btrfs-progs: calc-size: kill fs_roots structure and its user
[platform/upstream/btrfs-progs.git] / btrfs-calc-size.c
1 /*
2  * Copyright (C) 2011 Red Hat.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <ctype.h>
20 #include <stdio.h>
21 #include <stdlib.h>
22 #include <unistd.h>
23 #include <fcntl.h>
24 #include <sys/stat.h>
25 #include <sys/time.h>
26 #include <sys/types.h>
27 #include <zlib.h>
28 #include "kerncompat.h"
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "transaction.h"
33 #include "list.h"
34 #include "volumes.h"
35 #include "utils.h"
36
37 static int verbose = 0;
38 static int no_pretty = 0;
39
40 struct seek {
41         u64 distance;
42         u64 count;
43         struct rb_node n;
44 };
45
46 struct root_stats {
47         u64 total_nodes;
48         u64 total_leaves;
49         u64 total_bytes;
50         u64 total_inline;
51         u64 total_seeks;
52         u64 forward_seeks;
53         u64 backward_seeks;
54         u64 total_seek_len;
55         u64 max_seek_len;
56         u64 total_clusters;
57         u64 total_cluster_size;
58         u64 min_cluster_size;
59         u64 max_cluster_size;
60         u64 lowest_bytenr;
61         u64 highest_bytenr;
62         struct rb_root seek_root;
63         int total_levels;
64 };
65
66 static int add_seek(struct rb_root *root, u64 dist)
67 {
68         struct rb_node **p = &root->rb_node;
69         struct rb_node *parent = NULL;
70         struct seek *seek = NULL;
71
72         while (*p) {
73                 parent = *p;
74                 seek = rb_entry(parent, struct seek, n);
75
76                 if (dist < seek->distance) {
77                         p = &(*p)->rb_left;
78                 } else if (dist > seek->distance) {
79                         p = &(*p)->rb_right;
80                 } else {
81                         seek->count++;
82                         return 0;
83                 }
84         }
85
86         seek = malloc(sizeof(struct seek));
87         if (!seek)
88                 return -ENOMEM;
89         seek->distance = dist;
90         seek->count = 1;
91         rb_link_node(&seek->n, parent, p);
92         rb_insert_color(&seek->n, root);
93         return 0;
94 }
95
96 static int walk_leaf(struct btrfs_root *root, struct btrfs_path *path,
97                      struct root_stats *stat, int find_inline)
98 {
99         struct extent_buffer *b = path->nodes[0];
100         struct btrfs_file_extent_item *fi;
101         struct btrfs_key found_key;
102         int i;
103
104         stat->total_bytes += root->leafsize;
105         stat->total_leaves++;
106
107         if (!find_inline)
108                 return 0;
109
110         for (i = 0; i < btrfs_header_nritems(b); i++) {
111                 btrfs_item_key_to_cpu(b, &found_key, i);
112                 if (found_key.type != BTRFS_EXTENT_DATA_KEY)
113                         continue;
114
115                 fi = btrfs_item_ptr(b, i, struct btrfs_file_extent_item);
116                 if (btrfs_file_extent_type(b, fi) == BTRFS_FILE_EXTENT_INLINE)
117                         stat->total_inline +=
118                                 btrfs_file_extent_inline_item_len(b,
119                                                         btrfs_item_nr(i));
120         }
121
122         return 0;
123 }
124
125 static u64 calc_distance(u64 block1, u64 block2)
126 {
127         if (block1 < block2)
128                 return block2 - block1;
129         return block1 - block2;
130 }
131
132 static int walk_nodes(struct btrfs_root *root, struct btrfs_path *path,
133                       struct root_stats *stat, int level, int find_inline)
134 {
135         struct extent_buffer *b = path->nodes[level];
136         u64 last_block;
137         u64 cluster_size = root->leafsize;
138         int i;
139         int ret = 0;
140
141         stat->total_bytes += root->nodesize;
142         stat->total_nodes++;
143
144         last_block = btrfs_header_bytenr(b);
145         for (i = 0; i < btrfs_header_nritems(b); i++) {
146                 struct extent_buffer *tmp = NULL;
147                 u64 cur_blocknr = btrfs_node_blockptr(b, i);
148
149                 path->slots[level] = i;
150                 if ((level - 1) > 0 || find_inline) {
151                         tmp = read_tree_block(root, cur_blocknr,
152                                               btrfs_level_size(root, level - 1),
153                                               btrfs_node_ptr_generation(b, i));
154                         if (!extent_buffer_uptodate(tmp)) {
155                                 fprintf(stderr, "Failed to read blocknr %Lu\n",
156                                         btrfs_node_blockptr(b, i));
157                                 continue;
158                         }
159                         path->nodes[level - 1] = tmp;
160                 }
161                 if (level - 1)
162                         ret = walk_nodes(root, path, stat, level - 1,
163                                          find_inline);
164                 else
165                         ret = walk_leaf(root, path, stat, find_inline);
166                 if (last_block + root->leafsize != cur_blocknr) {
167                         u64 distance = calc_distance(last_block +
168                                                      root->leafsize,
169                                                      cur_blocknr);
170                         stat->total_seeks++;
171                         stat->total_seek_len += distance;
172                         if (stat->max_seek_len < distance)
173                                 stat->max_seek_len = distance;
174                         if (add_seek(&stat->seek_root, distance)) {
175                                 fprintf(stderr, "Error adding new seek\n");
176                                 ret = -ENOMEM;
177                                 break;
178                         }
179
180                         if (last_block < cur_blocknr)
181                                 stat->forward_seeks++;
182                         else
183                                 stat->backward_seeks++;
184                         if (cluster_size != root->leafsize) {
185                                 stat->total_cluster_size += cluster_size;
186                                 stat->total_clusters++;
187                                 if (cluster_size < stat->min_cluster_size)
188                                         stat->min_cluster_size = cluster_size;
189                                 if (cluster_size > stat->max_cluster_size)
190                                         stat->max_cluster_size = cluster_size;
191                         }
192                         cluster_size = root->leafsize;
193                 } else {
194                         cluster_size += root->leafsize;
195                 }
196                 last_block = cur_blocknr;
197                 if (cur_blocknr < stat->lowest_bytenr)
198                         stat->lowest_bytenr = cur_blocknr;
199                 if (cur_blocknr > stat->highest_bytenr)
200                         stat->highest_bytenr = cur_blocknr;
201                 free_extent_buffer(tmp);
202                 if (ret) {
203                         fprintf(stderr, "Error walking down path\n");
204                         break;
205                 }
206         }
207
208         return ret;
209 }
210
211 static void print_seek_histogram(struct root_stats *stat)
212 {
213         struct rb_node *n = rb_first(&stat->seek_root);
214         struct seek *seek;
215         u64 tick_interval;
216         u64 group_start = 0;
217         u64 group_count = 0;
218         u64 group_end = 0;
219         u64 i;
220         u64 max_seek = stat->max_seek_len;
221         int digits = 1;
222
223         if (stat->total_seeks < 20)
224                 return;
225
226         while ((max_seek /= 10))
227                 digits++;
228
229         /* Make a tick count as 5% of the total seeks */
230         tick_interval = stat->total_seeks / 20;
231         printf("\tSeek histogram\n");
232         for (; n; n = rb_next(n)) {
233                 u64 ticks, gticks = 0;
234
235                 seek = rb_entry(n, struct seek, n);
236                 ticks = seek->count / tick_interval;
237                 if (group_count)
238                         gticks = group_count / tick_interval;
239
240                 if (ticks <= 2 && gticks <= 2) {
241                         if (group_count == 0)
242                                 group_start = seek->distance;
243                         group_end = seek->distance;
244                         group_count += seek->count;
245                         continue;
246                 }
247
248                 if (group_count) {
249
250                         gticks = group_count / tick_interval;
251                         printf("\t\t%*Lu - %*Lu: %*Lu ", digits, group_start,
252                                digits, group_end, digits, group_count);
253                         if (gticks) {
254                                 for (i = 0; i < gticks; i++)
255                                         printf("#");
256                                 printf("\n");
257                         } else {
258                                 printf("|\n");
259                         }
260                         group_count = 0;
261                 }
262
263                 if (ticks <= 2)
264                         continue;
265
266                 printf("\t\t%*Lu - %*Lu: %*Lu ", digits, seek->distance,
267                        digits, seek->distance, digits, seek->count);
268                 for (i = 0; i < ticks; i++)
269                         printf("#");
270                 printf("\n");
271         }
272         if (group_count) {
273                 u64 gticks;
274
275                 gticks = group_count / tick_interval;
276                 printf("\t\t%*Lu - %*Lu: %*Lu ", digits, group_start,
277                        digits, group_end, digits, group_count);
278                 if (gticks) {
279                         for (i = 0; i < gticks; i++)
280                                 printf("#");
281                         printf("\n");
282                 } else {
283                         printf("|\n");
284                 }
285                 group_count = 0;
286         }
287 }
288
289 static void timeval_subtract(struct timeval *result,struct timeval *x,
290                              struct timeval *y)
291 {
292         if (x->tv_usec < y->tv_usec) {
293                 int nsec = (y->tv_usec - x->tv_usec) / 1000000 + 1;
294                 y->tv_usec -= 1000000 * nsec;
295                 y->tv_sec += nsec;
296         }
297
298         if (x->tv_usec - y->tv_usec > 1000000) {
299                 int nsec = (x->tv_usec - y->tv_usec) / 1000000;
300                 y->tv_usec += 1000000 * nsec;
301                 y->tv_sec -= nsec;
302         }
303
304         result->tv_sec = x->tv_sec - y->tv_sec;
305         result->tv_usec = x->tv_usec - y->tv_usec;
306 }
307
308 static int calc_root_size(struct btrfs_root *tree_root, struct btrfs_key *key,
309                           int find_inline)
310 {
311         struct btrfs_root *root;
312         struct btrfs_path *path;
313         struct rb_node *n;
314         struct timeval start, end, diff = {0};
315         struct root_stats stat;
316         int level;
317         int ret = 0;
318         int size_fail = 0;
319
320         root = btrfs_read_fs_root(tree_root->fs_info, key);
321         if (IS_ERR(root)) {
322                 fprintf(stderr, "Failed to read root %Lu\n", key->objectid);
323                 return 1;
324         }
325
326         path = btrfs_alloc_path();
327         if (!path) {
328                 fprintf(stderr, "Could not allocate path\n");
329                 return 1;
330         }
331
332         memset(&stat, 0, sizeof(stat));
333         level = btrfs_header_level(root->node);
334         stat.lowest_bytenr = btrfs_header_bytenr(root->node);
335         stat.highest_bytenr = stat.lowest_bytenr;
336         stat.min_cluster_size = (u64)-1;
337         stat.max_cluster_size = root->leafsize;
338         path->nodes[level] = root->node;
339         if (gettimeofday(&start, NULL)) {
340                 fprintf(stderr, "Error getting time: %d\n", errno);
341                 goto out;
342         }
343         if (!level) {
344                 ret = walk_leaf(root, path, &stat, find_inline);
345                 if (ret)
346                         goto out;
347                 goto out_print;
348         }
349
350         ret = walk_nodes(root, path, &stat, level, find_inline);
351         if (ret)
352                 goto out;
353         if (gettimeofday(&end, NULL)) {
354                 fprintf(stderr, "Error getting time: %d\n", errno);
355                 goto out;
356         }
357         timeval_subtract(&diff, &end, &start);
358 out_print:
359         if (stat.min_cluster_size == (u64)-1) {
360                 stat.min_cluster_size = 0;
361                 stat.total_clusters = 1;
362         }
363
364         if (no_pretty || size_fail) {
365                 printf("\tTotal size: %Lu\n", stat.total_bytes);
366                 printf("\t\tInline data: %Lu\n", stat.total_inline);
367                 printf("\tTotal seeks: %Lu\n", stat.total_seeks);
368                 printf("\t\tForward seeks: %Lu\n", stat.forward_seeks);
369                 printf("\t\tBackward seeks: %Lu\n", stat.backward_seeks);
370                 printf("\t\tAvg seek len: %llu\n", stat.total_seeks ?
371                         stat.total_seek_len / stat.total_seeks : 0);
372                 print_seek_histogram(&stat);
373                 printf("\tTotal clusters: %Lu\n", stat.total_clusters);
374                 printf("\t\tAvg cluster size: %Lu\n", stat.total_cluster_size /
375                        stat.total_clusters);
376                 printf("\t\tMin cluster size: %Lu\n", stat.min_cluster_size);
377                 printf("\t\tMax cluster size: %Lu\n", stat.max_cluster_size);
378                 printf("\tTotal disk spread: %Lu\n", stat.highest_bytenr -
379                        stat.lowest_bytenr);
380                 printf("\tTotal read time: %d s %d us\n", (int)diff.tv_sec,
381                        (int)diff.tv_usec);
382                 printf("\tLevels: %d\n", level + 1);
383         } else {
384                 printf("\tTotal size: %s\n", pretty_size(stat.total_bytes));
385                 printf("\t\tInline data: %s\n", pretty_size(stat.total_inline));
386                 printf("\tTotal seeks: %Lu\n", stat.total_seeks);
387                 printf("\t\tForward seeks: %Lu\n", stat.forward_seeks);
388                 printf("\t\tBackward seeks: %Lu\n", stat.backward_seeks);
389                 printf("\t\tAvg seek len: %s\n", stat.total_seeks ?
390                         pretty_size(stat.total_seek_len / stat.total_seeks) :
391                         pretty_size(0));
392                 print_seek_histogram(&stat);
393                 printf("\tTotal clusters: %Lu\n", stat.total_clusters);
394                 printf("\t\tAvg cluster size: %s\n",
395                                 pretty_size((stat.total_cluster_size /
396                                                 stat.total_clusters)));
397                 printf("\t\tMin cluster size: %s\n",
398                                 pretty_size(stat.min_cluster_size));
399                 printf("\t\tMax cluster size: %s\n",
400                                 pretty_size(stat.max_cluster_size));
401                 printf("\tTotal disk spread: %s\n",
402                                 pretty_size(stat.highest_bytenr -
403                                         stat.lowest_bytenr));
404                 printf("\tTotal read time: %d s %d us\n", (int)diff.tv_sec,
405                        (int)diff.tv_usec);
406                 printf("\tLevels: %d\n", level + 1);
407         }
408 out:
409         while ((n = rb_first(&stat.seek_root)) != NULL) {
410                 struct seek *seek = rb_entry(n, struct seek, n);
411                 rb_erase(n, &stat.seek_root);
412                 free(seek);
413         }
414
415         /*
416          * We only use path to save node data in iterating,
417          * without holding eb's ref_cnt in path.
418          * Don't use btrfs_free_path() here, it will free these
419          * eb again, and cause many problems, as negative ref_cnt
420          * or invalid memory access.
421          */
422         free(path);
423         return ret;
424 }
425
426 static void usage(void)
427 {
428         fprintf(stderr, "Usage: calc-size [-v] [-b] <device>\n");
429 }
430
431 int main(int argc, char **argv)
432 {
433         struct btrfs_key key;
434         struct btrfs_root *root;
435         int opt;
436         int ret = 0;
437
438         while ((opt = getopt(argc, argv, "vb")) != -1) {
439                 switch (opt) {
440                         case 'v':
441                                 verbose++;
442                                 break;
443                         case 'b':
444                                 no_pretty = 1;
445                                 break;
446                         default:
447                                 usage();
448                                 exit(1);
449                 }
450         }
451
452         set_argv0(argv);
453         argc = argc - optind;
454         if (check_argc_min(argc, 1)) {
455                 usage();
456                 exit(1);
457         }
458
459         /*
460         if ((ret = check_mounted(argv[optind])) < 0) {
461                 fprintf(stderr, "Could not check mount status: %d\n", ret);
462                 if (ret == -EACCES)
463                         fprintf(stderr, "Maybe you need to run as root?\n");
464                 return ret;
465         } else if (ret) {
466                 fprintf(stderr, "%s is currently mounted.  Aborting.\n",
467                         argv[optind]);
468                 return -EBUSY;
469         }
470         */
471
472         root = open_ctree(argv[optind], 0, 0);
473         if (!root) {
474                 fprintf(stderr, "Couldn't open ctree\n");
475                 exit(1);
476         }
477
478         printf("Calculating size of root tree\n");
479         key.objectid = BTRFS_ROOT_TREE_OBJECTID;
480         ret = calc_root_size(root, &key, 0);
481         if (ret)
482                 goto out;
483
484         printf("Calculating size of extent tree\n");
485         key.objectid = BTRFS_EXTENT_TREE_OBJECTID;
486         ret = calc_root_size(root, &key, 0);
487         if (ret)
488                 goto out;
489
490         printf("Calculating size of csum tree\n");
491         key.objectid = BTRFS_CSUM_TREE_OBJECTID;
492         ret = calc_root_size(root, &key, 0);
493         if (ret)
494                 goto out;
495
496         key.objectid = BTRFS_FS_TREE_OBJECTID;
497         key.offset = (u64)-1;
498         printf("Calculatin' size of fs tree\n");
499         ret = calc_root_size(root, &key, 1);
500         if (ret)
501                 goto out;
502 out:
503         close_ctree(root);
504         btrfs_close_all_devices();
505         return ret;
506 }