Imported Upstream version 1.64.0
[platform/upstream/boost.git] / boost / geometry / formulas / thomas_inverse.hpp
1 // Boost.Geometry
2
3 // Copyright (c) 2015-2016 Oracle and/or its affiliates.
4
5 // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
6
7 // Use, modification and distribution is subject to the Boost Software License,
8 // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
9 // http://www.boost.org/LICENSE_1_0.txt)
10
11 #ifndef BOOST_GEOMETRY_FORMULAS_THOMAS_INVERSE_HPP
12 #define BOOST_GEOMETRY_FORMULAS_THOMAS_INVERSE_HPP
13
14
15 #include <boost/math/constants/constants.hpp>
16
17 #include <boost/geometry/core/radius.hpp>
18 #include <boost/geometry/core/srs.hpp>
19
20 #include <boost/geometry/util/condition.hpp>
21 #include <boost/geometry/util/math.hpp>
22
23 #include <boost/geometry/formulas/differential_quantities.hpp>
24 #include <boost/geometry/formulas/flattening.hpp>
25 #include <boost/geometry/formulas/result_inverse.hpp>
26
27
28 namespace boost { namespace geometry { namespace formula
29 {
30
31 /*!
32 \brief The solution of the inverse problem of geodesics on latlong coordinates,
33        Forsyth-Andoyer-Lambert type approximation with second order terms.
34 \author See
35     - Technical Report: PAUL D. THOMAS, MATHEMATICAL MODELS FOR NAVIGATION SYSTEMS, 1965
36       http://www.dtic.mil/docs/citations/AD0627893
37     - Technical Report: PAUL D. THOMAS, SPHEROIDAL GEODESICS, REFERENCE SYSTEMS, AND LOCAL GEOMETRY, 1970
38       http://www.dtic.mil/docs/citations/AD0703541
39 */
40 template <
41     typename CT,
42     bool EnableDistance,
43     bool EnableAzimuth,
44     bool EnableReverseAzimuth = false,
45     bool EnableReducedLength = false,
46     bool EnableGeodesicScale = false
47 >
48 class thomas_inverse
49 {
50     static const bool CalcQuantities = EnableReducedLength || EnableGeodesicScale;
51     static const bool CalcAzimuths = EnableAzimuth || EnableReverseAzimuth || CalcQuantities;
52     static const bool CalcFwdAzimuth = EnableAzimuth || CalcQuantities;
53     static const bool CalcRevAzimuth = EnableReverseAzimuth || CalcQuantities;
54
55 public:
56     typedef result_inverse<CT> result_type;
57
58     template <typename T1, typename T2, typename Spheroid>
59     static inline result_type apply(T1 const& lon1,
60                                     T1 const& lat1,
61                                     T2 const& lon2,
62                                     T2 const& lat2,
63                                     Spheroid const& spheroid)
64     {
65         result_type result;
66
67         // coordinates in radians
68
69         if ( math::equals(lon1, lon2) && math::equals(lat1, lat2) )
70         {
71             return result;
72         }
73
74         CT const c0 = 0;
75         CT const c1 = 1;
76         CT const c2 = 2;
77         CT const c4 = 4;
78
79         CT const pi_half = math::pi<CT>() / c2;
80         CT const f = formula::flattening<CT>(spheroid);
81         CT const one_minus_f = c1 - f;
82
83 //        CT const tan_theta1 = one_minus_f * tan(lat1);
84 //        CT const tan_theta2 = one_minus_f * tan(lat2);
85 //        CT const theta1 = atan(tan_theta1);
86 //        CT const theta2 = atan(tan_theta2);
87
88         CT const theta1 = math::equals(lat1, pi_half) ? lat1 :
89                           math::equals(lat1, -pi_half) ? lat1 :
90                           atan(one_minus_f * tan(lat1));
91         CT const theta2 = math::equals(lat2, pi_half) ? lat2 :
92                           math::equals(lat2, -pi_half) ? lat2 :
93                           atan(one_minus_f * tan(lat2));
94
95         CT const theta_m = (theta1 + theta2) / c2;
96         CT const d_theta_m = (theta2 - theta1) / c2;
97         CT const d_lambda = lon2 - lon1;
98         CT const d_lambda_m = d_lambda / c2;
99
100         CT const sin_theta_m = sin(theta_m);
101         CT const cos_theta_m = cos(theta_m);
102         CT const sin_d_theta_m = sin(d_theta_m);
103         CT const cos_d_theta_m = cos(d_theta_m);
104         CT const sin2_theta_m = math::sqr(sin_theta_m);
105         CT const cos2_theta_m = math::sqr(cos_theta_m);
106         CT const sin2_d_theta_m = math::sqr(sin_d_theta_m);
107         CT const cos2_d_theta_m = math::sqr(cos_d_theta_m);
108         CT const sin_d_lambda_m = sin(d_lambda_m);
109         CT const sin2_d_lambda_m = math::sqr(sin_d_lambda_m);
110
111         CT const H = cos2_theta_m - sin2_d_theta_m;
112         CT const L = sin2_d_theta_m + H * sin2_d_lambda_m;
113         CT const cos_d = c1 - c2 * L;
114         CT const d = acos(cos_d);
115         CT const sin_d = sin(d);
116
117         CT const one_minus_L = c1 - L;
118
119         if ( math::equals(sin_d, c0)
120           || math::equals(L, c0)
121           || math::equals(one_minus_L, c0) )
122         {
123             return result;
124         }
125
126         CT const U = c2 * sin2_theta_m * cos2_d_theta_m / one_minus_L;
127         CT const V = c2 * sin2_d_theta_m * cos2_theta_m / L;
128         CT const X = U + V;
129         CT const Y = U - V;
130         CT const T = d / sin_d;
131         CT const D = c4 * math::sqr(T);
132         CT const E = c2 * cos_d;
133         CT const A = D * E;
134         CT const B = c2 * D;
135         CT const C = T - (A - E) / c2;
136
137         CT const f_sqr = math::sqr(f);
138         CT const f_sqr_per_64 = f_sqr / CT(64);
139     
140         if ( BOOST_GEOMETRY_CONDITION(EnableDistance) )
141         {
142             CT const n1 = X * (A + C*X);
143             CT const n2 = Y * (B + E*Y);
144             CT const n3 = D*X*Y;
145
146             CT const delta1d = f * (T*X-Y) / c4;
147             CT const delta2d = f_sqr_per_64 * (n1 - n2 + n3);
148
149             CT const a = get_radius<0>(spheroid);
150
151             //result.distance = a * sin_d * (T - delta1d);
152             result.distance = a * sin_d * (T - delta1d + delta2d);
153         }
154     
155         if ( BOOST_GEOMETRY_CONDITION(CalcAzimuths) )
156         {
157             // NOTE: if both cos_latX == 0 then below we'd have 0 * INF
158             // it's a situation when the endpoints are on the poles +-90 deg
159             // in this case the azimuth could either be 0 or +-pi
160             // but above always 0 is returned
161
162             CT const F = c2*Y-E*(c4-X);
163             CT const M = CT(32)*T-(CT(20)*T-A)*X-(B+c4)*Y;
164             CT const G = f*T/c2 + f_sqr_per_64 * M;
165             
166             // TODO:
167             // If d_lambda is close to 90 or -90 deg then tan(d_lambda) is big
168             // and F is small. The result is not accurate.
169             // In the edge case the result may be 2 orders of magnitude less
170             // accurate than Andoyer's.
171             CT const tan_d_lambda = tan(d_lambda);
172             CT const Q = -(F*G*tan_d_lambda) / c4;
173             CT const d_lambda_m_p = (d_lambda + Q) / c2;
174             CT const tan_d_lambda_m_p = tan(d_lambda_m_p);
175
176             CT const v = atan2(cos_d_theta_m, sin_theta_m * tan_d_lambda_m_p);
177             CT const u = atan2(-sin_d_theta_m, cos_theta_m * tan_d_lambda_m_p);
178
179             CT const pi = math::pi<CT>();
180
181             if (BOOST_GEOMETRY_CONDITION(EnableAzimuth))
182             {
183                 CT alpha1 = v + u;
184                 if (alpha1 > pi)
185                 {
186                     alpha1 -= c2 * pi;
187                 }
188
189                 result.azimuth = alpha1;
190             }
191
192             if (BOOST_GEOMETRY_CONDITION(EnableReverseAzimuth))
193             {
194                 CT alpha2 = pi - (v - u);
195                 if (alpha2 > pi)
196                 {
197                     alpha2 -= c2 * pi;
198                 }
199
200                 result.reverse_azimuth = alpha2;
201             }
202         }
203
204         if (BOOST_GEOMETRY_CONDITION(CalcQuantities))
205         {
206             typedef differential_quantities<CT, EnableReducedLength, EnableGeodesicScale, 2> quantities;
207             quantities::apply(lon1, lat1, lon2, lat2,
208                               result.azimuth, result.reverse_azimuth,
209                               get_radius<2>(spheroid), f,
210                               result.reduced_length, result.geodesic_scale);
211         }
212
213         return result;
214     }
215 };
216
217 }}} // namespace boost::geometry::formula
218
219
220 #endif // BOOST_GEOMETRY_FORMULAS_THOMAS_INVERSE_HPP