Imported Upstream version 1.72.0
[platform/upstream/boost.git] / boost / geometry / strategies / geographic / intersection.hpp
1 // Boost.Geometry
2
3 // Copyright (c) 2017 Adam Wulkiewicz, Lodz, Poland.
4
5 // Copyright (c) 2016-2019, Oracle and/or its affiliates.
6 // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
7
8 // Use, modification and distribution is subject to the Boost Software License,
9 // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
10 // http://www.boost.org/LICENSE_1_0.txt)
11
12 #ifndef BOOST_GEOMETRY_STRATEGIES_GEOGRAPHIC_INTERSECTION_HPP
13 #define BOOST_GEOMETRY_STRATEGIES_GEOGRAPHIC_INTERSECTION_HPP
14
15 #include <algorithm>
16
17 #include <boost/geometry/core/cs.hpp>
18 #include <boost/geometry/core/access.hpp>
19 #include <boost/geometry/core/radian_access.hpp>
20 #include <boost/geometry/core/tags.hpp>
21
22 #include <boost/geometry/algorithms/detail/assign_values.hpp>
23 #include <boost/geometry/algorithms/detail/assign_indexed_point.hpp>
24 #include <boost/geometry/algorithms/detail/equals/point_point.hpp>
25 #include <boost/geometry/algorithms/detail/recalculate.hpp>
26
27 #include <boost/geometry/formulas/andoyer_inverse.hpp>
28 #include <boost/geometry/formulas/sjoberg_intersection.hpp>
29 #include <boost/geometry/formulas/spherical.hpp>
30 #include <boost/geometry/formulas/unit_spheroid.hpp>
31
32 #include <boost/geometry/geometries/concepts/point_concept.hpp>
33 #include <boost/geometry/geometries/concepts/segment_concept.hpp>
34
35 #include <boost/geometry/policies/robustness/segment_ratio.hpp>
36
37 #include <boost/geometry/srs/spheroid.hpp>
38
39 #include <boost/geometry/strategies/geographic/area.hpp>
40 #include <boost/geometry/strategies/geographic/disjoint_segment_box.hpp>
41 #include <boost/geometry/strategies/geographic/distance.hpp>
42 #include <boost/geometry/strategies/geographic/envelope.hpp>
43 #include <boost/geometry/strategies/geographic/parameters.hpp>
44 #include <boost/geometry/strategies/geographic/point_in_poly_winding.hpp>
45 #include <boost/geometry/strategies/geographic/side.hpp>
46 #include <boost/geometry/strategies/spherical/expand_box.hpp>
47 #include <boost/geometry/strategies/spherical/disjoint_box_box.hpp>
48 #include <boost/geometry/strategies/spherical/point_in_point.hpp>
49 #include <boost/geometry/strategies/intersection.hpp>
50 #include <boost/geometry/strategies/intersection_result.hpp>
51 #include <boost/geometry/strategies/side_info.hpp>
52
53 #include <boost/geometry/util/math.hpp>
54 #include <boost/geometry/util/select_calculation_type.hpp>
55
56
57 namespace boost { namespace geometry
58 {
59
60 namespace strategy { namespace intersection
61 {
62
63 // CONSIDER: Improvement of the robustness/accuracy/repeatability by
64 // moving all segments to 0 longitude
65 // picking latitudes closer to 0
66 // etc.
67
68 template
69 <
70     typename FormulaPolicy = strategy::andoyer,
71     unsigned int Order = strategy::default_order<FormulaPolicy>::value,
72     typename Spheroid = srs::spheroid<double>,
73     typename CalculationType = void
74 >
75 struct geographic_segments
76 {
77     typedef geographic_tag cs_tag;
78
79     typedef side::geographic
80         <
81             FormulaPolicy, Spheroid, CalculationType
82         > side_strategy_type;
83
84     inline side_strategy_type get_side_strategy() const
85     {
86         return side_strategy_type(m_spheroid);
87     }
88
89     template <typename Geometry1, typename Geometry2>
90     struct point_in_geometry_strategy
91     {
92         typedef strategy::within::geographic_winding
93             <
94                 typename point_type<Geometry1>::type,
95                 typename point_type<Geometry2>::type,
96                 FormulaPolicy,
97                 Spheroid,
98                 CalculationType
99             > type;
100     };
101
102     template <typename Geometry1, typename Geometry2>
103     inline typename point_in_geometry_strategy<Geometry1, Geometry2>::type
104         get_point_in_geometry_strategy() const
105     {
106         typedef typename point_in_geometry_strategy
107             <
108                 Geometry1, Geometry2
109             >::type strategy_type;
110         return strategy_type(m_spheroid);
111     }
112
113     template <typename Geometry>
114     struct area_strategy
115     {
116         typedef area::geographic
117             <
118                 FormulaPolicy,
119                 Order,
120                 Spheroid,
121                 CalculationType
122             > type;
123     };
124
125     template <typename Geometry>
126     inline typename area_strategy<Geometry>::type get_area_strategy() const
127     {
128         typedef typename area_strategy<Geometry>::type strategy_type;
129         return strategy_type(m_spheroid);
130     }
131
132     template <typename Geometry>
133     struct distance_strategy
134     {
135         typedef distance::geographic
136             <
137                 FormulaPolicy,
138                 Spheroid,
139                 CalculationType
140             > type;
141     };
142
143     template <typename Geometry>
144     inline typename distance_strategy<Geometry>::type get_distance_strategy() const
145     {
146         typedef typename distance_strategy<Geometry>::type strategy_type;
147         return strategy_type(m_spheroid);
148     }
149
150     typedef envelope::geographic<FormulaPolicy, Spheroid, CalculationType>
151         envelope_strategy_type;
152
153     inline envelope_strategy_type get_envelope_strategy() const
154     {
155         return envelope_strategy_type(m_spheroid);
156     }
157
158     typedef expand::geographic_segment<FormulaPolicy, Spheroid, CalculationType>
159         expand_strategy_type;
160
161     inline expand_strategy_type get_expand_strategy() const
162     {
163         return expand_strategy_type(m_spheroid);
164     }
165
166     typedef within::spherical_point_point point_in_point_strategy_type;
167
168     static inline point_in_point_strategy_type get_point_in_point_strategy()
169     {
170         return point_in_point_strategy_type();
171     }
172
173     typedef within::spherical_point_point equals_point_point_strategy_type;
174
175     static inline equals_point_point_strategy_type get_equals_point_point_strategy()
176     {
177         return equals_point_point_strategy_type();
178     }
179
180     typedef disjoint::spherical_box_box disjoint_box_box_strategy_type;
181
182     static inline disjoint_box_box_strategy_type get_disjoint_box_box_strategy()
183     {
184         return disjoint_box_box_strategy_type();
185     }
186
187     typedef disjoint::segment_box_geographic
188         <
189             FormulaPolicy, Spheroid, CalculationType
190         > disjoint_segment_box_strategy_type;
191
192     inline disjoint_segment_box_strategy_type get_disjoint_segment_box_strategy() const
193     {
194         return disjoint_segment_box_strategy_type(m_spheroid);
195     }
196
197     typedef covered_by::spherical_point_box disjoint_point_box_strategy_type;
198     typedef covered_by::spherical_point_box covered_by_point_box_strategy_type;
199     typedef within::spherical_point_box within_point_box_strategy_type;
200     typedef envelope::spherical_box envelope_box_strategy_type;
201     typedef expand::spherical_box expand_box_strategy_type;
202
203     enum intersection_point_flag { ipi_inters = 0, ipi_at_a1, ipi_at_a2, ipi_at_b1, ipi_at_b2 };
204
205     template <typename CoordinateType, typename SegmentRatio>
206     struct segment_intersection_info
207     {
208         template <typename Point, typename Segment1, typename Segment2>
209         void calculate(Point& point, Segment1 const& a, Segment2 const& b) const
210         {
211             if (ip_flag == ipi_inters)
212             {
213                 // TODO: assign the rest of coordinates
214                 set_from_radian<0>(point, lon);
215                 set_from_radian<1>(point, lat);
216             }
217             else if (ip_flag == ipi_at_a1)
218             {
219                 detail::assign_point_from_index<0>(a, point);
220             }
221             else if (ip_flag == ipi_at_a2)
222             {
223                 detail::assign_point_from_index<1>(a, point);
224             }
225             else if (ip_flag == ipi_at_b1)
226             {
227                 detail::assign_point_from_index<0>(b, point);
228             }
229             else // ip_flag == ipi_at_b2
230             {
231                 detail::assign_point_from_index<1>(b, point);
232             }
233         }
234
235         CoordinateType lon;
236         CoordinateType lat;
237         SegmentRatio robust_ra;
238         SegmentRatio robust_rb;
239         intersection_point_flag ip_flag;
240     };
241
242     explicit geographic_segments(Spheroid const& spheroid = Spheroid())
243         : m_spheroid(spheroid)
244     {}
245
246     // Relate segments a and b
247     template
248     <
249         typename UniqueSubRange1,
250         typename UniqueSubRange2,
251         typename Policy
252     >
253     inline typename Policy::return_type apply(UniqueSubRange1 const& range_p,
254                                               UniqueSubRange2 const& range_q,
255                                               Policy const&) const
256     {
257         typedef typename UniqueSubRange1::point_type point1_type;
258         typedef typename UniqueSubRange2::point_type point2_type;
259         typedef model::referring_segment<point1_type const> segment_type1;
260         typedef model::referring_segment<point2_type const> segment_type2;
261
262         BOOST_CONCEPT_ASSERT( (concepts::ConstPoint<point1_type>) );
263         BOOST_CONCEPT_ASSERT( (concepts::ConstPoint<point2_type>) );
264
265         /*
266         typename coordinate_type<Point1>::type
267             const a1_lon = get<0>(a1),
268             const a2_lon = get<0>(a2);
269         typename coordinate_type<Point2>::type
270             const b1_lon = get<0>(b1),
271             const b2_lon = get<0>(b2);
272         bool is_a_reversed = a1_lon > a2_lon || a1_lon == a2_lon && get<1>(a1) > get<1>(a2);
273         bool is_b_reversed = b1_lon > b2_lon || b1_lon == b2_lon && get<1>(b1) > get<1>(b2);
274         */
275
276         bool const is_p_reversed = get<1>(range_p.at(0)) > get<1>(range_p.at(1));
277         bool const is_q_reversed = get<1>(range_q.at(0)) > get<1>(range_q.at(1));
278
279         // Call apply with original segments and ordered points
280         return apply<Policy>(segment_type1(range_p.at(0), range_p.at(1)),
281                              segment_type2(range_q.at(0), range_q.at(1)),
282                              range_p.at(is_p_reversed ? 1 : 0),
283                              range_p.at(is_p_reversed ? 0 : 1),
284                              range_q.at(is_q_reversed ? 1 : 0),
285                              range_q.at(is_q_reversed ? 0 : 1),
286                              is_p_reversed, is_q_reversed);
287     }
288
289 private:
290     // Relate segments a and b
291     template
292     <
293         typename Policy,
294         typename Segment1,
295         typename Segment2,
296         typename Point1,
297         typename Point2
298     >
299     inline typename Policy::return_type apply(Segment1 const& a, Segment2 const& b,
300                                               Point1 const& a1, Point1 const& a2,
301                                               Point2 const& b1, Point2 const& b2,
302                                               bool is_a_reversed, bool is_b_reversed) const
303     {
304         BOOST_CONCEPT_ASSERT( (concepts::ConstSegment<Segment1>) );
305         BOOST_CONCEPT_ASSERT( (concepts::ConstSegment<Segment2>) );
306
307         typedef typename select_calculation_type
308             <Segment1, Segment2, CalculationType>::type calc_t;
309
310         typedef srs::spheroid<calc_t> spheroid_type;
311
312         static const calc_t c0 = 0;
313
314         // normalized spheroid
315         spheroid_type spheroid = formula::unit_spheroid<spheroid_type>(m_spheroid);
316
317         // TODO: check only 2 first coordinates here?
318         bool a_is_point = equals_point_point(a1, a2);
319         bool b_is_point = equals_point_point(b1, b2);
320
321         if(a_is_point && b_is_point)
322         {
323             return equals_point_point(a1, b2)
324                 ? Policy::degenerate(a, true)
325                 : Policy::disjoint()
326                 ;
327         }
328         
329         calc_t const a1_lon = get_as_radian<0>(a1);
330         calc_t const a1_lat = get_as_radian<1>(a1);
331         calc_t const a2_lon = get_as_radian<0>(a2);
332         calc_t const a2_lat = get_as_radian<1>(a2);
333         calc_t const b1_lon = get_as_radian<0>(b1);
334         calc_t const b1_lat = get_as_radian<1>(b1);
335         calc_t const b2_lon = get_as_radian<0>(b2);
336         calc_t const b2_lat = get_as_radian<1>(b2);
337
338         side_info sides;
339
340         // NOTE: potential optimization, don't calculate distance at this point
341         // this would require to reimplement inverse strategy to allow
342         // calculation of distance if needed, probably also storing intermediate
343         // results somehow inside an object.
344         typedef typename FormulaPolicy::template inverse<calc_t, true, true, false, false, false> inverse_dist_azi;
345         typedef typename inverse_dist_azi::result_type inverse_result;
346
347         // TODO: no need to call inverse formula if we know that the points are equal
348         // distance can be set to 0 in this case and azimuth may be not calculated
349         bool is_equal_a1_b1 = equals_point_point(a1, b1);
350         bool is_equal_a2_b1 = equals_point_point(a2, b1);
351         bool degen_neq_coords = false;
352
353         inverse_result res_b1_b2, res_b1_a1, res_b1_a2;
354         if (! b_is_point)
355         {
356             res_b1_b2 = inverse_dist_azi::apply(b1_lon, b1_lat, b2_lon, b2_lat, spheroid);
357             if (math::equals(res_b1_b2.distance, c0))
358             {
359                 b_is_point = true;
360                 degen_neq_coords = true;
361             }
362             else
363             {
364                 res_b1_a1 = inverse_dist_azi::apply(b1_lon, b1_lat, a1_lon, a1_lat, spheroid);
365                 if (math::equals(res_b1_a1.distance, c0))
366                 {
367                     is_equal_a1_b1 = true;
368                 }
369                 res_b1_a2 = inverse_dist_azi::apply(b1_lon, b1_lat, a2_lon, a2_lat, spheroid);
370                 if (math::equals(res_b1_a2.distance, c0))
371                 {
372                     is_equal_a2_b1 = true;
373                 }
374                 sides.set<0>(is_equal_a1_b1 ? 0 : formula::azimuth_side_value(res_b1_a1.azimuth, res_b1_b2.azimuth),
375                              is_equal_a2_b1 ? 0 : formula::azimuth_side_value(res_b1_a2.azimuth, res_b1_b2.azimuth));
376                 if (sides.same<0>())
377                 {
378                     // Both points are at the same side of other segment, we can leave
379                     return Policy::disjoint();
380                 }
381             }
382         }
383
384         bool is_equal_a1_b2 = equals_point_point(a1, b2);
385
386         inverse_result res_a1_a2, res_a1_b1, res_a1_b2;
387         if (! a_is_point)
388         {
389             res_a1_a2 = inverse_dist_azi::apply(a1_lon, a1_lat, a2_lon, a2_lat, spheroid);
390             if (math::equals(res_a1_a2.distance, c0))
391             {
392                 a_is_point = true;
393                 degen_neq_coords = true;
394             }
395             else
396             {
397                 res_a1_b1 = inverse_dist_azi::apply(a1_lon, a1_lat, b1_lon, b1_lat, spheroid);
398                 if (math::equals(res_a1_b1.distance, c0))
399                 {
400                     is_equal_a1_b1 = true;
401                 }
402                 res_a1_b2 = inverse_dist_azi::apply(a1_lon, a1_lat, b2_lon, b2_lat, spheroid);
403                 if (math::equals(res_a1_b2.distance, c0))
404                 {
405                     is_equal_a1_b2 = true;
406                 }
407                 sides.set<1>(is_equal_a1_b1 ? 0 : formula::azimuth_side_value(res_a1_b1.azimuth, res_a1_a2.azimuth),
408                              is_equal_a1_b2 ? 0 : formula::azimuth_side_value(res_a1_b2.azimuth, res_a1_a2.azimuth));
409                 if (sides.same<1>())
410                 {
411                     // Both points are at the same side of other segment, we can leave
412                     return Policy::disjoint();
413                 }
414             }
415         }
416
417         if(a_is_point && b_is_point)
418         {
419             return is_equal_a1_b2
420                 ? Policy::degenerate(a, true)
421                 : Policy::disjoint()
422                 ;
423         }
424
425         // NOTE: at this point the segments may still be disjoint
426         // NOTE: at this point one of the segments may be degenerated
427
428         bool collinear = sides.collinear();       
429
430         if (! collinear)
431         {
432             // WARNING: the side strategy doesn't have the info about the other
433             // segment so it may return results inconsistent with this intersection
434             // strategy, as it checks both segments for consistency
435
436             if (sides.get<0, 0>() == 0 && sides.get<0, 1>() == 0)
437             {
438                 collinear = true;
439                 sides.set<1>(0, 0);
440             }
441             else if (sides.get<1, 0>() == 0 && sides.get<1, 1>() == 0)
442             {
443                 collinear = true;
444                 sides.set<0>(0, 0);
445             }
446         }
447
448         if (collinear)
449         {
450             if (a_is_point)
451             {
452                 return collinear_one_degenerated<Policy, calc_t>(a, true, b1, b2, a1, a2, res_b1_b2, res_b1_a1, res_b1_a2, is_b_reversed, degen_neq_coords);
453             }
454             else if (b_is_point)
455             {
456                 return collinear_one_degenerated<Policy, calc_t>(b, false, a1, a2, b1, b2, res_a1_a2, res_a1_b1, res_a1_b2, is_a_reversed, degen_neq_coords);
457             }
458             else
459             {
460                 calc_t dist_a1_a2, dist_a1_b1, dist_a1_b2;
461                 calc_t dist_b1_b2, dist_b1_a1, dist_b1_a2;
462                 // use shorter segment
463                 if (res_a1_a2.distance <= res_b1_b2.distance)
464                 {
465                     calculate_collinear_data(a1, a2, b1, b2, res_a1_a2, res_a1_b1, res_a1_b2, dist_a1_a2, dist_a1_b1);
466                     calculate_collinear_data(a1, a2, b2, b1, res_a1_a2, res_a1_b2, res_a1_b1, dist_a1_a2, dist_a1_b2);
467                     dist_b1_b2 = dist_a1_b2 - dist_a1_b1;
468                     dist_b1_a1 = -dist_a1_b1;
469                     dist_b1_a2 = dist_a1_a2 - dist_a1_b1;
470                 }
471                 else
472                 {
473                     calculate_collinear_data(b1, b2, a1, a2, res_b1_b2, res_b1_a1, res_b1_a2, dist_b1_b2, dist_b1_a1);
474                     calculate_collinear_data(b1, b2, a2, a1, res_b1_b2, res_b1_a2, res_b1_a1, dist_b1_b2, dist_b1_a2);
475                     dist_a1_a2 = dist_b1_a2 - dist_b1_a1;
476                     dist_a1_b1 = -dist_b1_a1;
477                     dist_a1_b2 = dist_b1_b2 - dist_b1_a1;
478                 }
479
480                 // NOTE: this is probably not needed
481                 int a1_on_b = position_value(c0, dist_a1_b1, dist_a1_b2);
482                 int a2_on_b = position_value(dist_a1_a2, dist_a1_b1, dist_a1_b2);
483                 int b1_on_a = position_value(c0, dist_b1_a1, dist_b1_a2);
484                 int b2_on_a = position_value(dist_b1_b2, dist_b1_a1, dist_b1_a2);
485
486                 if ((a1_on_b < 1 && a2_on_b < 1) || (a1_on_b > 3 && a2_on_b > 3))
487                 {
488                     return Policy::disjoint();
489                 }
490
491                 if (a1_on_b == 1)
492                 {
493                     dist_b1_a1 = 0;
494                     dist_a1_b1 = 0;
495                 }
496                 else if (a1_on_b == 3)
497                 {
498                     dist_b1_a1 = dist_b1_b2;
499                     dist_a1_b2 = 0;
500                 }
501
502                 if (a2_on_b == 1)
503                 {
504                     dist_b1_a2 = 0;
505                     dist_a1_b1 = dist_a1_a2;
506                 }
507                 else if (a2_on_b == 3)
508                 {
509                     dist_b1_a2 = dist_b1_b2;
510                     dist_a1_b2 = dist_a1_a2;
511                 }
512
513                 bool opposite = ! same_direction(res_a1_a2.azimuth, res_b1_b2.azimuth);
514
515                 // NOTE: If segment was reversed opposite, positions and segment ratios has to be altered
516                 if (is_a_reversed)
517                 {
518                     // opposite
519                     opposite = ! opposite;
520                     // positions
521                     std::swap(a1_on_b, a2_on_b);
522                     b1_on_a = 4 - b1_on_a;
523                     b2_on_a = 4 - b2_on_a;
524                     // distances for ratios
525                     std::swap(dist_b1_a1, dist_b1_a2);
526                     dist_a1_b1 = dist_a1_a2 - dist_a1_b1;
527                     dist_a1_b2 = dist_a1_a2 - dist_a1_b2;
528                 }
529                 if (is_b_reversed)
530                 {
531                     // opposite
532                     opposite = ! opposite;
533                     // positions
534                     a1_on_b = 4 - a1_on_b;
535                     a2_on_b = 4 - a2_on_b;
536                     std::swap(b1_on_a, b2_on_a);
537                     // distances for ratios
538                     dist_b1_a1 = dist_b1_b2 - dist_b1_a1;
539                     dist_b1_a2 = dist_b1_b2 - dist_b1_a2;
540                     std::swap(dist_a1_b1, dist_a1_b2);
541                 }
542
543                 segment_ratio<calc_t> ra_from(dist_b1_a1, dist_b1_b2);
544                 segment_ratio<calc_t> ra_to(dist_b1_a2, dist_b1_b2);
545                 segment_ratio<calc_t> rb_from(dist_a1_b1, dist_a1_a2);
546                 segment_ratio<calc_t> rb_to(dist_a1_b2, dist_a1_a2);
547
548                 return Policy::segments_collinear(a, b, opposite,
549                     a1_on_b, a2_on_b, b1_on_a, b2_on_a,
550                     ra_from, ra_to, rb_from, rb_to);
551             }
552         }
553         else // crossing or touching
554         {
555             if (a_is_point || b_is_point)
556             {
557                 return Policy::disjoint();
558             }
559
560             calc_t lon = 0, lat = 0;
561             intersection_point_flag ip_flag;
562             calc_t dist_a1_a2, dist_a1_i1, dist_b1_b2, dist_b1_i1;
563             if (calculate_ip_data(a1, a2, b1, b2,
564                                   a1_lon, a1_lat, a2_lon, a2_lat,
565                                   b1_lon, b1_lat, b2_lon, b2_lat,
566                                   res_a1_a2, res_a1_b1, res_a1_b2,
567                                   res_b1_b2, res_b1_a1, res_b1_a2,
568                                   sides, spheroid,
569                                   lon, lat,
570                                   dist_a1_a2, dist_a1_i1, dist_b1_b2, dist_b1_i1,
571                                   ip_flag))
572             {
573                 // NOTE: If segment was reversed sides and segment ratios has to be altered
574                 if (is_a_reversed)
575                 {
576                     // sides
577                     sides_reverse_segment<0>(sides);
578                     // distance for ratio
579                     dist_a1_i1 = dist_a1_a2 - dist_a1_i1;
580                     // ip flag
581                     ip_flag_reverse_segment(ip_flag, ipi_at_a1, ipi_at_a2);
582                 }
583                 if (is_b_reversed)
584                 {
585                     // sides
586                     sides_reverse_segment<1>(sides);
587                     // distance for ratio
588                     dist_b1_i1 = dist_b1_b2 - dist_b1_i1;
589                     // ip flag
590                     ip_flag_reverse_segment(ip_flag, ipi_at_b1, ipi_at_b2);
591                 }
592
593                 // intersects
594                 segment_intersection_info
595                     <
596                         calc_t,
597                         segment_ratio<calc_t>
598                     > sinfo;
599
600                 sinfo.lon = lon;
601                 sinfo.lat = lat;
602                 sinfo.robust_ra.assign(dist_a1_i1, dist_a1_a2);
603                 sinfo.robust_rb.assign(dist_b1_i1, dist_b1_b2);
604                 sinfo.ip_flag = ip_flag;
605
606                 return Policy::segments_crosses(sides, sinfo, a, b);
607             }
608             else
609             {
610                 return Policy::disjoint();
611             }
612         }
613     }
614
615     template <typename Policy, typename CalcT, typename Segment, typename Point1, typename Point2, typename ResultInverse>
616     static inline typename Policy::return_type
617         collinear_one_degenerated(Segment const& segment, bool degenerated_a,
618                                   Point1 const& a1, Point1 const& a2,
619                                   Point2 const& b1, Point2 const& b2,
620                                   ResultInverse const& res_a1_a2,
621                                   ResultInverse const& res_a1_b1,
622                                   ResultInverse const& res_a1_b2,
623                                   bool is_other_reversed,
624                                   bool degen_neq_coords)
625     {
626         CalcT dist_1_2, dist_1_o;
627         if (! calculate_collinear_data(a1, a2, b1, b2, res_a1_a2, res_a1_b1, res_a1_b2, dist_1_2, dist_1_o, degen_neq_coords))
628         {
629             return Policy::disjoint();
630         }
631
632         // NOTE: If segment was reversed segment ratio has to be altered
633         if (is_other_reversed)
634         {
635             // distance for ratio
636             dist_1_o = dist_1_2 - dist_1_o;
637         }
638         
639         return Policy::one_degenerate(segment, segment_ratio<CalcT>(dist_1_o, dist_1_2), degenerated_a);
640     }
641
642     // TODO: instead of checks below test bi against a1 and a2 here?
643     //       in order to make this independent from is_near()
644     template <typename Point1, typename Point2, typename ResultInverse, typename CalcT>
645     static inline bool calculate_collinear_data(Point1 const& a1, Point1 const& a2, // in
646                                                 Point2 const& b1, Point2 const& /*b2*/, // in
647                                                 ResultInverse const& res_a1_a2,     // in
648                                                 ResultInverse const& res_a1_b1,     // in
649                                                 ResultInverse const& res_a1_b2,     // in
650                                                 CalcT& dist_a1_a2,                  // out
651                                                 CalcT& dist_a1_b1,                  // out
652                                                 bool degen_neq_coords = false)      // in
653     {
654         dist_a1_a2 = res_a1_a2.distance;
655
656         dist_a1_b1 = res_a1_b1.distance;
657         if (! same_direction(res_a1_b1.azimuth, res_a1_a2.azimuth))
658         {
659             dist_a1_b1 = -dist_a1_b1;
660         }
661
662         // if b1 is close a1
663         if (is_endpoint_equal(dist_a1_b1, a1, b1))
664         {
665             dist_a1_b1 = 0;
666             return true;
667         }
668         // if b1 is close a2
669         else if (is_endpoint_equal(dist_a1_a2 - dist_a1_b1, a2, b1))
670         {
671             dist_a1_b1 = dist_a1_a2;
672             return true;
673         }
674
675         // check the other endpoint of degenerated segment near a pole
676         if (degen_neq_coords)
677         {
678             static CalcT const c0 = 0;
679             if (math::equals(res_a1_b2.distance, c0))
680             {
681                 dist_a1_b1 = 0;
682                 return true;
683             }
684             else if (math::equals(dist_a1_a2 - res_a1_b2.distance, c0))
685             {
686                 dist_a1_b1 = dist_a1_a2;
687                 return true;
688             }
689         }
690
691         // or i1 is on b
692         return segment_ratio<CalcT>(dist_a1_b1, dist_a1_a2).on_segment();
693     }
694
695     template <typename Point1, typename Point2, typename CalcT, typename ResultInverse, typename Spheroid_>
696     static inline bool calculate_ip_data(Point1 const& a1, Point1 const& a2,       // in
697                                          Point2 const& b1, Point2 const& b2,       // in
698                                          CalcT const& a1_lon, CalcT const& a1_lat, // in
699                                          CalcT const& a2_lon, CalcT const& a2_lat, // in
700                                          CalcT const& b1_lon, CalcT const& b1_lat, // in
701                                          CalcT const& b2_lon, CalcT const& b2_lat, // in
702                                          ResultInverse const& res_a1_a2,           // in
703                                          ResultInverse const& res_a1_b1,           // in
704                                          ResultInverse const& res_a1_b2,           // in
705                                          ResultInverse const& res_b1_b2,           // in
706                                          ResultInverse const& res_b1_a1,           // in
707                                          ResultInverse const& res_b1_a2,           // in
708                                          side_info const& sides,                   // in
709                                          Spheroid_ const& spheroid,                // in
710                                          CalcT & lon, CalcT & lat,             // out
711                                          CalcT& dist_a1_a2, CalcT& dist_a1_ip, // out
712                                          CalcT& dist_b1_b2, CalcT& dist_b1_ip, // out
713                                          intersection_point_flag& ip_flag)     // out
714     {
715         dist_a1_a2 = res_a1_a2.distance;
716         dist_b1_b2 = res_b1_b2.distance;
717
718         // assign the IP if some endpoints overlap
719         if (equals_point_point(a1, b1))
720         {
721             lon = a1_lon;
722             lat = a1_lat;
723             dist_a1_ip = 0;
724             dist_b1_ip = 0;
725             ip_flag = ipi_at_a1;
726             return true;
727         }
728         else if (equals_point_point(a1, b2))
729         {
730             lon = a1_lon;
731             lat = a1_lat;
732             dist_a1_ip = 0;
733             dist_b1_ip = dist_b1_b2;
734             ip_flag = ipi_at_a1;
735             return true;
736         }
737         else if (equals_point_point(a2, b1))
738         {
739             lon = a2_lon;
740             lat = a2_lat;
741             dist_a1_ip = dist_a1_a2;
742             dist_b1_ip = 0;
743             ip_flag = ipi_at_a2;
744             return true;
745         }
746         else if (equals_point_point(a2, b2))
747         {
748             lon = a2_lon;
749             lat = a2_lat;
750             dist_a1_ip = dist_a1_a2;
751             dist_b1_ip = dist_b1_b2;
752             ip_flag = ipi_at_a2;
753             return true;
754         }
755
756         // at this point we know that the endpoints doesn't overlap
757         // check cases when an endpoint lies on the other geodesic
758         if (sides.template get<0, 0>() == 0) // a1 wrt b
759         {
760             if (res_b1_a1.distance <= res_b1_b2.distance
761                 && same_direction(res_b1_a1.azimuth, res_b1_b2.azimuth))
762             {
763                 lon = a1_lon;
764                 lat = a1_lat;
765                 dist_a1_ip = 0;
766                 dist_b1_ip = res_b1_a1.distance;
767                 ip_flag = ipi_at_a1;
768                 return true;
769             }
770             else
771             {
772                 return false;
773             }
774         }
775         else if (sides.template get<0, 1>() == 0) // a2 wrt b
776         {
777             if (res_b1_a2.distance <= res_b1_b2.distance
778                 && same_direction(res_b1_a2.azimuth, res_b1_b2.azimuth))
779             {
780                 lon = a2_lon;
781                 lat = a2_lat;
782                 dist_a1_ip = res_a1_a2.distance;
783                 dist_b1_ip = res_b1_a2.distance;
784                 ip_flag = ipi_at_a2;
785                 return true;
786             }
787             else
788             {
789                 return false;
790             }
791         }
792         else if (sides.template get<1, 0>() == 0) // b1 wrt a
793         {
794             if (res_a1_b1.distance <= res_a1_a2.distance
795                 && same_direction(res_a1_b1.azimuth, res_a1_a2.azimuth))
796             {
797                 lon = b1_lon;
798                 lat = b1_lat;
799                 dist_a1_ip = res_a1_b1.distance;
800                 dist_b1_ip = 0;
801                 ip_flag = ipi_at_b1;
802                 return true;
803             }
804             else
805             {
806                 return false;
807             }
808         }
809         else if (sides.template get<1, 1>() == 0) // b2 wrt a
810         {
811             if (res_a1_b2.distance <= res_a1_a2.distance
812                 && same_direction(res_a1_b2.azimuth, res_a1_a2.azimuth))
813             {
814                 lon = b2_lon;
815                 lat = b2_lat;
816                 dist_a1_ip = res_a1_b2.distance;
817                 dist_b1_ip = res_b1_b2.distance;
818                 ip_flag = ipi_at_b2;
819                 return true;
820             }
821             else
822             {
823                 return false;
824             }
825         }
826
827         // At this point neither the endpoints overlaps
828         // nor any andpoint lies on the other geodesic
829         // So the endpoints should lie on the opposite sides of both geodesics
830
831         bool const ok = formula::sjoberg_intersection<CalcT, FormulaPolicy::template inverse, Order>
832                         ::apply(a1_lon, a1_lat, a2_lon, a2_lat, res_a1_a2.azimuth,
833                                 b1_lon, b1_lat, b2_lon, b2_lat, res_b1_b2.azimuth,
834                                 lon, lat, spheroid);
835
836         if (! ok)
837         {
838             return false;
839         }
840
841         typedef typename FormulaPolicy::template inverse<CalcT, true, true, false, false, false> inverse_dist_azi;
842         typedef typename inverse_dist_azi::result_type inverse_result;
843
844         inverse_result const res_a1_ip = inverse_dist_azi::apply(a1_lon, a1_lat, lon, lat, spheroid);
845         dist_a1_ip = res_a1_ip.distance;
846         if (! same_direction(res_a1_ip.azimuth, res_a1_a2.azimuth))
847         {
848             dist_a1_ip = -dist_a1_ip;
849         }
850
851         bool is_on_a = segment_ratio<CalcT>(dist_a1_ip, dist_a1_a2).on_segment();
852         // NOTE: not fully consistent with equals_point_point() since radians are always used.
853         bool is_on_a1 = math::equals(lon, a1_lon) && math::equals(lat, a1_lat);
854         bool is_on_a2 = math::equals(lon, a2_lon) && math::equals(lat, a2_lat);
855
856         if (! (is_on_a || is_on_a1 || is_on_a2))
857         {
858             return false;
859         }
860
861         inverse_result const res_b1_ip = inverse_dist_azi::apply(b1_lon, b1_lat, lon, lat, spheroid);
862         dist_b1_ip = res_b1_ip.distance;
863         if (! same_direction(res_b1_ip.azimuth, res_b1_b2.azimuth))
864         {
865             dist_b1_ip = -dist_b1_ip;
866         }
867
868         bool is_on_b = segment_ratio<CalcT>(dist_b1_ip, dist_b1_b2).on_segment();
869         // NOTE: not fully consistent with equals_point_point() since radians are always used.
870         bool is_on_b1 = math::equals(lon, b1_lon) && math::equals(lat, b1_lat);
871         bool is_on_b2 = math::equals(lon, b2_lon) && math::equals(lat, b2_lat);
872
873         if (! (is_on_b || is_on_b1 || is_on_b2))
874         {
875             return false;
876         }
877         
878         typedef typename FormulaPolicy::template inverse<CalcT, true, false, false, false, false> inverse_dist;
879
880         ip_flag = ipi_inters;
881
882         if (is_on_b1)
883         {
884             lon = b1_lon;
885             lat = b1_lat;
886             dist_a1_ip = inverse_dist::apply(a1_lon, a1_lat, lon, lat, spheroid).distance; // for consistency
887             dist_b1_ip = 0;
888             ip_flag = ipi_at_b1;
889         }
890         else if (is_on_b2)
891         {
892             lon = b2_lon;
893             lat = b2_lat;
894             dist_a1_ip = inverse_dist::apply(a1_lon, a1_lat, lon, lat, spheroid).distance; // for consistency
895             dist_b1_ip = res_b1_b2.distance;
896             ip_flag = ipi_at_b2;
897         }
898
899         if (is_on_a1)
900         {
901             lon = a1_lon;
902             lat = a1_lat;
903             dist_a1_ip = 0;
904             dist_b1_ip = inverse_dist::apply(b1_lon, b1_lat, lon, lat, spheroid).distance; // for consistency
905             ip_flag = ipi_at_a1;
906         }
907         else if (is_on_a2)
908         {
909             lon = a2_lon;
910             lat = a2_lat;
911             dist_a1_ip = res_a1_a2.distance;
912             dist_b1_ip = inverse_dist::apply(b1_lon, b1_lat, lon, lat, spheroid).distance; // for consistency
913             ip_flag = ipi_at_a2;
914         }        
915
916         return true;
917     }
918
919     template <typename CalcT, typename P1, typename P2>
920     static inline bool is_endpoint_equal(CalcT const& dist,
921                                          P1 const& ai, P2 const& b1)
922     {
923         static CalcT const c0 = 0;
924         return is_near(dist) && (math::equals(dist, c0) || equals_point_point(ai, b1));
925     }
926
927     template <typename CalcT>
928     static inline bool is_near(CalcT const& dist)
929     {
930         // NOTE: This strongly depends on the Inverse method
931         CalcT const small_number = CalcT(boost::is_same<CalcT, float>::value ? 0.0001 : 0.00000001);
932         return math::abs(dist) <= small_number;
933     }
934
935     template <typename ProjCoord1, typename ProjCoord2>
936     static inline int position_value(ProjCoord1 const& ca1,
937                                      ProjCoord2 const& cb1,
938                                      ProjCoord2 const& cb2)
939     {
940         // S1x  0   1    2     3   4
941         // S2       |---------->
942         return math::equals(ca1, cb1) ? 1
943              : math::equals(ca1, cb2) ? 3
944              : cb1 < cb2 ?
945                 ( ca1 < cb1 ? 0
946                 : ca1 > cb2 ? 4
947                 : 2 )
948               : ( ca1 > cb1 ? 0
949                 : ca1 < cb2 ? 4
950                 : 2 );
951     }
952
953     template <typename CalcT>
954     static inline bool same_direction(CalcT const& azimuth1, CalcT const& azimuth2)
955     {
956         // distance between two angles normalized to (-180, 180]
957         CalcT const angle_diff = math::longitude_distance_signed<radian>(azimuth1, azimuth2);
958         return math::abs(angle_diff) <= math::half_pi<CalcT>();
959     }
960
961     template <int Which>
962     static inline void sides_reverse_segment(side_info & sides)
963     {
964         // names assuming segment A is reversed (Which == 0)
965         int a1_wrt_b = sides.template get<Which, 0>();
966         int a2_wrt_b = sides.template get<Which, 1>();
967         std::swap(a1_wrt_b, a2_wrt_b);
968         sides.template set<Which>(a1_wrt_b, a2_wrt_b);
969         int b1_wrt_a = sides.template get<1 - Which, 0>();
970         int b2_wrt_a = sides.template get<1 - Which, 1>();
971         sides.template set<1 - Which>(-b1_wrt_a, -b2_wrt_a);
972     }
973
974     static inline void ip_flag_reverse_segment(intersection_point_flag & ip_flag,
975                                                intersection_point_flag const& ipi_at_p1,
976                                                intersection_point_flag const& ipi_at_p2)
977     {
978         ip_flag = ip_flag == ipi_at_p1 ? ipi_at_p2 :
979                   ip_flag == ipi_at_p2 ? ipi_at_p1 :
980                   ip_flag;
981     }
982
983     template <typename Point1, typename Point2>
984     static inline bool equals_point_point(Point1 const& point1, Point2 const& point2)
985     {
986         return detail::equals::equals_point_point(point1, point2,
987                                                   point_in_point_strategy_type());
988     }
989
990 private:
991     Spheroid m_spheroid;
992 };
993
994
995 }} // namespace strategy::intersection
996
997 }} // namespace boost::geometry
998
999
1000 #endif // BOOST_GEOMETRY_STRATEGIES_GEOGRAPHIC_INTERSECTION_HPP