2 * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
3 * Copyright (c) 1991-1994 by Xerox Corporation. All rights reserved.
4 * Copyright (c) 2000 by Hewlett-Packard Company. All rights reserved.
6 * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
7 * OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
9 * Permission is hereby granted to use or copy this program
10 * for any purpose, provided the above notices are retained on all copies.
11 * Permission to modify the code and to distribute modified code is granted,
12 * provided the above notices are retained, and a notice that the code was
13 * modified is included with the above copyright notice.
15 /* Boehm, February 7, 1996 4:32 pm PST */
18 #include "private/gc_priv.h"
20 extern ptr_t GC_clear_stack(); /* in misc.c, behaves like identity */
21 void GC_extend_size_map(); /* in misc.c. */
23 /* Allocate reclaim list for kind: */
24 /* Return TRUE on success */
25 GC_bool GC_alloc_reclaim_list(kind)
26 register struct obj_kind * kind;
28 struct hblk ** result = (struct hblk **)
29 GC_scratch_alloc((MAXOBJSZ+1) * sizeof(struct hblk *));
30 if (result == 0) return(FALSE);
31 BZERO(result, (MAXOBJSZ+1)*sizeof(struct hblk *));
32 kind -> ok_reclaim_list = result;
36 /* Allocate a large block of size lw words. */
37 /* The block is not cleared. */
38 /* Flags is 0 or IGNORE_OFF_PAGE. */
39 /* We hold the allocation lock. */
40 ptr_t GC_alloc_large(lw, k, flags)
46 word n_blocks = OBJ_SZ_TO_BLOCKS(lw);
49 if (!GC_is_initialized) GC_init_inner();
50 /* Do our share of marking work */
51 if(GC_incremental && !GC_dont_gc)
52 GC_collect_a_little_inner((int)n_blocks);
53 h = GC_allochblk(lw, k, flags);
57 h = GC_allochblk(lw, k, flags);
60 while (0 == h && GC_collect_or_expand(n_blocks, (flags != 0))) {
61 h = GC_allochblk(lw, k, flags);
66 int total_bytes = n_blocks * HBLKSIZE;
68 GC_large_allocd_bytes += total_bytes;
69 if (GC_large_allocd_bytes > GC_max_large_allocd_bytes)
70 GC_max_large_allocd_bytes = GC_large_allocd_bytes;
72 result = (ptr_t) (h -> hb_body);
73 GC_words_wasted += BYTES_TO_WORDS(total_bytes) - lw;
79 /* Allocate a large block of size lb bytes. Clear if appropriate. */
80 /* We hold the allocation lock. */
81 ptr_t GC_alloc_large_and_clear(lw, k, flags)
86 ptr_t result = GC_alloc_large(lw, k, flags);
87 word n_blocks = OBJ_SZ_TO_BLOCKS(lw);
89 if (0 == result) return 0;
90 if (GC_debugging_started || GC_obj_kinds[k].ok_init) {
91 /* Clear the whole block, in case of GC_realloc call. */
92 BZERO(result, n_blocks * HBLKSIZE);
97 /* allocate lb bytes for an object of kind k. */
98 /* Should not be used to directly to allocate */
99 /* objects such as STUBBORN objects that */
100 /* require special handling on allocation. */
101 /* First a version that assumes we already */
103 ptr_t GC_generic_malloc_inner(lb, k)
111 if( SMALL_OBJ(lb) ) {
112 register struct obj_kind * kind = GC_obj_kinds + k;
114 lw = GC_size_map[lb];
116 lw = ALIGNED_WORDS(lb);
117 if (lw == 0) lw = MIN_WORDS;
119 opp = &(kind -> ok_freelist[lw]);
120 if( (op = *opp) == 0 ) {
122 if (GC_size_map[lb] == 0) {
123 if (!GC_is_initialized) GC_init_inner();
124 if (GC_size_map[lb] == 0) GC_extend_size_map(lb);
125 return(GC_generic_malloc_inner(lb, k));
128 if (!GC_is_initialized) {
130 return(GC_generic_malloc_inner(lb, k));
133 if (kind -> ok_reclaim_list == 0) {
134 if (!GC_alloc_reclaim_list(kind)) goto out;
136 op = GC_allocobj(lw, k);
137 if (op == 0) goto out;
139 /* Here everything is in a consistent state. */
140 /* We assume the following assignment is */
141 /* atomic. If we get aborted */
142 /* after the assignment, we lose an object, */
143 /* but that's benign. */
144 /* Volatile declarations may need to be added */
145 /* to prevent the compiler from breaking things.*/
146 /* If we only execute the second of the */
147 /* following assignments, we lose the free */
148 /* list, but that should still be OK, at least */
149 /* for garbage collected memory. */
153 lw = ROUNDED_UP_WORDS(lb);
154 op = (ptr_t)GC_alloc_large_and_clear(lw, k, 0);
156 GC_words_allocd += lw;
162 /* Allocate a composite object of size n bytes. The caller guarantees */
163 /* that pointers past the first page are not relevant. Caller holds */
164 /* allocation lock. */
165 ptr_t GC_generic_malloc_inner_ignore_off_page(lb, k)
173 return(GC_generic_malloc_inner((word)lb, k));
174 lw = ROUNDED_UP_WORDS(lb);
175 op = (ptr_t)GC_alloc_large_and_clear(lw, k, IGNORE_OFF_PAGE);
176 GC_words_allocd += lw;
180 ptr_t GC_generic_malloc(lb, k)
187 if (GC_have_errors) GC_print_all_errors();
188 GC_INVOKE_FINALIZERS();
192 result = GC_generic_malloc_inner((word)lb, k);
199 lw = ROUNDED_UP_WORDS(lb);
200 n_blocks = OBJ_SZ_TO_BLOCKS(lw);
201 init = GC_obj_kinds[k].ok_init;
204 result = (ptr_t)GC_alloc_large(lw, k, 0);
206 if (GC_debugging_started) {
207 BZERO(result, n_blocks * HBLKSIZE);
210 /* Clear any memory that might be used for GC descriptors */
211 /* before we release the lock. */
212 ((word *)result)[0] = 0;
213 ((word *)result)[1] = 0;
214 ((word *)result)[lw-1] = 0;
215 ((word *)result)[lw-2] = 0;
219 GC_words_allocd += lw;
222 if (init && !GC_debugging_started && 0 != result) {
223 BZERO(result, n_blocks * HBLKSIZE);
227 return((*GC_oom_fn)(lb));
234 #define GENERAL_MALLOC(lb,k) \
235 (GC_PTR)GC_clear_stack(GC_generic_malloc((word)lb, k))
236 /* We make the GC_clear_stack_call a tail call, hoping to get more of */
239 /* Allocate lb bytes of atomic (pointerfree) data */
241 GC_PTR GC_malloc_atomic(size_t lb)
243 GC_PTR GC_malloc_atomic(lb)
248 register ptr_t * opp;
252 if( EXPECT(SMALL_OBJ(lb), 1) ) {
254 lw = GC_size_map[lb];
256 lw = ALIGNED_WORDS(lb);
258 opp = &(GC_aobjfreelist[lw]);
260 if( EXPECT(!FASTLOCK_SUCCEEDED() || (op = *opp) == 0, 0) ) {
262 return(GENERAL_MALLOC((word)lb, PTRFREE));
264 /* See above comment on signals. */
266 GC_words_allocd += lw;
270 return(GENERAL_MALLOC((word)lb, PTRFREE));
274 /* Allocate lb bytes of composite (pointerful) data */
276 GC_PTR GC_malloc(size_t lb)
287 if( EXPECT(SMALL_OBJ(lb), 1) ) {
289 lw = GC_size_map[lb];
291 lw = ALIGNED_WORDS(lb);
293 opp = &(GC_objfreelist[lw]);
295 if( EXPECT(!FASTLOCK_SUCCEEDED() || (op = *opp) == 0, 0) ) {
297 return(GENERAL_MALLOC((word)lb, NORMAL));
299 /* See above comment on signals. */
300 GC_ASSERT(0 == obj_link(op)
301 || (word)obj_link(op)
302 <= (word)GC_greatest_plausible_heap_addr
303 && (word)obj_link(op)
304 >= (word)GC_least_plausible_heap_addr);
307 GC_words_allocd += lw;
311 return(GENERAL_MALLOC((word)lb, NORMAL));
315 # ifdef REDIRECT_MALLOC
317 /* Avoid unnecessary nested procedure calls here, by #defining some */
318 /* malloc replacements. Otherwise we end up saving a */
319 /* meaningless return address in the object. It also speeds things up, */
320 /* but it is admittedly quite ugly. */
321 # ifdef GC_ADD_CALLER
322 # define RA GC_RETURN_ADDR,
326 # define GC_debug_malloc_replacement(lb) \
327 GC_debug_malloc(lb, RA "unknown", 0)
330 GC_PTR malloc(size_t lb)
336 /* It might help to manually inline the GC_malloc call here. */
337 /* But any decent compiler should reduce the extra procedure call */
338 /* to at most a jump instruction in this case. */
339 # if defined(I386) && defined(GC_SOLARIS_THREADS)
341 * Thread initialisation can call malloc before
342 * we're ready for it.
343 * It's not clear that this is enough to help matters.
344 * The thread implementation may well call malloc at other
347 if (!GC_is_initialized) return sbrk(lb);
348 # endif /* I386 && GC_SOLARIS_THREADS */
349 return((GC_PTR)REDIRECT_MALLOC(lb));
353 GC_PTR calloc(size_t n, size_t lb)
359 return((GC_PTR)REDIRECT_MALLOC(n*lb));
365 char *strdup(const char *s)
371 size_t len = strlen(s) + 1;
372 char * result = ((char *)REDIRECT_MALLOC(len+1));
373 BCOPY(s, result, len+1);
376 #endif /* !defined(strdup) */
377 /* If strdup is macro defined, we assume that it actually calls malloc, */
378 /* and thus the right thing will happen even without overriding it. */
379 /* This seems to be true on most Linux systems. */
381 #undef GC_debug_malloc_replacement
383 # endif /* REDIRECT_MALLOC */
385 /* Explicitly deallocate an object p. */
387 void GC_free(GC_PTR p)
393 register struct hblk *h;
395 register signed_word sz;
396 register ptr_t * flh;
398 register struct obj_kind * ok;
402 /* Required by ANSI. It's not my fault ... */
405 GC_ASSERT(GC_base(p) == p);
406 # if defined(REDIRECT_MALLOC) && \
407 (defined(GC_SOLARIS_THREADS) || defined(GC_LINUX_THREADS) \
408 || defined(__MINGW32__)) /* Should this be MSWIN32 in general? */
409 /* For Solaris, we have to redirect malloc calls during */
410 /* initialization. For the others, this seems to happen */
412 /* Don't try to deallocate that memory. */
413 if (0 == hhdr) return;
415 knd = hhdr -> hb_obj_kind;
417 ok = &GC_obj_kinds[knd];
418 if (EXPECT((sz <= MAXOBJSZ), 1)) {
424 /* A signal here can make GC_mem_freed and GC_non_gc_bytes */
425 /* inconsistent. We claim this is benign. */
426 if (IS_UNCOLLECTABLE(knd)) GC_non_gc_bytes -= WORDS_TO_BYTES(sz);
427 /* Its unnecessary to clear the mark bit. If the */
428 /* object is reallocated, it doesn't matter. O.w. the */
429 /* collector will do it, since it's on a free list. */
431 BZERO((word *)p + 1, WORDS_TO_BYTES(sz-1));
433 flh = &(ok -> ok_freelist[sz]);
444 if (IS_UNCOLLECTABLE(knd)) GC_non_gc_bytes -= WORDS_TO_BYTES(sz);
451 /* Explicitly deallocate an object p when we already hold lock. */
452 /* Only used for internally allocated objects, so we can take some */
455 void GC_free_inner(GC_PTR p)
457 register struct hblk *h;
459 register signed_word sz;
460 register ptr_t * flh;
462 register struct obj_kind * ok;
467 knd = hhdr -> hb_obj_kind;
469 ok = &GC_obj_kinds[knd];
470 if (sz <= MAXOBJSZ) {
472 if (IS_UNCOLLECTABLE(knd)) GC_non_gc_bytes -= WORDS_TO_BYTES(sz);
474 BZERO((word *)p + 1, WORDS_TO_BYTES(sz-1));
476 flh = &(ok -> ok_freelist[sz]);
481 if (IS_UNCOLLECTABLE(knd)) GC_non_gc_bytes -= WORDS_TO_BYTES(sz);
487 # if defined(REDIRECT_MALLOC) && !defined(REDIRECT_FREE)
488 # define REDIRECT_FREE GC_free
490 # ifdef REDIRECT_FREE
502 # endif /* REDIRECT_MALLOC */