qemu-img: Add "Quiet mode" option
[sdk/emulator/qemu.git] / block.c
1 /*
2  * QEMU System Emulator block driver
3  *
4  * Copyright (c) 2003 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "config-host.h"
25 #include "qemu-common.h"
26 #include "trace.h"
27 #include "monitor/monitor.h"
28 #include "block/block_int.h"
29 #include "block/blockjob.h"
30 #include "qemu/module.h"
31 #include "qapi/qmp/qjson.h"
32 #include "sysemu/sysemu.h"
33 #include "qemu/notify.h"
34 #include "block/coroutine.h"
35 #include "qmp-commands.h"
36 #include "qemu/timer.h"
37
38 #ifdef CONFIG_BSD
39 #include <sys/types.h>
40 #include <sys/stat.h>
41 #include <sys/ioctl.h>
42 #include <sys/queue.h>
43 #ifndef __DragonFly__
44 #include <sys/disk.h>
45 #endif
46 #endif
47
48 #ifdef _WIN32
49 #include <windows.h>
50 #endif
51
52 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
53
54 typedef enum {
55     BDRV_REQ_COPY_ON_READ = 0x1,
56     BDRV_REQ_ZERO_WRITE   = 0x2,
57 } BdrvRequestFlags;
58
59 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load);
60 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
61         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
62         BlockDriverCompletionFunc *cb, void *opaque);
63 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
64         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
65         BlockDriverCompletionFunc *cb, void *opaque);
66 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
67                                          int64_t sector_num, int nb_sectors,
68                                          QEMUIOVector *iov);
69 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
70                                          int64_t sector_num, int nb_sectors,
71                                          QEMUIOVector *iov);
72 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
73     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
74     BdrvRequestFlags flags);
75 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
76     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
77     BdrvRequestFlags flags);
78 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
79                                                int64_t sector_num,
80                                                QEMUIOVector *qiov,
81                                                int nb_sectors,
82                                                BlockDriverCompletionFunc *cb,
83                                                void *opaque,
84                                                bool is_write);
85 static void coroutine_fn bdrv_co_do_rw(void *opaque);
86 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
87     int64_t sector_num, int nb_sectors);
88
89 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
90         bool is_write, double elapsed_time, uint64_t *wait);
91 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
92         double elapsed_time, uint64_t *wait);
93 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
94         bool is_write, int64_t *wait);
95
96 static QTAILQ_HEAD(, BlockDriverState) bdrv_states =
97     QTAILQ_HEAD_INITIALIZER(bdrv_states);
98
99 static QLIST_HEAD(, BlockDriver) bdrv_drivers =
100     QLIST_HEAD_INITIALIZER(bdrv_drivers);
101
102 /* The device to use for VM snapshots */
103 static BlockDriverState *bs_snapshots;
104
105 /* If non-zero, use only whitelisted block drivers */
106 static int use_bdrv_whitelist;
107
108 #ifdef _WIN32
109 static int is_windows_drive_prefix(const char *filename)
110 {
111     return (((filename[0] >= 'a' && filename[0] <= 'z') ||
112              (filename[0] >= 'A' && filename[0] <= 'Z')) &&
113             filename[1] == ':');
114 }
115
116 int is_windows_drive(const char *filename)
117 {
118     if (is_windows_drive_prefix(filename) &&
119         filename[2] == '\0')
120         return 1;
121     if (strstart(filename, "\\\\.\\", NULL) ||
122         strstart(filename, "//./", NULL))
123         return 1;
124     return 0;
125 }
126 #endif
127
128 /* throttling disk I/O limits */
129 void bdrv_io_limits_disable(BlockDriverState *bs)
130 {
131     bs->io_limits_enabled = false;
132
133     while (qemu_co_queue_next(&bs->throttled_reqs));
134
135     if (bs->block_timer) {
136         qemu_del_timer(bs->block_timer);
137         qemu_free_timer(bs->block_timer);
138         bs->block_timer = NULL;
139     }
140
141     bs->slice_start = 0;
142     bs->slice_end   = 0;
143     bs->slice_time  = 0;
144     memset(&bs->io_base, 0, sizeof(bs->io_base));
145 }
146
147 static void bdrv_block_timer(void *opaque)
148 {
149     BlockDriverState *bs = opaque;
150
151     qemu_co_queue_next(&bs->throttled_reqs);
152 }
153
154 void bdrv_io_limits_enable(BlockDriverState *bs)
155 {
156     qemu_co_queue_init(&bs->throttled_reqs);
157     bs->block_timer = qemu_new_timer_ns(vm_clock, bdrv_block_timer, bs);
158     bs->io_limits_enabled = true;
159 }
160
161 bool bdrv_io_limits_enabled(BlockDriverState *bs)
162 {
163     BlockIOLimit *io_limits = &bs->io_limits;
164     return io_limits->bps[BLOCK_IO_LIMIT_READ]
165          || io_limits->bps[BLOCK_IO_LIMIT_WRITE]
166          || io_limits->bps[BLOCK_IO_LIMIT_TOTAL]
167          || io_limits->iops[BLOCK_IO_LIMIT_READ]
168          || io_limits->iops[BLOCK_IO_LIMIT_WRITE]
169          || io_limits->iops[BLOCK_IO_LIMIT_TOTAL];
170 }
171
172 static void bdrv_io_limits_intercept(BlockDriverState *bs,
173                                      bool is_write, int nb_sectors)
174 {
175     int64_t wait_time = -1;
176
177     if (!qemu_co_queue_empty(&bs->throttled_reqs)) {
178         qemu_co_queue_wait(&bs->throttled_reqs);
179     }
180
181     /* In fact, we hope to keep each request's timing, in FIFO mode. The next
182      * throttled requests will not be dequeued until the current request is
183      * allowed to be serviced. So if the current request still exceeds the
184      * limits, it will be inserted to the head. All requests followed it will
185      * be still in throttled_reqs queue.
186      */
187
188     while (bdrv_exceed_io_limits(bs, nb_sectors, is_write, &wait_time)) {
189         qemu_mod_timer(bs->block_timer,
190                        wait_time + qemu_get_clock_ns(vm_clock));
191         qemu_co_queue_wait_insert_head(&bs->throttled_reqs);
192     }
193
194     qemu_co_queue_next(&bs->throttled_reqs);
195 }
196
197 /* check if the path starts with "<protocol>:" */
198 static int path_has_protocol(const char *path)
199 {
200     const char *p;
201
202 #ifdef _WIN32
203     if (is_windows_drive(path) ||
204         is_windows_drive_prefix(path)) {
205         return 0;
206     }
207     p = path + strcspn(path, ":/\\");
208 #else
209     p = path + strcspn(path, ":/");
210 #endif
211
212     return *p == ':';
213 }
214
215 int path_is_absolute(const char *path)
216 {
217 #ifdef _WIN32
218     /* specific case for names like: "\\.\d:" */
219     if (is_windows_drive(path) || is_windows_drive_prefix(path)) {
220         return 1;
221     }
222     return (*path == '/' || *path == '\\');
223 #else
224     return (*path == '/');
225 #endif
226 }
227
228 /* if filename is absolute, just copy it to dest. Otherwise, build a
229    path to it by considering it is relative to base_path. URL are
230    supported. */
231 void path_combine(char *dest, int dest_size,
232                   const char *base_path,
233                   const char *filename)
234 {
235     const char *p, *p1;
236     int len;
237
238     if (dest_size <= 0)
239         return;
240     if (path_is_absolute(filename)) {
241         pstrcpy(dest, dest_size, filename);
242     } else {
243         p = strchr(base_path, ':');
244         if (p)
245             p++;
246         else
247             p = base_path;
248         p1 = strrchr(base_path, '/');
249 #ifdef _WIN32
250         {
251             const char *p2;
252             p2 = strrchr(base_path, '\\');
253             if (!p1 || p2 > p1)
254                 p1 = p2;
255         }
256 #endif
257         if (p1)
258             p1++;
259         else
260             p1 = base_path;
261         if (p1 > p)
262             p = p1;
263         len = p - base_path;
264         if (len > dest_size - 1)
265             len = dest_size - 1;
266         memcpy(dest, base_path, len);
267         dest[len] = '\0';
268         pstrcat(dest, dest_size, filename);
269     }
270 }
271
272 void bdrv_get_full_backing_filename(BlockDriverState *bs, char *dest, size_t sz)
273 {
274     if (bs->backing_file[0] == '\0' || path_has_protocol(bs->backing_file)) {
275         pstrcpy(dest, sz, bs->backing_file);
276     } else {
277         path_combine(dest, sz, bs->filename, bs->backing_file);
278     }
279 }
280
281 void bdrv_register(BlockDriver *bdrv)
282 {
283     /* Block drivers without coroutine functions need emulation */
284     if (!bdrv->bdrv_co_readv) {
285         bdrv->bdrv_co_readv = bdrv_co_readv_em;
286         bdrv->bdrv_co_writev = bdrv_co_writev_em;
287
288         /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if
289          * the block driver lacks aio we need to emulate that too.
290          */
291         if (!bdrv->bdrv_aio_readv) {
292             /* add AIO emulation layer */
293             bdrv->bdrv_aio_readv = bdrv_aio_readv_em;
294             bdrv->bdrv_aio_writev = bdrv_aio_writev_em;
295         }
296     }
297
298     QLIST_INSERT_HEAD(&bdrv_drivers, bdrv, list);
299 }
300
301 /* create a new block device (by default it is empty) */
302 BlockDriverState *bdrv_new(const char *device_name)
303 {
304     BlockDriverState *bs;
305
306     bs = g_malloc0(sizeof(BlockDriverState));
307     pstrcpy(bs->device_name, sizeof(bs->device_name), device_name);
308     if (device_name[0] != '\0') {
309         QTAILQ_INSERT_TAIL(&bdrv_states, bs, list);
310     }
311     bdrv_iostatus_disable(bs);
312     notifier_list_init(&bs->close_notifiers);
313
314     return bs;
315 }
316
317 void bdrv_add_close_notifier(BlockDriverState *bs, Notifier *notify)
318 {
319     notifier_list_add(&bs->close_notifiers, notify);
320 }
321
322 BlockDriver *bdrv_find_format(const char *format_name)
323 {
324     BlockDriver *drv1;
325     QLIST_FOREACH(drv1, &bdrv_drivers, list) {
326         if (!strcmp(drv1->format_name, format_name)) {
327             return drv1;
328         }
329     }
330     return NULL;
331 }
332
333 static int bdrv_is_whitelisted(BlockDriver *drv)
334 {
335     static const char *whitelist[] = {
336         CONFIG_BDRV_WHITELIST
337     };
338     const char **p;
339
340     if (!whitelist[0])
341         return 1;               /* no whitelist, anything goes */
342
343     for (p = whitelist; *p; p++) {
344         if (!strcmp(drv->format_name, *p)) {
345             return 1;
346         }
347     }
348     return 0;
349 }
350
351 BlockDriver *bdrv_find_whitelisted_format(const char *format_name)
352 {
353     BlockDriver *drv = bdrv_find_format(format_name);
354     return drv && bdrv_is_whitelisted(drv) ? drv : NULL;
355 }
356
357 typedef struct CreateCo {
358     BlockDriver *drv;
359     char *filename;
360     QEMUOptionParameter *options;
361     int ret;
362 } CreateCo;
363
364 static void coroutine_fn bdrv_create_co_entry(void *opaque)
365 {
366     CreateCo *cco = opaque;
367     assert(cco->drv);
368
369     cco->ret = cco->drv->bdrv_create(cco->filename, cco->options);
370 }
371
372 int bdrv_create(BlockDriver *drv, const char* filename,
373     QEMUOptionParameter *options)
374 {
375     int ret;
376
377     Coroutine *co;
378     CreateCo cco = {
379         .drv = drv,
380         .filename = g_strdup(filename),
381         .options = options,
382         .ret = NOT_DONE,
383     };
384
385     if (!drv->bdrv_create) {
386         ret = -ENOTSUP;
387         goto out;
388     }
389
390     if (qemu_in_coroutine()) {
391         /* Fast-path if already in coroutine context */
392         bdrv_create_co_entry(&cco);
393     } else {
394         co = qemu_coroutine_create(bdrv_create_co_entry);
395         qemu_coroutine_enter(co, &cco);
396         while (cco.ret == NOT_DONE) {
397             qemu_aio_wait();
398         }
399     }
400
401     ret = cco.ret;
402
403 out:
404     g_free(cco.filename);
405     return ret;
406 }
407
408 int bdrv_create_file(const char* filename, QEMUOptionParameter *options)
409 {
410     BlockDriver *drv;
411
412     drv = bdrv_find_protocol(filename);
413     if (drv == NULL) {
414         return -ENOENT;
415     }
416
417     return bdrv_create(drv, filename, options);
418 }
419
420 /*
421  * Create a uniquely-named empty temporary file.
422  * Return 0 upon success, otherwise a negative errno value.
423  */
424 int get_tmp_filename(char *filename, int size)
425 {
426 #ifdef _WIN32
427     char temp_dir[MAX_PATH];
428     /* GetTempFileName requires that its output buffer (4th param)
429        have length MAX_PATH or greater.  */
430     assert(size >= MAX_PATH);
431     return (GetTempPath(MAX_PATH, temp_dir)
432             && GetTempFileName(temp_dir, "qem", 0, filename)
433             ? 0 : -GetLastError());
434 #else
435     int fd;
436     const char *tmpdir;
437     tmpdir = getenv("TMPDIR");
438     if (!tmpdir)
439         tmpdir = "/tmp";
440     if (snprintf(filename, size, "%s/vl.XXXXXX", tmpdir) >= size) {
441         return -EOVERFLOW;
442     }
443     fd = mkstemp(filename);
444     if (fd < 0) {
445         return -errno;
446     }
447     if (close(fd) != 0) {
448         unlink(filename);
449         return -errno;
450     }
451     return 0;
452 #endif
453 }
454
455 /*
456  * Detect host devices. By convention, /dev/cdrom[N] is always
457  * recognized as a host CDROM.
458  */
459 static BlockDriver *find_hdev_driver(const char *filename)
460 {
461     int score_max = 0, score;
462     BlockDriver *drv = NULL, *d;
463
464     QLIST_FOREACH(d, &bdrv_drivers, list) {
465         if (d->bdrv_probe_device) {
466             score = d->bdrv_probe_device(filename);
467             if (score > score_max) {
468                 score_max = score;
469                 drv = d;
470             }
471         }
472     }
473
474     return drv;
475 }
476
477 BlockDriver *bdrv_find_protocol(const char *filename)
478 {
479     BlockDriver *drv1;
480     char protocol[128];
481     int len;
482     const char *p;
483
484     /* TODO Drivers without bdrv_file_open must be specified explicitly */
485
486     /*
487      * XXX(hch): we really should not let host device detection
488      * override an explicit protocol specification, but moving this
489      * later breaks access to device names with colons in them.
490      * Thanks to the brain-dead persistent naming schemes on udev-
491      * based Linux systems those actually are quite common.
492      */
493     drv1 = find_hdev_driver(filename);
494     if (drv1) {
495         return drv1;
496     }
497
498     if (!path_has_protocol(filename)) {
499         return bdrv_find_format("file");
500     }
501     p = strchr(filename, ':');
502     assert(p != NULL);
503     len = p - filename;
504     if (len > sizeof(protocol) - 1)
505         len = sizeof(protocol) - 1;
506     memcpy(protocol, filename, len);
507     protocol[len] = '\0';
508     QLIST_FOREACH(drv1, &bdrv_drivers, list) {
509         if (drv1->protocol_name &&
510             !strcmp(drv1->protocol_name, protocol)) {
511             return drv1;
512         }
513     }
514     return NULL;
515 }
516
517 static int find_image_format(BlockDriverState *bs, const char *filename,
518                              BlockDriver **pdrv)
519 {
520     int score, score_max;
521     BlockDriver *drv1, *drv;
522     uint8_t buf[2048];
523     int ret = 0;
524
525     /* Return the raw BlockDriver * to scsi-generic devices or empty drives */
526     if (bs->sg || !bdrv_is_inserted(bs) || bdrv_getlength(bs) == 0) {
527         drv = bdrv_find_format("raw");
528         if (!drv) {
529             ret = -ENOENT;
530         }
531         *pdrv = drv;
532         return ret;
533     }
534
535     ret = bdrv_pread(bs, 0, buf, sizeof(buf));
536     if (ret < 0) {
537         *pdrv = NULL;
538         return ret;
539     }
540
541     score_max = 0;
542     drv = NULL;
543     QLIST_FOREACH(drv1, &bdrv_drivers, list) {
544         if (drv1->bdrv_probe) {
545             score = drv1->bdrv_probe(buf, ret, filename);
546             if (score > score_max) {
547                 score_max = score;
548                 drv = drv1;
549             }
550         }
551     }
552     if (!drv) {
553         ret = -ENOENT;
554     }
555     *pdrv = drv;
556     return ret;
557 }
558
559 /**
560  * Set the current 'total_sectors' value
561  */
562 static int refresh_total_sectors(BlockDriverState *bs, int64_t hint)
563 {
564     BlockDriver *drv = bs->drv;
565
566     /* Do not attempt drv->bdrv_getlength() on scsi-generic devices */
567     if (bs->sg)
568         return 0;
569
570     /* query actual device if possible, otherwise just trust the hint */
571     if (drv->bdrv_getlength) {
572         int64_t length = drv->bdrv_getlength(bs);
573         if (length < 0) {
574             return length;
575         }
576         hint = length >> BDRV_SECTOR_BITS;
577     }
578
579     bs->total_sectors = hint;
580     return 0;
581 }
582
583 /**
584  * Set open flags for a given cache mode
585  *
586  * Return 0 on success, -1 if the cache mode was invalid.
587  */
588 int bdrv_parse_cache_flags(const char *mode, int *flags)
589 {
590     *flags &= ~BDRV_O_CACHE_MASK;
591
592     if (!strcmp(mode, "off") || !strcmp(mode, "none")) {
593         *flags |= BDRV_O_NOCACHE | BDRV_O_CACHE_WB;
594     } else if (!strcmp(mode, "directsync")) {
595         *flags |= BDRV_O_NOCACHE;
596     } else if (!strcmp(mode, "writeback")) {
597         *flags |= BDRV_O_CACHE_WB;
598     } else if (!strcmp(mode, "unsafe")) {
599         *flags |= BDRV_O_CACHE_WB;
600         *flags |= BDRV_O_NO_FLUSH;
601     } else if (!strcmp(mode, "writethrough")) {
602         /* this is the default */
603     } else {
604         return -1;
605     }
606
607     return 0;
608 }
609
610 /**
611  * The copy-on-read flag is actually a reference count so multiple users may
612  * use the feature without worrying about clobbering its previous state.
613  * Copy-on-read stays enabled until all users have called to disable it.
614  */
615 void bdrv_enable_copy_on_read(BlockDriverState *bs)
616 {
617     bs->copy_on_read++;
618 }
619
620 void bdrv_disable_copy_on_read(BlockDriverState *bs)
621 {
622     assert(bs->copy_on_read > 0);
623     bs->copy_on_read--;
624 }
625
626 static int bdrv_open_flags(BlockDriverState *bs, int flags)
627 {
628     int open_flags = flags | BDRV_O_CACHE_WB;
629
630     /*
631      * Clear flags that are internal to the block layer before opening the
632      * image.
633      */
634     open_flags &= ~(BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
635
636     /*
637      * Snapshots should be writable.
638      */
639     if (bs->is_temporary) {
640         open_flags |= BDRV_O_RDWR;
641     }
642
643     return open_flags;
644 }
645
646 /*
647  * Common part for opening disk images and files
648  */
649 static int bdrv_open_common(BlockDriverState *bs, BlockDriverState *file,
650     const char *filename,
651     int flags, BlockDriver *drv)
652 {
653     int ret, open_flags;
654
655     assert(drv != NULL);
656     assert(bs->file == NULL);
657
658     trace_bdrv_open_common(bs, filename, flags, drv->format_name);
659
660     bs->open_flags = flags;
661     bs->buffer_alignment = 512;
662
663     assert(bs->copy_on_read == 0); /* bdrv_new() and bdrv_close() make it so */
664     if ((flags & BDRV_O_RDWR) && (flags & BDRV_O_COPY_ON_READ)) {
665         bdrv_enable_copy_on_read(bs);
666     }
667
668     pstrcpy(bs->filename, sizeof(bs->filename), filename);
669
670     if (use_bdrv_whitelist && !bdrv_is_whitelisted(drv)) {
671         return -ENOTSUP;
672     }
673
674     bs->drv = drv;
675     bs->opaque = g_malloc0(drv->instance_size);
676
677     bs->enable_write_cache = !!(flags & BDRV_O_CACHE_WB);
678     open_flags = bdrv_open_flags(bs, flags);
679
680     bs->read_only = !(open_flags & BDRV_O_RDWR);
681
682     /* Open the image, either directly or using a protocol */
683     if (drv->bdrv_file_open) {
684         if (file != NULL) {
685             bdrv_swap(file, bs);
686             ret = 0;
687         } else {
688             ret = drv->bdrv_file_open(bs, filename, open_flags);
689         }
690     } else {
691         assert(file != NULL);
692         bs->file = file;
693         ret = drv->bdrv_open(bs, open_flags);
694     }
695
696     if (ret < 0) {
697         goto free_and_fail;
698     }
699
700     ret = refresh_total_sectors(bs, bs->total_sectors);
701     if (ret < 0) {
702         goto free_and_fail;
703     }
704
705 #ifndef _WIN32
706     if (bs->is_temporary) {
707         unlink(filename);
708     }
709 #endif
710     return 0;
711
712 free_and_fail:
713     bs->file = NULL;
714     g_free(bs->opaque);
715     bs->opaque = NULL;
716     bs->drv = NULL;
717     return ret;
718 }
719
720 /*
721  * Opens a file using a protocol (file, host_device, nbd, ...)
722  */
723 int bdrv_file_open(BlockDriverState **pbs, const char *filename, int flags)
724 {
725     BlockDriverState *bs;
726     BlockDriver *drv;
727     int ret;
728
729     drv = bdrv_find_protocol(filename);
730     if (!drv) {
731         return -ENOENT;
732     }
733
734     bs = bdrv_new("");
735     ret = bdrv_open_common(bs, NULL, filename, flags, drv);
736     if (ret < 0) {
737         bdrv_delete(bs);
738         return ret;
739     }
740     bs->growable = 1;
741     *pbs = bs;
742     return 0;
743 }
744
745 int bdrv_open_backing_file(BlockDriverState *bs)
746 {
747     char backing_filename[PATH_MAX];
748     int back_flags, ret;
749     BlockDriver *back_drv = NULL;
750
751     if (bs->backing_hd != NULL) {
752         return 0;
753     }
754
755     bs->open_flags &= ~BDRV_O_NO_BACKING;
756     if (bs->backing_file[0] == '\0') {
757         return 0;
758     }
759
760     bs->backing_hd = bdrv_new("");
761     bdrv_get_full_backing_filename(bs, backing_filename,
762                                    sizeof(backing_filename));
763
764     if (bs->backing_format[0] != '\0') {
765         back_drv = bdrv_find_format(bs->backing_format);
766     }
767
768     /* backing files always opened read-only */
769     back_flags = bs->open_flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT);
770
771     ret = bdrv_open(bs->backing_hd, backing_filename, back_flags, back_drv);
772     if (ret < 0) {
773         bdrv_delete(bs->backing_hd);
774         bs->backing_hd = NULL;
775         bs->open_flags |= BDRV_O_NO_BACKING;
776         return ret;
777     }
778     return 0;
779 }
780
781 /*
782  * Opens a disk image (raw, qcow2, vmdk, ...)
783  */
784 int bdrv_open(BlockDriverState *bs, const char *filename, int flags,
785               BlockDriver *drv)
786 {
787     int ret;
788     /* TODO: extra byte is a hack to ensure MAX_PATH space on Windows. */
789     char tmp_filename[PATH_MAX + 1];
790     BlockDriverState *file = NULL;
791
792     if (flags & BDRV_O_SNAPSHOT) {
793         BlockDriverState *bs1;
794         int64_t total_size;
795         int is_protocol = 0;
796         BlockDriver *bdrv_qcow2;
797         QEMUOptionParameter *options;
798         char backing_filename[PATH_MAX];
799
800         /* if snapshot, we create a temporary backing file and open it
801            instead of opening 'filename' directly */
802
803         /* if there is a backing file, use it */
804         bs1 = bdrv_new("");
805         ret = bdrv_open(bs1, filename, 0, drv);
806         if (ret < 0) {
807             bdrv_delete(bs1);
808             return ret;
809         }
810         total_size = bdrv_getlength(bs1) & BDRV_SECTOR_MASK;
811
812         if (bs1->drv && bs1->drv->protocol_name)
813             is_protocol = 1;
814
815         bdrv_delete(bs1);
816
817         ret = get_tmp_filename(tmp_filename, sizeof(tmp_filename));
818         if (ret < 0) {
819             return ret;
820         }
821
822         /* Real path is meaningless for protocols */
823         if (is_protocol)
824             snprintf(backing_filename, sizeof(backing_filename),
825                      "%s", filename);
826         else if (!realpath(filename, backing_filename))
827             return -errno;
828
829         bdrv_qcow2 = bdrv_find_format("qcow2");
830         options = parse_option_parameters("", bdrv_qcow2->create_options, NULL);
831
832         set_option_parameter_int(options, BLOCK_OPT_SIZE, total_size);
833         set_option_parameter(options, BLOCK_OPT_BACKING_FILE, backing_filename);
834         if (drv) {
835             set_option_parameter(options, BLOCK_OPT_BACKING_FMT,
836                 drv->format_name);
837         }
838
839         ret = bdrv_create(bdrv_qcow2, tmp_filename, options);
840         free_option_parameters(options);
841         if (ret < 0) {
842             return ret;
843         }
844
845         filename = tmp_filename;
846         drv = bdrv_qcow2;
847         bs->is_temporary = 1;
848     }
849
850     /* Open image file without format layer */
851     if (flags & BDRV_O_RDWR) {
852         flags |= BDRV_O_ALLOW_RDWR;
853     }
854
855     ret = bdrv_file_open(&file, filename, bdrv_open_flags(bs, flags));
856     if (ret < 0) {
857         return ret;
858     }
859
860     /* Find the right image format driver */
861     if (!drv) {
862         ret = find_image_format(file, filename, &drv);
863     }
864
865     if (!drv) {
866         goto unlink_and_fail;
867     }
868
869     /* Open the image */
870     ret = bdrv_open_common(bs, file, filename, flags, drv);
871     if (ret < 0) {
872         goto unlink_and_fail;
873     }
874
875     if (bs->file != file) {
876         bdrv_delete(file);
877         file = NULL;
878     }
879
880     /* If there is a backing file, use it */
881     if ((flags & BDRV_O_NO_BACKING) == 0) {
882         ret = bdrv_open_backing_file(bs);
883         if (ret < 0) {
884             bdrv_close(bs);
885             return ret;
886         }
887     }
888
889     if (!bdrv_key_required(bs)) {
890         bdrv_dev_change_media_cb(bs, true);
891     }
892
893     /* throttling disk I/O limits */
894     if (bs->io_limits_enabled) {
895         bdrv_io_limits_enable(bs);
896     }
897
898     return 0;
899
900 unlink_and_fail:
901     if (file != NULL) {
902         bdrv_delete(file);
903     }
904     if (bs->is_temporary) {
905         unlink(filename);
906     }
907     return ret;
908 }
909
910 typedef struct BlockReopenQueueEntry {
911      bool prepared;
912      BDRVReopenState state;
913      QSIMPLEQ_ENTRY(BlockReopenQueueEntry) entry;
914 } BlockReopenQueueEntry;
915
916 /*
917  * Adds a BlockDriverState to a simple queue for an atomic, transactional
918  * reopen of multiple devices.
919  *
920  * bs_queue can either be an existing BlockReopenQueue that has had QSIMPLE_INIT
921  * already performed, or alternatively may be NULL a new BlockReopenQueue will
922  * be created and initialized. This newly created BlockReopenQueue should be
923  * passed back in for subsequent calls that are intended to be of the same
924  * atomic 'set'.
925  *
926  * bs is the BlockDriverState to add to the reopen queue.
927  *
928  * flags contains the open flags for the associated bs
929  *
930  * returns a pointer to bs_queue, which is either the newly allocated
931  * bs_queue, or the existing bs_queue being used.
932  *
933  */
934 BlockReopenQueue *bdrv_reopen_queue(BlockReopenQueue *bs_queue,
935                                     BlockDriverState *bs, int flags)
936 {
937     assert(bs != NULL);
938
939     BlockReopenQueueEntry *bs_entry;
940     if (bs_queue == NULL) {
941         bs_queue = g_new0(BlockReopenQueue, 1);
942         QSIMPLEQ_INIT(bs_queue);
943     }
944
945     if (bs->file) {
946         bdrv_reopen_queue(bs_queue, bs->file, flags);
947     }
948
949     bs_entry = g_new0(BlockReopenQueueEntry, 1);
950     QSIMPLEQ_INSERT_TAIL(bs_queue, bs_entry, entry);
951
952     bs_entry->state.bs = bs;
953     bs_entry->state.flags = flags;
954
955     return bs_queue;
956 }
957
958 /*
959  * Reopen multiple BlockDriverStates atomically & transactionally.
960  *
961  * The queue passed in (bs_queue) must have been built up previous
962  * via bdrv_reopen_queue().
963  *
964  * Reopens all BDS specified in the queue, with the appropriate
965  * flags.  All devices are prepared for reopen, and failure of any
966  * device will cause all device changes to be abandonded, and intermediate
967  * data cleaned up.
968  *
969  * If all devices prepare successfully, then the changes are committed
970  * to all devices.
971  *
972  */
973 int bdrv_reopen_multiple(BlockReopenQueue *bs_queue, Error **errp)
974 {
975     int ret = -1;
976     BlockReopenQueueEntry *bs_entry, *next;
977     Error *local_err = NULL;
978
979     assert(bs_queue != NULL);
980
981     bdrv_drain_all();
982
983     QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) {
984         if (bdrv_reopen_prepare(&bs_entry->state, bs_queue, &local_err)) {
985             error_propagate(errp, local_err);
986             goto cleanup;
987         }
988         bs_entry->prepared = true;
989     }
990
991     /* If we reach this point, we have success and just need to apply the
992      * changes
993      */
994     QSIMPLEQ_FOREACH(bs_entry, bs_queue, entry) {
995         bdrv_reopen_commit(&bs_entry->state);
996     }
997
998     ret = 0;
999
1000 cleanup:
1001     QSIMPLEQ_FOREACH_SAFE(bs_entry, bs_queue, entry, next) {
1002         if (ret && bs_entry->prepared) {
1003             bdrv_reopen_abort(&bs_entry->state);
1004         }
1005         g_free(bs_entry);
1006     }
1007     g_free(bs_queue);
1008     return ret;
1009 }
1010
1011
1012 /* Reopen a single BlockDriverState with the specified flags. */
1013 int bdrv_reopen(BlockDriverState *bs, int bdrv_flags, Error **errp)
1014 {
1015     int ret = -1;
1016     Error *local_err = NULL;
1017     BlockReopenQueue *queue = bdrv_reopen_queue(NULL, bs, bdrv_flags);
1018
1019     ret = bdrv_reopen_multiple(queue, &local_err);
1020     if (local_err != NULL) {
1021         error_propagate(errp, local_err);
1022     }
1023     return ret;
1024 }
1025
1026
1027 /*
1028  * Prepares a BlockDriverState for reopen. All changes are staged in the
1029  * 'opaque' field of the BDRVReopenState, which is used and allocated by
1030  * the block driver layer .bdrv_reopen_prepare()
1031  *
1032  * bs is the BlockDriverState to reopen
1033  * flags are the new open flags
1034  * queue is the reopen queue
1035  *
1036  * Returns 0 on success, non-zero on error.  On error errp will be set
1037  * as well.
1038  *
1039  * On failure, bdrv_reopen_abort() will be called to clean up any data.
1040  * It is the responsibility of the caller to then call the abort() or
1041  * commit() for any other BDS that have been left in a prepare() state
1042  *
1043  */
1044 int bdrv_reopen_prepare(BDRVReopenState *reopen_state, BlockReopenQueue *queue,
1045                         Error **errp)
1046 {
1047     int ret = -1;
1048     Error *local_err = NULL;
1049     BlockDriver *drv;
1050
1051     assert(reopen_state != NULL);
1052     assert(reopen_state->bs->drv != NULL);
1053     drv = reopen_state->bs->drv;
1054
1055     /* if we are to stay read-only, do not allow permission change
1056      * to r/w */
1057     if (!(reopen_state->bs->open_flags & BDRV_O_ALLOW_RDWR) &&
1058         reopen_state->flags & BDRV_O_RDWR) {
1059         error_set(errp, QERR_DEVICE_IS_READ_ONLY,
1060                   reopen_state->bs->device_name);
1061         goto error;
1062     }
1063
1064
1065     ret = bdrv_flush(reopen_state->bs);
1066     if (ret) {
1067         error_set(errp, ERROR_CLASS_GENERIC_ERROR, "Error (%s) flushing drive",
1068                   strerror(-ret));
1069         goto error;
1070     }
1071
1072     if (drv->bdrv_reopen_prepare) {
1073         ret = drv->bdrv_reopen_prepare(reopen_state, queue, &local_err);
1074         if (ret) {
1075             if (local_err != NULL) {
1076                 error_propagate(errp, local_err);
1077             } else {
1078                 error_set(errp, QERR_OPEN_FILE_FAILED,
1079                           reopen_state->bs->filename);
1080             }
1081             goto error;
1082         }
1083     } else {
1084         /* It is currently mandatory to have a bdrv_reopen_prepare()
1085          * handler for each supported drv. */
1086         error_set(errp, QERR_BLOCK_FORMAT_FEATURE_NOT_SUPPORTED,
1087                   drv->format_name, reopen_state->bs->device_name,
1088                  "reopening of file");
1089         ret = -1;
1090         goto error;
1091     }
1092
1093     ret = 0;
1094
1095 error:
1096     return ret;
1097 }
1098
1099 /*
1100  * Takes the staged changes for the reopen from bdrv_reopen_prepare(), and
1101  * makes them final by swapping the staging BlockDriverState contents into
1102  * the active BlockDriverState contents.
1103  */
1104 void bdrv_reopen_commit(BDRVReopenState *reopen_state)
1105 {
1106     BlockDriver *drv;
1107
1108     assert(reopen_state != NULL);
1109     drv = reopen_state->bs->drv;
1110     assert(drv != NULL);
1111
1112     /* If there are any driver level actions to take */
1113     if (drv->bdrv_reopen_commit) {
1114         drv->bdrv_reopen_commit(reopen_state);
1115     }
1116
1117     /* set BDS specific flags now */
1118     reopen_state->bs->open_flags         = reopen_state->flags;
1119     reopen_state->bs->enable_write_cache = !!(reopen_state->flags &
1120                                               BDRV_O_CACHE_WB);
1121     reopen_state->bs->read_only = !(reopen_state->flags & BDRV_O_RDWR);
1122 }
1123
1124 /*
1125  * Abort the reopen, and delete and free the staged changes in
1126  * reopen_state
1127  */
1128 void bdrv_reopen_abort(BDRVReopenState *reopen_state)
1129 {
1130     BlockDriver *drv;
1131
1132     assert(reopen_state != NULL);
1133     drv = reopen_state->bs->drv;
1134     assert(drv != NULL);
1135
1136     if (drv->bdrv_reopen_abort) {
1137         drv->bdrv_reopen_abort(reopen_state);
1138     }
1139 }
1140
1141
1142 void bdrv_close(BlockDriverState *bs)
1143 {
1144     bdrv_flush(bs);
1145     if (bs->job) {
1146         block_job_cancel_sync(bs->job);
1147     }
1148     bdrv_drain_all();
1149     notifier_list_notify(&bs->close_notifiers, bs);
1150
1151     if (bs->drv) {
1152         if (bs == bs_snapshots) {
1153             bs_snapshots = NULL;
1154         }
1155         if (bs->backing_hd) {
1156             bdrv_delete(bs->backing_hd);
1157             bs->backing_hd = NULL;
1158         }
1159         bs->drv->bdrv_close(bs);
1160         g_free(bs->opaque);
1161 #ifdef _WIN32
1162         if (bs->is_temporary) {
1163             unlink(bs->filename);
1164         }
1165 #endif
1166         bs->opaque = NULL;
1167         bs->drv = NULL;
1168         bs->copy_on_read = 0;
1169         bs->backing_file[0] = '\0';
1170         bs->backing_format[0] = '\0';
1171         bs->total_sectors = 0;
1172         bs->encrypted = 0;
1173         bs->valid_key = 0;
1174         bs->sg = 0;
1175         bs->growable = 0;
1176
1177         if (bs->file != NULL) {
1178             bdrv_delete(bs->file);
1179             bs->file = NULL;
1180         }
1181     }
1182
1183     bdrv_dev_change_media_cb(bs, false);
1184
1185     /*throttling disk I/O limits*/
1186     if (bs->io_limits_enabled) {
1187         bdrv_io_limits_disable(bs);
1188     }
1189 }
1190
1191 void bdrv_close_all(void)
1192 {
1193     BlockDriverState *bs;
1194
1195     QTAILQ_FOREACH(bs, &bdrv_states, list) {
1196         bdrv_close(bs);
1197     }
1198 }
1199
1200 /*
1201  * Wait for pending requests to complete across all BlockDriverStates
1202  *
1203  * This function does not flush data to disk, use bdrv_flush_all() for that
1204  * after calling this function.
1205  *
1206  * Note that completion of an asynchronous I/O operation can trigger any
1207  * number of other I/O operations on other devices---for example a coroutine
1208  * can be arbitrarily complex and a constant flow of I/O can come until the
1209  * coroutine is complete.  Because of this, it is not possible to have a
1210  * function to drain a single device's I/O queue.
1211  */
1212 void bdrv_drain_all(void)
1213 {
1214     BlockDriverState *bs;
1215     bool busy;
1216
1217     do {
1218         busy = qemu_aio_wait();
1219
1220         /* FIXME: We do not have timer support here, so this is effectively
1221          * a busy wait.
1222          */
1223         QTAILQ_FOREACH(bs, &bdrv_states, list) {
1224             if (!qemu_co_queue_empty(&bs->throttled_reqs)) {
1225                 qemu_co_queue_restart_all(&bs->throttled_reqs);
1226                 busy = true;
1227             }
1228         }
1229     } while (busy);
1230
1231     /* If requests are still pending there is a bug somewhere */
1232     QTAILQ_FOREACH(bs, &bdrv_states, list) {
1233         assert(QLIST_EMPTY(&bs->tracked_requests));
1234         assert(qemu_co_queue_empty(&bs->throttled_reqs));
1235     }
1236 }
1237
1238 /* make a BlockDriverState anonymous by removing from bdrv_state list.
1239    Also, NULL terminate the device_name to prevent double remove */
1240 void bdrv_make_anon(BlockDriverState *bs)
1241 {
1242     if (bs->device_name[0] != '\0') {
1243         QTAILQ_REMOVE(&bdrv_states, bs, list);
1244     }
1245     bs->device_name[0] = '\0';
1246 }
1247
1248 static void bdrv_rebind(BlockDriverState *bs)
1249 {
1250     if (bs->drv && bs->drv->bdrv_rebind) {
1251         bs->drv->bdrv_rebind(bs);
1252     }
1253 }
1254
1255 static void bdrv_move_feature_fields(BlockDriverState *bs_dest,
1256                                      BlockDriverState *bs_src)
1257 {
1258     /* move some fields that need to stay attached to the device */
1259     bs_dest->open_flags         = bs_src->open_flags;
1260
1261     /* dev info */
1262     bs_dest->dev_ops            = bs_src->dev_ops;
1263     bs_dest->dev_opaque         = bs_src->dev_opaque;
1264     bs_dest->dev                = bs_src->dev;
1265     bs_dest->buffer_alignment   = bs_src->buffer_alignment;
1266     bs_dest->copy_on_read       = bs_src->copy_on_read;
1267
1268     bs_dest->enable_write_cache = bs_src->enable_write_cache;
1269
1270     /* i/o timing parameters */
1271     bs_dest->slice_time         = bs_src->slice_time;
1272     bs_dest->slice_start        = bs_src->slice_start;
1273     bs_dest->slice_end          = bs_src->slice_end;
1274     bs_dest->io_limits          = bs_src->io_limits;
1275     bs_dest->io_base            = bs_src->io_base;
1276     bs_dest->throttled_reqs     = bs_src->throttled_reqs;
1277     bs_dest->block_timer        = bs_src->block_timer;
1278     bs_dest->io_limits_enabled  = bs_src->io_limits_enabled;
1279
1280     /* r/w error */
1281     bs_dest->on_read_error      = bs_src->on_read_error;
1282     bs_dest->on_write_error     = bs_src->on_write_error;
1283
1284     /* i/o status */
1285     bs_dest->iostatus_enabled   = bs_src->iostatus_enabled;
1286     bs_dest->iostatus           = bs_src->iostatus;
1287
1288     /* dirty bitmap */
1289     bs_dest->dirty_bitmap       = bs_src->dirty_bitmap;
1290
1291     /* job */
1292     bs_dest->in_use             = bs_src->in_use;
1293     bs_dest->job                = bs_src->job;
1294
1295     /* keep the same entry in bdrv_states */
1296     pstrcpy(bs_dest->device_name, sizeof(bs_dest->device_name),
1297             bs_src->device_name);
1298     bs_dest->list = bs_src->list;
1299 }
1300
1301 /*
1302  * Swap bs contents for two image chains while they are live,
1303  * while keeping required fields on the BlockDriverState that is
1304  * actually attached to a device.
1305  *
1306  * This will modify the BlockDriverState fields, and swap contents
1307  * between bs_new and bs_old. Both bs_new and bs_old are modified.
1308  *
1309  * bs_new is required to be anonymous.
1310  *
1311  * This function does not create any image files.
1312  */
1313 void bdrv_swap(BlockDriverState *bs_new, BlockDriverState *bs_old)
1314 {
1315     BlockDriverState tmp;
1316
1317     /* bs_new must be anonymous and shouldn't have anything fancy enabled */
1318     assert(bs_new->device_name[0] == '\0');
1319     assert(bs_new->dirty_bitmap == NULL);
1320     assert(bs_new->job == NULL);
1321     assert(bs_new->dev == NULL);
1322     assert(bs_new->in_use == 0);
1323     assert(bs_new->io_limits_enabled == false);
1324     assert(bs_new->block_timer == NULL);
1325
1326     tmp = *bs_new;
1327     *bs_new = *bs_old;
1328     *bs_old = tmp;
1329
1330     /* there are some fields that should not be swapped, move them back */
1331     bdrv_move_feature_fields(&tmp, bs_old);
1332     bdrv_move_feature_fields(bs_old, bs_new);
1333     bdrv_move_feature_fields(bs_new, &tmp);
1334
1335     /* bs_new shouldn't be in bdrv_states even after the swap!  */
1336     assert(bs_new->device_name[0] == '\0');
1337
1338     /* Check a few fields that should remain attached to the device */
1339     assert(bs_new->dev == NULL);
1340     assert(bs_new->job == NULL);
1341     assert(bs_new->in_use == 0);
1342     assert(bs_new->io_limits_enabled == false);
1343     assert(bs_new->block_timer == NULL);
1344
1345     bdrv_rebind(bs_new);
1346     bdrv_rebind(bs_old);
1347 }
1348
1349 /*
1350  * Add new bs contents at the top of an image chain while the chain is
1351  * live, while keeping required fields on the top layer.
1352  *
1353  * This will modify the BlockDriverState fields, and swap contents
1354  * between bs_new and bs_top. Both bs_new and bs_top are modified.
1355  *
1356  * bs_new is required to be anonymous.
1357  *
1358  * This function does not create any image files.
1359  */
1360 void bdrv_append(BlockDriverState *bs_new, BlockDriverState *bs_top)
1361 {
1362     bdrv_swap(bs_new, bs_top);
1363
1364     /* The contents of 'tmp' will become bs_top, as we are
1365      * swapping bs_new and bs_top contents. */
1366     bs_top->backing_hd = bs_new;
1367     bs_top->open_flags &= ~BDRV_O_NO_BACKING;
1368     pstrcpy(bs_top->backing_file, sizeof(bs_top->backing_file),
1369             bs_new->filename);
1370     pstrcpy(bs_top->backing_format, sizeof(bs_top->backing_format),
1371             bs_new->drv ? bs_new->drv->format_name : "");
1372 }
1373
1374 void bdrv_delete(BlockDriverState *bs)
1375 {
1376     assert(!bs->dev);
1377     assert(!bs->job);
1378     assert(!bs->in_use);
1379
1380     /* remove from list, if necessary */
1381     bdrv_make_anon(bs);
1382
1383     bdrv_close(bs);
1384
1385     assert(bs != bs_snapshots);
1386     g_free(bs);
1387 }
1388
1389 int bdrv_attach_dev(BlockDriverState *bs, void *dev)
1390 /* TODO change to DeviceState *dev when all users are qdevified */
1391 {
1392     if (bs->dev) {
1393         return -EBUSY;
1394     }
1395     bs->dev = dev;
1396     bdrv_iostatus_reset(bs);
1397     return 0;
1398 }
1399
1400 /* TODO qdevified devices don't use this, remove when devices are qdevified */
1401 void bdrv_attach_dev_nofail(BlockDriverState *bs, void *dev)
1402 {
1403     if (bdrv_attach_dev(bs, dev) < 0) {
1404         abort();
1405     }
1406 }
1407
1408 void bdrv_detach_dev(BlockDriverState *bs, void *dev)
1409 /* TODO change to DeviceState *dev when all users are qdevified */
1410 {
1411     assert(bs->dev == dev);
1412     bs->dev = NULL;
1413     bs->dev_ops = NULL;
1414     bs->dev_opaque = NULL;
1415     bs->buffer_alignment = 512;
1416 }
1417
1418 /* TODO change to return DeviceState * when all users are qdevified */
1419 void *bdrv_get_attached_dev(BlockDriverState *bs)
1420 {
1421     return bs->dev;
1422 }
1423
1424 void bdrv_set_dev_ops(BlockDriverState *bs, const BlockDevOps *ops,
1425                       void *opaque)
1426 {
1427     bs->dev_ops = ops;
1428     bs->dev_opaque = opaque;
1429     if (bdrv_dev_has_removable_media(bs) && bs == bs_snapshots) {
1430         bs_snapshots = NULL;
1431     }
1432 }
1433
1434 void bdrv_emit_qmp_error_event(const BlockDriverState *bdrv,
1435                                enum MonitorEvent ev,
1436                                BlockErrorAction action, bool is_read)
1437 {
1438     QObject *data;
1439     const char *action_str;
1440
1441     switch (action) {
1442     case BDRV_ACTION_REPORT:
1443         action_str = "report";
1444         break;
1445     case BDRV_ACTION_IGNORE:
1446         action_str = "ignore";
1447         break;
1448     case BDRV_ACTION_STOP:
1449         action_str = "stop";
1450         break;
1451     default:
1452         abort();
1453     }
1454
1455     data = qobject_from_jsonf("{ 'device': %s, 'action': %s, 'operation': %s }",
1456                               bdrv->device_name,
1457                               action_str,
1458                               is_read ? "read" : "write");
1459     monitor_protocol_event(ev, data);
1460
1461     qobject_decref(data);
1462 }
1463
1464 static void bdrv_emit_qmp_eject_event(BlockDriverState *bs, bool ejected)
1465 {
1466     QObject *data;
1467
1468     data = qobject_from_jsonf("{ 'device': %s, 'tray-open': %i }",
1469                               bdrv_get_device_name(bs), ejected);
1470     monitor_protocol_event(QEVENT_DEVICE_TRAY_MOVED, data);
1471
1472     qobject_decref(data);
1473 }
1474
1475 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load)
1476 {
1477     if (bs->dev_ops && bs->dev_ops->change_media_cb) {
1478         bool tray_was_closed = !bdrv_dev_is_tray_open(bs);
1479         bs->dev_ops->change_media_cb(bs->dev_opaque, load);
1480         if (tray_was_closed) {
1481             /* tray open */
1482             bdrv_emit_qmp_eject_event(bs, true);
1483         }
1484         if (load) {
1485             /* tray close */
1486             bdrv_emit_qmp_eject_event(bs, false);
1487         }
1488     }
1489 }
1490
1491 bool bdrv_dev_has_removable_media(BlockDriverState *bs)
1492 {
1493     return !bs->dev || (bs->dev_ops && bs->dev_ops->change_media_cb);
1494 }
1495
1496 void bdrv_dev_eject_request(BlockDriverState *bs, bool force)
1497 {
1498     if (bs->dev_ops && bs->dev_ops->eject_request_cb) {
1499         bs->dev_ops->eject_request_cb(bs->dev_opaque, force);
1500     }
1501 }
1502
1503 bool bdrv_dev_is_tray_open(BlockDriverState *bs)
1504 {
1505     if (bs->dev_ops && bs->dev_ops->is_tray_open) {
1506         return bs->dev_ops->is_tray_open(bs->dev_opaque);
1507     }
1508     return false;
1509 }
1510
1511 static void bdrv_dev_resize_cb(BlockDriverState *bs)
1512 {
1513     if (bs->dev_ops && bs->dev_ops->resize_cb) {
1514         bs->dev_ops->resize_cb(bs->dev_opaque);
1515     }
1516 }
1517
1518 bool bdrv_dev_is_medium_locked(BlockDriverState *bs)
1519 {
1520     if (bs->dev_ops && bs->dev_ops->is_medium_locked) {
1521         return bs->dev_ops->is_medium_locked(bs->dev_opaque);
1522     }
1523     return false;
1524 }
1525
1526 /*
1527  * Run consistency checks on an image
1528  *
1529  * Returns 0 if the check could be completed (it doesn't mean that the image is
1530  * free of errors) or -errno when an internal error occurred. The results of the
1531  * check are stored in res.
1532  */
1533 int bdrv_check(BlockDriverState *bs, BdrvCheckResult *res, BdrvCheckMode fix)
1534 {
1535     if (bs->drv->bdrv_check == NULL) {
1536         return -ENOTSUP;
1537     }
1538
1539     memset(res, 0, sizeof(*res));
1540     return bs->drv->bdrv_check(bs, res, fix);
1541 }
1542
1543 #define COMMIT_BUF_SECTORS 2048
1544
1545 /* commit COW file into the raw image */
1546 int bdrv_commit(BlockDriverState *bs)
1547 {
1548     BlockDriver *drv = bs->drv;
1549     int64_t sector, total_sectors;
1550     int n, ro, open_flags;
1551     int ret = 0;
1552     uint8_t *buf;
1553     char filename[PATH_MAX];
1554
1555     if (!drv)
1556         return -ENOMEDIUM;
1557     
1558     if (!bs->backing_hd) {
1559         return -ENOTSUP;
1560     }
1561
1562     if (bdrv_in_use(bs) || bdrv_in_use(bs->backing_hd)) {
1563         return -EBUSY;
1564     }
1565
1566     ro = bs->backing_hd->read_only;
1567     /* Use pstrcpy (not strncpy): filename must be NUL-terminated. */
1568     pstrcpy(filename, sizeof(filename), bs->backing_hd->filename);
1569     open_flags =  bs->backing_hd->open_flags;
1570
1571     if (ro) {
1572         if (bdrv_reopen(bs->backing_hd, open_flags | BDRV_O_RDWR, NULL)) {
1573             return -EACCES;
1574         }
1575     }
1576
1577     total_sectors = bdrv_getlength(bs) >> BDRV_SECTOR_BITS;
1578     buf = g_malloc(COMMIT_BUF_SECTORS * BDRV_SECTOR_SIZE);
1579
1580     for (sector = 0; sector < total_sectors; sector += n) {
1581         if (bdrv_is_allocated(bs, sector, COMMIT_BUF_SECTORS, &n)) {
1582
1583             if (bdrv_read(bs, sector, buf, n) != 0) {
1584                 ret = -EIO;
1585                 goto ro_cleanup;
1586             }
1587
1588             if (bdrv_write(bs->backing_hd, sector, buf, n) != 0) {
1589                 ret = -EIO;
1590                 goto ro_cleanup;
1591             }
1592         }
1593     }
1594
1595     if (drv->bdrv_make_empty) {
1596         ret = drv->bdrv_make_empty(bs);
1597         bdrv_flush(bs);
1598     }
1599
1600     /*
1601      * Make sure all data we wrote to the backing device is actually
1602      * stable on disk.
1603      */
1604     if (bs->backing_hd)
1605         bdrv_flush(bs->backing_hd);
1606
1607 ro_cleanup:
1608     g_free(buf);
1609
1610     if (ro) {
1611         /* ignoring error return here */
1612         bdrv_reopen(bs->backing_hd, open_flags & ~BDRV_O_RDWR, NULL);
1613     }
1614
1615     return ret;
1616 }
1617
1618 int bdrv_commit_all(void)
1619 {
1620     BlockDriverState *bs;
1621
1622     QTAILQ_FOREACH(bs, &bdrv_states, list) {
1623         int ret = bdrv_commit(bs);
1624         if (ret < 0) {
1625             return ret;
1626         }
1627     }
1628     return 0;
1629 }
1630
1631 struct BdrvTrackedRequest {
1632     BlockDriverState *bs;
1633     int64_t sector_num;
1634     int nb_sectors;
1635     bool is_write;
1636     QLIST_ENTRY(BdrvTrackedRequest) list;
1637     Coroutine *co; /* owner, used for deadlock detection */
1638     CoQueue wait_queue; /* coroutines blocked on this request */
1639 };
1640
1641 /**
1642  * Remove an active request from the tracked requests list
1643  *
1644  * This function should be called when a tracked request is completing.
1645  */
1646 static void tracked_request_end(BdrvTrackedRequest *req)
1647 {
1648     QLIST_REMOVE(req, list);
1649     qemu_co_queue_restart_all(&req->wait_queue);
1650 }
1651
1652 /**
1653  * Add an active request to the tracked requests list
1654  */
1655 static void tracked_request_begin(BdrvTrackedRequest *req,
1656                                   BlockDriverState *bs,
1657                                   int64_t sector_num,
1658                                   int nb_sectors, bool is_write)
1659 {
1660     *req = (BdrvTrackedRequest){
1661         .bs = bs,
1662         .sector_num = sector_num,
1663         .nb_sectors = nb_sectors,
1664         .is_write = is_write,
1665         .co = qemu_coroutine_self(),
1666     };
1667
1668     qemu_co_queue_init(&req->wait_queue);
1669
1670     QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
1671 }
1672
1673 /**
1674  * Round a region to cluster boundaries
1675  */
1676 void bdrv_round_to_clusters(BlockDriverState *bs,
1677                             int64_t sector_num, int nb_sectors,
1678                             int64_t *cluster_sector_num,
1679                             int *cluster_nb_sectors)
1680 {
1681     BlockDriverInfo bdi;
1682
1683     if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
1684         *cluster_sector_num = sector_num;
1685         *cluster_nb_sectors = nb_sectors;
1686     } else {
1687         int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
1688         *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
1689         *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
1690                                             nb_sectors, c);
1691     }
1692 }
1693
1694 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
1695                                      int64_t sector_num, int nb_sectors) {
1696     /*        aaaa   bbbb */
1697     if (sector_num >= req->sector_num + req->nb_sectors) {
1698         return false;
1699     }
1700     /* bbbb   aaaa        */
1701     if (req->sector_num >= sector_num + nb_sectors) {
1702         return false;
1703     }
1704     return true;
1705 }
1706
1707 static void coroutine_fn wait_for_overlapping_requests(BlockDriverState *bs,
1708         int64_t sector_num, int nb_sectors)
1709 {
1710     BdrvTrackedRequest *req;
1711     int64_t cluster_sector_num;
1712     int cluster_nb_sectors;
1713     bool retry;
1714
1715     /* If we touch the same cluster it counts as an overlap.  This guarantees
1716      * that allocating writes will be serialized and not race with each other
1717      * for the same cluster.  For example, in copy-on-read it ensures that the
1718      * CoR read and write operations are atomic and guest writes cannot
1719      * interleave between them.
1720      */
1721     bdrv_round_to_clusters(bs, sector_num, nb_sectors,
1722                            &cluster_sector_num, &cluster_nb_sectors);
1723
1724     do {
1725         retry = false;
1726         QLIST_FOREACH(req, &bs->tracked_requests, list) {
1727             if (tracked_request_overlaps(req, cluster_sector_num,
1728                                          cluster_nb_sectors)) {
1729                 /* Hitting this means there was a reentrant request, for
1730                  * example, a block driver issuing nested requests.  This must
1731                  * never happen since it means deadlock.
1732                  */
1733                 assert(qemu_coroutine_self() != req->co);
1734
1735                 qemu_co_queue_wait(&req->wait_queue);
1736                 retry = true;
1737                 break;
1738             }
1739         }
1740     } while (retry);
1741 }
1742
1743 /*
1744  * Return values:
1745  * 0        - success
1746  * -EINVAL  - backing format specified, but no file
1747  * -ENOSPC  - can't update the backing file because no space is left in the
1748  *            image file header
1749  * -ENOTSUP - format driver doesn't support changing the backing file
1750  */
1751 int bdrv_change_backing_file(BlockDriverState *bs,
1752     const char *backing_file, const char *backing_fmt)
1753 {
1754     BlockDriver *drv = bs->drv;
1755     int ret;
1756
1757     /* Backing file format doesn't make sense without a backing file */
1758     if (backing_fmt && !backing_file) {
1759         return -EINVAL;
1760     }
1761
1762     if (drv->bdrv_change_backing_file != NULL) {
1763         ret = drv->bdrv_change_backing_file(bs, backing_file, backing_fmt);
1764     } else {
1765         ret = -ENOTSUP;
1766     }
1767
1768     if (ret == 0) {
1769         pstrcpy(bs->backing_file, sizeof(bs->backing_file), backing_file ?: "");
1770         pstrcpy(bs->backing_format, sizeof(bs->backing_format), backing_fmt ?: "");
1771     }
1772     return ret;
1773 }
1774
1775 /*
1776  * Finds the image layer in the chain that has 'bs' as its backing file.
1777  *
1778  * active is the current topmost image.
1779  *
1780  * Returns NULL if bs is not found in active's image chain,
1781  * or if active == bs.
1782  */
1783 BlockDriverState *bdrv_find_overlay(BlockDriverState *active,
1784                                     BlockDriverState *bs)
1785 {
1786     BlockDriverState *overlay = NULL;
1787     BlockDriverState *intermediate;
1788
1789     assert(active != NULL);
1790     assert(bs != NULL);
1791
1792     /* if bs is the same as active, then by definition it has no overlay
1793      */
1794     if (active == bs) {
1795         return NULL;
1796     }
1797
1798     intermediate = active;
1799     while (intermediate->backing_hd) {
1800         if (intermediate->backing_hd == bs) {
1801             overlay = intermediate;
1802             break;
1803         }
1804         intermediate = intermediate->backing_hd;
1805     }
1806
1807     return overlay;
1808 }
1809
1810 typedef struct BlkIntermediateStates {
1811     BlockDriverState *bs;
1812     QSIMPLEQ_ENTRY(BlkIntermediateStates) entry;
1813 } BlkIntermediateStates;
1814
1815
1816 /*
1817  * Drops images above 'base' up to and including 'top', and sets the image
1818  * above 'top' to have base as its backing file.
1819  *
1820  * Requires that the overlay to 'top' is opened r/w, so that the backing file
1821  * information in 'bs' can be properly updated.
1822  *
1823  * E.g., this will convert the following chain:
1824  * bottom <- base <- intermediate <- top <- active
1825  *
1826  * to
1827  *
1828  * bottom <- base <- active
1829  *
1830  * It is allowed for bottom==base, in which case it converts:
1831  *
1832  * base <- intermediate <- top <- active
1833  *
1834  * to
1835  *
1836  * base <- active
1837  *
1838  * Error conditions:
1839  *  if active == top, that is considered an error
1840  *
1841  */
1842 int bdrv_drop_intermediate(BlockDriverState *active, BlockDriverState *top,
1843                            BlockDriverState *base)
1844 {
1845     BlockDriverState *intermediate;
1846     BlockDriverState *base_bs = NULL;
1847     BlockDriverState *new_top_bs = NULL;
1848     BlkIntermediateStates *intermediate_state, *next;
1849     int ret = -EIO;
1850
1851     QSIMPLEQ_HEAD(states_to_delete, BlkIntermediateStates) states_to_delete;
1852     QSIMPLEQ_INIT(&states_to_delete);
1853
1854     if (!top->drv || !base->drv) {
1855         goto exit;
1856     }
1857
1858     new_top_bs = bdrv_find_overlay(active, top);
1859
1860     if (new_top_bs == NULL) {
1861         /* we could not find the image above 'top', this is an error */
1862         goto exit;
1863     }
1864
1865     /* special case of new_top_bs->backing_hd already pointing to base - nothing
1866      * to do, no intermediate images */
1867     if (new_top_bs->backing_hd == base) {
1868         ret = 0;
1869         goto exit;
1870     }
1871
1872     intermediate = top;
1873
1874     /* now we will go down through the list, and add each BDS we find
1875      * into our deletion queue, until we hit the 'base'
1876      */
1877     while (intermediate) {
1878         intermediate_state = g_malloc0(sizeof(BlkIntermediateStates));
1879         intermediate_state->bs = intermediate;
1880         QSIMPLEQ_INSERT_TAIL(&states_to_delete, intermediate_state, entry);
1881
1882         if (intermediate->backing_hd == base) {
1883             base_bs = intermediate->backing_hd;
1884             break;
1885         }
1886         intermediate = intermediate->backing_hd;
1887     }
1888     if (base_bs == NULL) {
1889         /* something went wrong, we did not end at the base. safely
1890          * unravel everything, and exit with error */
1891         goto exit;
1892     }
1893
1894     /* success - we can delete the intermediate states, and link top->base */
1895     ret = bdrv_change_backing_file(new_top_bs, base_bs->filename,
1896                                    base_bs->drv ? base_bs->drv->format_name : "");
1897     if (ret) {
1898         goto exit;
1899     }
1900     new_top_bs->backing_hd = base_bs;
1901
1902
1903     QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) {
1904         /* so that bdrv_close() does not recursively close the chain */
1905         intermediate_state->bs->backing_hd = NULL;
1906         bdrv_delete(intermediate_state->bs);
1907     }
1908     ret = 0;
1909
1910 exit:
1911     QSIMPLEQ_FOREACH_SAFE(intermediate_state, &states_to_delete, entry, next) {
1912         g_free(intermediate_state);
1913     }
1914     return ret;
1915 }
1916
1917
1918 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
1919                                    size_t size)
1920 {
1921     int64_t len;
1922
1923     if (!bdrv_is_inserted(bs))
1924         return -ENOMEDIUM;
1925
1926     if (bs->growable)
1927         return 0;
1928
1929     len = bdrv_getlength(bs);
1930
1931     if (offset < 0)
1932         return -EIO;
1933
1934     if ((offset > len) || (len - offset < size))
1935         return -EIO;
1936
1937     return 0;
1938 }
1939
1940 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num,
1941                               int nb_sectors)
1942 {
1943     return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE,
1944                                    nb_sectors * BDRV_SECTOR_SIZE);
1945 }
1946
1947 typedef struct RwCo {
1948     BlockDriverState *bs;
1949     int64_t sector_num;
1950     int nb_sectors;
1951     QEMUIOVector *qiov;
1952     bool is_write;
1953     int ret;
1954 } RwCo;
1955
1956 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
1957 {
1958     RwCo *rwco = opaque;
1959
1960     if (!rwco->is_write) {
1961         rwco->ret = bdrv_co_do_readv(rwco->bs, rwco->sector_num,
1962                                      rwco->nb_sectors, rwco->qiov, 0);
1963     } else {
1964         rwco->ret = bdrv_co_do_writev(rwco->bs, rwco->sector_num,
1965                                       rwco->nb_sectors, rwco->qiov, 0);
1966     }
1967 }
1968
1969 /*
1970  * Process a synchronous request using coroutines
1971  */
1972 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf,
1973                       int nb_sectors, bool is_write)
1974 {
1975     QEMUIOVector qiov;
1976     struct iovec iov = {
1977         .iov_base = (void *)buf,
1978         .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
1979     };
1980     Coroutine *co;
1981     RwCo rwco = {
1982         .bs = bs,
1983         .sector_num = sector_num,
1984         .nb_sectors = nb_sectors,
1985         .qiov = &qiov,
1986         .is_write = is_write,
1987         .ret = NOT_DONE,
1988     };
1989
1990     qemu_iovec_init_external(&qiov, &iov, 1);
1991
1992     /**
1993      * In sync call context, when the vcpu is blocked, this throttling timer
1994      * will not fire; so the I/O throttling function has to be disabled here
1995      * if it has been enabled.
1996      */
1997     if (bs->io_limits_enabled) {
1998         fprintf(stderr, "Disabling I/O throttling on '%s' due "
1999                         "to synchronous I/O.\n", bdrv_get_device_name(bs));
2000         bdrv_io_limits_disable(bs);
2001     }
2002
2003     if (qemu_in_coroutine()) {
2004         /* Fast-path if already in coroutine context */
2005         bdrv_rw_co_entry(&rwco);
2006     } else {
2007         co = qemu_coroutine_create(bdrv_rw_co_entry);
2008         qemu_coroutine_enter(co, &rwco);
2009         while (rwco.ret == NOT_DONE) {
2010             qemu_aio_wait();
2011         }
2012     }
2013     return rwco.ret;
2014 }
2015
2016 /* return < 0 if error. See bdrv_write() for the return codes */
2017 int bdrv_read(BlockDriverState *bs, int64_t sector_num,
2018               uint8_t *buf, int nb_sectors)
2019 {
2020     return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false);
2021 }
2022
2023 /* Just like bdrv_read(), but with I/O throttling temporarily disabled */
2024 int bdrv_read_unthrottled(BlockDriverState *bs, int64_t sector_num,
2025                           uint8_t *buf, int nb_sectors)
2026 {
2027     bool enabled;
2028     int ret;
2029
2030     enabled = bs->io_limits_enabled;
2031     bs->io_limits_enabled = false;
2032     ret = bdrv_read(bs, 0, buf, 1);
2033     bs->io_limits_enabled = enabled;
2034     return ret;
2035 }
2036
2037 /* Return < 0 if error. Important errors are:
2038   -EIO         generic I/O error (may happen for all errors)
2039   -ENOMEDIUM   No media inserted.
2040   -EINVAL      Invalid sector number or nb_sectors
2041   -EACCES      Trying to write a read-only device
2042 */
2043 int bdrv_write(BlockDriverState *bs, int64_t sector_num,
2044                const uint8_t *buf, int nb_sectors)
2045 {
2046     return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true);
2047 }
2048
2049 int bdrv_pread(BlockDriverState *bs, int64_t offset,
2050                void *buf, int count1)
2051 {
2052     uint8_t tmp_buf[BDRV_SECTOR_SIZE];
2053     int len, nb_sectors, count;
2054     int64_t sector_num;
2055     int ret;
2056
2057     count = count1;
2058     /* first read to align to sector start */
2059     len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
2060     if (len > count)
2061         len = count;
2062     sector_num = offset >> BDRV_SECTOR_BITS;
2063     if (len > 0) {
2064         if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2065             return ret;
2066         memcpy(buf, tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), len);
2067         count -= len;
2068         if (count == 0)
2069             return count1;
2070         sector_num++;
2071         buf += len;
2072     }
2073
2074     /* read the sectors "in place" */
2075     nb_sectors = count >> BDRV_SECTOR_BITS;
2076     if (nb_sectors > 0) {
2077         if ((ret = bdrv_read(bs, sector_num, buf, nb_sectors)) < 0)
2078             return ret;
2079         sector_num += nb_sectors;
2080         len = nb_sectors << BDRV_SECTOR_BITS;
2081         buf += len;
2082         count -= len;
2083     }
2084
2085     /* add data from the last sector */
2086     if (count > 0) {
2087         if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2088             return ret;
2089         memcpy(buf, tmp_buf, count);
2090     }
2091     return count1;
2092 }
2093
2094 int bdrv_pwrite(BlockDriverState *bs, int64_t offset,
2095                 const void *buf, int count1)
2096 {
2097     uint8_t tmp_buf[BDRV_SECTOR_SIZE];
2098     int len, nb_sectors, count;
2099     int64_t sector_num;
2100     int ret;
2101
2102     count = count1;
2103     /* first write to align to sector start */
2104     len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
2105     if (len > count)
2106         len = count;
2107     sector_num = offset >> BDRV_SECTOR_BITS;
2108     if (len > 0) {
2109         if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2110             return ret;
2111         memcpy(tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), buf, len);
2112         if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
2113             return ret;
2114         count -= len;
2115         if (count == 0)
2116             return count1;
2117         sector_num++;
2118         buf += len;
2119     }
2120
2121     /* write the sectors "in place" */
2122     nb_sectors = count >> BDRV_SECTOR_BITS;
2123     if (nb_sectors > 0) {
2124         if ((ret = bdrv_write(bs, sector_num, buf, nb_sectors)) < 0)
2125             return ret;
2126         sector_num += nb_sectors;
2127         len = nb_sectors << BDRV_SECTOR_BITS;
2128         buf += len;
2129         count -= len;
2130     }
2131
2132     /* add data from the last sector */
2133     if (count > 0) {
2134         if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
2135             return ret;
2136         memcpy(tmp_buf, buf, count);
2137         if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
2138             return ret;
2139     }
2140     return count1;
2141 }
2142
2143 /*
2144  * Writes to the file and ensures that no writes are reordered across this
2145  * request (acts as a barrier)
2146  *
2147  * Returns 0 on success, -errno in error cases.
2148  */
2149 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset,
2150     const void *buf, int count)
2151 {
2152     int ret;
2153
2154     ret = bdrv_pwrite(bs, offset, buf, count);
2155     if (ret < 0) {
2156         return ret;
2157     }
2158
2159     /* No flush needed for cache modes that already do it */
2160     if (bs->enable_write_cache) {
2161         bdrv_flush(bs);
2162     }
2163
2164     return 0;
2165 }
2166
2167 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
2168         int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
2169 {
2170     /* Perform I/O through a temporary buffer so that users who scribble over
2171      * their read buffer while the operation is in progress do not end up
2172      * modifying the image file.  This is critical for zero-copy guest I/O
2173      * where anything might happen inside guest memory.
2174      */
2175     void *bounce_buffer;
2176
2177     BlockDriver *drv = bs->drv;
2178     struct iovec iov;
2179     QEMUIOVector bounce_qiov;
2180     int64_t cluster_sector_num;
2181     int cluster_nb_sectors;
2182     size_t skip_bytes;
2183     int ret;
2184
2185     /* Cover entire cluster so no additional backing file I/O is required when
2186      * allocating cluster in the image file.
2187      */
2188     bdrv_round_to_clusters(bs, sector_num, nb_sectors,
2189                            &cluster_sector_num, &cluster_nb_sectors);
2190
2191     trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors,
2192                                    cluster_sector_num, cluster_nb_sectors);
2193
2194     iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE;
2195     iov.iov_base = bounce_buffer = qemu_blockalign(bs, iov.iov_len);
2196     qemu_iovec_init_external(&bounce_qiov, &iov, 1);
2197
2198     ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors,
2199                              &bounce_qiov);
2200     if (ret < 0) {
2201         goto err;
2202     }
2203
2204     if (drv->bdrv_co_write_zeroes &&
2205         buffer_is_zero(bounce_buffer, iov.iov_len)) {
2206         ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num,
2207                                       cluster_nb_sectors);
2208     } else {
2209         /* This does not change the data on the disk, it is not necessary
2210          * to flush even in cache=writethrough mode.
2211          */
2212         ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors,
2213                                   &bounce_qiov);
2214     }
2215
2216     if (ret < 0) {
2217         /* It might be okay to ignore write errors for guest requests.  If this
2218          * is a deliberate copy-on-read then we don't want to ignore the error.
2219          * Simply report it in all cases.
2220          */
2221         goto err;
2222     }
2223
2224     skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE;
2225     qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes,
2226                         nb_sectors * BDRV_SECTOR_SIZE);
2227
2228 err:
2229     qemu_vfree(bounce_buffer);
2230     return ret;
2231 }
2232
2233 /*
2234  * Handle a read request in coroutine context
2235  */
2236 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
2237     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
2238     BdrvRequestFlags flags)
2239 {
2240     BlockDriver *drv = bs->drv;
2241     BdrvTrackedRequest req;
2242     int ret;
2243
2244     if (!drv) {
2245         return -ENOMEDIUM;
2246     }
2247     if (bdrv_check_request(bs, sector_num, nb_sectors)) {
2248         return -EIO;
2249     }
2250
2251     /* throttling disk read I/O */
2252     if (bs->io_limits_enabled) {
2253         bdrv_io_limits_intercept(bs, false, nb_sectors);
2254     }
2255
2256     if (bs->copy_on_read) {
2257         flags |= BDRV_REQ_COPY_ON_READ;
2258     }
2259     if (flags & BDRV_REQ_COPY_ON_READ) {
2260         bs->copy_on_read_in_flight++;
2261     }
2262
2263     if (bs->copy_on_read_in_flight) {
2264         wait_for_overlapping_requests(bs, sector_num, nb_sectors);
2265     }
2266
2267     tracked_request_begin(&req, bs, sector_num, nb_sectors, false);
2268
2269     if (flags & BDRV_REQ_COPY_ON_READ) {
2270         int pnum;
2271
2272         ret = bdrv_co_is_allocated(bs, sector_num, nb_sectors, &pnum);
2273         if (ret < 0) {
2274             goto out;
2275         }
2276
2277         if (!ret || pnum != nb_sectors) {
2278             ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov);
2279             goto out;
2280         }
2281     }
2282
2283     ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
2284
2285 out:
2286     tracked_request_end(&req);
2287
2288     if (flags & BDRV_REQ_COPY_ON_READ) {
2289         bs->copy_on_read_in_flight--;
2290     }
2291
2292     return ret;
2293 }
2294
2295 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num,
2296     int nb_sectors, QEMUIOVector *qiov)
2297 {
2298     trace_bdrv_co_readv(bs, sector_num, nb_sectors);
2299
2300     return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0);
2301 }
2302
2303 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs,
2304     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
2305 {
2306     trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors);
2307
2308     return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
2309                             BDRV_REQ_COPY_ON_READ);
2310 }
2311
2312 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
2313     int64_t sector_num, int nb_sectors)
2314 {
2315     BlockDriver *drv = bs->drv;
2316     QEMUIOVector qiov;
2317     struct iovec iov;
2318     int ret;
2319
2320     /* TODO Emulate only part of misaligned requests instead of letting block
2321      * drivers return -ENOTSUP and emulate everything */
2322
2323     /* First try the efficient write zeroes operation */
2324     if (drv->bdrv_co_write_zeroes) {
2325         ret = drv->bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
2326         if (ret != -ENOTSUP) {
2327             return ret;
2328         }
2329     }
2330
2331     /* Fall back to bounce buffer if write zeroes is unsupported */
2332     iov.iov_len  = nb_sectors * BDRV_SECTOR_SIZE;
2333     iov.iov_base = qemu_blockalign(bs, iov.iov_len);
2334     memset(iov.iov_base, 0, iov.iov_len);
2335     qemu_iovec_init_external(&qiov, &iov, 1);
2336
2337     ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, &qiov);
2338
2339     qemu_vfree(iov.iov_base);
2340     return ret;
2341 }
2342
2343 /*
2344  * Handle a write request in coroutine context
2345  */
2346 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
2347     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
2348     BdrvRequestFlags flags)
2349 {
2350     BlockDriver *drv = bs->drv;
2351     BdrvTrackedRequest req;
2352     int ret;
2353
2354     if (!bs->drv) {
2355         return -ENOMEDIUM;
2356     }
2357     if (bs->read_only) {
2358         return -EACCES;
2359     }
2360     if (bdrv_check_request(bs, sector_num, nb_sectors)) {
2361         return -EIO;
2362     }
2363
2364     /* throttling disk write I/O */
2365     if (bs->io_limits_enabled) {
2366         bdrv_io_limits_intercept(bs, true, nb_sectors);
2367     }
2368
2369     if (bs->copy_on_read_in_flight) {
2370         wait_for_overlapping_requests(bs, sector_num, nb_sectors);
2371     }
2372
2373     tracked_request_begin(&req, bs, sector_num, nb_sectors, true);
2374
2375     if (flags & BDRV_REQ_ZERO_WRITE) {
2376         ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors);
2377     } else {
2378         ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
2379     }
2380
2381     if (ret == 0 && !bs->enable_write_cache) {
2382         ret = bdrv_co_flush(bs);
2383     }
2384
2385     if (bs->dirty_bitmap) {
2386         bdrv_set_dirty(bs, sector_num, nb_sectors);
2387     }
2388
2389     if (bs->wr_highest_sector < sector_num + nb_sectors - 1) {
2390         bs->wr_highest_sector = sector_num + nb_sectors - 1;
2391     }
2392
2393     tracked_request_end(&req);
2394
2395     return ret;
2396 }
2397
2398 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num,
2399     int nb_sectors, QEMUIOVector *qiov)
2400 {
2401     trace_bdrv_co_writev(bs, sector_num, nb_sectors);
2402
2403     return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0);
2404 }
2405
2406 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs,
2407                                       int64_t sector_num, int nb_sectors)
2408 {
2409     trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
2410
2411     return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL,
2412                              BDRV_REQ_ZERO_WRITE);
2413 }
2414
2415 /**
2416  * Truncate file to 'offset' bytes (needed only for file protocols)
2417  */
2418 int bdrv_truncate(BlockDriverState *bs, int64_t offset)
2419 {
2420     BlockDriver *drv = bs->drv;
2421     int ret;
2422     if (!drv)
2423         return -ENOMEDIUM;
2424     if (!drv->bdrv_truncate)
2425         return -ENOTSUP;
2426     if (bs->read_only)
2427         return -EACCES;
2428     if (bdrv_in_use(bs))
2429         return -EBUSY;
2430     ret = drv->bdrv_truncate(bs, offset);
2431     if (ret == 0) {
2432         ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
2433         bdrv_dev_resize_cb(bs);
2434     }
2435     return ret;
2436 }
2437
2438 /**
2439  * Length of a allocated file in bytes. Sparse files are counted by actual
2440  * allocated space. Return < 0 if error or unknown.
2441  */
2442 int64_t bdrv_get_allocated_file_size(BlockDriverState *bs)
2443 {
2444     BlockDriver *drv = bs->drv;
2445     if (!drv) {
2446         return -ENOMEDIUM;
2447     }
2448     if (drv->bdrv_get_allocated_file_size) {
2449         return drv->bdrv_get_allocated_file_size(bs);
2450     }
2451     if (bs->file) {
2452         return bdrv_get_allocated_file_size(bs->file);
2453     }
2454     return -ENOTSUP;
2455 }
2456
2457 /**
2458  * Length of a file in bytes. Return < 0 if error or unknown.
2459  */
2460 int64_t bdrv_getlength(BlockDriverState *bs)
2461 {
2462     BlockDriver *drv = bs->drv;
2463     if (!drv)
2464         return -ENOMEDIUM;
2465
2466     if (bs->growable || bdrv_dev_has_removable_media(bs)) {
2467         if (drv->bdrv_getlength) {
2468             return drv->bdrv_getlength(bs);
2469         }
2470     }
2471     return bs->total_sectors * BDRV_SECTOR_SIZE;
2472 }
2473
2474 /* return 0 as number of sectors if no device present or error */
2475 void bdrv_get_geometry(BlockDriverState *bs, uint64_t *nb_sectors_ptr)
2476 {
2477     int64_t length;
2478     length = bdrv_getlength(bs);
2479     if (length < 0)
2480         length = 0;
2481     else
2482         length = length >> BDRV_SECTOR_BITS;
2483     *nb_sectors_ptr = length;
2484 }
2485
2486 /* throttling disk io limits */
2487 void bdrv_set_io_limits(BlockDriverState *bs,
2488                         BlockIOLimit *io_limits)
2489 {
2490     bs->io_limits = *io_limits;
2491     bs->io_limits_enabled = bdrv_io_limits_enabled(bs);
2492 }
2493
2494 void bdrv_set_on_error(BlockDriverState *bs, BlockdevOnError on_read_error,
2495                        BlockdevOnError on_write_error)
2496 {
2497     bs->on_read_error = on_read_error;
2498     bs->on_write_error = on_write_error;
2499 }
2500
2501 BlockdevOnError bdrv_get_on_error(BlockDriverState *bs, bool is_read)
2502 {
2503     return is_read ? bs->on_read_error : bs->on_write_error;
2504 }
2505
2506 BlockErrorAction bdrv_get_error_action(BlockDriverState *bs, bool is_read, int error)
2507 {
2508     BlockdevOnError on_err = is_read ? bs->on_read_error : bs->on_write_error;
2509
2510     switch (on_err) {
2511     case BLOCKDEV_ON_ERROR_ENOSPC:
2512         return (error == ENOSPC) ? BDRV_ACTION_STOP : BDRV_ACTION_REPORT;
2513     case BLOCKDEV_ON_ERROR_STOP:
2514         return BDRV_ACTION_STOP;
2515     case BLOCKDEV_ON_ERROR_REPORT:
2516         return BDRV_ACTION_REPORT;
2517     case BLOCKDEV_ON_ERROR_IGNORE:
2518         return BDRV_ACTION_IGNORE;
2519     default:
2520         abort();
2521     }
2522 }
2523
2524 /* This is done by device models because, while the block layer knows
2525  * about the error, it does not know whether an operation comes from
2526  * the device or the block layer (from a job, for example).
2527  */
2528 void bdrv_error_action(BlockDriverState *bs, BlockErrorAction action,
2529                        bool is_read, int error)
2530 {
2531     assert(error >= 0);
2532     bdrv_emit_qmp_error_event(bs, QEVENT_BLOCK_IO_ERROR, action, is_read);
2533     if (action == BDRV_ACTION_STOP) {
2534         vm_stop(RUN_STATE_IO_ERROR);
2535         bdrv_iostatus_set_err(bs, error);
2536     }
2537 }
2538
2539 int bdrv_is_read_only(BlockDriverState *bs)
2540 {
2541     return bs->read_only;
2542 }
2543
2544 int bdrv_is_sg(BlockDriverState *bs)
2545 {
2546     return bs->sg;
2547 }
2548
2549 int bdrv_enable_write_cache(BlockDriverState *bs)
2550 {
2551     return bs->enable_write_cache;
2552 }
2553
2554 void bdrv_set_enable_write_cache(BlockDriverState *bs, bool wce)
2555 {
2556     bs->enable_write_cache = wce;
2557
2558     /* so a reopen() will preserve wce */
2559     if (wce) {
2560         bs->open_flags |= BDRV_O_CACHE_WB;
2561     } else {
2562         bs->open_flags &= ~BDRV_O_CACHE_WB;
2563     }
2564 }
2565
2566 int bdrv_is_encrypted(BlockDriverState *bs)
2567 {
2568     if (bs->backing_hd && bs->backing_hd->encrypted)
2569         return 1;
2570     return bs->encrypted;
2571 }
2572
2573 int bdrv_key_required(BlockDriverState *bs)
2574 {
2575     BlockDriverState *backing_hd = bs->backing_hd;
2576
2577     if (backing_hd && backing_hd->encrypted && !backing_hd->valid_key)
2578         return 1;
2579     return (bs->encrypted && !bs->valid_key);
2580 }
2581
2582 int bdrv_set_key(BlockDriverState *bs, const char *key)
2583 {
2584     int ret;
2585     if (bs->backing_hd && bs->backing_hd->encrypted) {
2586         ret = bdrv_set_key(bs->backing_hd, key);
2587         if (ret < 0)
2588             return ret;
2589         if (!bs->encrypted)
2590             return 0;
2591     }
2592     if (!bs->encrypted) {
2593         return -EINVAL;
2594     } else if (!bs->drv || !bs->drv->bdrv_set_key) {
2595         return -ENOMEDIUM;
2596     }
2597     ret = bs->drv->bdrv_set_key(bs, key);
2598     if (ret < 0) {
2599         bs->valid_key = 0;
2600     } else if (!bs->valid_key) {
2601         bs->valid_key = 1;
2602         /* call the change callback now, we skipped it on open */
2603         bdrv_dev_change_media_cb(bs, true);
2604     }
2605     return ret;
2606 }
2607
2608 const char *bdrv_get_format_name(BlockDriverState *bs)
2609 {
2610     return bs->drv ? bs->drv->format_name : NULL;
2611 }
2612
2613 void bdrv_iterate_format(void (*it)(void *opaque, const char *name),
2614                          void *opaque)
2615 {
2616     BlockDriver *drv;
2617
2618     QLIST_FOREACH(drv, &bdrv_drivers, list) {
2619         it(opaque, drv->format_name);
2620     }
2621 }
2622
2623 BlockDriverState *bdrv_find(const char *name)
2624 {
2625     BlockDriverState *bs;
2626
2627     QTAILQ_FOREACH(bs, &bdrv_states, list) {
2628         if (!strcmp(name, bs->device_name)) {
2629             return bs;
2630         }
2631     }
2632     return NULL;
2633 }
2634
2635 BlockDriverState *bdrv_next(BlockDriverState *bs)
2636 {
2637     if (!bs) {
2638         return QTAILQ_FIRST(&bdrv_states);
2639     }
2640     return QTAILQ_NEXT(bs, list);
2641 }
2642
2643 void bdrv_iterate(void (*it)(void *opaque, BlockDriverState *bs), void *opaque)
2644 {
2645     BlockDriverState *bs;
2646
2647     QTAILQ_FOREACH(bs, &bdrv_states, list) {
2648         it(opaque, bs);
2649     }
2650 }
2651
2652 const char *bdrv_get_device_name(BlockDriverState *bs)
2653 {
2654     return bs->device_name;
2655 }
2656
2657 int bdrv_get_flags(BlockDriverState *bs)
2658 {
2659     return bs->open_flags;
2660 }
2661
2662 void bdrv_flush_all(void)
2663 {
2664     BlockDriverState *bs;
2665
2666     QTAILQ_FOREACH(bs, &bdrv_states, list) {
2667         bdrv_flush(bs);
2668     }
2669 }
2670
2671 int bdrv_has_zero_init(BlockDriverState *bs)
2672 {
2673     assert(bs->drv);
2674
2675     if (bs->drv->bdrv_has_zero_init) {
2676         return bs->drv->bdrv_has_zero_init(bs);
2677     }
2678
2679     return 1;
2680 }
2681
2682 typedef struct BdrvCoIsAllocatedData {
2683     BlockDriverState *bs;
2684     BlockDriverState *base;
2685     int64_t sector_num;
2686     int nb_sectors;
2687     int *pnum;
2688     int ret;
2689     bool done;
2690 } BdrvCoIsAllocatedData;
2691
2692 /*
2693  * Returns true iff the specified sector is present in the disk image. Drivers
2694  * not implementing the functionality are assumed to not support backing files,
2695  * hence all their sectors are reported as allocated.
2696  *
2697  * If 'sector_num' is beyond the end of the disk image the return value is 0
2698  * and 'pnum' is set to 0.
2699  *
2700  * 'pnum' is set to the number of sectors (including and immediately following
2701  * the specified sector) that are known to be in the same
2702  * allocated/unallocated state.
2703  *
2704  * 'nb_sectors' is the max value 'pnum' should be set to.  If nb_sectors goes
2705  * beyond the end of the disk image it will be clamped.
2706  */
2707 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t sector_num,
2708                                       int nb_sectors, int *pnum)
2709 {
2710     int64_t n;
2711
2712     if (sector_num >= bs->total_sectors) {
2713         *pnum = 0;
2714         return 0;
2715     }
2716
2717     n = bs->total_sectors - sector_num;
2718     if (n < nb_sectors) {
2719         nb_sectors = n;
2720     }
2721
2722     if (!bs->drv->bdrv_co_is_allocated) {
2723         *pnum = nb_sectors;
2724         return 1;
2725     }
2726
2727     return bs->drv->bdrv_co_is_allocated(bs, sector_num, nb_sectors, pnum);
2728 }
2729
2730 /* Coroutine wrapper for bdrv_is_allocated() */
2731 static void coroutine_fn bdrv_is_allocated_co_entry(void *opaque)
2732 {
2733     BdrvCoIsAllocatedData *data = opaque;
2734     BlockDriverState *bs = data->bs;
2735
2736     data->ret = bdrv_co_is_allocated(bs, data->sector_num, data->nb_sectors,
2737                                      data->pnum);
2738     data->done = true;
2739 }
2740
2741 /*
2742  * Synchronous wrapper around bdrv_co_is_allocated().
2743  *
2744  * See bdrv_co_is_allocated() for details.
2745  */
2746 int bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, int nb_sectors,
2747                       int *pnum)
2748 {
2749     Coroutine *co;
2750     BdrvCoIsAllocatedData data = {
2751         .bs = bs,
2752         .sector_num = sector_num,
2753         .nb_sectors = nb_sectors,
2754         .pnum = pnum,
2755         .done = false,
2756     };
2757
2758     co = qemu_coroutine_create(bdrv_is_allocated_co_entry);
2759     qemu_coroutine_enter(co, &data);
2760     while (!data.done) {
2761         qemu_aio_wait();
2762     }
2763     return data.ret;
2764 }
2765
2766 /*
2767  * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2768  *
2769  * Return true if the given sector is allocated in any image between
2770  * BASE and TOP (inclusive).  BASE can be NULL to check if the given
2771  * sector is allocated in any image of the chain.  Return false otherwise.
2772  *
2773  * 'pnum' is set to the number of sectors (including and immediately following
2774  *  the specified sector) that are known to be in the same
2775  *  allocated/unallocated state.
2776  *
2777  */
2778 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top,
2779                                             BlockDriverState *base,
2780                                             int64_t sector_num,
2781                                             int nb_sectors, int *pnum)
2782 {
2783     BlockDriverState *intermediate;
2784     int ret, n = nb_sectors;
2785
2786     intermediate = top;
2787     while (intermediate && intermediate != base) {
2788         int pnum_inter;
2789         ret = bdrv_co_is_allocated(intermediate, sector_num, nb_sectors,
2790                                    &pnum_inter);
2791         if (ret < 0) {
2792             return ret;
2793         } else if (ret) {
2794             *pnum = pnum_inter;
2795             return 1;
2796         }
2797
2798         /*
2799          * [sector_num, nb_sectors] is unallocated on top but intermediate
2800          * might have
2801          *
2802          * [sector_num+x, nr_sectors] allocated.
2803          */
2804         if (n > pnum_inter &&
2805             (intermediate == top ||
2806              sector_num + pnum_inter < intermediate->total_sectors)) {
2807             n = pnum_inter;
2808         }
2809
2810         intermediate = intermediate->backing_hd;
2811     }
2812
2813     *pnum = n;
2814     return 0;
2815 }
2816
2817 /* Coroutine wrapper for bdrv_is_allocated_above() */
2818 static void coroutine_fn bdrv_is_allocated_above_co_entry(void *opaque)
2819 {
2820     BdrvCoIsAllocatedData *data = opaque;
2821     BlockDriverState *top = data->bs;
2822     BlockDriverState *base = data->base;
2823
2824     data->ret = bdrv_co_is_allocated_above(top, base, data->sector_num,
2825                                            data->nb_sectors, data->pnum);
2826     data->done = true;
2827 }
2828
2829 /*
2830  * Synchronous wrapper around bdrv_co_is_allocated_above().
2831  *
2832  * See bdrv_co_is_allocated_above() for details.
2833  */
2834 int bdrv_is_allocated_above(BlockDriverState *top, BlockDriverState *base,
2835                             int64_t sector_num, int nb_sectors, int *pnum)
2836 {
2837     Coroutine *co;
2838     BdrvCoIsAllocatedData data = {
2839         .bs = top,
2840         .base = base,
2841         .sector_num = sector_num,
2842         .nb_sectors = nb_sectors,
2843         .pnum = pnum,
2844         .done = false,
2845     };
2846
2847     co = qemu_coroutine_create(bdrv_is_allocated_above_co_entry);
2848     qemu_coroutine_enter(co, &data);
2849     while (!data.done) {
2850         qemu_aio_wait();
2851     }
2852     return data.ret;
2853 }
2854
2855 BlockInfo *bdrv_query_info(BlockDriverState *bs)
2856 {
2857     BlockInfo *info = g_malloc0(sizeof(*info));
2858     info->device = g_strdup(bs->device_name);
2859     info->type = g_strdup("unknown");
2860     info->locked = bdrv_dev_is_medium_locked(bs);
2861     info->removable = bdrv_dev_has_removable_media(bs);
2862
2863     if (bdrv_dev_has_removable_media(bs)) {
2864         info->has_tray_open = true;
2865         info->tray_open = bdrv_dev_is_tray_open(bs);
2866     }
2867
2868     if (bdrv_iostatus_is_enabled(bs)) {
2869         info->has_io_status = true;
2870         info->io_status = bs->iostatus;
2871     }
2872
2873     if (bs->dirty_bitmap) {
2874         info->has_dirty = true;
2875         info->dirty = g_malloc0(sizeof(*info->dirty));
2876         info->dirty->count = bdrv_get_dirty_count(bs) * BDRV_SECTOR_SIZE;
2877         info->dirty->granularity =
2878             ((int64_t) BDRV_SECTOR_SIZE << hbitmap_granularity(bs->dirty_bitmap));
2879     }
2880
2881     if (bs->drv) {
2882         info->has_inserted = true;
2883         info->inserted = g_malloc0(sizeof(*info->inserted));
2884         info->inserted->file = g_strdup(bs->filename);
2885         info->inserted->ro = bs->read_only;
2886         info->inserted->drv = g_strdup(bs->drv->format_name);
2887         info->inserted->encrypted = bs->encrypted;
2888         info->inserted->encryption_key_missing = bdrv_key_required(bs);
2889
2890         if (bs->backing_file[0]) {
2891             info->inserted->has_backing_file = true;
2892             info->inserted->backing_file = g_strdup(bs->backing_file);
2893         }
2894
2895         info->inserted->backing_file_depth = bdrv_get_backing_file_depth(bs);
2896
2897         if (bs->io_limits_enabled) {
2898             info->inserted->bps =
2899                            bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
2900             info->inserted->bps_rd =
2901                            bs->io_limits.bps[BLOCK_IO_LIMIT_READ];
2902             info->inserted->bps_wr =
2903                            bs->io_limits.bps[BLOCK_IO_LIMIT_WRITE];
2904             info->inserted->iops =
2905                            bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
2906             info->inserted->iops_rd =
2907                            bs->io_limits.iops[BLOCK_IO_LIMIT_READ];
2908             info->inserted->iops_wr =
2909                            bs->io_limits.iops[BLOCK_IO_LIMIT_WRITE];
2910         }
2911     }
2912     return info;
2913 }
2914
2915 BlockInfoList *qmp_query_block(Error **errp)
2916 {
2917     BlockInfoList *head = NULL, **p_next = &head;
2918     BlockDriverState *bs;
2919
2920     QTAILQ_FOREACH(bs, &bdrv_states, list) {
2921         BlockInfoList *info = g_malloc0(sizeof(*info));
2922         info->value = bdrv_query_info(bs);
2923
2924         *p_next = info;
2925         p_next = &info->next;
2926     }
2927
2928     return head;
2929 }
2930
2931 BlockStats *bdrv_query_stats(const BlockDriverState *bs)
2932 {
2933     BlockStats *s;
2934
2935     s = g_malloc0(sizeof(*s));
2936
2937     if (bs->device_name[0]) {
2938         s->has_device = true;
2939         s->device = g_strdup(bs->device_name);
2940     }
2941
2942     s->stats = g_malloc0(sizeof(*s->stats));
2943     s->stats->rd_bytes = bs->nr_bytes[BDRV_ACCT_READ];
2944     s->stats->wr_bytes = bs->nr_bytes[BDRV_ACCT_WRITE];
2945     s->stats->rd_operations = bs->nr_ops[BDRV_ACCT_READ];
2946     s->stats->wr_operations = bs->nr_ops[BDRV_ACCT_WRITE];
2947     s->stats->wr_highest_offset = bs->wr_highest_sector * BDRV_SECTOR_SIZE;
2948     s->stats->flush_operations = bs->nr_ops[BDRV_ACCT_FLUSH];
2949     s->stats->wr_total_time_ns = bs->total_time_ns[BDRV_ACCT_WRITE];
2950     s->stats->rd_total_time_ns = bs->total_time_ns[BDRV_ACCT_READ];
2951     s->stats->flush_total_time_ns = bs->total_time_ns[BDRV_ACCT_FLUSH];
2952
2953     if (bs->file) {
2954         s->has_parent = true;
2955         s->parent = bdrv_query_stats(bs->file);
2956     }
2957
2958     return s;
2959 }
2960
2961 BlockStatsList *qmp_query_blockstats(Error **errp)
2962 {
2963     BlockStatsList *head = NULL, **p_next = &head;
2964     BlockDriverState *bs;
2965
2966     QTAILQ_FOREACH(bs, &bdrv_states, list) {
2967         BlockStatsList *info = g_malloc0(sizeof(*info));
2968         info->value = bdrv_query_stats(bs);
2969
2970         *p_next = info;
2971         p_next = &info->next;
2972     }
2973
2974     return head;
2975 }
2976
2977 const char *bdrv_get_encrypted_filename(BlockDriverState *bs)
2978 {
2979     if (bs->backing_hd && bs->backing_hd->encrypted)
2980         return bs->backing_file;
2981     else if (bs->encrypted)
2982         return bs->filename;
2983     else
2984         return NULL;
2985 }
2986
2987 void bdrv_get_backing_filename(BlockDriverState *bs,
2988                                char *filename, int filename_size)
2989 {
2990     pstrcpy(filename, filename_size, bs->backing_file);
2991 }
2992
2993 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num,
2994                           const uint8_t *buf, int nb_sectors)
2995 {
2996     BlockDriver *drv = bs->drv;
2997     if (!drv)
2998         return -ENOMEDIUM;
2999     if (!drv->bdrv_write_compressed)
3000         return -ENOTSUP;
3001     if (bdrv_check_request(bs, sector_num, nb_sectors))
3002         return -EIO;
3003
3004     assert(!bs->dirty_bitmap);
3005
3006     return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors);
3007 }
3008
3009 int bdrv_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
3010 {
3011     BlockDriver *drv = bs->drv;
3012     if (!drv)
3013         return -ENOMEDIUM;
3014     if (!drv->bdrv_get_info)
3015         return -ENOTSUP;
3016     memset(bdi, 0, sizeof(*bdi));
3017     return drv->bdrv_get_info(bs, bdi);
3018 }
3019
3020 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
3021                       int64_t pos, int size)
3022 {
3023     BlockDriver *drv = bs->drv;
3024     if (!drv)
3025         return -ENOMEDIUM;
3026     if (drv->bdrv_save_vmstate)
3027         return drv->bdrv_save_vmstate(bs, buf, pos, size);
3028     if (bs->file)
3029         return bdrv_save_vmstate(bs->file, buf, pos, size);
3030     return -ENOTSUP;
3031 }
3032
3033 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
3034                       int64_t pos, int size)
3035 {
3036     BlockDriver *drv = bs->drv;
3037     if (!drv)
3038         return -ENOMEDIUM;
3039     if (drv->bdrv_load_vmstate)
3040         return drv->bdrv_load_vmstate(bs, buf, pos, size);
3041     if (bs->file)
3042         return bdrv_load_vmstate(bs->file, buf, pos, size);
3043     return -ENOTSUP;
3044 }
3045
3046 void bdrv_debug_event(BlockDriverState *bs, BlkDebugEvent event)
3047 {
3048     BlockDriver *drv = bs->drv;
3049
3050     if (!drv || !drv->bdrv_debug_event) {
3051         return;
3052     }
3053
3054     drv->bdrv_debug_event(bs, event);
3055 }
3056
3057 int bdrv_debug_breakpoint(BlockDriverState *bs, const char *event,
3058                           const char *tag)
3059 {
3060     while (bs && bs->drv && !bs->drv->bdrv_debug_breakpoint) {
3061         bs = bs->file;
3062     }
3063
3064     if (bs && bs->drv && bs->drv->bdrv_debug_breakpoint) {
3065         return bs->drv->bdrv_debug_breakpoint(bs, event, tag);
3066     }
3067
3068     return -ENOTSUP;
3069 }
3070
3071 int bdrv_debug_resume(BlockDriverState *bs, const char *tag)
3072 {
3073     while (bs && bs->drv && !bs->drv->bdrv_debug_resume) {
3074         bs = bs->file;
3075     }
3076
3077     if (bs && bs->drv && bs->drv->bdrv_debug_resume) {
3078         return bs->drv->bdrv_debug_resume(bs, tag);
3079     }
3080
3081     return -ENOTSUP;
3082 }
3083
3084 bool bdrv_debug_is_suspended(BlockDriverState *bs, const char *tag)
3085 {
3086     while (bs && bs->drv && !bs->drv->bdrv_debug_is_suspended) {
3087         bs = bs->file;
3088     }
3089
3090     if (bs && bs->drv && bs->drv->bdrv_debug_is_suspended) {
3091         return bs->drv->bdrv_debug_is_suspended(bs, tag);
3092     }
3093
3094     return false;
3095 }
3096
3097 /**************************************************************/
3098 /* handling of snapshots */
3099
3100 int bdrv_can_snapshot(BlockDriverState *bs)
3101 {
3102     BlockDriver *drv = bs->drv;
3103     if (!drv || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
3104         return 0;
3105     }
3106
3107     if (!drv->bdrv_snapshot_create) {
3108         if (bs->file != NULL) {
3109             return bdrv_can_snapshot(bs->file);
3110         }
3111         return 0;
3112     }
3113
3114     return 1;
3115 }
3116
3117 int bdrv_is_snapshot(BlockDriverState *bs)
3118 {
3119     return !!(bs->open_flags & BDRV_O_SNAPSHOT);
3120 }
3121
3122 BlockDriverState *bdrv_snapshots(void)
3123 {
3124     BlockDriverState *bs;
3125
3126     if (bs_snapshots) {
3127         return bs_snapshots;
3128     }
3129
3130     bs = NULL;
3131     while ((bs = bdrv_next(bs))) {
3132         if (bdrv_can_snapshot(bs)) {
3133             bs_snapshots = bs;
3134             return bs;
3135         }
3136     }
3137     return NULL;
3138 }
3139
3140 int bdrv_snapshot_create(BlockDriverState *bs,
3141                          QEMUSnapshotInfo *sn_info)
3142 {
3143     BlockDriver *drv = bs->drv;
3144     if (!drv)
3145         return -ENOMEDIUM;
3146     if (drv->bdrv_snapshot_create)
3147         return drv->bdrv_snapshot_create(bs, sn_info);
3148     if (bs->file)
3149         return bdrv_snapshot_create(bs->file, sn_info);
3150     return -ENOTSUP;
3151 }
3152
3153 int bdrv_snapshot_goto(BlockDriverState *bs,
3154                        const char *snapshot_id)
3155 {
3156     BlockDriver *drv = bs->drv;
3157     int ret, open_ret;
3158
3159     if (!drv)
3160         return -ENOMEDIUM;
3161     if (drv->bdrv_snapshot_goto)
3162         return drv->bdrv_snapshot_goto(bs, snapshot_id);
3163
3164     if (bs->file) {
3165         drv->bdrv_close(bs);
3166         ret = bdrv_snapshot_goto(bs->file, snapshot_id);
3167         open_ret = drv->bdrv_open(bs, bs->open_flags);
3168         if (open_ret < 0) {
3169             bdrv_delete(bs->file);
3170             bs->drv = NULL;
3171             return open_ret;
3172         }
3173         return ret;
3174     }
3175
3176     return -ENOTSUP;
3177 }
3178
3179 int bdrv_snapshot_delete(BlockDriverState *bs, const char *snapshot_id)
3180 {
3181     BlockDriver *drv = bs->drv;
3182     if (!drv)
3183         return -ENOMEDIUM;
3184     if (drv->bdrv_snapshot_delete)
3185         return drv->bdrv_snapshot_delete(bs, snapshot_id);
3186     if (bs->file)
3187         return bdrv_snapshot_delete(bs->file, snapshot_id);
3188     return -ENOTSUP;
3189 }
3190
3191 int bdrv_snapshot_list(BlockDriverState *bs,
3192                        QEMUSnapshotInfo **psn_info)
3193 {
3194     BlockDriver *drv = bs->drv;
3195     if (!drv)
3196         return -ENOMEDIUM;
3197     if (drv->bdrv_snapshot_list)
3198         return drv->bdrv_snapshot_list(bs, psn_info);
3199     if (bs->file)
3200         return bdrv_snapshot_list(bs->file, psn_info);
3201     return -ENOTSUP;
3202 }
3203
3204 int bdrv_snapshot_load_tmp(BlockDriverState *bs,
3205         const char *snapshot_name)
3206 {
3207     BlockDriver *drv = bs->drv;
3208     if (!drv) {
3209         return -ENOMEDIUM;
3210     }
3211     if (!bs->read_only) {
3212         return -EINVAL;
3213     }
3214     if (drv->bdrv_snapshot_load_tmp) {
3215         return drv->bdrv_snapshot_load_tmp(bs, snapshot_name);
3216     }
3217     return -ENOTSUP;
3218 }
3219
3220 /* backing_file can either be relative, or absolute, or a protocol.  If it is
3221  * relative, it must be relative to the chain.  So, passing in bs->filename
3222  * from a BDS as backing_file should not be done, as that may be relative to
3223  * the CWD rather than the chain. */
3224 BlockDriverState *bdrv_find_backing_image(BlockDriverState *bs,
3225         const char *backing_file)
3226 {
3227     char *filename_full = NULL;
3228     char *backing_file_full = NULL;
3229     char *filename_tmp = NULL;
3230     int is_protocol = 0;
3231     BlockDriverState *curr_bs = NULL;
3232     BlockDriverState *retval = NULL;
3233
3234     if (!bs || !bs->drv || !backing_file) {
3235         return NULL;
3236     }
3237
3238     filename_full     = g_malloc(PATH_MAX);
3239     backing_file_full = g_malloc(PATH_MAX);
3240     filename_tmp      = g_malloc(PATH_MAX);
3241
3242     is_protocol = path_has_protocol(backing_file);
3243
3244     for (curr_bs = bs; curr_bs->backing_hd; curr_bs = curr_bs->backing_hd) {
3245
3246         /* If either of the filename paths is actually a protocol, then
3247          * compare unmodified paths; otherwise make paths relative */
3248         if (is_protocol || path_has_protocol(curr_bs->backing_file)) {
3249             if (strcmp(backing_file, curr_bs->backing_file) == 0) {
3250                 retval = curr_bs->backing_hd;
3251                 break;
3252             }
3253         } else {
3254             /* If not an absolute filename path, make it relative to the current
3255              * image's filename path */
3256             path_combine(filename_tmp, PATH_MAX, curr_bs->filename,
3257                          backing_file);
3258
3259             /* We are going to compare absolute pathnames */
3260             if (!realpath(filename_tmp, filename_full)) {
3261                 continue;
3262             }
3263
3264             /* We need to make sure the backing filename we are comparing against
3265              * is relative to the current image filename (or absolute) */
3266             path_combine(filename_tmp, PATH_MAX, curr_bs->filename,
3267                          curr_bs->backing_file);
3268
3269             if (!realpath(filename_tmp, backing_file_full)) {
3270                 continue;
3271             }
3272
3273             if (strcmp(backing_file_full, filename_full) == 0) {
3274                 retval = curr_bs->backing_hd;
3275                 break;
3276             }
3277         }
3278     }
3279
3280     g_free(filename_full);
3281     g_free(backing_file_full);
3282     g_free(filename_tmp);
3283     return retval;
3284 }
3285
3286 int bdrv_get_backing_file_depth(BlockDriverState *bs)
3287 {
3288     if (!bs->drv) {
3289         return 0;
3290     }
3291
3292     if (!bs->backing_hd) {
3293         return 0;
3294     }
3295
3296     return 1 + bdrv_get_backing_file_depth(bs->backing_hd);
3297 }
3298
3299 BlockDriverState *bdrv_find_base(BlockDriverState *bs)
3300 {
3301     BlockDriverState *curr_bs = NULL;
3302
3303     if (!bs) {
3304         return NULL;
3305     }
3306
3307     curr_bs = bs;
3308
3309     while (curr_bs->backing_hd) {
3310         curr_bs = curr_bs->backing_hd;
3311     }
3312     return curr_bs;
3313 }
3314
3315 #define NB_SUFFIXES 4
3316
3317 char *get_human_readable_size(char *buf, int buf_size, int64_t size)
3318 {
3319     static const char suffixes[NB_SUFFIXES] = "KMGT";
3320     int64_t base;
3321     int i;
3322
3323     if (size <= 999) {
3324         snprintf(buf, buf_size, "%" PRId64, size);
3325     } else {
3326         base = 1024;
3327         for(i = 0; i < NB_SUFFIXES; i++) {
3328             if (size < (10 * base)) {
3329                 snprintf(buf, buf_size, "%0.1f%c",
3330                          (double)size / base,
3331                          suffixes[i]);
3332                 break;
3333             } else if (size < (1000 * base) || i == (NB_SUFFIXES - 1)) {
3334                 snprintf(buf, buf_size, "%" PRId64 "%c",
3335                          ((size + (base >> 1)) / base),
3336                          suffixes[i]);
3337                 break;
3338             }
3339             base = base * 1024;
3340         }
3341     }
3342     return buf;
3343 }
3344
3345 char *bdrv_snapshot_dump(char *buf, int buf_size, QEMUSnapshotInfo *sn)
3346 {
3347     char buf1[128], date_buf[128], clock_buf[128];
3348     struct tm tm;
3349     time_t ti;
3350     int64_t secs;
3351
3352     if (!sn) {
3353         snprintf(buf, buf_size,
3354                  "%-10s%-20s%7s%20s%15s",
3355                  "ID", "TAG", "VM SIZE", "DATE", "VM CLOCK");
3356     } else {
3357         ti = sn->date_sec;
3358         localtime_r(&ti, &tm);
3359         strftime(date_buf, sizeof(date_buf),
3360                  "%Y-%m-%d %H:%M:%S", &tm);
3361         secs = sn->vm_clock_nsec / 1000000000;
3362         snprintf(clock_buf, sizeof(clock_buf),
3363                  "%02d:%02d:%02d.%03d",
3364                  (int)(secs / 3600),
3365                  (int)((secs / 60) % 60),
3366                  (int)(secs % 60),
3367                  (int)((sn->vm_clock_nsec / 1000000) % 1000));
3368         snprintf(buf, buf_size,
3369                  "%-10s%-20s%7s%20s%15s",
3370                  sn->id_str, sn->name,
3371                  get_human_readable_size(buf1, sizeof(buf1), sn->vm_state_size),
3372                  date_buf,
3373                  clock_buf);
3374     }
3375     return buf;
3376 }
3377
3378 /**************************************************************/
3379 /* async I/Os */
3380
3381 BlockDriverAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num,
3382                                  QEMUIOVector *qiov, int nb_sectors,
3383                                  BlockDriverCompletionFunc *cb, void *opaque)
3384 {
3385     trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque);
3386
3387     return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
3388                                  cb, opaque, false);
3389 }
3390
3391 BlockDriverAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num,
3392                                   QEMUIOVector *qiov, int nb_sectors,
3393                                   BlockDriverCompletionFunc *cb, void *opaque)
3394 {
3395     trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque);
3396
3397     return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
3398                                  cb, opaque, true);
3399 }
3400
3401
3402 typedef struct MultiwriteCB {
3403     int error;
3404     int num_requests;
3405     int num_callbacks;
3406     struct {
3407         BlockDriverCompletionFunc *cb;
3408         void *opaque;
3409         QEMUIOVector *free_qiov;
3410     } callbacks[];
3411 } MultiwriteCB;
3412
3413 static void multiwrite_user_cb(MultiwriteCB *mcb)
3414 {
3415     int i;
3416
3417     for (i = 0; i < mcb->num_callbacks; i++) {
3418         mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error);
3419         if (mcb->callbacks[i].free_qiov) {
3420             qemu_iovec_destroy(mcb->callbacks[i].free_qiov);
3421         }
3422         g_free(mcb->callbacks[i].free_qiov);
3423     }
3424 }
3425
3426 static void multiwrite_cb(void *opaque, int ret)
3427 {
3428     MultiwriteCB *mcb = opaque;
3429
3430     trace_multiwrite_cb(mcb, ret);
3431
3432     if (ret < 0 && !mcb->error) {
3433         mcb->error = ret;
3434     }
3435
3436     mcb->num_requests--;
3437     if (mcb->num_requests == 0) {
3438         multiwrite_user_cb(mcb);
3439         g_free(mcb);
3440     }
3441 }
3442
3443 static int multiwrite_req_compare(const void *a, const void *b)
3444 {
3445     const BlockRequest *req1 = a, *req2 = b;
3446
3447     /*
3448      * Note that we can't simply subtract req2->sector from req1->sector
3449      * here as that could overflow the return value.
3450      */
3451     if (req1->sector > req2->sector) {
3452         return 1;
3453     } else if (req1->sector < req2->sector) {
3454         return -1;
3455     } else {
3456         return 0;
3457     }
3458 }
3459
3460 /*
3461  * Takes a bunch of requests and tries to merge them. Returns the number of
3462  * requests that remain after merging.
3463  */
3464 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs,
3465     int num_reqs, MultiwriteCB *mcb)
3466 {
3467     int i, outidx;
3468
3469     // Sort requests by start sector
3470     qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare);
3471
3472     // Check if adjacent requests touch the same clusters. If so, combine them,
3473     // filling up gaps with zero sectors.
3474     outidx = 0;
3475     for (i = 1; i < num_reqs; i++) {
3476         int merge = 0;
3477         int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors;
3478
3479         // Handle exactly sequential writes and overlapping writes.
3480         if (reqs[i].sector <= oldreq_last) {
3481             merge = 1;
3482         }
3483
3484         if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) {
3485             merge = 0;
3486         }
3487
3488         if (merge) {
3489             size_t size;
3490             QEMUIOVector *qiov = g_malloc0(sizeof(*qiov));
3491             qemu_iovec_init(qiov,
3492                 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1);
3493
3494             // Add the first request to the merged one. If the requests are
3495             // overlapping, drop the last sectors of the first request.
3496             size = (reqs[i].sector - reqs[outidx].sector) << 9;
3497             qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size);
3498
3499             // We should need to add any zeros between the two requests
3500             assert (reqs[i].sector <= oldreq_last);
3501
3502             // Add the second request
3503             qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size);
3504
3505             reqs[outidx].nb_sectors = qiov->size >> 9;
3506             reqs[outidx].qiov = qiov;
3507
3508             mcb->callbacks[i].free_qiov = reqs[outidx].qiov;
3509         } else {
3510             outidx++;
3511             reqs[outidx].sector     = reqs[i].sector;
3512             reqs[outidx].nb_sectors = reqs[i].nb_sectors;
3513             reqs[outidx].qiov       = reqs[i].qiov;
3514         }
3515     }
3516
3517     return outidx + 1;
3518 }
3519
3520 /*
3521  * Submit multiple AIO write requests at once.
3522  *
3523  * On success, the function returns 0 and all requests in the reqs array have
3524  * been submitted. In error case this function returns -1, and any of the
3525  * requests may or may not be submitted yet. In particular, this means that the
3526  * callback will be called for some of the requests, for others it won't. The
3527  * caller must check the error field of the BlockRequest to wait for the right
3528  * callbacks (if error != 0, no callback will be called).
3529  *
3530  * The implementation may modify the contents of the reqs array, e.g. to merge
3531  * requests. However, the fields opaque and error are left unmodified as they
3532  * are used to signal failure for a single request to the caller.
3533  */
3534 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs)
3535 {
3536     MultiwriteCB *mcb;
3537     int i;
3538
3539     /* don't submit writes if we don't have a medium */
3540     if (bs->drv == NULL) {
3541         for (i = 0; i < num_reqs; i++) {
3542             reqs[i].error = -ENOMEDIUM;
3543         }
3544         return -1;
3545     }
3546
3547     if (num_reqs == 0) {
3548         return 0;
3549     }
3550
3551     // Create MultiwriteCB structure
3552     mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks));
3553     mcb->num_requests = 0;
3554     mcb->num_callbacks = num_reqs;
3555
3556     for (i = 0; i < num_reqs; i++) {
3557         mcb->callbacks[i].cb = reqs[i].cb;
3558         mcb->callbacks[i].opaque = reqs[i].opaque;
3559     }
3560
3561     // Check for mergable requests
3562     num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb);
3563
3564     trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs);
3565
3566     /* Run the aio requests. */
3567     mcb->num_requests = num_reqs;
3568     for (i = 0; i < num_reqs; i++) {
3569         bdrv_aio_writev(bs, reqs[i].sector, reqs[i].qiov,
3570             reqs[i].nb_sectors, multiwrite_cb, mcb);
3571     }
3572
3573     return 0;
3574 }
3575
3576 void bdrv_aio_cancel(BlockDriverAIOCB *acb)
3577 {
3578     acb->aiocb_info->cancel(acb);
3579 }
3580
3581 /* block I/O throttling */
3582 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
3583                  bool is_write, double elapsed_time, uint64_t *wait)
3584 {
3585     uint64_t bps_limit = 0;
3586     double   bytes_limit, bytes_base, bytes_res;
3587     double   slice_time, wait_time;
3588
3589     if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
3590         bps_limit = bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
3591     } else if (bs->io_limits.bps[is_write]) {
3592         bps_limit = bs->io_limits.bps[is_write];
3593     } else {
3594         if (wait) {
3595             *wait = 0;
3596         }
3597
3598         return false;
3599     }
3600
3601     slice_time = bs->slice_end - bs->slice_start;
3602     slice_time /= (NANOSECONDS_PER_SECOND);
3603     bytes_limit = bps_limit * slice_time;
3604     bytes_base  = bs->nr_bytes[is_write] - bs->io_base.bytes[is_write];
3605     if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
3606         bytes_base += bs->nr_bytes[!is_write] - bs->io_base.bytes[!is_write];
3607     }
3608
3609     /* bytes_base: the bytes of data which have been read/written; and
3610      *             it is obtained from the history statistic info.
3611      * bytes_res: the remaining bytes of data which need to be read/written.
3612      * (bytes_base + bytes_res) / bps_limit: used to calcuate
3613      *             the total time for completing reading/writting all data.
3614      */
3615     bytes_res   = (unsigned) nb_sectors * BDRV_SECTOR_SIZE;
3616
3617     if (bytes_base + bytes_res <= bytes_limit) {
3618         if (wait) {
3619             *wait = 0;
3620         }
3621
3622         return false;
3623     }
3624
3625     /* Calc approx time to dispatch */
3626     wait_time = (bytes_base + bytes_res) / bps_limit - elapsed_time;
3627
3628     /* When the I/O rate at runtime exceeds the limits,
3629      * bs->slice_end need to be extended in order that the current statistic
3630      * info can be kept until the timer fire, so it is increased and tuned
3631      * based on the result of experiment.
3632      */
3633     bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10;
3634     bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME;
3635     if (wait) {
3636         *wait = wait_time * BLOCK_IO_SLICE_TIME * 10;
3637     }
3638
3639     return true;
3640 }
3641
3642 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
3643                              double elapsed_time, uint64_t *wait)
3644 {
3645     uint64_t iops_limit = 0;
3646     double   ios_limit, ios_base;
3647     double   slice_time, wait_time;
3648
3649     if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3650         iops_limit = bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
3651     } else if (bs->io_limits.iops[is_write]) {
3652         iops_limit = bs->io_limits.iops[is_write];
3653     } else {
3654         if (wait) {
3655             *wait = 0;
3656         }
3657
3658         return false;
3659     }
3660
3661     slice_time = bs->slice_end - bs->slice_start;
3662     slice_time /= (NANOSECONDS_PER_SECOND);
3663     ios_limit  = iops_limit * slice_time;
3664     ios_base   = bs->nr_ops[is_write] - bs->io_base.ios[is_write];
3665     if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3666         ios_base += bs->nr_ops[!is_write] - bs->io_base.ios[!is_write];
3667     }
3668
3669     if (ios_base + 1 <= ios_limit) {
3670         if (wait) {
3671             *wait = 0;
3672         }
3673
3674         return false;
3675     }
3676
3677     /* Calc approx time to dispatch */
3678     wait_time = (ios_base + 1) / iops_limit;
3679     if (wait_time > elapsed_time) {
3680         wait_time = wait_time - elapsed_time;
3681     } else {
3682         wait_time = 0;
3683     }
3684
3685     bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10;
3686     bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME;
3687     if (wait) {
3688         *wait = wait_time * BLOCK_IO_SLICE_TIME * 10;
3689     }
3690
3691     return true;
3692 }
3693
3694 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
3695                            bool is_write, int64_t *wait)
3696 {
3697     int64_t  now, max_wait;
3698     uint64_t bps_wait = 0, iops_wait = 0;
3699     double   elapsed_time;
3700     int      bps_ret, iops_ret;
3701
3702     now = qemu_get_clock_ns(vm_clock);
3703     if ((bs->slice_start < now)
3704         && (bs->slice_end > now)) {
3705         bs->slice_end = now + bs->slice_time;
3706     } else {
3707         bs->slice_time  =  5 * BLOCK_IO_SLICE_TIME;
3708         bs->slice_start = now;
3709         bs->slice_end   = now + bs->slice_time;
3710
3711         bs->io_base.bytes[is_write]  = bs->nr_bytes[is_write];
3712         bs->io_base.bytes[!is_write] = bs->nr_bytes[!is_write];
3713
3714         bs->io_base.ios[is_write]    = bs->nr_ops[is_write];
3715         bs->io_base.ios[!is_write]   = bs->nr_ops[!is_write];
3716     }
3717
3718     elapsed_time  = now - bs->slice_start;
3719     elapsed_time  /= (NANOSECONDS_PER_SECOND);
3720
3721     bps_ret  = bdrv_exceed_bps_limits(bs, nb_sectors,
3722                                       is_write, elapsed_time, &bps_wait);
3723     iops_ret = bdrv_exceed_iops_limits(bs, is_write,
3724                                       elapsed_time, &iops_wait);
3725     if (bps_ret || iops_ret) {
3726         max_wait = bps_wait > iops_wait ? bps_wait : iops_wait;
3727         if (wait) {
3728             *wait = max_wait;
3729         }
3730
3731         now = qemu_get_clock_ns(vm_clock);
3732         if (bs->slice_end < now + max_wait) {
3733             bs->slice_end = now + max_wait;
3734         }
3735
3736         return true;
3737     }
3738
3739     if (wait) {
3740         *wait = 0;
3741     }
3742
3743     return false;
3744 }
3745
3746 /**************************************************************/
3747 /* async block device emulation */
3748
3749 typedef struct BlockDriverAIOCBSync {
3750     BlockDriverAIOCB common;
3751     QEMUBH *bh;
3752     int ret;
3753     /* vector translation state */
3754     QEMUIOVector *qiov;
3755     uint8_t *bounce;
3756     int is_write;
3757 } BlockDriverAIOCBSync;
3758
3759 static void bdrv_aio_cancel_em(BlockDriverAIOCB *blockacb)
3760 {
3761     BlockDriverAIOCBSync *acb =
3762         container_of(blockacb, BlockDriverAIOCBSync, common);
3763     qemu_bh_delete(acb->bh);
3764     acb->bh = NULL;
3765     qemu_aio_release(acb);
3766 }
3767
3768 static const AIOCBInfo bdrv_em_aiocb_info = {
3769     .aiocb_size         = sizeof(BlockDriverAIOCBSync),
3770     .cancel             = bdrv_aio_cancel_em,
3771 };
3772
3773 static void bdrv_aio_bh_cb(void *opaque)
3774 {
3775     BlockDriverAIOCBSync *acb = opaque;
3776
3777     if (!acb->is_write)
3778         qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size);
3779     qemu_vfree(acb->bounce);
3780     acb->common.cb(acb->common.opaque, acb->ret);
3781     qemu_bh_delete(acb->bh);
3782     acb->bh = NULL;
3783     qemu_aio_release(acb);
3784 }
3785
3786 static BlockDriverAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs,
3787                                             int64_t sector_num,
3788                                             QEMUIOVector *qiov,
3789                                             int nb_sectors,
3790                                             BlockDriverCompletionFunc *cb,
3791                                             void *opaque,
3792                                             int is_write)
3793
3794 {
3795     BlockDriverAIOCBSync *acb;
3796
3797     acb = qemu_aio_get(&bdrv_em_aiocb_info, bs, cb, opaque);
3798     acb->is_write = is_write;
3799     acb->qiov = qiov;
3800     acb->bounce = qemu_blockalign(bs, qiov->size);
3801     acb->bh = qemu_bh_new(bdrv_aio_bh_cb, acb);
3802
3803     if (is_write) {
3804         qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size);
3805         acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors);
3806     } else {
3807         acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors);
3808     }
3809
3810     qemu_bh_schedule(acb->bh);
3811
3812     return &acb->common;
3813 }
3814
3815 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
3816         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3817         BlockDriverCompletionFunc *cb, void *opaque)
3818 {
3819     return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
3820 }
3821
3822 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
3823         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3824         BlockDriverCompletionFunc *cb, void *opaque)
3825 {
3826     return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1);
3827 }
3828
3829
3830 typedef struct BlockDriverAIOCBCoroutine {
3831     BlockDriverAIOCB common;
3832     BlockRequest req;
3833     bool is_write;
3834     bool *done;
3835     QEMUBH* bh;
3836 } BlockDriverAIOCBCoroutine;
3837
3838 static void bdrv_aio_co_cancel_em(BlockDriverAIOCB *blockacb)
3839 {
3840     BlockDriverAIOCBCoroutine *acb =
3841         container_of(blockacb, BlockDriverAIOCBCoroutine, common);
3842     bool done = false;
3843
3844     acb->done = &done;
3845     while (!done) {
3846         qemu_aio_wait();
3847     }
3848 }
3849
3850 static const AIOCBInfo bdrv_em_co_aiocb_info = {
3851     .aiocb_size         = sizeof(BlockDriverAIOCBCoroutine),
3852     .cancel             = bdrv_aio_co_cancel_em,
3853 };
3854
3855 static void bdrv_co_em_bh(void *opaque)
3856 {
3857     BlockDriverAIOCBCoroutine *acb = opaque;
3858
3859     acb->common.cb(acb->common.opaque, acb->req.error);
3860
3861     if (acb->done) {
3862         *acb->done = true;
3863     }
3864
3865     qemu_bh_delete(acb->bh);
3866     qemu_aio_release(acb);
3867 }
3868
3869 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
3870 static void coroutine_fn bdrv_co_do_rw(void *opaque)
3871 {
3872     BlockDriverAIOCBCoroutine *acb = opaque;
3873     BlockDriverState *bs = acb->common.bs;
3874
3875     if (!acb->is_write) {
3876         acb->req.error = bdrv_co_do_readv(bs, acb->req.sector,
3877             acb->req.nb_sectors, acb->req.qiov, 0);
3878     } else {
3879         acb->req.error = bdrv_co_do_writev(bs, acb->req.sector,
3880             acb->req.nb_sectors, acb->req.qiov, 0);
3881     }
3882
3883     acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3884     qemu_bh_schedule(acb->bh);
3885 }
3886
3887 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
3888                                                int64_t sector_num,
3889                                                QEMUIOVector *qiov,
3890                                                int nb_sectors,
3891                                                BlockDriverCompletionFunc *cb,
3892                                                void *opaque,
3893                                                bool is_write)
3894 {
3895     Coroutine *co;
3896     BlockDriverAIOCBCoroutine *acb;
3897
3898     acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
3899     acb->req.sector = sector_num;
3900     acb->req.nb_sectors = nb_sectors;
3901     acb->req.qiov = qiov;
3902     acb->is_write = is_write;
3903     acb->done = NULL;
3904
3905     co = qemu_coroutine_create(bdrv_co_do_rw);
3906     qemu_coroutine_enter(co, acb);
3907
3908     return &acb->common;
3909 }
3910
3911 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
3912 {
3913     BlockDriverAIOCBCoroutine *acb = opaque;
3914     BlockDriverState *bs = acb->common.bs;
3915
3916     acb->req.error = bdrv_co_flush(bs);
3917     acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3918     qemu_bh_schedule(acb->bh);
3919 }
3920
3921 BlockDriverAIOCB *bdrv_aio_flush(BlockDriverState *bs,
3922         BlockDriverCompletionFunc *cb, void *opaque)
3923 {
3924     trace_bdrv_aio_flush(bs, opaque);
3925
3926     Coroutine *co;
3927     BlockDriverAIOCBCoroutine *acb;
3928
3929     acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
3930     acb->done = NULL;
3931
3932     co = qemu_coroutine_create(bdrv_aio_flush_co_entry);
3933     qemu_coroutine_enter(co, acb);
3934
3935     return &acb->common;
3936 }
3937
3938 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque)
3939 {
3940     BlockDriverAIOCBCoroutine *acb = opaque;
3941     BlockDriverState *bs = acb->common.bs;
3942
3943     acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors);
3944     acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3945     qemu_bh_schedule(acb->bh);
3946 }
3947
3948 BlockDriverAIOCB *bdrv_aio_discard(BlockDriverState *bs,
3949         int64_t sector_num, int nb_sectors,
3950         BlockDriverCompletionFunc *cb, void *opaque)
3951 {
3952     Coroutine *co;
3953     BlockDriverAIOCBCoroutine *acb;
3954
3955     trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque);
3956
3957     acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
3958     acb->req.sector = sector_num;
3959     acb->req.nb_sectors = nb_sectors;
3960     acb->done = NULL;
3961     co = qemu_coroutine_create(bdrv_aio_discard_co_entry);
3962     qemu_coroutine_enter(co, acb);
3963
3964     return &acb->common;
3965 }
3966
3967 void bdrv_init(void)
3968 {
3969     module_call_init(MODULE_INIT_BLOCK);
3970 }
3971
3972 void bdrv_init_with_whitelist(void)
3973 {
3974     use_bdrv_whitelist = 1;
3975     bdrv_init();
3976 }
3977
3978 void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs,
3979                    BlockDriverCompletionFunc *cb, void *opaque)
3980 {
3981     BlockDriverAIOCB *acb;
3982
3983     acb = g_slice_alloc(aiocb_info->aiocb_size);
3984     acb->aiocb_info = aiocb_info;
3985     acb->bs = bs;
3986     acb->cb = cb;
3987     acb->opaque = opaque;
3988     return acb;
3989 }
3990
3991 void qemu_aio_release(void *p)
3992 {
3993     BlockDriverAIOCB *acb = p;
3994     g_slice_free1(acb->aiocb_info->aiocb_size, acb);
3995 }
3996
3997 /**************************************************************/
3998 /* Coroutine block device emulation */
3999
4000 typedef struct CoroutineIOCompletion {
4001     Coroutine *coroutine;
4002     int ret;
4003 } CoroutineIOCompletion;
4004
4005 static void bdrv_co_io_em_complete(void *opaque, int ret)
4006 {
4007     CoroutineIOCompletion *co = opaque;
4008
4009     co->ret = ret;
4010     qemu_coroutine_enter(co->coroutine, NULL);
4011 }
4012
4013 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num,
4014                                       int nb_sectors, QEMUIOVector *iov,
4015                                       bool is_write)
4016 {
4017     CoroutineIOCompletion co = {
4018         .coroutine = qemu_coroutine_self(),
4019     };
4020     BlockDriverAIOCB *acb;
4021
4022     if (is_write) {
4023         acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors,
4024                                        bdrv_co_io_em_complete, &co);
4025     } else {
4026         acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors,
4027                                       bdrv_co_io_em_complete, &co);
4028     }
4029
4030     trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb);
4031     if (!acb) {
4032         return -EIO;
4033     }
4034     qemu_coroutine_yield();
4035
4036     return co.ret;
4037 }
4038
4039 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
4040                                          int64_t sector_num, int nb_sectors,
4041                                          QEMUIOVector *iov)
4042 {
4043     return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false);
4044 }
4045
4046 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
4047                                          int64_t sector_num, int nb_sectors,
4048                                          QEMUIOVector *iov)
4049 {
4050     return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true);
4051 }
4052
4053 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
4054 {
4055     RwCo *rwco = opaque;
4056
4057     rwco->ret = bdrv_co_flush(rwco->bs);
4058 }
4059
4060 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
4061 {
4062     int ret;
4063
4064     if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
4065         return 0;
4066     }
4067
4068     /* Write back cached data to the OS even with cache=unsafe */
4069     if (bs->drv->bdrv_co_flush_to_os) {
4070         ret = bs->drv->bdrv_co_flush_to_os(bs);
4071         if (ret < 0) {
4072             return ret;
4073         }
4074     }
4075
4076     /* But don't actually force it to the disk with cache=unsafe */
4077     if (bs->open_flags & BDRV_O_NO_FLUSH) {
4078         goto flush_parent;
4079     }
4080
4081     if (bs->drv->bdrv_co_flush_to_disk) {
4082         ret = bs->drv->bdrv_co_flush_to_disk(bs);
4083     } else if (bs->drv->bdrv_aio_flush) {
4084         BlockDriverAIOCB *acb;
4085         CoroutineIOCompletion co = {
4086             .coroutine = qemu_coroutine_self(),
4087         };
4088
4089         acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
4090         if (acb == NULL) {
4091             ret = -EIO;
4092         } else {
4093             qemu_coroutine_yield();
4094             ret = co.ret;
4095         }
4096     } else {
4097         /*
4098          * Some block drivers always operate in either writethrough or unsafe
4099          * mode and don't support bdrv_flush therefore. Usually qemu doesn't
4100          * know how the server works (because the behaviour is hardcoded or
4101          * depends on server-side configuration), so we can't ensure that
4102          * everything is safe on disk. Returning an error doesn't work because
4103          * that would break guests even if the server operates in writethrough
4104          * mode.
4105          *
4106          * Let's hope the user knows what he's doing.
4107          */
4108         ret = 0;
4109     }
4110     if (ret < 0) {
4111         return ret;
4112     }
4113
4114     /* Now flush the underlying protocol.  It will also have BDRV_O_NO_FLUSH
4115      * in the case of cache=unsafe, so there are no useless flushes.
4116      */
4117 flush_parent:
4118     return bdrv_co_flush(bs->file);
4119 }
4120
4121 void bdrv_invalidate_cache(BlockDriverState *bs)
4122 {
4123     if (bs->drv && bs->drv->bdrv_invalidate_cache) {
4124         bs->drv->bdrv_invalidate_cache(bs);
4125     }
4126 }
4127
4128 void bdrv_invalidate_cache_all(void)
4129 {
4130     BlockDriverState *bs;
4131
4132     QTAILQ_FOREACH(bs, &bdrv_states, list) {
4133         bdrv_invalidate_cache(bs);
4134     }
4135 }
4136
4137 void bdrv_clear_incoming_migration_all(void)
4138 {
4139     BlockDriverState *bs;
4140
4141     QTAILQ_FOREACH(bs, &bdrv_states, list) {
4142         bs->open_flags = bs->open_flags & ~(BDRV_O_INCOMING);
4143     }
4144 }
4145
4146 int bdrv_flush(BlockDriverState *bs)
4147 {
4148     Coroutine *co;
4149     RwCo rwco = {
4150         .bs = bs,
4151         .ret = NOT_DONE,
4152     };
4153
4154     if (qemu_in_coroutine()) {
4155         /* Fast-path if already in coroutine context */
4156         bdrv_flush_co_entry(&rwco);
4157     } else {
4158         co = qemu_coroutine_create(bdrv_flush_co_entry);
4159         qemu_coroutine_enter(co, &rwco);
4160         while (rwco.ret == NOT_DONE) {
4161             qemu_aio_wait();
4162         }
4163     }
4164
4165     return rwco.ret;
4166 }
4167
4168 static void coroutine_fn bdrv_discard_co_entry(void *opaque)
4169 {
4170     RwCo *rwco = opaque;
4171
4172     rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors);
4173 }
4174
4175 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num,
4176                                  int nb_sectors)
4177 {
4178     if (!bs->drv) {
4179         return -ENOMEDIUM;
4180     } else if (bdrv_check_request(bs, sector_num, nb_sectors)) {
4181         return -EIO;
4182     } else if (bs->read_only) {
4183         return -EROFS;
4184     }
4185
4186     if (bs->dirty_bitmap) {
4187         bdrv_reset_dirty(bs, sector_num, nb_sectors);
4188     }
4189
4190     if (bs->drv->bdrv_co_discard) {
4191         return bs->drv->bdrv_co_discard(bs, sector_num, nb_sectors);
4192     } else if (bs->drv->bdrv_aio_discard) {
4193         BlockDriverAIOCB *acb;
4194         CoroutineIOCompletion co = {
4195             .coroutine = qemu_coroutine_self(),
4196         };
4197
4198         acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors,
4199                                         bdrv_co_io_em_complete, &co);
4200         if (acb == NULL) {
4201             return -EIO;
4202         } else {
4203             qemu_coroutine_yield();
4204             return co.ret;
4205         }
4206     } else {
4207         return 0;
4208     }
4209 }
4210
4211 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors)
4212 {
4213     Coroutine *co;
4214     RwCo rwco = {
4215         .bs = bs,
4216         .sector_num = sector_num,
4217         .nb_sectors = nb_sectors,
4218         .ret = NOT_DONE,
4219     };
4220
4221     if (qemu_in_coroutine()) {
4222         /* Fast-path if already in coroutine context */
4223         bdrv_discard_co_entry(&rwco);
4224     } else {
4225         co = qemu_coroutine_create(bdrv_discard_co_entry);
4226         qemu_coroutine_enter(co, &rwco);
4227         while (rwco.ret == NOT_DONE) {
4228             qemu_aio_wait();
4229         }
4230     }
4231
4232     return rwco.ret;
4233 }
4234
4235 /**************************************************************/
4236 /* removable device support */
4237
4238 /**
4239  * Return TRUE if the media is present
4240  */
4241 int bdrv_is_inserted(BlockDriverState *bs)
4242 {
4243     BlockDriver *drv = bs->drv;
4244
4245     if (!drv)
4246         return 0;
4247     if (!drv->bdrv_is_inserted)
4248         return 1;
4249     return drv->bdrv_is_inserted(bs);
4250 }
4251
4252 /**
4253  * Return whether the media changed since the last call to this
4254  * function, or -ENOTSUP if we don't know.  Most drivers don't know.
4255  */
4256 int bdrv_media_changed(BlockDriverState *bs)
4257 {
4258     BlockDriver *drv = bs->drv;
4259
4260     if (drv && drv->bdrv_media_changed) {
4261         return drv->bdrv_media_changed(bs);
4262     }
4263     return -ENOTSUP;
4264 }
4265
4266 /**
4267  * If eject_flag is TRUE, eject the media. Otherwise, close the tray
4268  */
4269 void bdrv_eject(BlockDriverState *bs, bool eject_flag)
4270 {
4271     BlockDriver *drv = bs->drv;
4272
4273     if (drv && drv->bdrv_eject) {
4274         drv->bdrv_eject(bs, eject_flag);
4275     }
4276
4277     if (bs->device_name[0] != '\0') {
4278         bdrv_emit_qmp_eject_event(bs, eject_flag);
4279     }
4280 }
4281
4282 /**
4283  * Lock or unlock the media (if it is locked, the user won't be able
4284  * to eject it manually).
4285  */
4286 void bdrv_lock_medium(BlockDriverState *bs, bool locked)
4287 {
4288     BlockDriver *drv = bs->drv;
4289
4290     trace_bdrv_lock_medium(bs, locked);
4291
4292     if (drv && drv->bdrv_lock_medium) {
4293         drv->bdrv_lock_medium(bs, locked);
4294     }
4295 }
4296
4297 /* needed for generic scsi interface */
4298
4299 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf)
4300 {
4301     BlockDriver *drv = bs->drv;
4302
4303     if (drv && drv->bdrv_ioctl)
4304         return drv->bdrv_ioctl(bs, req, buf);
4305     return -ENOTSUP;
4306 }
4307
4308 BlockDriverAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
4309         unsigned long int req, void *buf,
4310         BlockDriverCompletionFunc *cb, void *opaque)
4311 {
4312     BlockDriver *drv = bs->drv;
4313
4314     if (drv && drv->bdrv_aio_ioctl)
4315         return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque);
4316     return NULL;
4317 }
4318
4319 void bdrv_set_buffer_alignment(BlockDriverState *bs, int align)
4320 {
4321     bs->buffer_alignment = align;
4322 }
4323
4324 void *qemu_blockalign(BlockDriverState *bs, size_t size)
4325 {
4326     return qemu_memalign((bs && bs->buffer_alignment) ? bs->buffer_alignment : 512, size);
4327 }
4328
4329 /*
4330  * Check if all memory in this vector is sector aligned.
4331  */
4332 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
4333 {
4334     int i;
4335
4336     for (i = 0; i < qiov->niov; i++) {
4337         if ((uintptr_t) qiov->iov[i].iov_base % bs->buffer_alignment) {
4338             return false;
4339         }
4340     }
4341
4342     return true;
4343 }
4344
4345 void bdrv_set_dirty_tracking(BlockDriverState *bs, int granularity)
4346 {
4347     int64_t bitmap_size;
4348
4349     assert((granularity & (granularity - 1)) == 0);
4350
4351     if (granularity) {
4352         granularity >>= BDRV_SECTOR_BITS;
4353         assert(!bs->dirty_bitmap);
4354         bitmap_size = (bdrv_getlength(bs) >> BDRV_SECTOR_BITS);
4355         bs->dirty_bitmap = hbitmap_alloc(bitmap_size, ffs(granularity) - 1);
4356     } else {
4357         if (bs->dirty_bitmap) {
4358             hbitmap_free(bs->dirty_bitmap);
4359             bs->dirty_bitmap = NULL;
4360         }
4361     }
4362 }
4363
4364 int bdrv_get_dirty(BlockDriverState *bs, int64_t sector)
4365 {
4366     if (bs->dirty_bitmap) {
4367         return hbitmap_get(bs->dirty_bitmap, sector);
4368     } else {
4369         return 0;
4370     }
4371 }
4372
4373 void bdrv_dirty_iter_init(BlockDriverState *bs, HBitmapIter *hbi)
4374 {
4375     hbitmap_iter_init(hbi, bs->dirty_bitmap, 0);
4376 }
4377
4378 void bdrv_set_dirty(BlockDriverState *bs, int64_t cur_sector,
4379                     int nr_sectors)
4380 {
4381     hbitmap_set(bs->dirty_bitmap, cur_sector, nr_sectors);
4382 }
4383
4384 void bdrv_reset_dirty(BlockDriverState *bs, int64_t cur_sector,
4385                       int nr_sectors)
4386 {
4387     hbitmap_reset(bs->dirty_bitmap, cur_sector, nr_sectors);
4388 }
4389
4390 int64_t bdrv_get_dirty_count(BlockDriverState *bs)
4391 {
4392     if (bs->dirty_bitmap) {
4393         return hbitmap_count(bs->dirty_bitmap);
4394     } else {
4395         return 0;
4396     }
4397 }
4398
4399 void bdrv_set_in_use(BlockDriverState *bs, int in_use)
4400 {
4401     assert(bs->in_use != in_use);
4402     bs->in_use = in_use;
4403 }
4404
4405 int bdrv_in_use(BlockDriverState *bs)
4406 {
4407     return bs->in_use;
4408 }
4409
4410 void bdrv_iostatus_enable(BlockDriverState *bs)
4411 {
4412     bs->iostatus_enabled = true;
4413     bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
4414 }
4415
4416 /* The I/O status is only enabled if the drive explicitly
4417  * enables it _and_ the VM is configured to stop on errors */
4418 bool bdrv_iostatus_is_enabled(const BlockDriverState *bs)
4419 {
4420     return (bs->iostatus_enabled &&
4421            (bs->on_write_error == BLOCKDEV_ON_ERROR_ENOSPC ||
4422             bs->on_write_error == BLOCKDEV_ON_ERROR_STOP   ||
4423             bs->on_read_error == BLOCKDEV_ON_ERROR_STOP));
4424 }
4425
4426 void bdrv_iostatus_disable(BlockDriverState *bs)
4427 {
4428     bs->iostatus_enabled = false;
4429 }
4430
4431 void bdrv_iostatus_reset(BlockDriverState *bs)
4432 {
4433     if (bdrv_iostatus_is_enabled(bs)) {
4434         bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
4435         if (bs->job) {
4436             block_job_iostatus_reset(bs->job);
4437         }
4438     }
4439 }
4440
4441 void bdrv_iostatus_set_err(BlockDriverState *bs, int error)
4442 {
4443     assert(bdrv_iostatus_is_enabled(bs));
4444     if (bs->iostatus == BLOCK_DEVICE_IO_STATUS_OK) {
4445         bs->iostatus = error == ENOSPC ? BLOCK_DEVICE_IO_STATUS_NOSPACE :
4446                                          BLOCK_DEVICE_IO_STATUS_FAILED;
4447     }
4448 }
4449
4450 void
4451 bdrv_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie, int64_t bytes,
4452         enum BlockAcctType type)
4453 {
4454     assert(type < BDRV_MAX_IOTYPE);
4455
4456     cookie->bytes = bytes;
4457     cookie->start_time_ns = get_clock();
4458     cookie->type = type;
4459 }
4460
4461 void
4462 bdrv_acct_done(BlockDriverState *bs, BlockAcctCookie *cookie)
4463 {
4464     assert(cookie->type < BDRV_MAX_IOTYPE);
4465
4466     bs->nr_bytes[cookie->type] += cookie->bytes;
4467     bs->nr_ops[cookie->type]++;
4468     bs->total_time_ns[cookie->type] += get_clock() - cookie->start_time_ns;
4469 }
4470
4471 void bdrv_img_create(const char *filename, const char *fmt,
4472                      const char *base_filename, const char *base_fmt,
4473                      char *options, uint64_t img_size, int flags,
4474                      Error **errp, bool quiet)
4475 {
4476     QEMUOptionParameter *param = NULL, *create_options = NULL;
4477     QEMUOptionParameter *backing_fmt, *backing_file, *size;
4478     BlockDriverState *bs = NULL;
4479     BlockDriver *drv, *proto_drv;
4480     BlockDriver *backing_drv = NULL;
4481     int ret = 0;
4482
4483     /* Find driver and parse its options */
4484     drv = bdrv_find_format(fmt);
4485     if (!drv) {
4486         error_setg(errp, "Unknown file format '%s'", fmt);
4487         return;
4488     }
4489
4490     proto_drv = bdrv_find_protocol(filename);
4491     if (!proto_drv) {
4492         error_setg(errp, "Unknown protocol '%s'", filename);
4493         return;
4494     }
4495
4496     create_options = append_option_parameters(create_options,
4497                                               drv->create_options);
4498     create_options = append_option_parameters(create_options,
4499                                               proto_drv->create_options);
4500
4501     /* Create parameter list with default values */
4502     param = parse_option_parameters("", create_options, param);
4503
4504     set_option_parameter_int(param, BLOCK_OPT_SIZE, img_size);
4505
4506     /* Parse -o options */
4507     if (options) {
4508         param = parse_option_parameters(options, create_options, param);
4509         if (param == NULL) {
4510             error_setg(errp, "Invalid options for file format '%s'.", fmt);
4511             goto out;
4512         }
4513     }
4514
4515     if (base_filename) {
4516         if (set_option_parameter(param, BLOCK_OPT_BACKING_FILE,
4517                                  base_filename)) {
4518             error_setg(errp, "Backing file not supported for file format '%s'",
4519                        fmt);
4520             goto out;
4521         }
4522     }
4523
4524     if (base_fmt) {
4525         if (set_option_parameter(param, BLOCK_OPT_BACKING_FMT, base_fmt)) {
4526             error_setg(errp, "Backing file format not supported for file "
4527                              "format '%s'", fmt);
4528             goto out;
4529         }
4530     }
4531
4532     backing_file = get_option_parameter(param, BLOCK_OPT_BACKING_FILE);
4533     if (backing_file && backing_file->value.s) {
4534         if (!strcmp(filename, backing_file->value.s)) {
4535             error_setg(errp, "Error: Trying to create an image with the "
4536                              "same filename as the backing file");
4537             goto out;
4538         }
4539     }
4540
4541     backing_fmt = get_option_parameter(param, BLOCK_OPT_BACKING_FMT);
4542     if (backing_fmt && backing_fmt->value.s) {
4543         backing_drv = bdrv_find_format(backing_fmt->value.s);
4544         if (!backing_drv) {
4545             error_setg(errp, "Unknown backing file format '%s'",
4546                        backing_fmt->value.s);
4547             goto out;
4548         }
4549     }
4550
4551     // The size for the image must always be specified, with one exception:
4552     // If we are using a backing file, we can obtain the size from there
4553     size = get_option_parameter(param, BLOCK_OPT_SIZE);
4554     if (size && size->value.n == -1) {
4555         if (backing_file && backing_file->value.s) {
4556             uint64_t size;
4557             char buf[32];
4558             int back_flags;
4559
4560             /* backing files always opened read-only */
4561             back_flags =
4562                 flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
4563
4564             bs = bdrv_new("");
4565
4566             ret = bdrv_open(bs, backing_file->value.s, back_flags, backing_drv);
4567             if (ret < 0) {
4568                 error_setg_errno(errp, -ret, "Could not open '%s'",
4569                                  backing_file->value.s);
4570                 goto out;
4571             }
4572             bdrv_get_geometry(bs, &size);
4573             size *= 512;
4574
4575             snprintf(buf, sizeof(buf), "%" PRId64, size);
4576             set_option_parameter(param, BLOCK_OPT_SIZE, buf);
4577         } else {
4578             error_setg(errp, "Image creation needs a size parameter");
4579             goto out;
4580         }
4581     }
4582
4583     if (!quiet) {
4584         printf("Formatting '%s', fmt=%s ", filename, fmt);
4585         print_option_parameters(param);
4586         puts("");
4587     }
4588     ret = bdrv_create(drv, filename, param);
4589     if (ret < 0) {
4590         if (ret == -ENOTSUP) {
4591             error_setg(errp,"Formatting or formatting option not supported for "
4592                             "file format '%s'", fmt);
4593         } else if (ret == -EFBIG) {
4594             error_setg(errp, "The image size is too large for file format '%s'",
4595                        fmt);
4596         } else {
4597             error_setg(errp, "%s: error while creating %s: %s", filename, fmt,
4598                        strerror(-ret));
4599         }
4600     }
4601
4602 out:
4603     free_option_parameters(create_options);
4604     free_option_parameters(param);
4605
4606     if (bs) {
4607         bdrv_delete(bs);
4608     }
4609 }