = 0;
1461
1462         if (!strcmp(input, "-")) {
1463                 in = stdin;
1464         } else {
1465                 in = fopen(input, "r");
1466                 if (!in) {
1467                         perror("unable to open metadump image");
1468                         return 1;
1469                 }
1470         }
1471
1472         cluster = malloc(BLOCK_SIZE);
1473         if (!cluster) {
1474                 fprintf(stderr, "Error allocating cluster\n");
1475                 if (in != stdin)
1476                         fclose(in);
1477                 return -ENOMEM;
1478         }
1479
1480         ret = mdrestore_init(&mdrestore, in, out, old_restore, num_threads);
1481         if (ret) {
1482                 fprintf(stderr, "Error initing mdrestore %d\n", ret);
1483                 if (in != stdin)
1484                         fclose(in);
1485                 free(cluster);
1486                 return ret;
1487         }
1488
1489         while (1) {
1490                 ret = fread(cluster, BLOCK_SIZE, 1, in);
1491                 if (!ret)
1492                         break;
1493
1494                 header = &cluster->header;
1495                 if (le64_to_cpu(header->magic) != HEADER_MAGIC ||
1496                     le64_to_cpu(header->bytenr) != bytenr) {
1497                         fprintf(stderr, "bad header in metadump image\n");
1498                         ret = -EIO;
1499                         break;
1500                 }
1501                 ret = add_cluster(cluster, &mdrestore, &bytenr);
1502                 if (ret) {
1503                         fprintf(stderr, "Error adding cluster\n");
1504                         break;
1505                 }
1506
1507                 ret = wait_for_worker(&mdrestore);
1508                 if (ret) {
1509                         fprintf(stderr, "One of the threads errored out %d\n",
1510                                 ret);
1511                         break;
1512                 }
1513         }
1514
1515         mdrestore_destroy(&mdrestore);
1516         free(cluster);
1517         if (in != stdin)
1518                 fclose(in);
1519         return ret;
1520 }
1521
1522 static void print_usage(void)
1523 {
1524         fprintf(stderr, "usage: btrfs-image [options] source target\n");
1525         fprintf(stderr, "\t-r      \trestore metadump image\n");
1526         fprintf(stderr, "\t-c value\tcompression level (0 ~ 9)\n");
1527         fprintf(stderr, "\t-t value\tnumber of threads (1 ~ 32)\n");
1528         fprintf(stderr, "\t-o      \tdon't mess with the chunk tree when restoring\n");
1529         fprintf(stderr, "\t-w      \twalk all trees instead of using extent tree, do this if your extent tree is broken\n");
1530         exit(1);
1531 }
1532
1533 int main(int argc, char *argv[])
1534 {
1535         char *source;
1536         char *target;
1537         int num_threads = 0;
1538         int compress_level = 0;
1539         int create = 1;
1540         int old_restore = 0;
1541         int walk_trees = 0;
1542         int ret;
1543         FILE *out;
1544
1545         while (1) {
1546                 int c = getopt(argc, argv, "rc:t:ow");
1547                 if (c < 0)
1548                         break;
1549                 switch (c) {
1550                 case 'r':
1551                         create = 0;
1552                         break;
1553                 case 't':
1554                         num_threads = atoi(optarg);
1555                         if (num_threads <= 0 || num_threads > 32)
1556                                 print_usage();
1557                         break;
1558                 case 'c':
1559                         compress_level = atoi(optarg);
1560                         if (compress_level < 0 || compress_level > 9)
1561                                 print_usage();
1562                         break;
1563                 case 'o':
1564                         old_restore = 1;
1565                         break;
1566                 case 'w':
1567                         walk_trees = 1;
1568                         break;
1569                 default:
1570                         print_usage();
1571                 }
1572         }
1573
1574         if (old_restore && create)
1575                 print_usage();
1576
1577         argc = argc - optind;
1578         if (argc != 2)
1579                 print_usage();
1580         source = argv[optind];
1581         target = argv[optind + 1];
1582
1583         if (create && !strcmp(target, "-")) {
1584                 out = stdout;
1585         } else {
1586                 out = fopen(target, "w+");
1587                 if (!out) {
1588                         perror("unable to create target file");
1589                         exit(1);
1590                 }
1591         }
1592
1593         if (num_threads == 0 && compress_level > 0) {
1594                 num_threads = sysconf(_SC_NPROCESSORS_ONLN);
1595                 if (num_threads <= 0)
1596                         num_threads = 1;
1597         }
1598
1599         if (create)
1600                 ret = create_metadump(source, out, num_threads,
1601                                       compress_level, walk_trees);
1602         else
1603                 ret = restore_metadump(source, out, old_restore, 1);
1604
1605         if (out == stdout)
1606                 fflush(out);
1607         else
1608                 fclose(out);
1609
1610         return ret;
1611 }