30a31f907f2d03721214971198f7109a88325fcf
[sdk/emulator/qemu.git] / block / qed.c
1 /*
2  * QEMU Enhanced Disk Format
3  *
4  * Copyright IBM, Corp. 2010
5  *
6  * Authors:
7  *  Stefan Hajnoczi   <stefanha@linux.vnet.ibm.com>
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *
10  * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11  * See the COPYING.LIB file in the top-level directory.
12  *
13  */
14
15 #include "qemu-timer.h"
16 #include "trace.h"
17 #include "qed.h"
18 #include "qerror.h"
19 #include "migration.h"
20
21 static void qed_aio_cancel(BlockDriverAIOCB *blockacb)
22 {
23     QEDAIOCB *acb = (QEDAIOCB *)blockacb;
24     bool finished = false;
25
26     /* Wait for the request to finish */
27     acb->finished = &finished;
28     while (!finished) {
29         qemu_aio_wait();
30     }
31 }
32
33 static AIOPool qed_aio_pool = {
34     .aiocb_size         = sizeof(QEDAIOCB),
35     .cancel             = qed_aio_cancel,
36 };
37
38 static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
39                           const char *filename)
40 {
41     const QEDHeader *header = (const QEDHeader *)buf;
42
43     if (buf_size < sizeof(*header)) {
44         return 0;
45     }
46     if (le32_to_cpu(header->magic) != QED_MAGIC) {
47         return 0;
48     }
49     return 100;
50 }
51
52 /**
53  * Check whether an image format is raw
54  *
55  * @fmt:    Backing file format, may be NULL
56  */
57 static bool qed_fmt_is_raw(const char *fmt)
58 {
59     return fmt && strcmp(fmt, "raw") == 0;
60 }
61
62 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
63 {
64     cpu->magic = le32_to_cpu(le->magic);
65     cpu->cluster_size = le32_to_cpu(le->cluster_size);
66     cpu->table_size = le32_to_cpu(le->table_size);
67     cpu->header_size = le32_to_cpu(le->header_size);
68     cpu->features = le64_to_cpu(le->features);
69     cpu->compat_features = le64_to_cpu(le->compat_features);
70     cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
71     cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
72     cpu->image_size = le64_to_cpu(le->image_size);
73     cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
74     cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
75 }
76
77 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
78 {
79     le->magic = cpu_to_le32(cpu->magic);
80     le->cluster_size = cpu_to_le32(cpu->cluster_size);
81     le->table_size = cpu_to_le32(cpu->table_size);
82     le->header_size = cpu_to_le32(cpu->header_size);
83     le->features = cpu_to_le64(cpu->features);
84     le->compat_features = cpu_to_le64(cpu->compat_features);
85     le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
86     le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
87     le->image_size = cpu_to_le64(cpu->image_size);
88     le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
89     le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
90 }
91
92 static int qed_write_header_sync(BDRVQEDState *s)
93 {
94     QEDHeader le;
95     int ret;
96
97     qed_header_cpu_to_le(&s->header, &le);
98     ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le));
99     if (ret != sizeof(le)) {
100         return ret;
101     }
102     return 0;
103 }
104
105 typedef struct {
106     GenericCB gencb;
107     BDRVQEDState *s;
108     struct iovec iov;
109     QEMUIOVector qiov;
110     int nsectors;
111     uint8_t *buf;
112 } QEDWriteHeaderCB;
113
114 static void qed_write_header_cb(void *opaque, int ret)
115 {
116     QEDWriteHeaderCB *write_header_cb = opaque;
117
118     qemu_vfree(write_header_cb->buf);
119     gencb_complete(write_header_cb, ret);
120 }
121
122 static void qed_write_header_read_cb(void *opaque, int ret)
123 {
124     QEDWriteHeaderCB *write_header_cb = opaque;
125     BDRVQEDState *s = write_header_cb->s;
126
127     if (ret) {
128         qed_write_header_cb(write_header_cb, ret);
129         return;
130     }
131
132     /* Update header */
133     qed_header_cpu_to_le(&s->header, (QEDHeader *)write_header_cb->buf);
134
135     bdrv_aio_writev(s->bs->file, 0, &write_header_cb->qiov,
136                     write_header_cb->nsectors, qed_write_header_cb,
137                     write_header_cb);
138 }
139
140 /**
141  * Update header in-place (does not rewrite backing filename or other strings)
142  *
143  * This function only updates known header fields in-place and does not affect
144  * extra data after the QED header.
145  */
146 static void qed_write_header(BDRVQEDState *s, BlockDriverCompletionFunc cb,
147                              void *opaque)
148 {
149     /* We must write full sectors for O_DIRECT but cannot necessarily generate
150      * the data following the header if an unrecognized compat feature is
151      * active.  Therefore, first read the sectors containing the header, update
152      * them, and write back.
153      */
154
155     int nsectors = (sizeof(QEDHeader) + BDRV_SECTOR_SIZE - 1) /
156                    BDRV_SECTOR_SIZE;
157     size_t len = nsectors * BDRV_SECTOR_SIZE;
158     QEDWriteHeaderCB *write_header_cb = gencb_alloc(sizeof(*write_header_cb),
159                                                     cb, opaque);
160
161     write_header_cb->s = s;
162     write_header_cb->nsectors = nsectors;
163     write_header_cb->buf = qemu_blockalign(s->bs, len);
164     write_header_cb->iov.iov_base = write_header_cb->buf;
165     write_header_cb->iov.iov_len = len;
166     qemu_iovec_init_external(&write_header_cb->qiov, &write_header_cb->iov, 1);
167
168     bdrv_aio_readv(s->bs->file, 0, &write_header_cb->qiov, nsectors,
169                    qed_write_header_read_cb, write_header_cb);
170 }
171
172 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
173 {
174     uint64_t table_entries;
175     uint64_t l2_size;
176
177     table_entries = (table_size * cluster_size) / sizeof(uint64_t);
178     l2_size = table_entries * cluster_size;
179
180     return l2_size * table_entries;
181 }
182
183 static bool qed_is_cluster_size_valid(uint32_t cluster_size)
184 {
185     if (cluster_size < QED_MIN_CLUSTER_SIZE ||
186         cluster_size > QED_MAX_CLUSTER_SIZE) {
187         return false;
188     }
189     if (cluster_size & (cluster_size - 1)) {
190         return false; /* not power of 2 */
191     }
192     return true;
193 }
194
195 static bool qed_is_table_size_valid(uint32_t table_size)
196 {
197     if (table_size < QED_MIN_TABLE_SIZE ||
198         table_size > QED_MAX_TABLE_SIZE) {
199         return false;
200     }
201     if (table_size & (table_size - 1)) {
202         return false; /* not power of 2 */
203     }
204     return true;
205 }
206
207 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
208                                     uint32_t table_size)
209 {
210     if (image_size % BDRV_SECTOR_SIZE != 0) {
211         return false; /* not multiple of sector size */
212     }
213     if (image_size > qed_max_image_size(cluster_size, table_size)) {
214         return false; /* image is too large */
215     }
216     return true;
217 }
218
219 /**
220  * Read a string of known length from the image file
221  *
222  * @file:       Image file
223  * @offset:     File offset to start of string, in bytes
224  * @n:          String length in bytes
225  * @buf:        Destination buffer
226  * @buflen:     Destination buffer length in bytes
227  * @ret:        0 on success, -errno on failure
228  *
229  * The string is NUL-terminated.
230  */
231 static int qed_read_string(BlockDriverState *file, uint64_t offset, size_t n,
232                            char *buf, size_t buflen)
233 {
234     int ret;
235     if (n >= buflen) {
236         return -EINVAL;
237     }
238     ret = bdrv_pread(file, offset, buf, n);
239     if (ret < 0) {
240         return ret;
241     }
242     buf[n] = '\0';
243     return 0;
244 }
245
246 /**
247  * Allocate new clusters
248  *
249  * @s:          QED state
250  * @n:          Number of contiguous clusters to allocate
251  * @ret:        Offset of first allocated cluster
252  *
253  * This function only produces the offset where the new clusters should be
254  * written.  It updates BDRVQEDState but does not make any changes to the image
255  * file.
256  */
257 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
258 {
259     uint64_t offset = s->file_size;
260     s->file_size += n * s->header.cluster_size;
261     return offset;
262 }
263
264 QEDTable *qed_alloc_table(BDRVQEDState *s)
265 {
266     /* Honor O_DIRECT memory alignment requirements */
267     return qemu_blockalign(s->bs,
268                            s->header.cluster_size * s->header.table_size);
269 }
270
271 /**
272  * Allocate a new zeroed L2 table
273  */
274 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
275 {
276     CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
277
278     l2_table->table = qed_alloc_table(s);
279     l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
280
281     memset(l2_table->table->offsets, 0,
282            s->header.cluster_size * s->header.table_size);
283     return l2_table;
284 }
285
286 static void qed_aio_next_io(void *opaque, int ret);
287
288 static void qed_plug_allocating_write_reqs(BDRVQEDState *s)
289 {
290     assert(!s->allocating_write_reqs_plugged);
291
292     s->allocating_write_reqs_plugged = true;
293 }
294
295 static void qed_unplug_allocating_write_reqs(BDRVQEDState *s)
296 {
297     QEDAIOCB *acb;
298
299     assert(s->allocating_write_reqs_plugged);
300
301     s->allocating_write_reqs_plugged = false;
302
303     acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
304     if (acb) {
305         qed_aio_next_io(acb, 0);
306     }
307 }
308
309 static void qed_finish_clear_need_check(void *opaque, int ret)
310 {
311     /* Do nothing */
312 }
313
314 static void qed_flush_after_clear_need_check(void *opaque, int ret)
315 {
316     BDRVQEDState *s = opaque;
317
318     bdrv_aio_flush(s->bs, qed_finish_clear_need_check, s);
319
320     /* No need to wait until flush completes */
321     qed_unplug_allocating_write_reqs(s);
322 }
323
324 static void qed_clear_need_check(void *opaque, int ret)
325 {
326     BDRVQEDState *s = opaque;
327
328     if (ret) {
329         qed_unplug_allocating_write_reqs(s);
330         return;
331     }
332
333     s->header.features &= ~QED_F_NEED_CHECK;
334     qed_write_header(s, qed_flush_after_clear_need_check, s);
335 }
336
337 static void qed_need_check_timer_cb(void *opaque)
338 {
339     BDRVQEDState *s = opaque;
340
341     /* The timer should only fire when allocating writes have drained */
342     assert(!QSIMPLEQ_FIRST(&s->allocating_write_reqs));
343
344     trace_qed_need_check_timer_cb(s);
345
346     qed_plug_allocating_write_reqs(s);
347
348     /* Ensure writes are on disk before clearing flag */
349     bdrv_aio_flush(s->bs, qed_clear_need_check, s);
350 }
351
352 static void qed_start_need_check_timer(BDRVQEDState *s)
353 {
354     trace_qed_start_need_check_timer(s);
355
356     /* Use vm_clock so we don't alter the image file while suspended for
357      * migration.
358      */
359     qemu_mod_timer(s->need_check_timer, qemu_get_clock_ns(vm_clock) +
360                    get_ticks_per_sec() * QED_NEED_CHECK_TIMEOUT);
361 }
362
363 /* It's okay to call this multiple times or when no timer is started */
364 static void qed_cancel_need_check_timer(BDRVQEDState *s)
365 {
366     trace_qed_cancel_need_check_timer(s);
367     qemu_del_timer(s->need_check_timer);
368 }
369
370 static void bdrv_qed_rebind(BlockDriverState *bs)
371 {
372     BDRVQEDState *s = bs->opaque;
373     s->bs = bs;
374 }
375
376 static int bdrv_qed_open(BlockDriverState *bs, int flags)
377 {
378     BDRVQEDState *s = bs->opaque;
379     QEDHeader le_header;
380     int64_t file_size;
381     int ret;
382
383     s->bs = bs;
384     QSIMPLEQ_INIT(&s->allocating_write_reqs);
385
386     ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header));
387     if (ret < 0) {
388         return ret;
389     }
390     qed_header_le_to_cpu(&le_header, &s->header);
391
392     if (s->header.magic != QED_MAGIC) {
393         return -EINVAL;
394     }
395     if (s->header.features & ~QED_FEATURE_MASK) {
396         /* image uses unsupported feature bits */
397         char buf[64];
398         snprintf(buf, sizeof(buf), "%" PRIx64,
399             s->header.features & ~QED_FEATURE_MASK);
400         qerror_report(QERR_UNKNOWN_BLOCK_FORMAT_FEATURE,
401             bs->device_name, "QED", buf);
402         return -ENOTSUP;
403     }
404     if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
405         return -EINVAL;
406     }
407
408     /* Round down file size to the last cluster */
409     file_size = bdrv_getlength(bs->file);
410     if (file_size < 0) {
411         return file_size;
412     }
413     s->file_size = qed_start_of_cluster(s, file_size);
414
415     if (!qed_is_table_size_valid(s->header.table_size)) {
416         return -EINVAL;
417     }
418     if (!qed_is_image_size_valid(s->header.image_size,
419                                  s->header.cluster_size,
420                                  s->header.table_size)) {
421         return -EINVAL;
422     }
423     if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
424         return -EINVAL;
425     }
426
427     s->table_nelems = (s->header.cluster_size * s->header.table_size) /
428                       sizeof(uint64_t);
429     s->l2_shift = ffs(s->header.cluster_size) - 1;
430     s->l2_mask = s->table_nelems - 1;
431     s->l1_shift = s->l2_shift + ffs(s->table_nelems) - 1;
432
433     if ((s->header.features & QED_F_BACKING_FILE)) {
434         if ((uint64_t)s->header.backing_filename_offset +
435             s->header.backing_filename_size >
436             s->header.cluster_size * s->header.header_size) {
437             return -EINVAL;
438         }
439
440         ret = qed_read_string(bs->file, s->header.backing_filename_offset,
441                               s->header.backing_filename_size, bs->backing_file,
442                               sizeof(bs->backing_file));
443         if (ret < 0) {
444             return ret;
445         }
446
447         if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
448             pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
449         }
450     }
451
452     /* Reset unknown autoclear feature bits.  This is a backwards
453      * compatibility mechanism that allows images to be opened by older
454      * programs, which "knock out" unknown feature bits.  When an image is
455      * opened by a newer program again it can detect that the autoclear
456      * feature is no longer valid.
457      */
458     if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
459         !bdrv_is_read_only(bs->file) && !(flags & BDRV_O_INCOMING)) {
460         s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
461
462         ret = qed_write_header_sync(s);
463         if (ret) {
464             return ret;
465         }
466
467         /* From here on only known autoclear feature bits are valid */
468         bdrv_flush(bs->file);
469     }
470
471     s->l1_table = qed_alloc_table(s);
472     qed_init_l2_cache(&s->l2_cache);
473
474     ret = qed_read_l1_table_sync(s);
475     if (ret) {
476         goto out;
477     }
478
479     /* If image was not closed cleanly, check consistency */
480     if (s->header.features & QED_F_NEED_CHECK) {
481         /* Read-only images cannot be fixed.  There is no risk of corruption
482          * since write operations are not possible.  Therefore, allow
483          * potentially inconsistent images to be opened read-only.  This can
484          * aid data recovery from an otherwise inconsistent image.
485          */
486         if (!bdrv_is_read_only(bs->file) &&
487             !(flags & BDRV_O_INCOMING)) {
488             BdrvCheckResult result = {0};
489
490             ret = qed_check(s, &result, true);
491             if (ret) {
492                 goto out;
493             }
494             if (!result.corruptions && !result.check_errors) {
495                 /* Ensure fixes reach storage before clearing check bit */
496                 bdrv_flush(s->bs);
497
498                 s->header.features &= ~QED_F_NEED_CHECK;
499                 qed_write_header_sync(s);
500             }
501         }
502     }
503
504     s->need_check_timer = qemu_new_timer_ns(vm_clock,
505                                             qed_need_check_timer_cb, s);
506
507 out:
508     if (ret) {
509         qed_free_l2_cache(&s->l2_cache);
510         qemu_vfree(s->l1_table);
511     }
512     return ret;
513 }
514
515 static void bdrv_qed_close(BlockDriverState *bs)
516 {
517     BDRVQEDState *s = bs->opaque;
518
519     qed_cancel_need_check_timer(s);
520     qemu_free_timer(s->need_check_timer);
521
522     /* Ensure writes reach stable storage */
523     bdrv_flush(bs->file);
524
525     /* Clean shutdown, no check required on next open */
526     if (s->header.features & QED_F_NEED_CHECK) {
527         s->header.features &= ~QED_F_NEED_CHECK;
528         qed_write_header_sync(s);
529     }
530
531     qed_free_l2_cache(&s->l2_cache);
532     qemu_vfree(s->l1_table);
533 }
534
535 static int qed_create(const char *filename, uint32_t cluster_size,
536                       uint64_t image_size, uint32_t table_size,
537                       const char *backing_file, const char *backing_fmt)
538 {
539     QEDHeader header = {
540         .magic = QED_MAGIC,
541         .cluster_size = cluster_size,
542         .table_size = table_size,
543         .header_size = 1,
544         .features = 0,
545         .compat_features = 0,
546         .l1_table_offset = cluster_size,
547         .image_size = image_size,
548     };
549     QEDHeader le_header;
550     uint8_t *l1_table = NULL;
551     size_t l1_size = header.cluster_size * header.table_size;
552     int ret = 0;
553     BlockDriverState *bs = NULL;
554
555     ret = bdrv_create_file(filename, NULL);
556     if (ret < 0) {
557         return ret;
558     }
559
560     ret = bdrv_file_open(&bs, filename, BDRV_O_RDWR | BDRV_O_CACHE_WB);
561     if (ret < 0) {
562         return ret;
563     }
564
565     /* File must start empty and grow, check truncate is supported */
566     ret = bdrv_truncate(bs, 0);
567     if (ret < 0) {
568         goto out;
569     }
570
571     if (backing_file) {
572         header.features |= QED_F_BACKING_FILE;
573         header.backing_filename_offset = sizeof(le_header);
574         header.backing_filename_size = strlen(backing_file);
575
576         if (qed_fmt_is_raw(backing_fmt)) {
577             header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
578         }
579     }
580
581     qed_header_cpu_to_le(&header, &le_header);
582     ret = bdrv_pwrite(bs, 0, &le_header, sizeof(le_header));
583     if (ret < 0) {
584         goto out;
585     }
586     ret = bdrv_pwrite(bs, sizeof(le_header), backing_file,
587                       header.backing_filename_size);
588     if (ret < 0) {
589         goto out;
590     }
591
592     l1_table = g_malloc0(l1_size);
593     ret = bdrv_pwrite(bs, header.l1_table_offset, l1_table, l1_size);
594     if (ret < 0) {
595         goto out;
596     }
597
598     ret = 0; /* success */
599 out:
600     g_free(l1_table);
601     bdrv_delete(bs);
602     return ret;
603 }
604
605 static int bdrv_qed_create(const char *filename, QEMUOptionParameter *options)
606 {
607     uint64_t image_size = 0;
608     uint32_t cluster_size = QED_DEFAULT_CLUSTER_SIZE;
609     uint32_t table_size = QED_DEFAULT_TABLE_SIZE;
610     const char *backing_file = NULL;
611     const char *backing_fmt = NULL;
612
613     while (options && options->name) {
614         if (!strcmp(options->name, BLOCK_OPT_SIZE)) {
615             image_size = options->value.n;
616         } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FILE)) {
617             backing_file = options->value.s;
618         } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FMT)) {
619             backing_fmt = options->value.s;
620         } else if (!strcmp(options->name, BLOCK_OPT_CLUSTER_SIZE)) {
621             if (options->value.n) {
622                 cluster_size = options->value.n;
623             }
624         } else if (!strcmp(options->name, BLOCK_OPT_TABLE_SIZE)) {
625             if (options->value.n) {
626                 table_size = options->value.n;
627             }
628         }
629         options++;
630     }
631
632     if (!qed_is_cluster_size_valid(cluster_size)) {
633         fprintf(stderr, "QED cluster size must be within range [%u, %u] and power of 2\n",
634                 QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
635         return -EINVAL;
636     }
637     if (!qed_is_table_size_valid(table_size)) {
638         fprintf(stderr, "QED table size must be within range [%u, %u] and power of 2\n",
639                 QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
640         return -EINVAL;
641     }
642     if (!qed_is_image_size_valid(image_size, cluster_size, table_size)) {
643         fprintf(stderr, "QED image size must be a non-zero multiple of "
644                         "cluster size and less than %" PRIu64 " bytes\n",
645                 qed_max_image_size(cluster_size, table_size));
646         return -EINVAL;
647     }
648
649     return qed_create(filename, cluster_size, image_size, table_size,
650                       backing_file, backing_fmt);
651 }
652
653 typedef struct {
654     Coroutine *co;
655     int is_allocated;
656     int *pnum;
657 } QEDIsAllocatedCB;
658
659 static void qed_is_allocated_cb(void *opaque, int ret, uint64_t offset, size_t len)
660 {
661     QEDIsAllocatedCB *cb = opaque;
662     *cb->pnum = len / BDRV_SECTOR_SIZE;
663     cb->is_allocated = (ret == QED_CLUSTER_FOUND || ret == QED_CLUSTER_ZERO);
664     if (cb->co) {
665         qemu_coroutine_enter(cb->co, NULL);
666     }
667 }
668
669 static int coroutine_fn bdrv_qed_co_is_allocated(BlockDriverState *bs,
670                                                  int64_t sector_num,
671                                                  int nb_sectors, int *pnum)
672 {
673     BDRVQEDState *s = bs->opaque;
674     uint64_t pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE;
675     size_t len = (size_t)nb_sectors * BDRV_SECTOR_SIZE;
676     QEDIsAllocatedCB cb = {
677         .is_allocated = -1,
678         .pnum = pnum,
679     };
680     QEDRequest request = { .l2_table = NULL };
681
682     qed_find_cluster(s, &request, pos, len, qed_is_allocated_cb, &cb);
683
684     /* Now sleep if the callback wasn't invoked immediately */
685     while (cb.is_allocated == -1) {
686         cb.co = qemu_coroutine_self();
687         qemu_coroutine_yield();
688     }
689
690     qed_unref_l2_cache_entry(request.l2_table);
691
692     return cb.is_allocated;
693 }
694
695 static int bdrv_qed_make_empty(BlockDriverState *bs)
696 {
697     return -ENOTSUP;
698 }
699
700 static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
701 {
702     return acb->common.bs->opaque;
703 }
704
705 /**
706  * Read from the backing file or zero-fill if no backing file
707  *
708  * @s:          QED state
709  * @pos:        Byte position in device
710  * @qiov:       Destination I/O vector
711  * @cb:         Completion function
712  * @opaque:     User data for completion function
713  *
714  * This function reads qiov->size bytes starting at pos from the backing file.
715  * If there is no backing file then zeroes are read.
716  */
717 static void qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
718                                   QEMUIOVector *qiov,
719                                   BlockDriverCompletionFunc *cb, void *opaque)
720 {
721     uint64_t backing_length = 0;
722     size_t size;
723
724     /* If there is a backing file, get its length.  Treat the absence of a
725      * backing file like a zero length backing file.
726      */
727     if (s->bs->backing_hd) {
728         int64_t l = bdrv_getlength(s->bs->backing_hd);
729         if (l < 0) {
730             cb(opaque, l);
731             return;
732         }
733         backing_length = l;
734     }
735
736     /* Zero all sectors if reading beyond the end of the backing file */
737     if (pos >= backing_length ||
738         pos + qiov->size > backing_length) {
739         qemu_iovec_memset(qiov, 0, qiov->size);
740     }
741
742     /* Complete now if there are no backing file sectors to read */
743     if (pos >= backing_length) {
744         cb(opaque, 0);
745         return;
746     }
747
748     /* If the read straddles the end of the backing file, shorten it */
749     size = MIN((uint64_t)backing_length - pos, qiov->size);
750
751     BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING);
752     bdrv_aio_readv(s->bs->backing_hd, pos / BDRV_SECTOR_SIZE,
753                    qiov, size / BDRV_SECTOR_SIZE, cb, opaque);
754 }
755
756 typedef struct {
757     GenericCB gencb;
758     BDRVQEDState *s;
759     QEMUIOVector qiov;
760     struct iovec iov;
761     uint64_t offset;
762 } CopyFromBackingFileCB;
763
764 static void qed_copy_from_backing_file_cb(void *opaque, int ret)
765 {
766     CopyFromBackingFileCB *copy_cb = opaque;
767     qemu_vfree(copy_cb->iov.iov_base);
768     gencb_complete(&copy_cb->gencb, ret);
769 }
770
771 static void qed_copy_from_backing_file_write(void *opaque, int ret)
772 {
773     CopyFromBackingFileCB *copy_cb = opaque;
774     BDRVQEDState *s = copy_cb->s;
775
776     if (ret) {
777         qed_copy_from_backing_file_cb(copy_cb, ret);
778         return;
779     }
780
781     BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
782     bdrv_aio_writev(s->bs->file, copy_cb->offset / BDRV_SECTOR_SIZE,
783                     &copy_cb->qiov, copy_cb->qiov.size / BDRV_SECTOR_SIZE,
784                     qed_copy_from_backing_file_cb, copy_cb);
785 }
786
787 /**
788  * Copy data from backing file into the image
789  *
790  * @s:          QED state
791  * @pos:        Byte position in device
792  * @len:        Number of bytes
793  * @offset:     Byte offset in image file
794  * @cb:         Completion function
795  * @opaque:     User data for completion function
796  */
797 static void qed_copy_from_backing_file(BDRVQEDState *s, uint64_t pos,
798                                        uint64_t len, uint64_t offset,
799                                        BlockDriverCompletionFunc *cb,
800                                        void *opaque)
801 {
802     CopyFromBackingFileCB *copy_cb;
803
804     /* Skip copy entirely if there is no work to do */
805     if (len == 0) {
806         cb(opaque, 0);
807         return;
808     }
809
810     copy_cb = gencb_alloc(sizeof(*copy_cb), cb, opaque);
811     copy_cb->s = s;
812     copy_cb->offset = offset;
813     copy_cb->iov.iov_base = qemu_blockalign(s->bs, len);
814     copy_cb->iov.iov_len = len;
815     qemu_iovec_init_external(&copy_cb->qiov, &copy_cb->iov, 1);
816
817     qed_read_backing_file(s, pos, &copy_cb->qiov,
818                           qed_copy_from_backing_file_write, copy_cb);
819 }
820
821 /**
822  * Link one or more contiguous clusters into a table
823  *
824  * @s:              QED state
825  * @table:          L2 table
826  * @index:          First cluster index
827  * @n:              Number of contiguous clusters
828  * @cluster:        First cluster offset
829  *
830  * The cluster offset may be an allocated byte offset in the image file, the
831  * zero cluster marker, or the unallocated cluster marker.
832  */
833 static void qed_update_l2_table(BDRVQEDState *s, QEDTable *table, int index,
834                                 unsigned int n, uint64_t cluster)
835 {
836     int i;
837     for (i = index; i < index + n; i++) {
838         table->offsets[i] = cluster;
839         if (!qed_offset_is_unalloc_cluster(cluster) &&
840             !qed_offset_is_zero_cluster(cluster)) {
841             cluster += s->header.cluster_size;
842         }
843     }
844 }
845
846 static void qed_aio_complete_bh(void *opaque)
847 {
848     QEDAIOCB *acb = opaque;
849     BlockDriverCompletionFunc *cb = acb->common.cb;
850     void *user_opaque = acb->common.opaque;
851     int ret = acb->bh_ret;
852     bool *finished = acb->finished;
853
854     qemu_bh_delete(acb->bh);
855     qemu_aio_release(acb);
856
857     /* Invoke callback */
858     cb(user_opaque, ret);
859
860     /* Signal cancel completion */
861     if (finished) {
862         *finished = true;
863     }
864 }
865
866 static void qed_aio_complete(QEDAIOCB *acb, int ret)
867 {
868     BDRVQEDState *s = acb_to_s(acb);
869
870     trace_qed_aio_complete(s, acb, ret);
871
872     /* Free resources */
873     qemu_iovec_destroy(&acb->cur_qiov);
874     qed_unref_l2_cache_entry(acb->request.l2_table);
875
876     /* Free the buffer we may have allocated for zero writes */
877     if (acb->flags & QED_AIOCB_ZERO) {
878         qemu_vfree(acb->qiov->iov[0].iov_base);
879         acb->qiov->iov[0].iov_base = NULL;
880     }
881
882     /* Arrange for a bh to invoke the completion function */
883     acb->bh_ret = ret;
884     acb->bh = qemu_bh_new(qed_aio_complete_bh, acb);
885     qemu_bh_schedule(acb->bh);
886
887     /* Start next allocating write request waiting behind this one.  Note that
888      * requests enqueue themselves when they first hit an unallocated cluster
889      * but they wait until the entire request is finished before waking up the
890      * next request in the queue.  This ensures that we don't cycle through
891      * requests multiple times but rather finish one at a time completely.
892      */
893     if (acb == QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
894         QSIMPLEQ_REMOVE_HEAD(&s->allocating_write_reqs, next);
895         acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
896         if (acb) {
897             qed_aio_next_io(acb, 0);
898         } else if (s->header.features & QED_F_NEED_CHECK) {
899             qed_start_need_check_timer(s);
900         }
901     }
902 }
903
904 /**
905  * Commit the current L2 table to the cache
906  */
907 static void qed_commit_l2_update(void *opaque, int ret)
908 {
909     QEDAIOCB *acb = opaque;
910     BDRVQEDState *s = acb_to_s(acb);
911     CachedL2Table *l2_table = acb->request.l2_table;
912     uint64_t l2_offset = l2_table->offset;
913
914     qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
915
916     /* This is guaranteed to succeed because we just committed the entry to the
917      * cache.
918      */
919     acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
920     assert(acb->request.l2_table != NULL);
921
922     qed_aio_next_io(opaque, ret);
923 }
924
925 /**
926  * Update L1 table with new L2 table offset and write it out
927  */
928 static void qed_aio_write_l1_update(void *opaque, int ret)
929 {
930     QEDAIOCB *acb = opaque;
931     BDRVQEDState *s = acb_to_s(acb);
932     int index;
933
934     if (ret) {
935         qed_aio_complete(acb, ret);
936         return;
937     }
938
939     index = qed_l1_index(s, acb->cur_pos);
940     s->l1_table->offsets[index] = acb->request.l2_table->offset;
941
942     qed_write_l1_table(s, index, 1, qed_commit_l2_update, acb);
943 }
944
945 /**
946  * Update L2 table with new cluster offsets and write them out
947  */
948 static void qed_aio_write_l2_update(QEDAIOCB *acb, int ret, uint64_t offset)
949 {
950     BDRVQEDState *s = acb_to_s(acb);
951     bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
952     int index;
953
954     if (ret) {
955         goto err;
956     }
957
958     if (need_alloc) {
959         qed_unref_l2_cache_entry(acb->request.l2_table);
960         acb->request.l2_table = qed_new_l2_table(s);
961     }
962
963     index = qed_l2_index(s, acb->cur_pos);
964     qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
965                          offset);
966
967     if (need_alloc) {
968         /* Write out the whole new L2 table */
969         qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true,
970                             qed_aio_write_l1_update, acb);
971     } else {
972         /* Write out only the updated part of the L2 table */
973         qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters, false,
974                             qed_aio_next_io, acb);
975     }
976     return;
977
978 err:
979     qed_aio_complete(acb, ret);
980 }
981
982 static void qed_aio_write_l2_update_cb(void *opaque, int ret)
983 {
984     QEDAIOCB *acb = opaque;
985     qed_aio_write_l2_update(acb, ret, acb->cur_cluster);
986 }
987
988 /**
989  * Flush new data clusters before updating the L2 table
990  *
991  * This flush is necessary when a backing file is in use.  A crash during an
992  * allocating write could result in empty clusters in the image.  If the write
993  * only touched a subregion of the cluster, then backing image sectors have
994  * been lost in the untouched region.  The solution is to flush after writing a
995  * new data cluster and before updating the L2 table.
996  */
997 static void qed_aio_write_flush_before_l2_update(void *opaque, int ret)
998 {
999     QEDAIOCB *acb = opaque;
1000     BDRVQEDState *s = acb_to_s(acb);
1001
1002     if (!bdrv_aio_flush(s->bs->file, qed_aio_write_l2_update_cb, opaque)) {
1003         qed_aio_complete(acb, -EIO);
1004     }
1005 }
1006
1007 /**
1008  * Write data to the image file
1009  */
1010 static void qed_aio_write_main(void *opaque, int ret)
1011 {
1012     QEDAIOCB *acb = opaque;
1013     BDRVQEDState *s = acb_to_s(acb);
1014     uint64_t offset = acb->cur_cluster +
1015                       qed_offset_into_cluster(s, acb->cur_pos);
1016     BlockDriverCompletionFunc *next_fn;
1017
1018     trace_qed_aio_write_main(s, acb, ret, offset, acb->cur_qiov.size);
1019
1020     if (ret) {
1021         qed_aio_complete(acb, ret);
1022         return;
1023     }
1024
1025     if (acb->find_cluster_ret == QED_CLUSTER_FOUND) {
1026         next_fn = qed_aio_next_io;
1027     } else {
1028         if (s->bs->backing_hd) {
1029             next_fn = qed_aio_write_flush_before_l2_update;
1030         } else {
1031             next_fn = qed_aio_write_l2_update_cb;
1032         }
1033     }
1034
1035     BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1036     bdrv_aio_writev(s->bs->file, offset / BDRV_SECTOR_SIZE,
1037                     &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1038                     next_fn, acb);
1039 }
1040
1041 /**
1042  * Populate back untouched region of new data cluster
1043  */
1044 static void qed_aio_write_postfill(void *opaque, int ret)
1045 {
1046     QEDAIOCB *acb = opaque;
1047     BDRVQEDState *s = acb_to_s(acb);
1048     uint64_t start = acb->cur_pos + acb->cur_qiov.size;
1049     uint64_t len =
1050         qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1051     uint64_t offset = acb->cur_cluster +
1052                       qed_offset_into_cluster(s, acb->cur_pos) +
1053                       acb->cur_qiov.size;
1054
1055     if (ret) {
1056         qed_aio_complete(acb, ret);
1057         return;
1058     }
1059
1060     trace_qed_aio_write_postfill(s, acb, start, len, offset);
1061     qed_copy_from_backing_file(s, start, len, offset,
1062                                 qed_aio_write_main, acb);
1063 }
1064
1065 /**
1066  * Populate front untouched region of new data cluster
1067  */
1068 static void qed_aio_write_prefill(void *opaque, int ret)
1069 {
1070     QEDAIOCB *acb = opaque;
1071     BDRVQEDState *s = acb_to_s(acb);
1072     uint64_t start = qed_start_of_cluster(s, acb->cur_pos);
1073     uint64_t len = qed_offset_into_cluster(s, acb->cur_pos);
1074
1075     trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1076     qed_copy_from_backing_file(s, start, len, acb->cur_cluster,
1077                                 qed_aio_write_postfill, acb);
1078 }
1079
1080 /**
1081  * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1082  */
1083 static bool qed_should_set_need_check(BDRVQEDState *s)
1084 {
1085     /* The flush before L2 update path ensures consistency */
1086     if (s->bs->backing_hd) {
1087         return false;
1088     }
1089
1090     return !(s->header.features & QED_F_NEED_CHECK);
1091 }
1092
1093 static void qed_aio_write_zero_cluster(void *opaque, int ret)
1094 {
1095     QEDAIOCB *acb = opaque;
1096
1097     if (ret) {
1098         qed_aio_complete(acb, ret);
1099         return;
1100     }
1101
1102     qed_aio_write_l2_update(acb, 0, 1);
1103 }
1104
1105 /**
1106  * Write new data cluster
1107  *
1108  * @acb:        Write request
1109  * @len:        Length in bytes
1110  *
1111  * This path is taken when writing to previously unallocated clusters.
1112  */
1113 static void qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1114 {
1115     BDRVQEDState *s = acb_to_s(acb);
1116     BlockDriverCompletionFunc *cb;
1117
1118     /* Cancel timer when the first allocating request comes in */
1119     if (QSIMPLEQ_EMPTY(&s->allocating_write_reqs)) {
1120         qed_cancel_need_check_timer(s);
1121     }
1122
1123     /* Freeze this request if another allocating write is in progress */
1124     if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
1125         QSIMPLEQ_INSERT_TAIL(&s->allocating_write_reqs, acb, next);
1126     }
1127     if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs) ||
1128         s->allocating_write_reqs_plugged) {
1129         return; /* wait for existing request to finish */
1130     }
1131
1132     acb->cur_nclusters = qed_bytes_to_clusters(s,
1133             qed_offset_into_cluster(s, acb->cur_pos) + len);
1134     qemu_iovec_copy(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1135
1136     if (acb->flags & QED_AIOCB_ZERO) {
1137         /* Skip ahead if the clusters are already zero */
1138         if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1139             qed_aio_next_io(acb, 0);
1140             return;
1141         }
1142
1143         cb = qed_aio_write_zero_cluster;
1144     } else {
1145         cb = qed_aio_write_prefill;
1146         acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1147     }
1148
1149     if (qed_should_set_need_check(s)) {
1150         s->header.features |= QED_F_NEED_CHECK;
1151         qed_write_header(s, cb, acb);
1152     } else {
1153         cb(acb, 0);
1154     }
1155 }
1156
1157 /**
1158  * Write data cluster in place
1159  *
1160  * @acb:        Write request
1161  * @offset:     Cluster offset in bytes
1162  * @len:        Length in bytes
1163  *
1164  * This path is taken when writing to already allocated clusters.
1165  */
1166 static void qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, size_t len)
1167 {
1168     /* Allocate buffer for zero writes */
1169     if (acb->flags & QED_AIOCB_ZERO) {
1170         struct iovec *iov = acb->qiov->iov;
1171
1172         if (!iov->iov_base) {
1173             iov->iov_base = qemu_blockalign(acb->common.bs, iov->iov_len);
1174             memset(iov->iov_base, 0, iov->iov_len);
1175         }
1176     }
1177
1178     /* Calculate the I/O vector */
1179     acb->cur_cluster = offset;
1180     qemu_iovec_copy(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1181
1182     /* Do the actual write */
1183     qed_aio_write_main(acb, 0);
1184 }
1185
1186 /**
1187  * Write data cluster
1188  *
1189  * @opaque:     Write request
1190  * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1191  *              or -errno
1192  * @offset:     Cluster offset in bytes
1193  * @len:        Length in bytes
1194  *
1195  * Callback from qed_find_cluster().
1196  */
1197 static void qed_aio_write_data(void *opaque, int ret,
1198                                uint64_t offset, size_t len)
1199 {
1200     QEDAIOCB *acb = opaque;
1201
1202     trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1203
1204     acb->find_cluster_ret = ret;
1205
1206     switch (ret) {
1207     case QED_CLUSTER_FOUND:
1208         qed_aio_write_inplace(acb, offset, len);
1209         break;
1210
1211     case QED_CLUSTER_L2:
1212     case QED_CLUSTER_L1:
1213     case QED_CLUSTER_ZERO:
1214         qed_aio_write_alloc(acb, len);
1215         break;
1216
1217     default:
1218         qed_aio_complete(acb, ret);
1219         break;
1220     }
1221 }
1222
1223 /**
1224  * Read data cluster
1225  *
1226  * @opaque:     Read request
1227  * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1228  *              or -errno
1229  * @offset:     Cluster offset in bytes
1230  * @len:        Length in bytes
1231  *
1232  * Callback from qed_find_cluster().
1233  */
1234 static void qed_aio_read_data(void *opaque, int ret,
1235                               uint64_t offset, size_t len)
1236 {
1237     QEDAIOCB *acb = opaque;
1238     BDRVQEDState *s = acb_to_s(acb);
1239     BlockDriverState *bs = acb->common.bs;
1240
1241     /* Adjust offset into cluster */
1242     offset += qed_offset_into_cluster(s, acb->cur_pos);
1243
1244     trace_qed_aio_read_data(s, acb, ret, offset, len);
1245
1246     if (ret < 0) {
1247         goto err;
1248     }
1249
1250     qemu_iovec_copy(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1251
1252     /* Handle zero cluster and backing file reads */
1253     if (ret == QED_CLUSTER_ZERO) {
1254         qemu_iovec_memset(&acb->cur_qiov, 0, acb->cur_qiov.size);
1255         qed_aio_next_io(acb, 0);
1256         return;
1257     } else if (ret != QED_CLUSTER_FOUND) {
1258         qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov,
1259                               qed_aio_next_io, acb);
1260         return;
1261     }
1262
1263     BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1264     bdrv_aio_readv(bs->file, offset / BDRV_SECTOR_SIZE,
1265                    &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1266                    qed_aio_next_io, acb);
1267     return;
1268
1269 err:
1270     qed_aio_complete(acb, ret);
1271 }
1272
1273 /**
1274  * Begin next I/O or complete the request
1275  */
1276 static void qed_aio_next_io(void *opaque, int ret)
1277 {
1278     QEDAIOCB *acb = opaque;
1279     BDRVQEDState *s = acb_to_s(acb);
1280     QEDFindClusterFunc *io_fn = (acb->flags & QED_AIOCB_WRITE) ?
1281                                 qed_aio_write_data : qed_aio_read_data;
1282
1283     trace_qed_aio_next_io(s, acb, ret, acb->cur_pos + acb->cur_qiov.size);
1284
1285     /* Handle I/O error */
1286     if (ret) {
1287         qed_aio_complete(acb, ret);
1288         return;
1289     }
1290
1291     acb->qiov_offset += acb->cur_qiov.size;
1292     acb->cur_pos += acb->cur_qiov.size;
1293     qemu_iovec_reset(&acb->cur_qiov);
1294
1295     /* Complete request */
1296     if (acb->cur_pos >= acb->end_pos) {
1297         qed_aio_complete(acb, 0);
1298         return;
1299     }
1300
1301     /* Find next cluster and start I/O */
1302     qed_find_cluster(s, &acb->request,
1303                       acb->cur_pos, acb->end_pos - acb->cur_pos,
1304                       io_fn, acb);
1305 }
1306
1307 static BlockDriverAIOCB *qed_aio_setup(BlockDriverState *bs,
1308                                        int64_t sector_num,
1309                                        QEMUIOVector *qiov, int nb_sectors,
1310                                        BlockDriverCompletionFunc *cb,
1311                                        void *opaque, int flags)
1312 {
1313     QEDAIOCB *acb = qemu_aio_get(&qed_aio_pool, bs, cb, opaque);
1314
1315     trace_qed_aio_setup(bs->opaque, acb, sector_num, nb_sectors,
1316                         opaque, flags);
1317
1318     acb->flags = flags;
1319     acb->finished = NULL;
1320     acb->qiov = qiov;
1321     acb->qiov_offset = 0;
1322     acb->cur_pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE;
1323     acb->end_pos = acb->cur_pos + nb_sectors * BDRV_SECTOR_SIZE;
1324     acb->request.l2_table = NULL;
1325     qemu_iovec_init(&acb->cur_qiov, qiov->niov);
1326
1327     /* Start request */
1328     qed_aio_next_io(acb, 0);
1329     return &acb->common;
1330 }
1331
1332 static BlockDriverAIOCB *bdrv_qed_aio_readv(BlockDriverState *bs,
1333                                             int64_t sector_num,
1334                                             QEMUIOVector *qiov, int nb_sectors,
1335                                             BlockDriverCompletionFunc *cb,
1336                                             void *opaque)
1337 {
1338     return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
1339 }
1340
1341 static BlockDriverAIOCB *bdrv_qed_aio_writev(BlockDriverState *bs,
1342                                              int64_t sector_num,
1343                                              QEMUIOVector *qiov, int nb_sectors,
1344                                              BlockDriverCompletionFunc *cb,
1345                                              void *opaque)
1346 {
1347     return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb,
1348                          opaque, QED_AIOCB_WRITE);
1349 }
1350
1351 typedef struct {
1352     Coroutine *co;
1353     int ret;
1354     bool done;
1355 } QEDWriteZeroesCB;
1356
1357 static void coroutine_fn qed_co_write_zeroes_cb(void *opaque, int ret)
1358 {
1359     QEDWriteZeroesCB *cb = opaque;
1360
1361     cb->done = true;
1362     cb->ret = ret;
1363     if (cb->co) {
1364         qemu_coroutine_enter(cb->co, NULL);
1365     }
1366 }
1367
1368 static int coroutine_fn bdrv_qed_co_write_zeroes(BlockDriverState *bs,
1369                                                  int64_t sector_num,
1370                                                  int nb_sectors)
1371 {
1372     BlockDriverAIOCB *blockacb;
1373     QEDWriteZeroesCB cb = { .done = false };
1374     QEMUIOVector qiov;
1375     struct iovec iov;
1376
1377     /* Zero writes start without an I/O buffer.  If a buffer becomes necessary
1378      * then it will be allocated during request processing.
1379      */
1380     iov.iov_base = NULL,
1381     iov.iov_len  = nb_sectors * BDRV_SECTOR_SIZE,
1382
1383     qemu_iovec_init_external(&qiov, &iov, 1);
1384     blockacb = qed_aio_setup(bs, sector_num, &qiov, nb_sectors,
1385                              qed_co_write_zeroes_cb, &cb,
1386                              QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1387     if (!blockacb) {
1388         return -EIO;
1389     }
1390     if (!cb.done) {
1391         cb.co = qemu_coroutine_self();
1392         qemu_coroutine_yield();
1393     }
1394     assert(cb.done);
1395     return cb.ret;
1396 }
1397
1398 static int bdrv_qed_truncate(BlockDriverState *bs, int64_t offset)
1399 {
1400     BDRVQEDState *s = bs->opaque;
1401     uint64_t old_image_size;
1402     int ret;
1403
1404     if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1405                                  s->header.table_size)) {
1406         return -EINVAL;
1407     }
1408
1409     /* Shrinking is currently not supported */
1410     if ((uint64_t)offset < s->header.image_size) {
1411         return -ENOTSUP;
1412     }
1413
1414     old_image_size = s->header.image_size;
1415     s->header.image_size = offset;
1416     ret = qed_write_header_sync(s);
1417     if (ret < 0) {
1418         s->header.image_size = old_image_size;
1419     }
1420     return ret;
1421 }
1422
1423 static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1424 {
1425     BDRVQEDState *s = bs->opaque;
1426     return s->header.image_size;
1427 }
1428
1429 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1430 {
1431     BDRVQEDState *s = bs->opaque;
1432
1433     memset(bdi, 0, sizeof(*bdi));
1434     bdi->cluster_size = s->header.cluster_size;
1435     bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1436     return 0;
1437 }
1438
1439 static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1440                                         const char *backing_file,
1441                                         const char *backing_fmt)
1442 {
1443     BDRVQEDState *s = bs->opaque;
1444     QEDHeader new_header, le_header;
1445     void *buffer;
1446     size_t buffer_len, backing_file_len;
1447     int ret;
1448
1449     /* Refuse to set backing filename if unknown compat feature bits are
1450      * active.  If the image uses an unknown compat feature then we may not
1451      * know the layout of data following the header structure and cannot safely
1452      * add a new string.
1453      */
1454     if (backing_file && (s->header.compat_features &
1455                          ~QED_COMPAT_FEATURE_MASK)) {
1456         return -ENOTSUP;
1457     }
1458
1459     memcpy(&new_header, &s->header, sizeof(new_header));
1460
1461     new_header.features &= ~(QED_F_BACKING_FILE |
1462                              QED_F_BACKING_FORMAT_NO_PROBE);
1463
1464     /* Adjust feature flags */
1465     if (backing_file) {
1466         new_header.features |= QED_F_BACKING_FILE;
1467
1468         if (qed_fmt_is_raw(backing_fmt)) {
1469             new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1470         }
1471     }
1472
1473     /* Calculate new header size */
1474     backing_file_len = 0;
1475
1476     if (backing_file) {
1477         backing_file_len = strlen(backing_file);
1478     }
1479
1480     buffer_len = sizeof(new_header);
1481     new_header.backing_filename_offset = buffer_len;
1482     new_header.backing_filename_size = backing_file_len;
1483     buffer_len += backing_file_len;
1484
1485     /* Make sure we can rewrite header without failing */
1486     if (buffer_len > new_header.header_size * new_header.cluster_size) {
1487         return -ENOSPC;
1488     }
1489
1490     /* Prepare new header */
1491     buffer = g_malloc(buffer_len);
1492
1493     qed_header_cpu_to_le(&new_header, &le_header);
1494     memcpy(buffer, &le_header, sizeof(le_header));
1495     buffer_len = sizeof(le_header);
1496
1497     if (backing_file) {
1498         memcpy(buffer + buffer_len, backing_file, backing_file_len);
1499         buffer_len += backing_file_len;
1500     }
1501
1502     /* Write new header */
1503     ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len);
1504     g_free(buffer);
1505     if (ret == 0) {
1506         memcpy(&s->header, &new_header, sizeof(new_header));
1507     }
1508     return ret;
1509 }
1510
1511 static void bdrv_qed_invalidate_cache(BlockDriverState *bs)
1512 {
1513     BDRVQEDState *s = bs->opaque;
1514
1515     bdrv_qed_close(bs);
1516     memset(s, 0, sizeof(BDRVQEDState));
1517     bdrv_qed_open(bs, bs->open_flags);
1518 }
1519
1520 static int bdrv_qed_check(BlockDriverState *bs, BdrvCheckResult *result)
1521 {
1522     BDRVQEDState *s = bs->opaque;
1523
1524     return qed_check(s, result, false);
1525 }
1526
1527 static QEMUOptionParameter qed_create_options[] = {
1528     {
1529         .name = BLOCK_OPT_SIZE,
1530         .type = OPT_SIZE,
1531         .help = "Virtual disk size (in bytes)"
1532     }, {
1533         .name = BLOCK_OPT_BACKING_FILE,
1534         .type = OPT_STRING,
1535         .help = "File name of a base image"
1536     }, {
1537         .name = BLOCK_OPT_BACKING_FMT,
1538         .type = OPT_STRING,
1539         .help = "Image format of the base image"
1540     }, {
1541         .name = BLOCK_OPT_CLUSTER_SIZE,
1542         .type = OPT_SIZE,
1543         .help = "Cluster size (in bytes)",
1544         .value = { .n = QED_DEFAULT_CLUSTER_SIZE },
1545     }, {
1546         .name = BLOCK_OPT_TABLE_SIZE,
1547         .type = OPT_SIZE,
1548         .help = "L1/L2 table size (in clusters)"
1549     },
1550     { /* end of list */ }
1551 };
1552
1553 static BlockDriver bdrv_qed = {
1554     .format_name              = "qed",
1555     .instance_size            = sizeof(BDRVQEDState),
1556     .create_options           = qed_create_options,
1557
1558     .bdrv_probe               = bdrv_qed_probe,
1559     .bdrv_rebind              = bdrv_qed_rebind,
1560     .bdrv_open                = bdrv_qed_open,
1561     .bdrv_close               = bdrv_qed_close,
1562     .bdrv_create              = bdrv_qed_create,
1563     .bdrv_co_is_allocated     = bdrv_qed_co_is_allocated,
1564     .bdrv_make_empty          = bdrv_qed_make_empty,
1565     .bdrv_aio_readv           = bdrv_qed_aio_readv,
1566     .bdrv_aio_writev          = bdrv_qed_aio_writev,
1567     .bdrv_co_write_zeroes     = bdrv_qed_co_write_zeroes,
1568     .bdrv_truncate            = bdrv_qed_truncate,
1569     .bdrv_getlength           = bdrv_qed_getlength,
1570     .bdrv_get_info            = bdrv_qed_get_info,
1571     .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1572     .bdrv_invalidate_cache    = bdrv_qed_invalidate_cache,
1573     .bdrv_check               = bdrv_qed_check,
1574 };
1575
1576 static void bdrv_qed_init(void)
1577 {
1578     bdrv_register(&bdrv_qed);
1579 }
1580
1581 block_init(bdrv_qed_init);