Imported Upstream version 1.72.0
[platform/upstream/boost.git] / boost / geometry / strategies / cartesian / intersection.hpp
1 // Boost.Geometry (aka GGL, Generic Geometry Library)
2
3 // Copyright (c) 2007-2014 Barend Gehrels, Amsterdam, the Netherlands.
4 // Copyright (c) 2013-2017 Adam Wulkiewicz, Lodz, Poland.
5
6 // This file was modified by Oracle on 2014, 2016, 2017, 2018, 2019.
7 // Modifications copyright (c) 2014-2019, Oracle and/or its affiliates.
8
9 // Contributed and/or modified by Menelaos Karavelas, on behalf of Oracle
10 // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
11
12 // Use, modification and distribution is subject to the Boost Software License,
13 // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
14 // http://www.boost.org/LICENSE_1_0.txt)
15
16 #ifndef BOOST_GEOMETRY_STRATEGIES_CARTESIAN_INTERSECTION_HPP
17 #define BOOST_GEOMETRY_STRATEGIES_CARTESIAN_INTERSECTION_HPP
18
19 #include <algorithm>
20
21 #include <boost/geometry/core/exception.hpp>
22
23 #include <boost/geometry/geometries/concepts/point_concept.hpp>
24 #include <boost/geometry/geometries/concepts/segment_concept.hpp>
25
26 #include <boost/geometry/arithmetic/determinant.hpp>
27 #include <boost/geometry/algorithms/detail/assign_values.hpp>
28 #include <boost/geometry/algorithms/detail/assign_indexed_point.hpp>
29 #include <boost/geometry/algorithms/detail/equals/point_point.hpp>
30 #include <boost/geometry/algorithms/detail/recalculate.hpp>
31
32 #include <boost/geometry/util/math.hpp>
33 #include <boost/geometry/util/promote_integral.hpp>
34 #include <boost/geometry/util/select_calculation_type.hpp>
35
36 #include <boost/geometry/strategies/cartesian/area.hpp>
37 #include <boost/geometry/strategies/cartesian/disjoint_box_box.hpp>
38 #include <boost/geometry/strategies/cartesian/disjoint_segment_box.hpp>
39 #include <boost/geometry/strategies/cartesian/distance_pythagoras.hpp>
40 #include <boost/geometry/strategies/cartesian/envelope.hpp>
41 #include <boost/geometry/strategies/cartesian/expand_box.hpp>
42 #include <boost/geometry/strategies/cartesian/expand_segment.hpp>
43 #include <boost/geometry/strategies/cartesian/point_in_point.hpp>
44 #include <boost/geometry/strategies/cartesian/point_in_poly_winding.hpp>
45 #include <boost/geometry/strategies/cartesian/side_by_triangle.hpp>
46 #include <boost/geometry/strategies/covered_by.hpp>
47 #include <boost/geometry/strategies/intersection.hpp>
48 #include <boost/geometry/strategies/intersection_result.hpp>
49 #include <boost/geometry/strategies/side.hpp>
50 #include <boost/geometry/strategies/side_info.hpp>
51 #include <boost/geometry/strategies/within.hpp>
52
53 #include <boost/geometry/policies/robustness/rescale_policy_tags.hpp>
54 #include <boost/geometry/policies/robustness/robust_point_type.hpp>
55
56 #if defined(BOOST_GEOMETRY_DEBUG_ROBUSTNESS)
57 #  include <boost/geometry/io/wkt/write.hpp>
58 #endif
59
60
61 namespace boost { namespace geometry
62 {
63
64
65 namespace strategy { namespace intersection
66 {
67
68
69 /*!
70     \see http://mathworld.wolfram.com/Line-LineIntersection.html
71  */
72 template
73 <
74     typename CalculationType = void
75 >
76 struct cartesian_segments
77 {
78     typedef cartesian_tag cs_tag;
79
80     typedef side::side_by_triangle<CalculationType> side_strategy_type;
81
82     static inline side_strategy_type get_side_strategy()
83     {
84         return side_strategy_type();
85     }
86
87     template <typename Geometry1, typename Geometry2>
88     struct point_in_geometry_strategy
89     {
90         typedef strategy::within::cartesian_winding
91             <
92                 typename point_type<Geometry1>::type,
93                 typename point_type<Geometry2>::type,
94                 CalculationType
95             > type;
96     };
97
98     template <typename Geometry1, typename Geometry2>
99     static inline typename point_in_geometry_strategy<Geometry1, Geometry2>::type
100         get_point_in_geometry_strategy()
101     {
102         typedef typename point_in_geometry_strategy
103             <
104                 Geometry1, Geometry2
105             >::type strategy_type;
106         return strategy_type();
107     }
108
109     template <typename Geometry>
110     struct area_strategy
111     {
112         typedef area::cartesian
113             <
114                 CalculationType
115             > type;
116     };
117
118     template <typename Geometry>
119     static inline typename area_strategy<Geometry>::type get_area_strategy()
120     {
121         typedef typename area_strategy<Geometry>::type strategy_type;
122         return strategy_type();
123     }
124
125     template <typename Geometry>
126     struct distance_strategy
127     {
128         typedef distance::pythagoras
129             <
130                 CalculationType
131             > type;
132     };
133
134     template <typename Geometry>
135     static inline typename distance_strategy<Geometry>::type get_distance_strategy()
136     {
137         typedef typename distance_strategy<Geometry>::type strategy_type;
138         return strategy_type();
139     }
140
141     typedef envelope::cartesian<CalculationType> envelope_strategy_type;
142
143     static inline envelope_strategy_type get_envelope_strategy()
144     {
145         return envelope_strategy_type();
146     }
147
148     typedef expand::cartesian_segment expand_strategy_type;
149
150     static inline expand_strategy_type get_expand_strategy()
151     {
152         return expand_strategy_type();
153     }
154
155     typedef within::cartesian_point_point point_in_point_strategy_type;
156
157     static inline point_in_point_strategy_type get_point_in_point_strategy()
158     {
159         return point_in_point_strategy_type();
160     }
161
162     typedef within::cartesian_point_point equals_point_point_strategy_type;
163
164     static inline equals_point_point_strategy_type get_equals_point_point_strategy()
165     {
166         return equals_point_point_strategy_type();
167     }
168
169     typedef disjoint::cartesian_box_box disjoint_box_box_strategy_type;
170
171     static inline disjoint_box_box_strategy_type get_disjoint_box_box_strategy()
172     {
173         return disjoint_box_box_strategy_type();
174     }
175
176     typedef disjoint::segment_box disjoint_segment_box_strategy_type;
177
178     static inline disjoint_segment_box_strategy_type get_disjoint_segment_box_strategy()
179     {
180         return disjoint_segment_box_strategy_type();
181     }
182
183     typedef covered_by::cartesian_point_box disjoint_point_box_strategy_type;
184     typedef covered_by::cartesian_point_box covered_by_point_box_strategy_type;
185     typedef within::cartesian_point_box within_point_box_strategy_type;
186     typedef envelope::cartesian_box envelope_box_strategy_type;
187     typedef expand::cartesian_box expand_box_strategy_type;
188
189     template <typename CoordinateType, typename SegmentRatio>
190     struct segment_intersection_info
191     {
192     private :
193         typedef typename select_most_precise
194             <
195                 CoordinateType, double
196             >::type promoted_type;
197
198         promoted_type comparable_length_a() const
199         {
200             return dx_a * dx_a + dy_a * dy_a;
201         }
202
203         promoted_type comparable_length_b() const
204         {
205             return dx_b * dx_b + dy_b * dy_b;
206         }
207
208         template <typename Point, typename Segment1, typename Segment2>
209         void assign_a(Point& point, Segment1 const& a, Segment2 const& ) const
210         {
211             assign(point, a, dx_a, dy_a, robust_ra);
212         }
213         template <typename Point, typename Segment1, typename Segment2>
214         void assign_b(Point& point, Segment1 const& , Segment2 const& b) const
215         {
216             assign(point, b, dx_b, dy_b, robust_rb);
217         }
218
219         template <typename Point, typename Segment>
220         void assign(Point& point, Segment const& segment, CoordinateType const& dx, CoordinateType const& dy, SegmentRatio const& ratio) const
221         {
222             // Calculate the intersection point based on segment_ratio
223             // Up to now, division was postponed. Here we divide using numerator/
224             // denominator. In case of integer this results in an integer
225             // division.
226             BOOST_GEOMETRY_ASSERT(ratio.denominator() != 0);
227
228             typedef typename promote_integral<CoordinateType>::type calc_type;
229
230             calc_type const numerator
231                 = boost::numeric_cast<calc_type>(ratio.numerator());
232             calc_type const denominator
233                 = boost::numeric_cast<calc_type>(ratio.denominator());
234             calc_type const dx_calc = boost::numeric_cast<calc_type>(dx);
235             calc_type const dy_calc = boost::numeric_cast<calc_type>(dy);
236
237             set<0>(point, get<0, 0>(segment)
238                    + boost::numeric_cast<CoordinateType>(numerator * dx_calc
239                                                          / denominator));
240             set<1>(point, get<0, 1>(segment)
241                    + boost::numeric_cast<CoordinateType>(numerator * dy_calc
242                                                          / denominator));
243         }
244
245     public :
246         template <typename Point, typename Segment1, typename Segment2>
247         void calculate(Point& point, Segment1 const& a, Segment2 const& b) const
248         {
249             bool use_a = true;
250
251             // Prefer one segment if one is on or near an endpoint
252             bool const a_near_end = robust_ra.near_end();
253             bool const b_near_end = robust_rb.near_end();
254             if (a_near_end && ! b_near_end)
255             {
256                 use_a = true;
257             }
258             else if (b_near_end && ! a_near_end)
259             {
260                 use_a = false;
261             }
262             else
263             {
264                 // Prefer shorter segment
265                 promoted_type const len_a = comparable_length_a();
266                 promoted_type const len_b = comparable_length_b();
267                 if (len_b < len_a)
268                 {
269                     use_a = false;
270                 }
271                 // else use_a is true but was already assigned like that
272             }
273
274             if (use_a)
275             {
276                 assign_a(point, a, b);
277             }
278             else
279             {
280                 assign_b(point, a, b);
281             }
282         }
283
284         CoordinateType dx_a, dy_a;
285         CoordinateType dx_b, dy_b;
286         SegmentRatio robust_ra;
287         SegmentRatio robust_rb;
288     };
289
290     template <typename D, typename W, typename ResultType>
291     static inline void cramers_rule(D const& dx_a, D const& dy_a,
292         D const& dx_b, D const& dy_b, W const& wx, W const& wy,
293         // out:
294         ResultType& d, ResultType& da)
295     {
296         // Cramers rule
297         d = geometry::detail::determinant<ResultType>(dx_a, dy_a, dx_b, dy_b);
298         da = geometry::detail::determinant<ResultType>(dx_b, dy_b, wx, wy);
299         // Ratio is da/d , collinear if d == 0, intersecting if 0 <= r <= 1
300         // IntersectionPoint = (x1 + r * dx_a, y1 + r * dy_a)
301     }
302
303     // Version for non-rescaled policies
304     template
305     <
306         typename UniqueSubRange1,
307         typename UniqueSubRange2,
308         typename Policy
309     >
310     static inline typename Policy::return_type
311         apply(UniqueSubRange1 const& range_p,
312               UniqueSubRange2 const& range_q,
313               Policy const& policy)
314     {
315         // Pass the same ranges both as normal ranges and as robust ranges
316         return apply(range_p, range_q, policy, range_p, range_q);
317     }
318
319     // Main entry-routine, calculating intersections of segments p / q
320     template
321     <
322         typename UniqueSubRange1,
323         typename UniqueSubRange2,
324         typename Policy,
325         typename RobustUniqueSubRange1,
326         typename RobustUniqueSubRange2
327     >
328     static inline typename Policy::return_type
329         apply(UniqueSubRange1 const& range_p,
330               UniqueSubRange2 const& range_q,
331               Policy const&,
332               RobustUniqueSubRange1 const& robust_range_p,
333               RobustUniqueSubRange2 const& robust_range_q)
334     {
335         typedef typename UniqueSubRange1::point_type point1_type;
336         typedef typename UniqueSubRange2::point_type point2_type;
337
338         BOOST_CONCEPT_ASSERT( (concepts::ConstPoint<point1_type>) );
339         BOOST_CONCEPT_ASSERT( (concepts::ConstPoint<point2_type>) );
340
341         // Get robust points (to be omitted later)
342         typedef typename RobustUniqueSubRange1::point_type robust_point1_type;
343         typedef typename RobustUniqueSubRange2::point_type robust_point2_type;
344
345         point1_type const& p1 = range_p.at(0);
346         point1_type const& p2 = range_p.at(1);
347         point2_type const& q1 = range_q.at(0);
348         point2_type const& q2 = range_q.at(1);
349
350         robust_point1_type const& robust_a1 = robust_range_p.at(0);
351         robust_point1_type const& robust_a2 = robust_range_p.at(1);
352         robust_point2_type const& robust_b1 = robust_range_q.at(0);
353         robust_point2_type const& robust_b2 = robust_range_q.at(1);
354
355         using geometry::detail::equals::equals_point_point;
356         bool const a_is_point = equals_point_point(robust_a1, robust_a2, point_in_point_strategy_type());
357         bool const b_is_point = equals_point_point(robust_b1, robust_b2, point_in_point_strategy_type());
358
359         if(a_is_point && b_is_point)
360         {
361             // Take either a or b
362             model::referring_segment<point1_type const> const d(p1, p2);
363
364             return equals_point_point(robust_a1, robust_b2, point_in_point_strategy_type())
365                 ? Policy::degenerate(d, true)
366                 : Policy::disjoint()
367                 ;
368         }
369
370         side_info sides;
371         sides.set<0>(side_strategy_type::apply(robust_b1, robust_b2, robust_a1),
372                      side_strategy_type::apply(robust_b1, robust_b2, robust_a2));
373
374         if (sides.same<0>())
375         {
376             // Both points are at same side of other segment, we can leave
377             return Policy::disjoint();
378         }
379
380         sides.set<1>(side_strategy_type::apply(robust_a1, robust_a2, robust_b1),
381                      side_strategy_type::apply(robust_a1, robust_a2, robust_b2));
382         
383         if (sides.same<1>())
384         {
385             // Both points are at same side of other segment, we can leave
386             return Policy::disjoint();
387         }
388
389         bool collinear = sides.collinear();
390
391         typedef typename select_most_precise
392             <
393                 typename geometry::coordinate_type<robust_point1_type>::type,
394                 typename geometry::coordinate_type<robust_point2_type>::type
395             >::type robust_coordinate_type;
396
397         typedef segment_ratio<robust_coordinate_type> ratio_type;
398
399         segment_intersection_info
400             <
401                 typename select_calculation_type<point1_type, point2_type, CalculationType>::type,
402                 ratio_type
403             > sinfo;
404
405         sinfo.dx_a = get<0>(p2) - get<0>(p1); // distance in x-dir
406         sinfo.dx_b = get<0>(q2) - get<0>(q1);
407         sinfo.dy_a = get<1>(p2) - get<1>(p1); // distance in y-dir
408         sinfo.dy_b = get<1>(q2) - get<1>(q1);
409
410         robust_coordinate_type const robust_dx_a = get<0>(robust_a2) - get<0>(robust_a1);
411         robust_coordinate_type const robust_dx_b = get<0>(robust_b2) - get<0>(robust_b1);
412         robust_coordinate_type const robust_dy_a = get<1>(robust_a2) - get<1>(robust_a1);
413         robust_coordinate_type const robust_dy_b = get<1>(robust_b2) - get<1>(robust_b1);
414
415         // r: ratio 0-1 where intersection divides A/B
416         // (only calculated for non-collinear segments)
417         if (! collinear)
418         {
419             robust_coordinate_type robust_da0, robust_da;
420             robust_coordinate_type robust_db0, robust_db;
421
422             cramers_rule(robust_dx_a, robust_dy_a, robust_dx_b, robust_dy_b,
423                 get<0>(robust_a1) - get<0>(robust_b1),
424                 get<1>(robust_a1) - get<1>(robust_b1),
425                 robust_da0, robust_da);
426
427             cramers_rule(robust_dx_b, robust_dy_b, robust_dx_a, robust_dy_a,
428                 get<0>(robust_b1) - get<0>(robust_a1),
429                 get<1>(robust_b1) - get<1>(robust_a1),
430                 robust_db0, robust_db);
431
432             math::detail::equals_factor_policy<robust_coordinate_type>
433                 policy(robust_dx_a, robust_dy_a, robust_dx_b, robust_dy_b);
434             robust_coordinate_type const zero = 0;
435             if (math::detail::equals_by_policy(robust_da0, zero, policy)
436              || math::detail::equals_by_policy(robust_db0, zero, policy))
437             {
438                 // If this is the case, no rescaling is done for FP precision.
439                 // We set it to collinear, but it indicates a robustness issue.
440                 sides.set<0>(0,0);
441                 sides.set<1>(0,0);
442                 collinear = true;
443             }
444             else
445             {
446                 sinfo.robust_ra.assign(robust_da, robust_da0);
447                 sinfo.robust_rb.assign(robust_db, robust_db0);
448             }
449         }
450
451         // Declare segments, currently necessary for the policies
452         // (segment_crosses, segment_colinear, degenerate, one_degenerate, etc)
453         model::referring_segment<point1_type const> const p(p1, p2);
454         model::referring_segment<point2_type const> const q(q1, q2);
455
456         if (collinear)
457         {
458             std::pair<bool, bool> const collinear_use_first
459                     = is_x_more_significant(geometry::math::abs(robust_dx_a),
460                                             geometry::math::abs(robust_dy_a),
461                                             geometry::math::abs(robust_dx_b),
462                                             geometry::math::abs(robust_dy_b),
463                                             a_is_point, b_is_point);
464
465             if (collinear_use_first.second)
466             {
467                 // Degenerate cases: segments of single point, lying on other segment, are not disjoint
468                 // This situation is collinear too
469
470                 if (collinear_use_first.first)
471                 {
472                     return relate_collinear<0, Policy, ratio_type>(p, q,
473                             robust_a1, robust_a2, robust_b1, robust_b2,
474                             a_is_point, b_is_point);
475                 }
476                 else
477                 {
478                     // Y direction contains larger segments (maybe dx is zero)
479                     return relate_collinear<1, Policy, ratio_type>(p, q,
480                             robust_a1, robust_a2, robust_b1, robust_b2,
481                             a_is_point, b_is_point);
482                 }
483             }
484         }
485
486         return Policy::segments_crosses(sides, sinfo, p, q);
487     }
488
489 private:
490     // first is true if x is more significant
491     // second is true if the more significant difference is not 0
492     template <typename RobustCoordinateType>
493     static inline std::pair<bool, bool>
494         is_x_more_significant(RobustCoordinateType const& abs_robust_dx_a,
495                               RobustCoordinateType const& abs_robust_dy_a,
496                               RobustCoordinateType const& abs_robust_dx_b,
497                               RobustCoordinateType const& abs_robust_dy_b,
498                               bool const a_is_point,
499                               bool const b_is_point)
500     {
501         //BOOST_GEOMETRY_ASSERT_MSG(!(a_is_point && b_is_point), "both segments shouldn't be degenerated");
502
503         // for degenerated segments the second is always true because this function
504         // shouldn't be called if both segments were degenerated
505
506         if (a_is_point)
507         {
508             return std::make_pair(abs_robust_dx_b >= abs_robust_dy_b, true);
509         }
510         else if (b_is_point)
511         {
512             return std::make_pair(abs_robust_dx_a >= abs_robust_dy_a, true);
513         }
514         else
515         {
516             RobustCoordinateType const min_dx = (std::min)(abs_robust_dx_a, abs_robust_dx_b);
517             RobustCoordinateType const min_dy = (std::min)(abs_robust_dy_a, abs_robust_dy_b);
518             return min_dx == min_dy ?
519                     std::make_pair(true, min_dx > RobustCoordinateType(0)) :
520                     std::make_pair(min_dx > min_dy, true);
521         }
522     }
523
524     template
525     <
526         std::size_t Dimension,
527         typename Policy,
528         typename RatioType,
529         typename Segment1,
530         typename Segment2,
531         typename RobustPoint1,
532         typename RobustPoint2
533     >
534     static inline typename Policy::return_type
535         relate_collinear(Segment1 const& a,
536                          Segment2 const& b,
537                          RobustPoint1 const& robust_a1, RobustPoint1 const& robust_a2,
538                          RobustPoint2 const& robust_b1, RobustPoint2 const& robust_b2,
539                          bool a_is_point, bool b_is_point)
540     {
541         if (a_is_point)
542         {
543             return relate_one_degenerate<Policy, RatioType>(a,
544                 get<Dimension>(robust_a1),
545                 get<Dimension>(robust_b1), get<Dimension>(robust_b2),
546                 true);
547         }
548         if (b_is_point)
549         {
550             return relate_one_degenerate<Policy, RatioType>(b,
551                 get<Dimension>(robust_b1),
552                 get<Dimension>(robust_a1), get<Dimension>(robust_a2),
553                 false);
554         }
555         return relate_collinear<Policy, RatioType>(a, b,
556                                 get<Dimension>(robust_a1),
557                                 get<Dimension>(robust_a2),
558                                 get<Dimension>(robust_b1),
559                                 get<Dimension>(robust_b2));
560     }
561
562     /// Relate segments known collinear
563     template
564     <
565         typename Policy,
566         typename RatioType,
567         typename Segment1,
568         typename Segment2,
569         typename RobustType1,
570         typename RobustType2
571     >
572     static inline typename Policy::return_type
573         relate_collinear(Segment1 const& a, Segment2 const& b,
574                          RobustType1 oa_1, RobustType1 oa_2,
575                          RobustType2 ob_1, RobustType2 ob_2)
576     {
577         // Calculate the ratios where a starts in b, b starts in a
578         //         a1--------->a2         (2..7)
579         //                b1----->b2      (5..8)
580         // length_a: 7-2=5
581         // length_b: 8-5=3
582         // b1 is located w.r.t. a at ratio: (5-2)/5=3/5 (on a)
583         // b2 is located w.r.t. a at ratio: (8-2)/5=6/5 (right of a)
584         // a1 is located w.r.t. b at ratio: (2-5)/3=-3/3 (left of b)
585         // a2 is located w.r.t. b at ratio: (7-5)/3=2/3 (on b)
586         // A arrives (a2 on b), B departs (b1 on a)
587
588         // If both are reversed:
589         //         a2<---------a1         (7..2)
590         //                b2<-----b1      (8..5)
591         // length_a: 2-7=-5
592         // length_b: 5-8=-3
593         // b1 is located w.r.t. a at ratio: (8-7)/-5=-1/5 (before a starts)
594         // b2 is located w.r.t. a at ratio: (5-7)/-5=2/5 (on a)
595         // a1 is located w.r.t. b at ratio: (7-8)/-3=1/3 (on b)
596         // a2 is located w.r.t. b at ratio: (2-8)/-3=6/3 (after b ends)
597
598         // If both one is reversed:
599         //         a1--------->a2         (2..7)
600         //                b2<-----b1      (8..5)
601         // length_a: 7-2=+5
602         // length_b: 5-8=-3
603         // b1 is located w.r.t. a at ratio: (8-2)/5=6/5 (after a ends)
604         // b2 is located w.r.t. a at ratio: (5-2)/5=3/5 (on a)
605         // a1 is located w.r.t. b at ratio: (2-8)/-3=6/3 (after b ends)
606         // a2 is located w.r.t. b at ratio: (7-8)/-3=1/3 (on b)
607         RobustType1 const length_a = oa_2 - oa_1; // no abs, see above
608         RobustType2 const length_b = ob_2 - ob_1;
609
610         RatioType ra_from(oa_1 - ob_1, length_b);
611         RatioType ra_to(oa_2 - ob_1, length_b);
612         RatioType rb_from(ob_1 - oa_1, length_a);
613         RatioType rb_to(ob_2 - oa_1, length_a);
614
615         // use absolute measure to detect endpoints intersection
616         // NOTE: it'd be possible to calculate bx_wrt_a using ax_wrt_b values
617         int const a1_wrt_b = position_value(oa_1, ob_1, ob_2);
618         int const a2_wrt_b = position_value(oa_2, ob_1, ob_2);
619         int const b1_wrt_a = position_value(ob_1, oa_1, oa_2);
620         int const b2_wrt_a = position_value(ob_2, oa_1, oa_2);
621         
622         // fix the ratios if necessary
623         // CONSIDER: fixing ratios also in other cases, if they're inconsistent
624         // e.g. if ratio == 1 or 0 (so IP at the endpoint)
625         // but position value indicates that the IP is in the middle of the segment
626         // because one of the segments is very long
627         // In such case the ratios could be moved into the middle direction
628         // by some small value (e.g. EPS+1ULP)
629         if (a1_wrt_b == 1)
630         {
631             ra_from.assign(0, 1);
632             rb_from.assign(0, 1);
633         }
634         else if (a1_wrt_b == 3)
635         {
636             ra_from.assign(1, 1);
637             rb_to.assign(0, 1);
638         } 
639
640         if (a2_wrt_b == 1)
641         {
642             ra_to.assign(0, 1);
643             rb_from.assign(1, 1);
644         }
645         else if (a2_wrt_b == 3)
646         {
647             ra_to.assign(1, 1);
648             rb_to.assign(1, 1);
649         }
650
651         if ((a1_wrt_b < 1 && a2_wrt_b < 1) || (a1_wrt_b > 3 && a2_wrt_b > 3))
652         //if ((ra_from.left() && ra_to.left()) || (ra_from.right() && ra_to.right()))
653         {
654             return Policy::disjoint();
655         }
656
657         bool const opposite = math::sign(length_a) != math::sign(length_b);
658
659         return Policy::segments_collinear(a, b, opposite,
660                                           a1_wrt_b, a2_wrt_b, b1_wrt_a, b2_wrt_a,
661                                           ra_from, ra_to, rb_from, rb_to);
662     }
663
664     /// Relate segments where one is degenerate
665     template
666     <
667         typename Policy,
668         typename RatioType,
669         typename DegenerateSegment,
670         typename RobustType1,
671         typename RobustType2
672     >
673     static inline typename Policy::return_type
674         relate_one_degenerate(DegenerateSegment const& degenerate_segment,
675                               RobustType1 d, RobustType2 s1, RobustType2 s2,
676                               bool a_degenerate)
677     {
678         // Calculate the ratios where ds starts in s
679         //         a1--------->a2         (2..6)
680         //              b1/b2      (4..4)
681         // Ratio: (4-2)/(6-2)
682         RatioType const ratio(d - s1, s2 - s1);
683
684         if (!ratio.on_segment())
685         {
686             return Policy::disjoint();
687         }
688
689         return Policy::one_degenerate(degenerate_segment, ratio, a_degenerate);
690     }
691
692     template <typename ProjCoord1, typename ProjCoord2>
693     static inline int position_value(ProjCoord1 const& ca1,
694                                      ProjCoord2 const& cb1,
695                                      ProjCoord2 const& cb2)
696     {
697         // S1x  0   1    2     3   4
698         // S2       |---------->
699         return math::equals(ca1, cb1) ? 1
700              : math::equals(ca1, cb2) ? 3
701              : cb1 < cb2 ?
702                 ( ca1 < cb1 ? 0
703                 : ca1 > cb2 ? 4
704                 : 2 )
705               : ( ca1 > cb1 ? 0
706                 : ca1 < cb2 ? 4
707                 : 2 );
708     }
709 };
710
711
712 #ifndef DOXYGEN_NO_STRATEGY_SPECIALIZATIONS
713 namespace services
714 {
715
716 template <typename CalculationType>
717 struct default_strategy<cartesian_tag, CalculationType>
718 {
719     typedef cartesian_segments<CalculationType> type;
720 };
721
722 } // namespace services
723 #endif // DOXYGEN_NO_STRATEGY_SPECIALIZATIONS
724
725
726 }} // namespace strategy::intersection
727
728 namespace strategy
729 {
730
731 namespace within { namespace services
732 {
733
734 template <typename Geometry1, typename Geometry2, typename AnyTag1, typename AnyTag2>
735 struct default_strategy<Geometry1, Geometry2, AnyTag1, AnyTag2, linear_tag, linear_tag, cartesian_tag, cartesian_tag>
736 {
737     typedef strategy::intersection::cartesian_segments<> type;
738 };
739
740 template <typename Geometry1, typename Geometry2, typename AnyTag1, typename AnyTag2>
741 struct default_strategy<Geometry1, Geometry2, AnyTag1, AnyTag2, linear_tag, polygonal_tag, cartesian_tag, cartesian_tag>
742 {
743     typedef strategy::intersection::cartesian_segments<> type;
744 };
745
746 template <typename Geometry1, typename Geometry2, typename AnyTag1, typename AnyTag2>
747 struct default_strategy<Geometry1, Geometry2, AnyTag1, AnyTag2, polygonal_tag, linear_tag, cartesian_tag, cartesian_tag>
748 {
749     typedef strategy::intersection::cartesian_segments<> type;
750 };
751
752 template <typename Geometry1, typename Geometry2, typename AnyTag1, typename AnyTag2>
753 struct default_strategy<Geometry1, Geometry2, AnyTag1, AnyTag2, polygonal_tag, polygonal_tag, cartesian_tag, cartesian_tag>
754 {
755     typedef strategy::intersection::cartesian_segments<> type;
756 };
757
758 }} // within::services
759
760 namespace covered_by { namespace services
761 {
762
763 template <typename Geometry1, typename Geometry2, typename AnyTag1, typename AnyTag2>
764 struct default_strategy<Geometry1, Geometry2, AnyTag1, AnyTag2, linear_tag, linear_tag, cartesian_tag, cartesian_tag>
765 {
766     typedef strategy::intersection::cartesian_segments<> type;
767 };
768
769 template <typename Geometry1, typename Geometry2, typename AnyTag1, typename AnyTag2>
770 struct default_strategy<Geometry1, Geometry2, AnyTag1, AnyTag2, linear_tag, polygonal_tag, cartesian_tag, cartesian_tag>
771 {
772     typedef strategy::intersection::cartesian_segments<> type;
773 };
774
775 template <typename Geometry1, typename Geometry2, typename AnyTag1, typename AnyTag2>
776 struct default_strategy<Geometry1, Geometry2, AnyTag1, AnyTag2, polygonal_tag, linear_tag, cartesian_tag, cartesian_tag>
777 {
778     typedef strategy::intersection::cartesian_segments<> type;
779 };
780
781 template <typename Geometry1, typename Geometry2, typename AnyTag1, typename AnyTag2>
782 struct default_strategy<Geometry1, Geometry2, AnyTag1, AnyTag2, polygonal_tag, polygonal_tag, cartesian_tag, cartesian_tag>
783 {
784     typedef strategy::intersection::cartesian_segments<> type;
785 };
786
787 }} // within::services
788
789 } // strategy
790
791 }} // namespace boost::geometry
792
793
794 #endif // BOOST_GEOMETRY_STRATEGIES_CARTESIAN_INTERSECTION_HPP