Imported Upstream version 1.72.0
[platform/upstream/boost.git] / boost / geometry / srs / projections / proj / healpix.hpp
1 // Boost.Geometry - gis-projections (based on PROJ4)
2
3 // Copyright (c) 2008-2015 Barend Gehrels, Amsterdam, the Netherlands.
4
5 // This file was modified by Oracle on 2017, 2018, 2019.
6 // Modifications copyright (c) 2017-2019, Oracle and/or its affiliates.
7 // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle.
8
9 // Use, modification and distribution is subject to the Boost Software License,
10 // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
11 // http://www.boost.org/LICENSE_1_0.txt)
12
13 // This file is converted from PROJ4, http://trac.osgeo.org/proj
14 // PROJ4 is originally written by Gerald Evenden (then of the USGS)
15 // PROJ4 is maintained by Frank Warmerdam
16 // PROJ4 is converted to Boost.Geometry by Barend Gehrels
17
18 // Last updated version of proj: 5.0.0
19
20 // Original copyright notice:
21
22 // Purpose: Implementation of the HEALPix and rHEALPix projections.
23 //          For background see <http://code.scenzgrid.org/index.php/p/scenzgrid-py/source/tree/master/docs/rhealpix_dggs.pdf>.
24 // Authors: Alex Raichev (raichev@cs.auckland.ac.nz)
25 //          Michael Speth (spethm@landcareresearch.co.nz)
26 // Notes:   Raichev implemented these projections in Python and
27 //          Speth translated them into C here.
28
29 // Copyright (c) 2001, Thomas Flemming, tf@ttqv.com
30
31 // Permission is hereby granted, free of charge, to any person obtaining a
32 // copy of this software and associated documentation files (the "Software"),
33 // to deal in the Software without restriction, including without limitation
34 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
35 // and/or sell copies of the Software, and to permit persons to whom the
36 // Software is furnished to do so, subject to the following conditions:
37
38 // The above copyright notice and this permission notice shall be included
39 // in all copies or substantial portions of the Software.
40
41 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
42 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
43 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
44 // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
45 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
46 // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
47 // DEALINGS IN THE SOFTWARE.
48
49 #ifndef BOOST_GEOMETRY_PROJECTIONS_HEALPIX_HPP
50 #define BOOST_GEOMETRY_PROJECTIONS_HEALPIX_HPP
51
52 #include <boost/geometry/srs/projections/impl/base_static.hpp>
53 #include <boost/geometry/srs/projections/impl/base_dynamic.hpp>
54 #include <boost/geometry/srs/projections/impl/factory_entry.hpp>
55 #include <boost/geometry/srs/projections/impl/pj_auth.hpp>
56 #include <boost/geometry/srs/projections/impl/pj_param.hpp>
57 #include <boost/geometry/srs/projections/impl/pj_qsfn.hpp>
58 #include <boost/geometry/srs/projections/impl/projects.hpp>
59
60 #include <boost/geometry/util/math.hpp>
61
62 namespace boost { namespace geometry
63 {
64
65 namespace projections
66 {
67     #ifndef DOXYGEN_NO_DETAIL
68     namespace detail { namespace healpix
69     {
70
71             /* Fuzz to handle rounding errors: */
72             static const double epsilon = 1e-15;
73
74             template <typename T>
75             struct par_healpix
76             {
77                 T qp;
78                 detail::apa<T> apa;
79                 int north_square;
80                 int south_square;
81             };
82
83             template <typename T>
84             struct cap_map
85             {
86                 T x, y; /* Coordinates of the pole point (point of most extreme latitude on the polar caps). */
87                 int cn; /* An integer 0--3 indicating the position of the polar cap. */
88                 enum region_type {north, south, equatorial} region;
89             };
90             template <typename T>
91             struct point_xy
92             {
93                 T x, y;
94             };
95
96             /* IDENT, R1, R2, R3, R1 inverse, R2 inverse, R3 inverse:*/
97             static double rot[7][2][2] = {
98                 /* Identity matrix */
99                 {{1, 0},{0, 1}},
100                 /* Matrix for counterclockwise rotation by pi/2: */
101                 {{ 0,-1},{ 1, 0}},
102                 /* Matrix for counterclockwise rotation by pi: */
103                 {{-1, 0},{ 0,-1}},
104                 /* Matrix for counterclockwise rotation by 3*pi/2:  */
105                 {{ 0, 1},{-1, 0}},
106                 {{ 0, 1},{-1, 0}}, // 3*pi/2
107                 {{-1, 0},{ 0,-1}}, // pi
108                 {{ 0,-1},{ 1, 0}}  // pi/2
109             };
110
111             /**
112              * Returns the sign of the double.
113              * @param v the parameter whose sign is returned.
114              * @return 1 for positive number, -1 for negative, and 0 for zero.
115              **/
116             template <typename T>
117             inline T pj_sign (T const& v)
118             {
119                 return v > 0 ? 1 : (v < 0 ? -1 : 0);
120             }
121             /**
122              * Return the index of the matrix in {{{1, 0},{0, 1}}, {{ 0,-1},{ 1, 0}}, {{-1, 0},{ 0,-1}}, {{ 0, 1},{-1, 0}}, {{ 0, 1},{-1, 0}}, {{-1, 0},{ 0,-1}}, {{ 0,-1},{ 1, 0}}}.
123              * @param index ranges from -3 to 3.
124              */
125             inline int get_rotate_index(int index)
126             {
127                 switch(index) {
128                 case 0:
129                     return 0;
130                 case 1:
131                     return 1;
132                 case 2:
133                     return 2;
134                 case 3:
135                     return 3;
136                 case -1:
137                     return 4;
138                 case -2:
139                     return 5;
140                 case -3:
141                     return 6;
142                 }
143                 return 0;
144             }
145             /**
146              * Return 1 if point (testx, testy) lies in the interior of the polygon
147              * determined by the vertices in vert, and return 0 otherwise.
148              * See http://paulbourke.net/geometry/polygonmesh/ for more details.
149              * @param nvert the number of vertices in the polygon.
150              * @param vert the (x, y)-coordinates of the polygon's vertices
151              **/
152             template <typename T>
153             inline int pnpoly(int nvert, T vert[][2], T const& testx, T const& testy)
154             {
155                 int i;
156                 int counter = 0;
157                 T xinters;
158                 point_xy<T> p1, p2;
159
160                 /* Check for boundrary cases */
161                 for (i = 0; i < nvert; i++) {
162                     if (testx == vert[i][0] && testy == vert[i][1]) {
163                         return 1;
164                     }
165                 }
166
167                 p1.x = vert[0][0];
168                 p1.y = vert[0][1];
169
170                 for (i = 1; i < nvert; i++) {
171                     p2.x = vert[i % nvert][0];
172                     p2.y = vert[i % nvert][1];
173                     if (testy > (std::min)(p1.y, p2.y)  &&
174                         testy <= (std::max)(p1.y, p2.y) &&
175                         testx <= (std::max)(p1.x, p2.x) &&
176                         p1.y != p2.y)
177                     {
178                         xinters = (testy-p1.y)*(p2.x-p1.x)/(p2.y-p1.y)+p1.x;
179                         if (p1.x == p2.x || testx <= xinters)
180                             counter++;
181                     }
182                     p1 = p2;
183                 }
184
185                 if (counter % 2 == 0) {
186                     return 0;
187                 } else {
188                     return 1;
189                 }
190             }
191             /**
192              * Return 1 if (x, y) lies in (the interior or boundary of) the image of the
193              * HEALPix projection (in case proj=0) or in the image the rHEALPix projection
194              * (in case proj=1), and return 0 otherwise.
195              * @param north_square the position of the north polar square (rHEALPix only)
196              * @param south_square the position of the south polar square (rHEALPix only)
197              **/
198             template <typename T>
199             inline int in_image(T const& x, T const& y, int proj, int north_square, int south_square)
200             {
201                 static const T pi = detail::pi<T>();
202                 static const T half_pi = detail::half_pi<T>();
203                 static const T fourth_pi = detail::fourth_pi<T>();
204
205                 if (proj == 0) {
206                     T healpixVertsJit[][2] = {
207                         {-pi - epsilon,   fourth_pi},
208                         {-3.0*fourth_pi,  half_pi + epsilon},
209                         {-half_pi,        fourth_pi + epsilon},
210                         {-fourth_pi,      half_pi + epsilon},
211                         {0.0,             fourth_pi + epsilon},
212                         {fourth_pi,       half_pi + epsilon},
213                         {half_pi,         fourth_pi + epsilon},
214                         {3.0*fourth_pi,   half_pi + epsilon},
215                         {pi + epsilon,    fourth_pi},
216                         {pi + epsilon,   -fourth_pi},
217                         {3.0*fourth_pi,  -half_pi - epsilon},
218                         {half_pi,        -fourth_pi - epsilon},
219                         {fourth_pi,      -half_pi - epsilon},
220                         {0.0,            -fourth_pi - epsilon},
221                         {-fourth_pi,     -half_pi - epsilon},
222                         {-half_pi,       -fourth_pi - epsilon},
223                         {-3.0*fourth_pi, -half_pi - epsilon},
224                         {-pi - epsilon,  -fourth_pi}
225                     };
226                     return pnpoly((int)sizeof(healpixVertsJit)/
227                                   sizeof(healpixVertsJit[0]), healpixVertsJit, x, y);
228                 } else {
229                     T rhealpixVertsJit[][2] = {
230                         {-pi - epsilon,                                 fourth_pi + epsilon},
231                         {-pi + north_square*half_pi - epsilon,          fourth_pi + epsilon},
232                         {-pi + north_square*half_pi - epsilon,          3.0*fourth_pi + epsilon},
233                         {-pi + (north_square + 1.0)*half_pi + epsilon,  3.0*fourth_pi + epsilon},
234                         {-pi + (north_square + 1.0)*half_pi + epsilon,  fourth_pi + epsilon},
235                         {pi + epsilon,                                  fourth_pi + epsilon},
236                         {pi + epsilon,                                 -fourth_pi - epsilon},
237                         {-pi + (south_square + 1.0)*half_pi + epsilon, -fourth_pi - epsilon},
238                         {-pi + (south_square + 1.0)*half_pi + epsilon, -3.0*fourth_pi - epsilon},
239                         {-pi + south_square*half_pi - epsilon,         -3.0*fourth_pi - epsilon},
240                         {-pi + south_square*half_pi - epsilon,         -fourth_pi - epsilon},
241                         {-pi - epsilon,                                -fourth_pi - epsilon}
242                     };
243
244                     return pnpoly((int)sizeof(rhealpixVertsJit)/
245                                   sizeof(rhealpixVertsJit[0]), rhealpixVertsJit, x, y);
246                 }
247             }
248             /**
249              * Return the authalic latitude of latitude alpha (if inverse=0) or
250              * return the approximate latitude of authalic latitude alpha (if inverse=1).
251              * P contains the relavent ellipsoid parameters.
252              **/
253             template <typename Parameters, typename T>
254             inline T auth_lat(const Parameters& par, const par_healpix<T>& proj_parm, T const& alpha, int inverse)
255             {
256                 if (inverse == 0) {
257                     /* Authalic latitude. */
258                     T q = pj_qsfn(sin(alpha), par.e, 1.0 - par.es);
259                     T qp = proj_parm.qp;
260                     T ratio = q/qp;
261
262                     if (math::abs(ratio) > 1) {
263                         /* Rounding error. */
264                         ratio = pj_sign(ratio);
265                     }
266
267                     return asin(ratio);
268                 } else {
269                     /* Approximation to inverse authalic latitude. */
270                     return pj_authlat(alpha, proj_parm.apa);
271                 }
272             }
273             /**
274              * Return the HEALPix projection of the longitude-latitude point lp on
275              * the unit sphere.
276             **/
277             template <typename T>
278             inline void healpix_sphere(T const& lp_lam, T const& lp_phi, T& xy_x, T& xy_y)
279             {               
280                 static const T pi = detail::pi<T>();
281                 static const T half_pi = detail::half_pi<T>();
282                 static const T fourth_pi = detail::fourth_pi<T>();
283
284                 T lam = lp_lam;
285                 T phi = lp_phi;
286                 T phi0 = asin(T(2.0)/T(3.0));
287
288                 /* equatorial region */
289                 if ( fabsl(phi) <= phi0) {
290                     xy_x = lam;
291                     xy_y = 3.0*pi/8.0*sin(phi);
292                 } else {
293                     T lamc;
294                     T sigma = sqrt(3.0*(1 - math::abs(sin(phi))));
295                     T cn = floor(2*lam / pi + 2);
296                     if (cn >= 4) {
297                         cn = 3;
298                     }
299                     lamc = -3*fourth_pi + half_pi*cn;
300                     xy_x = lamc + (lam - lamc)*sigma;
301                     xy_y = pj_sign(phi)*fourth_pi*(2 - sigma);
302                 }
303                 return;
304             }
305             /**
306              * Return the inverse of healpix_sphere().
307             **/
308             template <typename T>
309             inline void healpix_sphere_inverse(T const& xy_x, T const& xy_y, T& lp_lam, T& lp_phi)
310             {                
311                 static const T pi = detail::pi<T>();
312                 static const T half_pi = detail::half_pi<T>();
313                 static const T fourth_pi = detail::fourth_pi<T>();
314
315                 T x = xy_x;
316                 T y = xy_y;
317                 T y0 = fourth_pi;
318
319                 /* Equatorial region. */
320                 if (math::abs(y) <= y0) {
321                     lp_lam = x;
322                     lp_phi = asin(8.0*y/(3.0*pi));
323                 } else if (fabsl(y) < half_pi) {
324                     T cn = floor(2.0*x/pi + 2.0);
325                     T xc, tau;
326                     if (cn >= 4) {
327                         cn = 3;
328                     }
329                     xc = -3.0*fourth_pi + (half_pi)*cn;
330                     tau = 2.0 - 4.0*fabsl(y)/pi;
331                     lp_lam = xc + (x - xc)/tau;
332                     lp_phi = pj_sign(y)*asin(1.0 - math::pow(tau, 2)/3.0);
333                 } else {
334                     lp_lam = -1.0*pi;
335                     lp_phi = pj_sign(y)*half_pi;
336                 }
337                 return;
338             }
339             /**
340              * Return the vector sum a + b, where a and b are 2-dimensional vectors.
341              * @param ret holds a + b.
342              **/
343             template <typename T>
344             inline void vector_add(const T a[2], const T b[2], T ret[2])
345             {
346                 int i;
347                 for(i = 0; i < 2; i++) {
348                     ret[i] = a[i] + b[i];
349                 }
350             }
351             /**
352              * Return the vector difference a - b, where a and b are 2-dimensional vectors.
353              * @param ret holds a - b.
354              **/
355             template <typename T>
356             inline void vector_sub(const T a[2], const T b[2], T ret[2])
357             {
358                 int i;
359                 for(i = 0; i < 2; i++) {
360                     ret[i] = a[i] - b[i];
361                 }
362             }
363             /**
364              * Return the 2 x 1 matrix product a*b, where a is a 2 x 2 matrix and
365              * b is a 2 x 1 matrix.
366              * @param ret holds a*b.
367              **/
368             template <typename T1, typename T2>
369             inline void dot_product(const T1 a[2][2], const T2 b[2], T2 ret[2])
370             {
371                 int i, j;
372                 int length = 2;
373                 for(i = 0; i < length; i++) {
374                     ret[i] = 0;
375                     for(j = 0; j < length; j++) {
376                         ret[i] += a[i][j]*b[j];
377                     }
378                 }
379             }
380             /**
381              * Return the number of the polar cap, the pole point coordinates, and
382              * the region that (x, y) lies in.
383              * If inverse=0, then assume (x,y) lies in the image of the HEALPix
384              * projection of the unit sphere.
385              * If inverse=1, then assume (x,y) lies in the image of the
386              * (north_square, south_square)-rHEALPix projection of the unit sphere.
387              **/
388             template <typename T>
389             inline cap_map<T> get_cap(T x, T const& y, int north_square, int south_square,
390                                      int inverse)
391             {
392                 static const T pi = detail::pi<T>();
393                 static const T half_pi = detail::half_pi<T>();
394                 static const T fourth_pi = detail::fourth_pi<T>();
395
396                 cap_map<T> capmap;
397                 T c;
398                 capmap.x = x;
399                 capmap.y = y;
400                 if (inverse == 0) {
401                     if (y > fourth_pi) {
402                         capmap.region = cap_map<T>::north;
403                         c = half_pi;
404                     } else if (y < -fourth_pi) {
405                         capmap.region = cap_map<T>::south;
406                         c = -half_pi;
407                     } else {
408                         capmap.region = cap_map<T>::equatorial;
409                         capmap.cn = 0;
410                         return capmap;
411                     }
412                     /* polar region */
413                     if (x < -half_pi) {
414                         capmap.cn = 0;
415                         capmap.x = (-3.0*fourth_pi);
416                         capmap.y = c;
417                     } else if (x >= -half_pi && x < 0) {
418                         capmap.cn = 1;
419                         capmap.x = -fourth_pi;
420                         capmap.y = c;
421                     } else if (x >= 0 && x < half_pi) {
422                         capmap.cn = 2;
423                         capmap.x = fourth_pi;
424                         capmap.y = c;
425                     } else {
426                         capmap.cn = 3;
427                         capmap.x = 3.0*fourth_pi;
428                         capmap.y = c;
429                     }
430                 } else {
431                     if (y > fourth_pi) {
432                         capmap.region = cap_map<T>::north;
433                         capmap.x = (-3.0*fourth_pi + north_square*half_pi);
434                         capmap.y = half_pi;
435                         x = x - north_square*half_pi;
436                     } else if (y < -fourth_pi) {
437                         capmap.region = cap_map<T>::south;
438                         capmap.x = (-3.0*fourth_pi + south_square*pi/2);
439                         capmap.y = -half_pi;
440                         x = x - south_square*half_pi;
441                     } else {
442                         capmap.region = cap_map<T>::equatorial;
443                         capmap.cn = 0;
444                         return capmap;
445                     }
446                     /* Polar Region, find the HEALPix polar cap number that
447                        x, y moves to when rHEALPix polar square is disassembled. */
448                     if (capmap.region == cap_map<T>::north) {
449                         if (y >= -x - fourth_pi - epsilon && y < x + 5.0*fourth_pi - epsilon) {
450                             capmap.cn = (north_square + 1) % 4;
451                         } else if (y > -x -fourth_pi + epsilon && y >= x + 5.0*fourth_pi - epsilon) {
452                             capmap.cn = (north_square + 2) % 4;
453                         } else if (y <= -x -fourth_pi + epsilon && y > x + 5.0*fourth_pi + epsilon) {
454                             capmap.cn = (north_square + 3) % 4;
455                         } else {
456                             capmap.cn = north_square;
457                         }
458                     } else if (capmap.region == cap_map<T>::south) {
459                         if (y <= x + fourth_pi + epsilon && y > -x - 5.0*fourth_pi + epsilon) {
460                             capmap.cn = (south_square + 1) % 4;
461                         } else if (y < x + fourth_pi - epsilon && y <= -x - 5.0*fourth_pi + epsilon) {
462                             capmap.cn = (south_square + 2) % 4;
463                         } else if (y >= x + fourth_pi - epsilon && y < -x - 5.0*fourth_pi - epsilon) {
464                             capmap.cn = (south_square + 3) % 4;
465                         } else {
466                             capmap.cn = south_square;
467                         }
468                     }
469                 }
470                 return capmap;
471             }
472             /**
473              * Rearrange point (x, y) in the HEALPix projection by
474              * combining the polar caps into two polar squares.
475              * Put the north polar square in position north_square and
476              * the south polar square in position south_square.
477              * If inverse=1, then uncombine the polar caps.
478              * @param north_square integer between 0 and 3.
479              * @param south_square integer between 0 and 3.
480              **/
481             template <typename T>
482             inline void combine_caps(T& xy_x, T& xy_y, int north_square, int south_square,
483                                      int inverse)
484             {
485                 static const T half_pi = detail::half_pi<T>();
486                 static const T fourth_pi = detail::fourth_pi<T>();
487
488                 T v[2];
489                 T c[2];
490                 T vector[2];
491                 T v_min_c[2];
492                 T ret_dot[2];
493                 const double (*tmpRot)[2];
494                 int pole = 0;
495
496                 cap_map<T> capmap = get_cap(xy_x, xy_y, north_square, south_square, inverse);
497                 if (capmap.region == cap_map<T>::equatorial) {
498                     xy_x = capmap.x;
499                     xy_y = capmap.y;
500                     return;
501                 }
502
503                 v[0] = xy_x; v[1] = xy_y;
504                 c[0] = capmap.x; c[1] = capmap.y;
505
506                 if (inverse == 0) {
507                     /* Rotate (xy_x, xy_y) about its polar cap tip and then translate it to
508                        north_square or south_square. */
509
510                     if (capmap.region == cap_map<T>::north) {
511                         pole = north_square;
512                         tmpRot = rot[get_rotate_index(capmap.cn - pole)];
513                     } else {
514                         pole = south_square;
515                         tmpRot = rot[get_rotate_index(-1*(capmap.cn - pole))];
516                     }
517                 } else {
518                     /* Inverse function.
519                      Unrotate (xy_x, xy_y) and then translate it back. */
520
521                     /* disassemble */
522                     if (capmap.region == cap_map<T>::north) {
523                         pole = north_square;
524                         tmpRot = rot[get_rotate_index(-1*(capmap.cn - pole))];
525                     } else {
526                         pole = south_square;
527                         tmpRot = rot[get_rotate_index(capmap.cn - pole)];
528                     }
529                 }
530
531                 vector_sub(v, c, v_min_c);
532                 dot_product(tmpRot, v_min_c, ret_dot);
533
534                 {
535                     T a[2];
536                     /* Workaround cppcheck git issue */
537                     T* pa = a;
538                     // TODO: in proj4 5.0.0 this line is used instead
539                     //pa[0] = -3.0*fourth_pi + ((inverse == 0) ? 0 : capmap.cn) *half_pi;
540                     pa[0] = -3.0*fourth_pi + ((inverse == 0) ? pole : capmap.cn) *half_pi;
541                     pa[1] = half_pi;
542                     vector_add(ret_dot, a, vector);
543                 }
544
545                 xy_x = vector[0];
546                 xy_y = vector[1];
547             }
548
549             template <typename T, typename Parameters>
550             struct base_healpix_ellipsoid
551             {
552                 par_healpix<T> m_proj_parm;
553
554                 // FORWARD(e_healpix_forward)  ellipsoid
555                 // Project coordinates from geographic (lon, lat) to cartesian (x, y)
556                 inline void fwd(Parameters const& par, T const& lp_lon, T lp_lat, T& xy_x, T& xy_y) const
557                 {
558                     lp_lat = auth_lat(par, m_proj_parm, lp_lat, 0);
559                     return healpix_sphere(lp_lon, lp_lat, xy_x, xy_y);
560                 }
561
562                 // INVERSE(e_healpix_inverse)  ellipsoid
563                 // Project coordinates from cartesian (x, y) to geographic (lon, lat)
564                 inline void inv(Parameters const& par, T const& xy_x, T const& xy_y, T& lp_lon, T& lp_lat) const
565                 {
566                     /* Check whether (x, y) lies in the HEALPix image. */
567                     if (in_image(xy_x, xy_y, 0, 0, 0) == 0) {
568                         lp_lon = HUGE_VAL;
569                         lp_lat = HUGE_VAL;
570                         BOOST_THROW_EXCEPTION( projection_exception(error_invalid_x_or_y) );
571                     }
572                     healpix_sphere_inverse(xy_x, xy_y, lp_lon, lp_lat);
573                     lp_lat = auth_lat(par, m_proj_parm, lp_lat, 1);
574                 }
575
576                 static inline std::string get_name()
577                 {
578                     return "healpix_ellipsoid";
579                 }
580
581             };
582
583             template <typename T, typename Parameters>
584             struct base_healpix_spheroid
585             {
586                 par_healpix<T> m_proj_parm;
587
588                 // FORWARD(s_healpix_forward)  sphere
589                 // Project coordinates from geographic (lon, lat) to cartesian (x, y)
590                 inline void fwd(Parameters const& , T const& lp_lon, T const& lp_lat, T& xy_x, T& xy_y) const
591                 {
592                     return healpix_sphere(lp_lon, lp_lat, xy_x, xy_y);
593                 }
594
595                 // INVERSE(s_healpix_inverse)  sphere
596                 // Project coordinates from cartesian (x, y) to geographic (lon, lat)
597                 inline void inv(Parameters const& , T const& xy_x, T const& xy_y, T& lp_lon, T& lp_lat) const
598                 {
599                     /* Check whether (x, y) lies in the HEALPix image */
600                     if (in_image(xy_x, xy_y, 0, 0, 0) == 0) {
601                         lp_lon = HUGE_VAL;
602                         lp_lat = HUGE_VAL;
603                         BOOST_THROW_EXCEPTION( projection_exception(error_invalid_x_or_y) );
604                     }
605                     return healpix_sphere_inverse(xy_x, xy_y, lp_lon, lp_lat);
606                 }
607
608                 static inline std::string get_name()
609                 {
610                     return "healpix_spheroid";
611                 }
612
613             };
614
615             template <typename T, typename Parameters>
616             struct base_rhealpix_ellipsoid
617             {
618                 par_healpix<T> m_proj_parm;
619
620                 // FORWARD(e_rhealpix_forward)  ellipsoid
621                 // Project coordinates from geographic (lon, lat) to cartesian (x, y)
622                 inline void fwd(Parameters const& par, T const& lp_lon, T lp_lat, T& xy_x, T& xy_y) const
623                 {
624                     lp_lat = auth_lat(par, m_proj_parm, lp_lat, 0);
625                     healpix_sphere(lp_lon, lp_lat, xy_x, xy_y);
626                     combine_caps(xy_x, xy_y, this->m_proj_parm.north_square, this->m_proj_parm.south_square, 0);
627                 }
628
629                 // INVERSE(e_rhealpix_inverse)  ellipsoid
630                 // Project coordinates from cartesian (x, y) to geographic (lon, lat)
631                 inline void inv(Parameters const& par, T xy_x, T xy_y, T& lp_lon, T& lp_lat) const
632                 {
633                     /* Check whether (x, y) lies in the rHEALPix image. */
634                     if (in_image(xy_x, xy_y, 1, this->m_proj_parm.north_square, this->m_proj_parm.south_square) == 0) {
635                         lp_lon = HUGE_VAL;
636                         lp_lat = HUGE_VAL;
637                         BOOST_THROW_EXCEPTION( projection_exception(error_invalid_x_or_y) );
638                     }
639                     combine_caps(xy_x, xy_y, this->m_proj_parm.north_square, this->m_proj_parm.south_square, 1);
640                     healpix_sphere_inverse(xy_x, xy_y, lp_lon, lp_lat);
641                     lp_lat = auth_lat(par, m_proj_parm, lp_lat, 1);
642                 }
643
644                 static inline std::string get_name()
645                 {
646                     return "rhealpix_ellipsoid";
647                 }
648
649             };
650
651             template <typename T, typename Parameters>
652             struct base_rhealpix_spheroid
653             {
654                 par_healpix<T> m_proj_parm;
655
656                 // FORWARD(s_rhealpix_forward)  sphere
657                 // Project coordinates from geographic (lon, lat) to cartesian (x, y)
658                 inline void fwd(Parameters const& , T const& lp_lon, T const& lp_lat, T& xy_x, T& xy_y) const
659                 {
660                     healpix_sphere(lp_lon, lp_lat, xy_x, xy_y);
661                     combine_caps(xy_x, xy_y, this->m_proj_parm.north_square, this->m_proj_parm.south_square, 0);
662                 }
663
664                 // INVERSE(s_rhealpix_inverse)  sphere
665                 // Project coordinates from cartesian (x, y) to geographic (lon, lat)
666                 inline void inv(Parameters const& , T xy_x, T xy_y, T& lp_lon, T& lp_lat) const
667                 {
668                     /* Check whether (x, y) lies in the rHEALPix image. */
669                     if (in_image(xy_x, xy_y, 1, this->m_proj_parm.north_square, this->m_proj_parm.south_square) == 0) {
670                         lp_lon = HUGE_VAL;
671                         lp_lat = HUGE_VAL;
672                         BOOST_THROW_EXCEPTION( projection_exception(error_invalid_x_or_y) );
673                     }
674                     combine_caps(xy_x, xy_y, this->m_proj_parm.north_square, this->m_proj_parm.south_square, 1);
675                     return healpix_sphere_inverse(xy_x, xy_y, lp_lon, lp_lat);
676                 }
677
678                 static inline std::string get_name()
679                 {
680                     return "rhealpix_spheroid";
681                 }
682
683             };
684
685             // HEALPix
686             template <typename Parameters, typename T>
687             inline void setup_healpix(Parameters& par, par_healpix<T>& proj_parm)
688             {
689                 if (par.es != 0.0) {
690                     proj_parm.apa = pj_authset<T>(par.es); /* For auth_lat(). */
691                     proj_parm.qp = pj_qsfn(1.0, par.e, par.one_es); /* For auth_lat(). */
692                     par.a = par.a*sqrt(0.5*proj_parm.qp); /* Set par.a to authalic radius. */
693                     pj_calc_ellipsoid_params(par, par.a, par.es); /* Ensure we have a consistent parameter set */
694                 } else {
695                 }
696             }
697
698             // rHEALPix
699             template <typename Params, typename Parameters, typename T>
700             inline void setup_rhealpix(Params const& params, Parameters& par, par_healpix<T>& proj_parm)
701             {
702                 proj_parm.north_square = pj_get_param_i<srs::spar::north_square>(params, "north_square", srs::dpar::north_square);
703                 proj_parm.south_square = pj_get_param_i<srs::spar::south_square>(params, "south_square", srs::dpar::south_square);
704                 /* Check for valid north_square and south_square inputs. */
705                 if ((proj_parm.north_square < 0) || (proj_parm.north_square > 3)) {
706                     BOOST_THROW_EXCEPTION( projection_exception(error_axis) );
707                 }
708                 if ((proj_parm.south_square < 0) || (proj_parm.south_square > 3)) {
709                     BOOST_THROW_EXCEPTION( projection_exception(error_axis) );
710                 }
711                 if (par.es != 0.0) {
712                     proj_parm.apa = pj_authset<T>(par.es); /* For auth_lat(). */
713                     proj_parm.qp = pj_qsfn(1.0, par.e, par.one_es); /* For auth_lat(). */
714                     par.a = par.a*sqrt(0.5*proj_parm.qp); /* Set par.a to authalic radius. */
715                     // TODO: why not the same as in healpix?
716                     //pj_calc_ellipsoid_params(par, par.a, par.es);
717                     par.ra = 1.0/par.a;
718                 } else {
719                 }
720             }
721
722     }} // namespace detail::healpix
723     #endif // doxygen
724
725     /*!
726         \brief HEALPix projection
727         \ingroup projections
728         \tparam Geographic latlong point type
729         \tparam Cartesian xy point type
730         \tparam Parameters parameter type
731         \par Projection characteristics
732          - Spheroid
733          - Ellipsoid
734         \par Example
735         \image html ex_healpix.gif
736     */
737     template <typename T, typename Parameters>
738     struct healpix_ellipsoid : public detail::healpix::base_healpix_ellipsoid<T, Parameters>
739     {
740         template <typename Params>
741         inline healpix_ellipsoid(Params const& , Parameters & par)
742         {
743             detail::healpix::setup_healpix(par, this->m_proj_parm);
744         }
745     };
746
747     /*!
748         \brief HEALPix projection
749         \ingroup projections
750         \tparam Geographic latlong point type
751         \tparam Cartesian xy point type
752         \tparam Parameters parameter type
753         \par Projection characteristics
754          - Spheroid
755          - Ellipsoid
756         \par Example
757         \image html ex_healpix.gif
758     */
759     template <typename T, typename Parameters>
760     struct healpix_spheroid : public detail::healpix::base_healpix_spheroid<T, Parameters>
761     {
762         template <typename Params>
763         inline healpix_spheroid(Params const& , Parameters & par)
764         {
765             detail::healpix::setup_healpix(par, this->m_proj_parm);
766         }
767     };
768
769     /*!
770         \brief rHEALPix projection
771         \ingroup projections
772         \tparam Geographic latlong point type
773         \tparam Cartesian xy point type
774         \tparam Parameters parameter type
775         \par Projection characteristics
776          - Spheroid
777          - Ellipsoid
778         \par Projection parameters
779          - north_square (integer)
780          - south_square (integer)
781         \par Example
782         \image html ex_rhealpix.gif
783     */
784     template <typename T, typename Parameters>
785     struct rhealpix_ellipsoid : public detail::healpix::base_rhealpix_ellipsoid<T, Parameters>
786     {
787         template <typename Params>
788         inline rhealpix_ellipsoid(Params const& params, Parameters & par)
789         {
790             detail::healpix::setup_rhealpix(params, par, this->m_proj_parm);
791         }
792     };
793
794     /*!
795         \brief rHEALPix projection
796         \ingroup projections
797         \tparam Geographic latlong point type
798         \tparam Cartesian xy point type
799         \tparam Parameters parameter type
800         \par Projection characteristics
801          - Spheroid
802          - Ellipsoid
803         \par Projection parameters
804          - north_square (integer)
805          - south_square (integer)
806         \par Example
807         \image html ex_rhealpix.gif
808     */
809     template <typename T, typename Parameters>
810     struct rhealpix_spheroid : public detail::healpix::base_rhealpix_spheroid<T, Parameters>
811     {
812         template <typename Params>
813         inline rhealpix_spheroid(Params const& params, Parameters & par)
814         {
815             detail::healpix::setup_rhealpix(params, par, this->m_proj_parm);
816         }
817     };
818
819     #ifndef DOXYGEN_NO_DETAIL
820     namespace detail
821     {
822
823         // Static projection
824         BOOST_GEOMETRY_PROJECTIONS_DETAIL_STATIC_PROJECTION_FI2(srs::spar::proj_healpix, healpix_spheroid, healpix_ellipsoid)
825         BOOST_GEOMETRY_PROJECTIONS_DETAIL_STATIC_PROJECTION_FI2(srs::spar::proj_rhealpix, rhealpix_spheroid, rhealpix_ellipsoid)
826
827         // Factory entry(s)
828         BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_ENTRY_FI2(healpix_entry, healpix_spheroid, healpix_ellipsoid)
829         BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_ENTRY_FI2(rhealpix_entry, rhealpix_spheroid, rhealpix_ellipsoid)
830         
831         BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_INIT_BEGIN(healpix_init)
832         {
833             BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_INIT_ENTRY(healpix, healpix_entry)
834             BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_INIT_ENTRY(rhealpix, rhealpix_entry)
835         }
836
837     } // namespace detail
838     #endif // doxygen
839
840 } // namespace projections
841
842 }} // namespace boost::geometry
843
844 #endif // BOOST_GEOMETRY_PROJECTIONS_HEALPIX_HPP
845