drm/i915/gvt: Fix uninitialized variable in handle_mmio()
[platform/kernel/linux-rpi.git] / block / mq-deadline.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  MQ Deadline i/o scheduler - adaptation of the legacy deadline scheduler,
4  *  for the blk-mq scheduling framework
5  *
6  *  Copyright (C) 2016 Jens Axboe <axboe@kernel.dk>
7  */
8 #include <linux/kernel.h>
9 #include <linux/fs.h>
10 #include <linux/blkdev.h>
11 #include <linux/bio.h>
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/init.h>
15 #include <linux/compiler.h>
16 #include <linux/rbtree.h>
17 #include <linux/sbitmap.h>
18
19 #include <trace/events/block.h>
20
21 #include "elevator.h"
22 #include "blk.h"
23 #include "blk-mq.h"
24 #include "blk-mq-debugfs.h"
25 #include "blk-mq-sched.h"
26
27 /*
28  * See Documentation/block/deadline-iosched.rst
29  */
30 static const int read_expire = HZ / 2;  /* max time before a read is submitted. */
31 static const int write_expire = 5 * HZ; /* ditto for writes, these limits are SOFT! */
32 /*
33  * Time after which to dispatch lower priority requests even if higher
34  * priority requests are pending.
35  */
36 static const int prio_aging_expire = 10 * HZ;
37 static const int writes_starved = 2;    /* max times reads can starve a write */
38 static const int fifo_batch = 16;       /* # of sequential requests treated as one
39                                      by the above parameters. For throughput. */
40
41 enum dd_data_dir {
42         DD_READ         = READ,
43         DD_WRITE        = WRITE,
44 };
45
46 enum { DD_DIR_COUNT = 2 };
47
48 enum dd_prio {
49         DD_RT_PRIO      = 0,
50         DD_BE_PRIO      = 1,
51         DD_IDLE_PRIO    = 2,
52         DD_PRIO_MAX     = 2,
53 };
54
55 enum { DD_PRIO_COUNT = 3 };
56
57 /*
58  * I/O statistics per I/O priority. It is fine if these counters overflow.
59  * What matters is that these counters are at least as wide as
60  * log2(max_outstanding_requests).
61  */
62 struct io_stats_per_prio {
63         uint32_t inserted;
64         uint32_t merged;
65         uint32_t dispatched;
66         atomic_t completed;
67 };
68
69 /*
70  * Deadline scheduler data per I/O priority (enum dd_prio). Requests are
71  * present on both sort_list[] and fifo_list[].
72  */
73 struct dd_per_prio {
74         struct list_head dispatch;
75         struct rb_root sort_list[DD_DIR_COUNT];
76         struct list_head fifo_list[DD_DIR_COUNT];
77         /* Position of the most recently dispatched request. */
78         sector_t latest_pos[DD_DIR_COUNT];
79         struct io_stats_per_prio stats;
80 };
81
82 struct deadline_data {
83         /*
84          * run time data
85          */
86
87         struct dd_per_prio per_prio[DD_PRIO_COUNT];
88
89         /* Data direction of latest dispatched request. */
90         enum dd_data_dir last_dir;
91         unsigned int batching;          /* number of sequential requests made */
92         unsigned int starved;           /* times reads have starved writes */
93
94         /*
95          * settings that change how the i/o scheduler behaves
96          */
97         int fifo_expire[DD_DIR_COUNT];
98         int fifo_batch;
99         int writes_starved;
100         int front_merges;
101         u32 async_depth;
102         int prio_aging_expire;
103
104         spinlock_t lock;
105         spinlock_t zone_lock;
106 };
107
108 /* Maps an I/O priority class to a deadline scheduler priority. */
109 static const enum dd_prio ioprio_class_to_prio[] = {
110         [IOPRIO_CLASS_NONE]     = DD_BE_PRIO,
111         [IOPRIO_CLASS_RT]       = DD_RT_PRIO,
112         [IOPRIO_CLASS_BE]       = DD_BE_PRIO,
113         [IOPRIO_CLASS_IDLE]     = DD_IDLE_PRIO,
114 };
115
116 static inline struct rb_root *
117 deadline_rb_root(struct dd_per_prio *per_prio, struct request *rq)
118 {
119         return &per_prio->sort_list[rq_data_dir(rq)];
120 }
121
122 /*
123  * Returns the I/O priority class (IOPRIO_CLASS_*) that has been assigned to a
124  * request.
125  */
126 static u8 dd_rq_ioclass(struct request *rq)
127 {
128         return IOPRIO_PRIO_CLASS(req_get_ioprio(rq));
129 }
130
131 /*
132  * get the request before `rq' in sector-sorted order
133  */
134 static inline struct request *
135 deadline_earlier_request(struct request *rq)
136 {
137         struct rb_node *node = rb_prev(&rq->rb_node);
138
139         if (node)
140                 return rb_entry_rq(node);
141
142         return NULL;
143 }
144
145 /*
146  * get the request after `rq' in sector-sorted order
147  */
148 static inline struct request *
149 deadline_latter_request(struct request *rq)
150 {
151         struct rb_node *node = rb_next(&rq->rb_node);
152
153         if (node)
154                 return rb_entry_rq(node);
155
156         return NULL;
157 }
158
159 /*
160  * Return the first request for which blk_rq_pos() >= @pos. For zoned devices,
161  * return the first request after the start of the zone containing @pos.
162  */
163 static inline struct request *deadline_from_pos(struct dd_per_prio *per_prio,
164                                 enum dd_data_dir data_dir, sector_t pos)
165 {
166         struct rb_node *node = per_prio->sort_list[data_dir].rb_node;
167         struct request *rq, *res = NULL;
168
169         if (!node)
170                 return NULL;
171
172         rq = rb_entry_rq(node);
173         /*
174          * A zoned write may have been requeued with a starting position that
175          * is below that of the most recently dispatched request. Hence, for
176          * zoned writes, start searching from the start of a zone.
177          */
178         if (blk_rq_is_seq_zoned_write(rq))
179                 pos = round_down(pos, rq->q->limits.chunk_sectors);
180
181         while (node) {
182                 rq = rb_entry_rq(node);
183                 if (blk_rq_pos(rq) >= pos) {
184                         res = rq;
185                         node = node->rb_left;
186                 } else {
187                         node = node->rb_right;
188                 }
189         }
190         return res;
191 }
192
193 static void
194 deadline_add_rq_rb(struct dd_per_prio *per_prio, struct request *rq)
195 {
196         struct rb_root *root = deadline_rb_root(per_prio, rq);
197
198         elv_rb_add(root, rq);
199 }
200
201 static inline void
202 deadline_del_rq_rb(struct dd_per_prio *per_prio, struct request *rq)
203 {
204         elv_rb_del(deadline_rb_root(per_prio, rq), rq);
205 }
206
207 /*
208  * remove rq from rbtree and fifo.
209  */
210 static void deadline_remove_request(struct request_queue *q,
211                                     struct dd_per_prio *per_prio,
212                                     struct request *rq)
213 {
214         list_del_init(&rq->queuelist);
215
216         /*
217          * We might not be on the rbtree, if we are doing an insert merge
218          */
219         if (!RB_EMPTY_NODE(&rq->rb_node))
220                 deadline_del_rq_rb(per_prio, rq);
221
222         elv_rqhash_del(q, rq);
223         if (q->last_merge == rq)
224                 q->last_merge = NULL;
225 }
226
227 static void dd_request_merged(struct request_queue *q, struct request *req,
228                               enum elv_merge type)
229 {
230         struct deadline_data *dd = q->elevator->elevator_data;
231         const u8 ioprio_class = dd_rq_ioclass(req);
232         const enum dd_prio prio = ioprio_class_to_prio[ioprio_class];
233         struct dd_per_prio *per_prio = &dd->per_prio[prio];
234
235         /*
236          * if the merge was a front merge, we need to reposition request
237          */
238         if (type == ELEVATOR_FRONT_MERGE) {
239                 elv_rb_del(deadline_rb_root(per_prio, req), req);
240                 deadline_add_rq_rb(per_prio, req);
241         }
242 }
243
244 /*
245  * Callback function that is invoked after @next has been merged into @req.
246  */
247 static void dd_merged_requests(struct request_queue *q, struct request *req,
248                                struct request *next)
249 {
250         struct deadline_data *dd = q->elevator->elevator_data;
251         const u8 ioprio_class = dd_rq_ioclass(next);
252         const enum dd_prio prio = ioprio_class_to_prio[ioprio_class];
253
254         lockdep_assert_held(&dd->lock);
255
256         dd->per_prio[prio].stats.merged++;
257
258         /*
259          * if next expires before rq, assign its expire time to rq
260          * and move into next position (next will be deleted) in fifo
261          */
262         if (!list_empty(&req->queuelist) && !list_empty(&next->queuelist)) {
263                 if (time_before((unsigned long)next->fifo_time,
264                                 (unsigned long)req->fifo_time)) {
265                         list_move(&req->queuelist, &next->queuelist);
266                         req->fifo_time = next->fifo_time;
267                 }
268         }
269
270         /*
271          * kill knowledge of next, this one is a goner
272          */
273         deadline_remove_request(q, &dd->per_prio[prio], next);
274 }
275
276 /*
277  * move an entry to dispatch queue
278  */
279 static void
280 deadline_move_request(struct deadline_data *dd, struct dd_per_prio *per_prio,
281                       struct request *rq)
282 {
283         /*
284          * take it off the sort and fifo list
285          */
286         deadline_remove_request(rq->q, per_prio, rq);
287 }
288
289 /* Number of requests queued for a given priority level. */
290 static u32 dd_queued(struct deadline_data *dd, enum dd_prio prio)
291 {
292         const struct io_stats_per_prio *stats = &dd->per_prio[prio].stats;
293
294         lockdep_assert_held(&dd->lock);
295
296         return stats->inserted - atomic_read(&stats->completed);
297 }
298
299 /*
300  * deadline_check_fifo returns true if and only if there are expired requests
301  * in the FIFO list. Requires !list_empty(&dd->fifo_list[data_dir]).
302  */
303 static inline bool deadline_check_fifo(struct dd_per_prio *per_prio,
304                                        enum dd_data_dir data_dir)
305 {
306         struct request *rq = rq_entry_fifo(per_prio->fifo_list[data_dir].next);
307
308         return time_is_before_eq_jiffies((unsigned long)rq->fifo_time);
309 }
310
311 /*
312  * Check if rq has a sequential request preceding it.
313  */
314 static bool deadline_is_seq_write(struct deadline_data *dd, struct request *rq)
315 {
316         struct request *prev = deadline_earlier_request(rq);
317
318         if (!prev)
319                 return false;
320
321         return blk_rq_pos(prev) + blk_rq_sectors(prev) == blk_rq_pos(rq);
322 }
323
324 /*
325  * Skip all write requests that are sequential from @rq, even if we cross
326  * a zone boundary.
327  */
328 static struct request *deadline_skip_seq_writes(struct deadline_data *dd,
329                                                 struct request *rq)
330 {
331         sector_t pos = blk_rq_pos(rq);
332
333         do {
334                 pos += blk_rq_sectors(rq);
335                 rq = deadline_latter_request(rq);
336         } while (rq && blk_rq_pos(rq) == pos);
337
338         return rq;
339 }
340
341 /*
342  * For the specified data direction, return the next request to
343  * dispatch using arrival ordered lists.
344  */
345 static struct request *
346 deadline_fifo_request(struct deadline_data *dd, struct dd_per_prio *per_prio,
347                       enum dd_data_dir data_dir)
348 {
349         struct request *rq, *rb_rq, *next;
350         unsigned long flags;
351
352         if (list_empty(&per_prio->fifo_list[data_dir]))
353                 return NULL;
354
355         rq = rq_entry_fifo(per_prio->fifo_list[data_dir].next);
356         if (data_dir == DD_READ || !blk_queue_is_zoned(rq->q))
357                 return rq;
358
359         /*
360          * Look for a write request that can be dispatched, that is one with
361          * an unlocked target zone. For some HDDs, breaking a sequential
362          * write stream can lead to lower throughput, so make sure to preserve
363          * sequential write streams, even if that stream crosses into the next
364          * zones and these zones are unlocked.
365          */
366         spin_lock_irqsave(&dd->zone_lock, flags);
367         list_for_each_entry_safe(rq, next, &per_prio->fifo_list[DD_WRITE],
368                                  queuelist) {
369                 /* Check whether a prior request exists for the same zone. */
370                 rb_rq = deadline_from_pos(per_prio, data_dir, blk_rq_pos(rq));
371                 if (rb_rq && blk_rq_pos(rb_rq) < blk_rq_pos(rq))
372                         rq = rb_rq;
373                 if (blk_req_can_dispatch_to_zone(rq) &&
374                     (blk_queue_nonrot(rq->q) ||
375                      !deadline_is_seq_write(dd, rq)))
376                         goto out;
377         }
378         rq = NULL;
379 out:
380         spin_unlock_irqrestore(&dd->zone_lock, flags);
381
382         return rq;
383 }
384
385 /*
386  * For the specified data direction, return the next request to
387  * dispatch using sector position sorted lists.
388  */
389 static struct request *
390 deadline_next_request(struct deadline_data *dd, struct dd_per_prio *per_prio,
391                       enum dd_data_dir data_dir)
392 {
393         struct request *rq;
394         unsigned long flags;
395
396         rq = deadline_from_pos(per_prio, data_dir,
397                                per_prio->latest_pos[data_dir]);
398         if (!rq)
399                 return NULL;
400
401         if (data_dir == DD_READ || !blk_queue_is_zoned(rq->q))
402                 return rq;
403
404         /*
405          * Look for a write request that can be dispatched, that is one with
406          * an unlocked target zone. For some HDDs, breaking a sequential
407          * write stream can lead to lower throughput, so make sure to preserve
408          * sequential write streams, even if that stream crosses into the next
409          * zones and these zones are unlocked.
410          */
411         spin_lock_irqsave(&dd->zone_lock, flags);
412         while (rq) {
413                 if (blk_req_can_dispatch_to_zone(rq))
414                         break;
415                 if (blk_queue_nonrot(rq->q))
416                         rq = deadline_latter_request(rq);
417                 else
418                         rq = deadline_skip_seq_writes(dd, rq);
419         }
420         spin_unlock_irqrestore(&dd->zone_lock, flags);
421
422         return rq;
423 }
424
425 /*
426  * Returns true if and only if @rq started after @latest_start where
427  * @latest_start is in jiffies.
428  */
429 static bool started_after(struct deadline_data *dd, struct request *rq,
430                           unsigned long latest_start)
431 {
432         unsigned long start_time = (unsigned long)rq->fifo_time;
433
434         start_time -= dd->fifo_expire[rq_data_dir(rq)];
435
436         return time_after(start_time, latest_start);
437 }
438
439 /*
440  * deadline_dispatch_requests selects the best request according to
441  * read/write expire, fifo_batch, etc and with a start time <= @latest_start.
442  */
443 static struct request *__dd_dispatch_request(struct deadline_data *dd,
444                                              struct dd_per_prio *per_prio,
445                                              unsigned long latest_start)
446 {
447         struct request *rq, *next_rq;
448         enum dd_data_dir data_dir;
449         enum dd_prio prio;
450         u8 ioprio_class;
451
452         lockdep_assert_held(&dd->lock);
453
454         if (!list_empty(&per_prio->dispatch)) {
455                 rq = list_first_entry(&per_prio->dispatch, struct request,
456                                       queuelist);
457                 if (started_after(dd, rq, latest_start))
458                         return NULL;
459                 list_del_init(&rq->queuelist);
460                 data_dir = rq_data_dir(rq);
461                 goto done;
462         }
463
464         /*
465          * batches are currently reads XOR writes
466          */
467         rq = deadline_next_request(dd, per_prio, dd->last_dir);
468         if (rq && dd->batching < dd->fifo_batch) {
469                 /* we have a next request and are still entitled to batch */
470                 data_dir = rq_data_dir(rq);
471                 goto dispatch_request;
472         }
473
474         /*
475          * at this point we are not running a batch. select the appropriate
476          * data direction (read / write)
477          */
478
479         if (!list_empty(&per_prio->fifo_list[DD_READ])) {
480                 BUG_ON(RB_EMPTY_ROOT(&per_prio->sort_list[DD_READ]));
481
482                 if (deadline_fifo_request(dd, per_prio, DD_WRITE) &&
483                     (dd->starved++ >= dd->writes_starved))
484                         goto dispatch_writes;
485
486                 data_dir = DD_READ;
487
488                 goto dispatch_find_request;
489         }
490
491         /*
492          * there are either no reads or writes have been starved
493          */
494
495         if (!list_empty(&per_prio->fifo_list[DD_WRITE])) {
496 dispatch_writes:
497                 BUG_ON(RB_EMPTY_ROOT(&per_prio->sort_list[DD_WRITE]));
498
499                 dd->starved = 0;
500
501                 data_dir = DD_WRITE;
502
503                 goto dispatch_find_request;
504         }
505
506         return NULL;
507
508 dispatch_find_request:
509         /*
510          * we are not running a batch, find best request for selected data_dir
511          */
512         next_rq = deadline_next_request(dd, per_prio, data_dir);
513         if (deadline_check_fifo(per_prio, data_dir) || !next_rq) {
514                 /*
515                  * A deadline has expired, the last request was in the other
516                  * direction, or we have run out of higher-sectored requests.
517                  * Start again from the request with the earliest expiry time.
518                  */
519                 rq = deadline_fifo_request(dd, per_prio, data_dir);
520         } else {
521                 /*
522                  * The last req was the same dir and we have a next request in
523                  * sort order. No expired requests so continue on from here.
524                  */
525                 rq = next_rq;
526         }
527
528         /*
529          * For a zoned block device, if we only have writes queued and none of
530          * them can be dispatched, rq will be NULL.
531          */
532         if (!rq)
533                 return NULL;
534
535         dd->last_dir = data_dir;
536         dd->batching = 0;
537
538 dispatch_request:
539         if (started_after(dd, rq, latest_start))
540                 return NULL;
541
542         /*
543          * rq is the selected appropriate request.
544          */
545         dd->batching++;
546         deadline_move_request(dd, per_prio, rq);
547 done:
548         ioprio_class = dd_rq_ioclass(rq);
549         prio = ioprio_class_to_prio[ioprio_class];
550         dd->per_prio[prio].latest_pos[data_dir] = blk_rq_pos(rq);
551         dd->per_prio[prio].stats.dispatched++;
552         /*
553          * If the request needs its target zone locked, do it.
554          */
555         blk_req_zone_write_lock(rq);
556         rq->rq_flags |= RQF_STARTED;
557         return rq;
558 }
559
560 /*
561  * Check whether there are any requests with priority other than DD_RT_PRIO
562  * that were inserted more than prio_aging_expire jiffies ago.
563  */
564 static struct request *dd_dispatch_prio_aged_requests(struct deadline_data *dd,
565                                                       unsigned long now)
566 {
567         struct request *rq;
568         enum dd_prio prio;
569         int prio_cnt;
570
571         lockdep_assert_held(&dd->lock);
572
573         prio_cnt = !!dd_queued(dd, DD_RT_PRIO) + !!dd_queued(dd, DD_BE_PRIO) +
574                    !!dd_queued(dd, DD_IDLE_PRIO);
575         if (prio_cnt < 2)
576                 return NULL;
577
578         for (prio = DD_BE_PRIO; prio <= DD_PRIO_MAX; prio++) {
579                 rq = __dd_dispatch_request(dd, &dd->per_prio[prio],
580                                            now - dd->prio_aging_expire);
581                 if (rq)
582                         return rq;
583         }
584
585         return NULL;
586 }
587
588 /*
589  * Called from blk_mq_run_hw_queue() -> __blk_mq_sched_dispatch_requests().
590  *
591  * One confusing aspect here is that we get called for a specific
592  * hardware queue, but we may return a request that is for a
593  * different hardware queue. This is because mq-deadline has shared
594  * state for all hardware queues, in terms of sorting, FIFOs, etc.
595  */
596 static struct request *dd_dispatch_request(struct blk_mq_hw_ctx *hctx)
597 {
598         struct deadline_data *dd = hctx->queue->elevator->elevator_data;
599         const unsigned long now = jiffies;
600         struct request *rq;
601         enum dd_prio prio;
602
603         spin_lock(&dd->lock);
604         rq = dd_dispatch_prio_aged_requests(dd, now);
605         if (rq)
606                 goto unlock;
607
608         /*
609          * Next, dispatch requests in priority order. Ignore lower priority
610          * requests if any higher priority requests are pending.
611          */
612         for (prio = 0; prio <= DD_PRIO_MAX; prio++) {
613                 rq = __dd_dispatch_request(dd, &dd->per_prio[prio], now);
614                 if (rq || dd_queued(dd, prio))
615                         break;
616         }
617
618 unlock:
619         spin_unlock(&dd->lock);
620
621         return rq;
622 }
623
624 /*
625  * Called by __blk_mq_alloc_request(). The shallow_depth value set by this
626  * function is used by __blk_mq_get_tag().
627  */
628 static void dd_limit_depth(blk_opf_t opf, struct blk_mq_alloc_data *data)
629 {
630         struct deadline_data *dd = data->q->elevator->elevator_data;
631
632         /* Do not throttle synchronous reads. */
633         if (op_is_sync(opf) && !op_is_write(opf))
634                 return;
635
636         /*
637          * Throttle asynchronous requests and writes such that these requests
638          * do not block the allocation of synchronous requests.
639          */
640         data->shallow_depth = dd->async_depth;
641 }
642
643 /* Called by blk_mq_update_nr_requests(). */
644 static void dd_depth_updated(struct blk_mq_hw_ctx *hctx)
645 {
646         struct request_queue *q = hctx->queue;
647         struct deadline_data *dd = q->elevator->elevator_data;
648         struct blk_mq_tags *tags = hctx->sched_tags;
649         unsigned int shift = tags->bitmap_tags.sb.shift;
650
651         dd->async_depth = max(1U, 3 * (1U << shift)  / 4);
652
653         sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, dd->async_depth);
654 }
655
656 /* Called by blk_mq_init_hctx() and blk_mq_init_sched(). */
657 static int dd_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
658 {
659         dd_depth_updated(hctx);
660         return 0;
661 }
662
663 static void dd_exit_sched(struct elevator_queue *e)
664 {
665         struct deadline_data *dd = e->elevator_data;
666         enum dd_prio prio;
667
668         for (prio = 0; prio <= DD_PRIO_MAX; prio++) {
669                 struct dd_per_prio *per_prio = &dd->per_prio[prio];
670                 const struct io_stats_per_prio *stats = &per_prio->stats;
671                 uint32_t queued;
672
673                 WARN_ON_ONCE(!list_empty(&per_prio->fifo_list[DD_READ]));
674                 WARN_ON_ONCE(!list_empty(&per_prio->fifo_list[DD_WRITE]));
675
676                 spin_lock(&dd->lock);
677                 queued = dd_queued(dd, prio);
678                 spin_unlock(&dd->lock);
679
680                 WARN_ONCE(queued != 0,
681                           "statistics for priority %d: i %u m %u d %u c %u\n",
682                           prio, stats->inserted, stats->merged,
683                           stats->dispatched, atomic_read(&stats->completed));
684         }
685
686         kfree(dd);
687 }
688
689 /*
690  * initialize elevator private data (deadline_data).
691  */
692 static int dd_init_sched(struct request_queue *q, struct elevator_type *e)
693 {
694         struct deadline_data *dd;
695         struct elevator_queue *eq;
696         enum dd_prio prio;
697         int ret = -ENOMEM;
698
699         eq = elevator_alloc(q, e);
700         if (!eq)
701                 return ret;
702
703         dd = kzalloc_node(sizeof(*dd), GFP_KERNEL, q->node);
704         if (!dd)
705                 goto put_eq;
706
707         eq->elevator_data = dd;
708
709         for (prio = 0; prio <= DD_PRIO_MAX; prio++) {
710                 struct dd_per_prio *per_prio = &dd->per_prio[prio];
711
712                 INIT_LIST_HEAD(&per_prio->dispatch);
713                 INIT_LIST_HEAD(&per_prio->fifo_list[DD_READ]);
714                 INIT_LIST_HEAD(&per_prio->fifo_list[DD_WRITE]);
715                 per_prio->sort_list[DD_READ] = RB_ROOT;
716                 per_prio->sort_list[DD_WRITE] = RB_ROOT;
717         }
718         dd->fifo_expire[DD_READ] = read_expire;
719         dd->fifo_expire[DD_WRITE] = write_expire;
720         dd->writes_starved = writes_starved;
721         dd->front_merges = 1;
722         dd->last_dir = DD_WRITE;
723         dd->fifo_batch = fifo_batch;
724         dd->prio_aging_expire = prio_aging_expire;
725         spin_lock_init(&dd->lock);
726         spin_lock_init(&dd->zone_lock);
727
728         /* We dispatch from request queue wide instead of hw queue */
729         blk_queue_flag_set(QUEUE_FLAG_SQ_SCHED, q);
730
731         q->elevator = eq;
732         return 0;
733
734 put_eq:
735         kobject_put(&eq->kobj);
736         return ret;
737 }
738
739 /*
740  * Try to merge @bio into an existing request. If @bio has been merged into
741  * an existing request, store the pointer to that request into *@rq.
742  */
743 static int dd_request_merge(struct request_queue *q, struct request **rq,
744                             struct bio *bio)
745 {
746         struct deadline_data *dd = q->elevator->elevator_data;
747         const u8 ioprio_class = IOPRIO_PRIO_CLASS(bio->bi_ioprio);
748         const enum dd_prio prio = ioprio_class_to_prio[ioprio_class];
749         struct dd_per_prio *per_prio = &dd->per_prio[prio];
750         sector_t sector = bio_end_sector(bio);
751         struct request *__rq;
752
753         if (!dd->front_merges)
754                 return ELEVATOR_NO_MERGE;
755
756         __rq = elv_rb_find(&per_prio->sort_list[bio_data_dir(bio)], sector);
757         if (__rq) {
758                 BUG_ON(sector != blk_rq_pos(__rq));
759
760                 if (elv_bio_merge_ok(__rq, bio)) {
761                         *rq = __rq;
762                         if (blk_discard_mergable(__rq))
763                                 return ELEVATOR_DISCARD_MERGE;
764                         return ELEVATOR_FRONT_MERGE;
765                 }
766         }
767
768         return ELEVATOR_NO_MERGE;
769 }
770
771 /*
772  * Attempt to merge a bio into an existing request. This function is called
773  * before @bio is associated with a request.
774  */
775 static bool dd_bio_merge(struct request_queue *q, struct bio *bio,
776                 unsigned int nr_segs)
777 {
778         struct deadline_data *dd = q->elevator->elevator_data;
779         struct request *free = NULL;
780         bool ret;
781
782         spin_lock(&dd->lock);
783         ret = blk_mq_sched_try_merge(q, bio, nr_segs, &free);
784         spin_unlock(&dd->lock);
785
786         if (free)
787                 blk_mq_free_request(free);
788
789         return ret;
790 }
791
792 /*
793  * add rq to rbtree and fifo
794  */
795 static void dd_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
796                               blk_insert_t flags, struct list_head *free)
797 {
798         struct request_queue *q = hctx->queue;
799         struct deadline_data *dd = q->elevator->elevator_data;
800         const enum dd_data_dir data_dir = rq_data_dir(rq);
801         u16 ioprio = req_get_ioprio(rq);
802         u8 ioprio_class = IOPRIO_PRIO_CLASS(ioprio);
803         struct dd_per_prio *per_prio;
804         enum dd_prio prio;
805
806         lockdep_assert_held(&dd->lock);
807
808         /*
809          * This may be a requeue of a write request that has locked its
810          * target zone. If it is the case, this releases the zone lock.
811          */
812         blk_req_zone_write_unlock(rq);
813
814         prio = ioprio_class_to_prio[ioprio_class];
815         per_prio = &dd->per_prio[prio];
816         if (!rq->elv.priv[0]) {
817                 per_prio->stats.inserted++;
818                 rq->elv.priv[0] = (void *)(uintptr_t)1;
819         }
820
821         if (blk_mq_sched_try_insert_merge(q, rq, free))
822                 return;
823
824         trace_block_rq_insert(rq);
825
826         if (flags & BLK_MQ_INSERT_AT_HEAD) {
827                 list_add(&rq->queuelist, &per_prio->dispatch);
828                 rq->fifo_time = jiffies;
829         } else {
830                 struct list_head *insert_before;
831
832                 deadline_add_rq_rb(per_prio, rq);
833
834                 if (rq_mergeable(rq)) {
835                         elv_rqhash_add(q, rq);
836                         if (!q->last_merge)
837                                 q->last_merge = rq;
838                 }
839
840                 /*
841                  * set expire time and add to fifo list
842                  */
843                 rq->fifo_time = jiffies + dd->fifo_expire[data_dir];
844                 insert_before = &per_prio->fifo_list[data_dir];
845 #ifdef CONFIG_BLK_DEV_ZONED
846                 /*
847                  * Insert zoned writes such that requests are sorted by
848                  * position per zone.
849                  */
850                 if (blk_rq_is_seq_zoned_write(rq)) {
851                         struct request *rq2 = deadline_latter_request(rq);
852
853                         if (rq2 && blk_rq_zone_no(rq2) == blk_rq_zone_no(rq))
854                                 insert_before = &rq2->queuelist;
855                 }
856 #endif
857                 list_add_tail(&rq->queuelist, insert_before);
858         }
859 }
860
861 /*
862  * Called from blk_mq_insert_request() or blk_mq_dispatch_plug_list().
863  */
864 static void dd_insert_requests(struct blk_mq_hw_ctx *hctx,
865                                struct list_head *list,
866                                blk_insert_t flags)
867 {
868         struct request_queue *q = hctx->queue;
869         struct deadline_data *dd = q->elevator->elevator_data;
870         LIST_HEAD(free);
871
872         spin_lock(&dd->lock);
873         while (!list_empty(list)) {
874                 struct request *rq;
875
876                 rq = list_first_entry(list, struct request, queuelist);
877                 list_del_init(&rq->queuelist);
878                 dd_insert_request(hctx, rq, flags, &free);
879         }
880         spin_unlock(&dd->lock);
881
882         blk_mq_free_requests(&free);
883 }
884
885 /* Callback from inside blk_mq_rq_ctx_init(). */
886 static void dd_prepare_request(struct request *rq)
887 {
888         rq->elv.priv[0] = NULL;
889 }
890
891 static bool dd_has_write_work(struct blk_mq_hw_ctx *hctx)
892 {
893         struct deadline_data *dd = hctx->queue->elevator->elevator_data;
894         enum dd_prio p;
895
896         for (p = 0; p <= DD_PRIO_MAX; p++)
897                 if (!list_empty_careful(&dd->per_prio[p].fifo_list[DD_WRITE]))
898                         return true;
899
900         return false;
901 }
902
903 /*
904  * Callback from inside blk_mq_free_request().
905  *
906  * For zoned block devices, write unlock the target zone of
907  * completed write requests. Do this while holding the zone lock
908  * spinlock so that the zone is never unlocked while deadline_fifo_request()
909  * or deadline_next_request() are executing. This function is called for
910  * all requests, whether or not these requests complete successfully.
911  *
912  * For a zoned block device, __dd_dispatch_request() may have stopped
913  * dispatching requests if all the queued requests are write requests directed
914  * at zones that are already locked due to on-going write requests. To ensure
915  * write request dispatch progress in this case, mark the queue as needing a
916  * restart to ensure that the queue is run again after completion of the
917  * request and zones being unlocked.
918  */
919 static void dd_finish_request(struct request *rq)
920 {
921         struct request_queue *q = rq->q;
922         struct deadline_data *dd = q->elevator->elevator_data;
923         const u8 ioprio_class = dd_rq_ioclass(rq);
924         const enum dd_prio prio = ioprio_class_to_prio[ioprio_class];
925         struct dd_per_prio *per_prio = &dd->per_prio[prio];
926
927         /*
928          * The block layer core may call dd_finish_request() without having
929          * called dd_insert_requests(). Skip requests that bypassed I/O
930          * scheduling. See also blk_mq_request_bypass_insert().
931          */
932         if (!rq->elv.priv[0])
933                 return;
934
935         atomic_inc(&per_prio->stats.completed);
936
937         if (blk_queue_is_zoned(q)) {
938                 unsigned long flags;
939
940                 spin_lock_irqsave(&dd->zone_lock, flags);
941                 blk_req_zone_write_unlock(rq);
942                 spin_unlock_irqrestore(&dd->zone_lock, flags);
943
944                 if (dd_has_write_work(rq->mq_hctx))
945                         blk_mq_sched_mark_restart_hctx(rq->mq_hctx);
946         }
947 }
948
949 static bool dd_has_work_for_prio(struct dd_per_prio *per_prio)
950 {
951         return !list_empty_careful(&per_prio->dispatch) ||
952                 !list_empty_careful(&per_prio->fifo_list[DD_READ]) ||
953                 !list_empty_careful(&per_prio->fifo_list[DD_WRITE]);
954 }
955
956 static bool dd_has_work(struct blk_mq_hw_ctx *hctx)
957 {
958         struct deadline_data *dd = hctx->queue->elevator->elevator_data;
959         enum dd_prio prio;
960
961         for (prio = 0; prio <= DD_PRIO_MAX; prio++)
962                 if (dd_has_work_for_prio(&dd->per_prio[prio]))
963                         return true;
964
965         return false;
966 }
967
968 /*
969  * sysfs parts below
970  */
971 #define SHOW_INT(__FUNC, __VAR)                                         \
972 static ssize_t __FUNC(struct elevator_queue *e, char *page)             \
973 {                                                                       \
974         struct deadline_data *dd = e->elevator_data;                    \
975                                                                         \
976         return sysfs_emit(page, "%d\n", __VAR);                         \
977 }
978 #define SHOW_JIFFIES(__FUNC, __VAR) SHOW_INT(__FUNC, jiffies_to_msecs(__VAR))
979 SHOW_JIFFIES(deadline_read_expire_show, dd->fifo_expire[DD_READ]);
980 SHOW_JIFFIES(deadline_write_expire_show, dd->fifo_expire[DD_WRITE]);
981 SHOW_JIFFIES(deadline_prio_aging_expire_show, dd->prio_aging_expire);
982 SHOW_INT(deadline_writes_starved_show, dd->writes_starved);
983 SHOW_INT(deadline_front_merges_show, dd->front_merges);
984 SHOW_INT(deadline_async_depth_show, dd->async_depth);
985 SHOW_INT(deadline_fifo_batch_show, dd->fifo_batch);
986 #undef SHOW_INT
987 #undef SHOW_JIFFIES
988
989 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
990 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
991 {                                                                       \
992         struct deadline_data *dd = e->elevator_data;                    \
993         int __data, __ret;                                              \
994                                                                         \
995         __ret = kstrtoint(page, 0, &__data);                            \
996         if (__ret < 0)                                                  \
997                 return __ret;                                           \
998         if (__data < (MIN))                                             \
999                 __data = (MIN);                                         \
1000         else if (__data > (MAX))                                        \
1001                 __data = (MAX);                                         \
1002         *(__PTR) = __CONV(__data);                                      \
1003         return count;                                                   \
1004 }
1005 #define STORE_INT(__FUNC, __PTR, MIN, MAX)                              \
1006         STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, )
1007 #define STORE_JIFFIES(__FUNC, __PTR, MIN, MAX)                          \
1008         STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, msecs_to_jiffies)
1009 STORE_JIFFIES(deadline_read_expire_store, &dd->fifo_expire[DD_READ], 0, INT_MAX);
1010 STORE_JIFFIES(deadline_write_expire_store, &dd->fifo_expire[DD_WRITE], 0, INT_MAX);
1011 STORE_JIFFIES(deadline_prio_aging_expire_store, &dd->prio_aging_expire, 0, INT_MAX);
1012 STORE_INT(deadline_writes_starved_store, &dd->writes_starved, INT_MIN, INT_MAX);
1013 STORE_INT(deadline_front_merges_store, &dd->front_merges, 0, 1);
1014 STORE_INT(deadline_async_depth_store, &dd->async_depth, 1, INT_MAX);
1015 STORE_INT(deadline_fifo_batch_store, &dd->fifo_batch, 0, INT_MAX);
1016 #undef STORE_FUNCTION
1017 #undef STORE_INT
1018 #undef STORE_JIFFIES
1019
1020 #define DD_ATTR(name) \
1021         __ATTR(name, 0644, deadline_##name##_show, deadline_##name##_store)
1022
1023 static struct elv_fs_entry deadline_attrs[] = {
1024         DD_ATTR(read_expire),
1025         DD_ATTR(write_expire),
1026         DD_ATTR(writes_starved),
1027         DD_ATTR(front_merges),
1028         DD_ATTR(async_depth),
1029         DD_ATTR(fifo_batch),
1030         DD_ATTR(prio_aging_expire),
1031         __ATTR_NULL
1032 };
1033
1034 #ifdef CONFIG_BLK_DEBUG_FS
1035 #define DEADLINE_DEBUGFS_DDIR_ATTRS(prio, data_dir, name)               \
1036 static void *deadline_##name##_fifo_start(struct seq_file *m,           \
1037                                           loff_t *pos)                  \
1038         __acquires(&dd->lock)                                           \
1039 {                                                                       \
1040         struct request_queue *q = m->private;                           \
1041         struct deadline_data *dd = q->elevator->elevator_data;          \
1042         struct dd_per_prio *per_prio = &dd->per_prio[prio];             \
1043                                                                         \
1044         spin_lock(&dd->lock);                                           \
1045         return seq_list_start(&per_prio->fifo_list[data_dir], *pos);    \
1046 }                                                                       \
1047                                                                         \
1048 static void *deadline_##name##_fifo_next(struct seq_file *m, void *v,   \
1049                                          loff_t *pos)                   \
1050 {                                                                       \
1051         struct request_queue *q = m->private;                           \
1052         struct deadline_data *dd = q->elevator->elevator_data;          \
1053         struct dd_per_prio *per_prio = &dd->per_prio[prio];             \
1054                                                                         \
1055         return seq_list_next(v, &per_prio->fifo_list[data_dir], pos);   \
1056 }                                                                       \
1057                                                                         \
1058 static void deadline_##name##_fifo_stop(struct seq_file *m, void *v)    \
1059         __releases(&dd->lock)                                           \
1060 {                                                                       \
1061         struct request_queue *q = m->private;                           \
1062         struct deadline_data *dd = q->elevator->elevator_data;          \
1063                                                                         \
1064         spin_unlock(&dd->lock);                                         \
1065 }                                                                       \
1066                                                                         \
1067 static const struct seq_operations deadline_##name##_fifo_seq_ops = {   \
1068         .start  = deadline_##name##_fifo_start,                         \
1069         .next   = deadline_##name##_fifo_next,                          \
1070         .stop   = deadline_##name##_fifo_stop,                          \
1071         .show   = blk_mq_debugfs_rq_show,                               \
1072 };                                                                      \
1073                                                                         \
1074 static int deadline_##name##_next_rq_show(void *data,                   \
1075                                           struct seq_file *m)           \
1076 {                                                                       \
1077         struct request_queue *q = data;                                 \
1078         struct deadline_data *dd = q->elevator->elevator_data;          \
1079         struct dd_per_prio *per_prio = &dd->per_prio[prio];             \
1080         struct request *rq;                                             \
1081                                                                         \
1082         rq = deadline_from_pos(per_prio, data_dir,                      \
1083                                per_prio->latest_pos[data_dir]);         \
1084         if (rq)                                                         \
1085                 __blk_mq_debugfs_rq_show(m, rq);                        \
1086         return 0;                                                       \
1087 }
1088
1089 DEADLINE_DEBUGFS_DDIR_ATTRS(DD_RT_PRIO, DD_READ, read0);
1090 DEADLINE_DEBUGFS_DDIR_ATTRS(DD_RT_PRIO, DD_WRITE, write0);
1091 DEADLINE_DEBUGFS_DDIR_ATTRS(DD_BE_PRIO, DD_READ, read1);
1092 DEADLINE_DEBUGFS_DDIR_ATTRS(DD_BE_PRIO, DD_WRITE, write1);
1093 DEADLINE_DEBUGFS_DDIR_ATTRS(DD_IDLE_PRIO, DD_READ, read2);
1094 DEADLINE_DEBUGFS_DDIR_ATTRS(DD_IDLE_PRIO, DD_WRITE, write2);
1095 #undef DEADLINE_DEBUGFS_DDIR_ATTRS
1096
1097 static int deadline_batching_show(void *data, struct seq_file *m)
1098 {
1099         struct request_queue *q = data;
1100         struct deadline_data *dd = q->elevator->elevator_data;
1101
1102         seq_printf(m, "%u\n", dd->batching);
1103         return 0;
1104 }
1105
1106 static int deadline_starved_show(void *data, struct seq_file *m)
1107 {
1108         struct request_queue *q = data;
1109         struct deadline_data *dd = q->elevator->elevator_data;
1110
1111         seq_printf(m, "%u\n", dd->starved);
1112         return 0;
1113 }
1114
1115 static int dd_async_depth_show(void *data, struct seq_file *m)
1116 {
1117         struct request_queue *q = data;
1118         struct deadline_data *dd = q->elevator->elevator_data;
1119
1120         seq_printf(m, "%u\n", dd->async_depth);
1121         return 0;
1122 }
1123
1124 static int dd_queued_show(void *data, struct seq_file *m)
1125 {
1126         struct request_queue *q = data;
1127         struct deadline_data *dd = q->elevator->elevator_data;
1128         u32 rt, be, idle;
1129
1130         spin_lock(&dd->lock);
1131         rt = dd_queued(dd, DD_RT_PRIO);
1132         be = dd_queued(dd, DD_BE_PRIO);
1133         idle = dd_queued(dd, DD_IDLE_PRIO);
1134         spin_unlock(&dd->lock);
1135
1136         seq_printf(m, "%u %u %u\n", rt, be, idle);
1137
1138         return 0;
1139 }
1140
1141 /* Number of requests owned by the block driver for a given priority. */
1142 static u32 dd_owned_by_driver(struct deadline_data *dd, enum dd_prio prio)
1143 {
1144         const struct io_stats_per_prio *stats = &dd->per_prio[prio].stats;
1145
1146         lockdep_assert_held(&dd->lock);
1147
1148         return stats->dispatched + stats->merged -
1149                 atomic_read(&stats->completed);
1150 }
1151
1152 static int dd_owned_by_driver_show(void *data, struct seq_file *m)
1153 {
1154         struct request_queue *q = data;
1155         struct deadline_data *dd = q->elevator->elevator_data;
1156         u32 rt, be, idle;
1157
1158         spin_lock(&dd->lock);
1159         rt = dd_owned_by_driver(dd, DD_RT_PRIO);
1160         be = dd_owned_by_driver(dd, DD_BE_PRIO);
1161         idle = dd_owned_by_driver(dd, DD_IDLE_PRIO);
1162         spin_unlock(&dd->lock);
1163
1164         seq_printf(m, "%u %u %u\n", rt, be, idle);
1165
1166         return 0;
1167 }
1168
1169 #define DEADLINE_DISPATCH_ATTR(prio)                                    \
1170 static void *deadline_dispatch##prio##_start(struct seq_file *m,        \
1171                                              loff_t *pos)               \
1172         __acquires(&dd->lock)                                           \
1173 {                                                                       \
1174         struct request_queue *q = m->private;                           \
1175         struct deadline_data *dd = q->elevator->elevator_data;          \
1176         struct dd_per_prio *per_prio = &dd->per_prio[prio];             \
1177                                                                         \
1178         spin_lock(&dd->lock);                                           \
1179         return seq_list_start(&per_prio->dispatch, *pos);               \
1180 }                                                                       \
1181                                                                         \
1182 static void *deadline_dispatch##prio##_next(struct seq_file *m,         \
1183                                             void *v, loff_t *pos)       \
1184 {                                                                       \
1185         struct request_queue *q = m->private;                           \
1186         struct deadline_data *dd = q->elevator->elevator_data;          \
1187         struct dd_per_prio *per_prio = &dd->per_prio[prio];             \
1188                                                                         \
1189         return seq_list_next(v, &per_prio->dispatch, pos);              \
1190 }                                                                       \
1191                                                                         \
1192 static void deadline_dispatch##prio##_stop(struct seq_file *m, void *v) \
1193         __releases(&dd->lock)                                           \
1194 {                                                                       \
1195         struct request_queue *q = m->private;                           \
1196         struct deadline_data *dd = q->elevator->elevator_data;          \
1197                                                                         \
1198         spin_unlock(&dd->lock);                                         \
1199 }                                                                       \
1200                                                                         \
1201 static const struct seq_operations deadline_dispatch##prio##_seq_ops = { \
1202         .start  = deadline_dispatch##prio##_start,                      \
1203         .next   = deadline_dispatch##prio##_next,                       \
1204         .stop   = deadline_dispatch##prio##_stop,                       \
1205         .show   = blk_mq_debugfs_rq_show,                               \
1206 }
1207
1208 DEADLINE_DISPATCH_ATTR(0);
1209 DEADLINE_DISPATCH_ATTR(1);
1210 DEADLINE_DISPATCH_ATTR(2);
1211 #undef DEADLINE_DISPATCH_ATTR
1212
1213 #define DEADLINE_QUEUE_DDIR_ATTRS(name)                                 \
1214         {#name "_fifo_list", 0400,                                      \
1215                         .seq_ops = &deadline_##name##_fifo_seq_ops}
1216 #define DEADLINE_NEXT_RQ_ATTR(name)                                     \
1217         {#name "_next_rq", 0400, deadline_##name##_next_rq_show}
1218 static const struct blk_mq_debugfs_attr deadline_queue_debugfs_attrs[] = {
1219         DEADLINE_QUEUE_DDIR_ATTRS(read0),
1220         DEADLINE_QUEUE_DDIR_ATTRS(write0),
1221         DEADLINE_QUEUE_DDIR_ATTRS(read1),
1222         DEADLINE_QUEUE_DDIR_ATTRS(write1),
1223         DEADLINE_QUEUE_DDIR_ATTRS(read2),
1224         DEADLINE_QUEUE_DDIR_ATTRS(write2),
1225         DEADLINE_NEXT_RQ_ATTR(read0),
1226         DEADLINE_NEXT_RQ_ATTR(write0),
1227         DEADLINE_NEXT_RQ_ATTR(read1),
1228         DEADLINE_NEXT_RQ_ATTR(write1),
1229         DEADLINE_NEXT_RQ_ATTR(read2),
1230         DEADLINE_NEXT_RQ_ATTR(write2),
1231         {"batching", 0400, deadline_batching_show},
1232         {"starved", 0400, deadline_starved_show},
1233         {"async_depth", 0400, dd_async_depth_show},
1234         {"dispatch0", 0400, .seq_ops = &deadline_dispatch0_seq_ops},
1235         {"dispatch1", 0400, .seq_ops = &deadline_dispatch1_seq_ops},
1236         {"dispatch2", 0400, .seq_ops = &deadline_dispatch2_seq_ops},
1237         {"owned_by_driver", 0400, dd_owned_by_driver_show},
1238         {"queued", 0400, dd_queued_show},
1239         {},
1240 };
1241 #undef DEADLINE_QUEUE_DDIR_ATTRS
1242 #endif
1243
1244 static struct elevator_type mq_deadline = {
1245         .ops = {
1246                 .depth_updated          = dd_depth_updated,
1247                 .limit_depth            = dd_limit_depth,
1248                 .insert_requests        = dd_insert_requests,
1249                 .dispatch_request       = dd_dispatch_request,
1250                 .prepare_request        = dd_prepare_request,
1251                 .finish_request         = dd_finish_request,
1252                 .next_request           = elv_rb_latter_request,
1253                 .former_request         = elv_rb_former_request,
1254                 .bio_merge              = dd_bio_merge,
1255                 .request_merge          = dd_request_merge,
1256                 .requests_merged        = dd_merged_requests,
1257                 .request_merged         = dd_request_merged,
1258                 .has_work               = dd_has_work,
1259                 .init_sched             = dd_init_sched,
1260                 .exit_sched             = dd_exit_sched,
1261                 .init_hctx              = dd_init_hctx,
1262         },
1263
1264 #ifdef CONFIG_BLK_DEBUG_FS
1265         .queue_debugfs_attrs = deadline_queue_debugfs_attrs,
1266 #endif
1267         .elevator_attrs = deadline_attrs,
1268         .elevator_name = "mq-deadline",
1269         .elevator_alias = "deadline",
1270         .elevator_features = ELEVATOR_F_ZBD_SEQ_WRITE,
1271         .elevator_owner = THIS_MODULE,
1272 };
1273 MODULE_ALIAS("mq-deadline-iosched");
1274
1275 static int __init deadline_init(void)
1276 {
1277         return elv_register(&mq_deadline);
1278 }
1279
1280 static void __exit deadline_exit(void)
1281 {
1282         elv_unregister(&mq_deadline);
1283 }
1284
1285 module_init(deadline_init);
1286 module_exit(deadline_exit);
1287
1288 MODULE_AUTHOR("Jens Axboe, Damien Le Moal and Bart Van Assche");
1289 MODULE_LICENSE("GPL");
1290 MODULE_DESCRIPTION("MQ deadline IO scheduler");