Imported Upstream version 1.72.0
[platform/upstream/boost.git] / boost / geometry / srs / projections / proj / labrd.hpp
1 // Boost.Geometry - gis-projections (based on PROJ4)
2
3 // Copyright (c) 2008-2015 Barend Gehrels, Amsterdam, the Netherlands.
4
5 // This file was modified by Oracle on 2017, 2018, 2019.
6 // Modifications copyright (c) 2017-2019, Oracle and/or its affiliates.
7 // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle.
8
9 // Use, modification and distribution is subject to the Boost Software License,
10 // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
11 // http://www.boost.org/LICENSE_1_0.txt)
12
13 // This file is converted from PROJ4, http://trac.osgeo.org/proj
14 // PROJ4 is originally written by Gerald Evenden (then of the USGS)
15 // PROJ4 is maintained by Frank Warmerdam
16 // PROJ4 is converted to Boost.Geometry by Barend Gehrels
17
18 // Last updated version of proj: 5.0.0
19
20 // Original copyright notice:
21
22 // Permission is hereby granted, free of charge, to any person obtaining a
23 // copy of this software and associated documentation files (the "Software"),
24 // to deal in the Software without restriction, including without limitation
25 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
26 // and/or sell copies of the Software, and to permit persons to whom the
27 // Software is furnished to do so, subject to the following conditions:
28
29 // The above copyright notice and this permission notice shall be included
30 // in all copies or substantial portions of the Software.
31
32 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
33 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
34 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
35 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
36 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
37 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
38 // DEALINGS IN THE SOFTWARE.
39
40 #ifndef BOOST_GEOMETRY_PROJECTIONS_LABRD_HPP
41 #define BOOST_GEOMETRY_PROJECTIONS_LABRD_HPP
42
43 #include <boost/geometry/srs/projections/impl/base_static.hpp>
44 #include <boost/geometry/srs/projections/impl/base_dynamic.hpp>
45 #include <boost/geometry/srs/projections/impl/factory_entry.hpp>
46 #include <boost/geometry/srs/projections/impl/pj_param.hpp>
47 #include <boost/geometry/srs/projections/impl/projects.hpp>
48
49 namespace boost { namespace geometry
50 {
51
52 namespace projections
53 {
54     #ifndef DOXYGEN_NO_DETAIL
55     namespace detail { namespace labrd
56     {
57             static const double epsilon = 1.e-10;
58
59             template <typename T>
60             struct par_labrd
61             {
62                 T    Az, kRg, p0s, A, C, Ca, Cb, Cc, Cd;
63             };
64
65             template <typename T, typename Parameters>
66             struct base_labrd_ellipsoid
67             {
68                 par_labrd<T> m_proj_parm;
69
70                 // FORWARD(e_forward)
71                 // Project coordinates from geographic (lon, lat) to cartesian (x, y)
72                 inline void fwd(Parameters const& par, T const& lp_lon, T const& lp_lat, T& xy_x, T& xy_y) const
73                 {
74                     static const T fourth_pi = detail::fourth_pi<T>();
75
76                     T V1, V2, ps, sinps, cosps, sinps2, cosps2;
77                     T I1, I2, I3, I4, I5, I6, x2, y2, t;
78
79                     V1 = this->m_proj_parm.A * log( tan(fourth_pi + .5 * lp_lat) );
80                     t = par.e * sin(lp_lat);
81                     V2 = .5 * par.e * this->m_proj_parm.A * log ((1. + t)/(1. - t));
82                     ps = 2. * (atan(exp(V1 - V2 + this->m_proj_parm.C)) - fourth_pi);
83                     I1 = ps - this->m_proj_parm.p0s;
84                     cosps = cos(ps);    cosps2 = cosps * cosps;
85                     sinps = sin(ps);    sinps2 = sinps * sinps;
86                     I4 = this->m_proj_parm.A * cosps;
87                     I2 = .5 * this->m_proj_parm.A * I4 * sinps;
88                     I3 = I2 * this->m_proj_parm.A * this->m_proj_parm.A * (5. * cosps2 - sinps2) / 12.;
89                     I6 = I4 * this->m_proj_parm.A * this->m_proj_parm.A;
90                     I5 = I6 * (cosps2 - sinps2) / 6.;
91                     I6 *= this->m_proj_parm.A * this->m_proj_parm.A *
92                         (5. * cosps2 * cosps2 + sinps2 * (sinps2 - 18. * cosps2)) / 120.;
93                     t = lp_lon * lp_lon;
94                     xy_x = this->m_proj_parm.kRg * lp_lon * (I4 + t * (I5 + t * I6));
95                     xy_y = this->m_proj_parm.kRg * (I1 + t * (I2 + t * I3));
96                     x2 = xy_x * xy_x;
97                     y2 = xy_y * xy_y;
98                     V1 = 3. * xy_x * y2 - xy_x * x2;
99                     V2 = xy_y * y2 - 3. * x2 * xy_y;
100                     xy_x += this->m_proj_parm.Ca * V1 + this->m_proj_parm.Cb * V2;
101                     xy_y += this->m_proj_parm.Ca * V2 - this->m_proj_parm.Cb * V1;
102                 }
103
104                 // INVERSE(e_inverse)  ellipsoid & spheroid
105                 // Project coordinates from cartesian (x, y) to geographic (lon, lat)
106                 inline void inv(Parameters const& par, T xy_x, T xy_y, T& lp_lon, T& lp_lat) const
107                 {
108                     static const T fourth_pi = detail::fourth_pi<T>();
109
110                     /* t = 0.0 optimization is to avoid a false positive cppcheck warning */
111                     /* (cppcheck git beaf29c15867984aa3c2a15cf15bd7576ccde2b3). Might no */
112                     /* longer be necessary with later versions. */
113                     T x2, y2, V1, V2, V3, V4, t = 0.0, t2, ps, pe, tpe, s;
114                     T I7, I8, I9, I10, I11, d, Re;
115                     int i;
116
117                     x2 = xy_x * xy_x;
118                     y2 = xy_y * xy_y;
119                     V1 = 3. * xy_x * y2 - xy_x * x2;
120                     V2 = xy_y * y2 - 3. * x2 * xy_y;
121                     V3 = xy_x * (5. * y2 * y2 + x2 * (-10. * y2 + x2 ));
122                     V4 = xy_y * (5. * x2 * x2 + y2 * (-10. * x2 + y2 ));
123                     xy_x += - this->m_proj_parm.Ca * V1 - this->m_proj_parm.Cb * V2 + this->m_proj_parm.Cc * V3 + this->m_proj_parm.Cd * V4;
124                     xy_y +=   this->m_proj_parm.Cb * V1 - this->m_proj_parm.Ca * V2 - this->m_proj_parm.Cd * V3 + this->m_proj_parm.Cc * V4;
125                     ps = this->m_proj_parm.p0s + xy_y / this->m_proj_parm.kRg;
126                     pe = ps + par.phi0 - this->m_proj_parm.p0s;
127
128                     for ( i = 20; i; --i) {
129                         V1 = this->m_proj_parm.A * log(tan(fourth_pi + .5 * pe));
130                         tpe = par.e * sin(pe);
131                         V2 = .5 * par.e * this->m_proj_parm.A * log((1. + tpe)/(1. - tpe));
132                         t = ps - 2. * (atan(exp(V1 - V2 + this->m_proj_parm.C)) - fourth_pi);
133                         pe += t;
134                         if (fabs(t) < epsilon)
135                             break;
136                     }
137
138                     t = par.e * sin(pe);
139                     t = 1. - t * t;
140                     Re = par.one_es / ( t * sqrt(t) );
141                     t = tan(ps);
142                     t2 = t * t;
143                     s = this->m_proj_parm.kRg * this->m_proj_parm.kRg;
144                     d = Re * par.k0 * this->m_proj_parm.kRg;
145                     I7 = t / (2. * d);
146                     I8 = t * (5. + 3. * t2) / (24. * d * s);
147                     d = cos(ps) * this->m_proj_parm.kRg * this->m_proj_parm.A;
148                     I9 = 1. / d;
149                     d *= s;
150                     I10 = (1. + 2. * t2) / (6. * d);
151                     I11 = (5. + t2 * (28. + 24. * t2)) / (120. * d * s);
152                     x2 = xy_x * xy_x;
153                     lp_lat = pe + x2 * (-I7 + I8 * x2);
154                     lp_lon = xy_x * (I9 + x2 * (-I10 + x2 * I11));
155                 }
156
157                 static inline std::string get_name()
158                 {
159                     return "labrd_ellipsoid";
160                 }
161
162             };
163
164             // Laborde
165             template <typename Params, typename Parameters, typename T>
166             inline void setup_labrd(Params const& params, Parameters const& par, par_labrd<T>& proj_parm)
167             {
168                 static const T fourth_pi = detail::fourth_pi<T>();
169
170                 T Az, sinp, R, N, t;
171
172                 Az = pj_get_param_r<T, srs::spar::azi>(params, "azi", srs::dpar::azi);
173                 sinp = sin(par.phi0);
174                 t = 1. - par.es * sinp * sinp;
175                 N = 1. / sqrt(t);
176                 R = par.one_es * N / t;
177                 proj_parm.kRg = par.k0 * sqrt( N * R );
178                 proj_parm.p0s = atan( sqrt(R / N) * tan(par.phi0) );
179                 proj_parm.A = sinp / sin(proj_parm.p0s);
180                 t = par.e * sinp;
181                 proj_parm.C = .5 * par.e * proj_parm.A * log((1. + t)/(1. - t)) +
182                     - proj_parm.A * log( tan(fourth_pi + .5 * par.phi0))
183                     + log( tan(fourth_pi + .5 * proj_parm.p0s));
184                 t = Az + Az;
185                 proj_parm.Ca = (1. - cos(t)) * ( proj_parm.Cb = 1. / (12. * proj_parm.kRg * proj_parm.kRg) );
186                 proj_parm.Cb *= sin(t);
187                 proj_parm.Cc = 3. * (proj_parm.Ca * proj_parm.Ca - proj_parm.Cb * proj_parm.Cb);
188                 proj_parm.Cd = 6. * proj_parm.Ca * proj_parm.Cb;
189             }
190
191     }} // namespace detail::labrd
192     #endif // doxygen
193
194     /*!
195         \brief Laborde projection
196         \ingroup projections
197         \tparam Geographic latlong point type
198         \tparam Cartesian xy point type
199         \tparam Parameters parameter type
200         \par Projection characteristics
201          - Cylindrical
202          - Spheroid
203          - Special for Madagascar
204         \par Projection parameters
205          - no_rot: No rotation (boolean)
206          - azi: Azimuth (or Gamma) (degrees)
207         \par Example
208         \image html ex_labrd.gif
209     */
210     template <typename T, typename Parameters>
211     struct labrd_ellipsoid : public detail::labrd::base_labrd_ellipsoid<T, Parameters>
212     {
213         template <typename Params>
214         inline labrd_ellipsoid(Params const& params, Parameters const& par)
215         {
216             detail::labrd::setup_labrd(params, par, this->m_proj_parm);
217         }
218     };
219
220     #ifndef DOXYGEN_NO_DETAIL
221     namespace detail
222     {
223
224         // Static projection
225         BOOST_GEOMETRY_PROJECTIONS_DETAIL_STATIC_PROJECTION_FI(srs::spar::proj_labrd, labrd_ellipsoid)
226
227         // Factory entry(s)
228         BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_ENTRY_FI(labrd_entry, labrd_ellipsoid)
229         
230         BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_INIT_BEGIN(labrd_init)
231         {
232             BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_INIT_ENTRY(labrd, labrd_entry)
233         }
234
235     } // namespace detail
236     #endif // doxygen
237
238 } // namespace projections
239
240 }} // namespace boost::geometry
241
242 #endif // BOOST_GEOMETRY_PROJECTIONS_LABRD_HPP
243