1 // SPDX-License-Identifier: GPL-2.0
3 * MQ Deadline i/o scheduler - adaptation of the legacy deadline scheduler,
4 * for the blk-mq scheduling framework
6 * Copyright (C) 2016 Jens Axboe <axboe@kernel.dk>
8 #include <linux/kernel.h>
10 #include <linux/blkdev.h>
11 #include <linux/bio.h>
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/init.h>
15 #include <linux/compiler.h>
16 #include <linux/rbtree.h>
17 #include <linux/sbitmap.h>
19 #include <trace/events/block.h>
24 #include "blk-mq-debugfs.h"
25 #include "blk-mq-sched.h"
28 * See Documentation/block/deadline-iosched.rst
30 static const int read_expire = HZ / 2; /* max time before a read is submitted. */
31 static const int write_expire = 5 * HZ; /* ditto for writes, these limits are SOFT! */
33 * Time after which to dispatch lower priority requests even if higher
34 * priority requests are pending.
36 static const int prio_aging_expire = 10 * HZ;
37 static const int writes_starved = 2; /* max times reads can starve a write */
38 static const int fifo_batch = 16; /* # of sequential requests treated as one
39 by the above parameters. For throughput. */
46 enum { DD_DIR_COUNT = 2 };
55 enum { DD_PRIO_COUNT = 3 };
58 * I/O statistics per I/O priority. It is fine if these counters overflow.
59 * What matters is that these counters are at least as wide as
60 * log2(max_outstanding_requests).
62 struct io_stats_per_prio {
70 * Deadline scheduler data per I/O priority (enum dd_prio). Requests are
71 * present on both sort_list[] and fifo_list[].
74 struct list_head dispatch;
75 struct rb_root sort_list[DD_DIR_COUNT];
76 struct list_head fifo_list[DD_DIR_COUNT];
77 /* Next request in FIFO order. Read, write or both are NULL. */
78 struct request *next_rq[DD_DIR_COUNT];
79 struct io_stats_per_prio stats;
82 struct deadline_data {
87 struct dd_per_prio per_prio[DD_PRIO_COUNT];
89 /* Data direction of latest dispatched request. */
90 enum dd_data_dir last_dir;
91 unsigned int batching; /* number of sequential requests made */
92 unsigned int starved; /* times reads have starved writes */
95 * settings that change how the i/o scheduler behaves
97 int fifo_expire[DD_DIR_COUNT];
102 int prio_aging_expire;
105 spinlock_t zone_lock;
108 /* Maps an I/O priority class to a deadline scheduler priority. */
109 static const enum dd_prio ioprio_class_to_prio[] = {
110 [IOPRIO_CLASS_NONE] = DD_BE_PRIO,
111 [IOPRIO_CLASS_RT] = DD_RT_PRIO,
112 [IOPRIO_CLASS_BE] = DD_BE_PRIO,
113 [IOPRIO_CLASS_IDLE] = DD_IDLE_PRIO,
116 static inline struct rb_root *
117 deadline_rb_root(struct dd_per_prio *per_prio, struct request *rq)
119 return &per_prio->sort_list[rq_data_dir(rq)];
123 * Returns the I/O priority class (IOPRIO_CLASS_*) that has been assigned to a
126 static u8 dd_rq_ioclass(struct request *rq)
128 return IOPRIO_PRIO_CLASS(req_get_ioprio(rq));
132 * get the request before `rq' in sector-sorted order
134 static inline struct request *
135 deadline_earlier_request(struct request *rq)
137 struct rb_node *node = rb_prev(&rq->rb_node);
140 return rb_entry_rq(node);
146 * get the request after `rq' in sector-sorted order
148 static inline struct request *
149 deadline_latter_request(struct request *rq)
151 struct rb_node *node = rb_next(&rq->rb_node);
154 return rb_entry_rq(node);
160 deadline_add_rq_rb(struct dd_per_prio *per_prio, struct request *rq)
162 struct rb_root *root = deadline_rb_root(per_prio, rq);
164 elv_rb_add(root, rq);
168 deadline_del_rq_rb(struct dd_per_prio *per_prio, struct request *rq)
170 const enum dd_data_dir data_dir = rq_data_dir(rq);
172 if (per_prio->next_rq[data_dir] == rq)
173 per_prio->next_rq[data_dir] = deadline_latter_request(rq);
175 elv_rb_del(deadline_rb_root(per_prio, rq), rq);
179 * remove rq from rbtree and fifo.
181 static void deadline_remove_request(struct request_queue *q,
182 struct dd_per_prio *per_prio,
185 list_del_init(&rq->queuelist);
188 * We might not be on the rbtree, if we are doing an insert merge
190 if (!RB_EMPTY_NODE(&rq->rb_node))
191 deadline_del_rq_rb(per_prio, rq);
193 elv_rqhash_del(q, rq);
194 if (q->last_merge == rq)
195 q->last_merge = NULL;
198 static void dd_request_merged(struct request_queue *q, struct request *req,
201 struct deadline_data *dd = q->elevator->elevator_data;
202 const u8 ioprio_class = dd_rq_ioclass(req);
203 const enum dd_prio prio = ioprio_class_to_prio[ioprio_class];
204 struct dd_per_prio *per_prio = &dd->per_prio[prio];
207 * if the merge was a front merge, we need to reposition request
209 if (type == ELEVATOR_FRONT_MERGE) {
210 elv_rb_del(deadline_rb_root(per_prio, req), req);
211 deadline_add_rq_rb(per_prio, req);
216 * Callback function that is invoked after @next has been merged into @req.
218 static void dd_merged_requests(struct request_queue *q, struct request *req,
219 struct request *next)
221 struct deadline_data *dd = q->elevator->elevator_data;
222 const u8 ioprio_class = dd_rq_ioclass(next);
223 const enum dd_prio prio = ioprio_class_to_prio[ioprio_class];
225 lockdep_assert_held(&dd->lock);
227 dd->per_prio[prio].stats.merged++;
230 * if next expires before rq, assign its expire time to rq
231 * and move into next position (next will be deleted) in fifo
233 if (!list_empty(&req->queuelist) && !list_empty(&next->queuelist)) {
234 if (time_before((unsigned long)next->fifo_time,
235 (unsigned long)req->fifo_time)) {
236 list_move(&req->queuelist, &next->queuelist);
237 req->fifo_time = next->fifo_time;
242 * kill knowledge of next, this one is a goner
244 deadline_remove_request(q, &dd->per_prio[prio], next);
248 * move an entry to dispatch queue
251 deadline_move_request(struct deadline_data *dd, struct dd_per_prio *per_prio,
254 const enum dd_data_dir data_dir = rq_data_dir(rq);
256 per_prio->next_rq[data_dir] = deadline_latter_request(rq);
259 * take it off the sort and fifo list
261 deadline_remove_request(rq->q, per_prio, rq);
264 /* Number of requests queued for a given priority level. */
265 static u32 dd_queued(struct deadline_data *dd, enum dd_prio prio)
267 const struct io_stats_per_prio *stats = &dd->per_prio[prio].stats;
269 lockdep_assert_held(&dd->lock);
271 return stats->inserted - atomic_read(&stats->completed);
275 * deadline_check_fifo returns 0 if there are no expired requests on the fifo,
276 * 1 otherwise. Requires !list_empty(&dd->fifo_list[data_dir])
278 static inline int deadline_check_fifo(struct dd_per_prio *per_prio,
279 enum dd_data_dir data_dir)
281 struct request *rq = rq_entry_fifo(per_prio->fifo_list[data_dir].next);
286 if (time_after_eq(jiffies, (unsigned long)rq->fifo_time))
293 * Check if rq has a sequential request preceding it.
295 static bool deadline_is_seq_write(struct deadline_data *dd, struct request *rq)
297 struct request *prev = deadline_earlier_request(rq);
302 return blk_rq_pos(prev) + blk_rq_sectors(prev) == blk_rq_pos(rq);
306 * Skip all write requests that are sequential from @rq, even if we cross
309 static struct request *deadline_skip_seq_writes(struct deadline_data *dd,
312 sector_t pos = blk_rq_pos(rq);
313 sector_t skipped_sectors = 0;
316 if (blk_rq_pos(rq) != pos + skipped_sectors)
318 skipped_sectors += blk_rq_sectors(rq);
319 rq = deadline_latter_request(rq);
326 * For the specified data direction, return the next request to
327 * dispatch using arrival ordered lists.
329 static struct request *
330 deadline_fifo_request(struct deadline_data *dd, struct dd_per_prio *per_prio,
331 enum dd_data_dir data_dir)
336 if (list_empty(&per_prio->fifo_list[data_dir]))
339 rq = rq_entry_fifo(per_prio->fifo_list[data_dir].next);
340 if (data_dir == DD_READ || !blk_queue_is_zoned(rq->q))
344 * Look for a write request that can be dispatched, that is one with
345 * an unlocked target zone. For some HDDs, breaking a sequential
346 * write stream can lead to lower throughput, so make sure to preserve
347 * sequential write streams, even if that stream crosses into the next
348 * zones and these zones are unlocked.
350 spin_lock_irqsave(&dd->zone_lock, flags);
351 list_for_each_entry(rq, &per_prio->fifo_list[DD_WRITE], queuelist) {
352 if (blk_req_can_dispatch_to_zone(rq) &&
353 (blk_queue_nonrot(rq->q) ||
354 !deadline_is_seq_write(dd, rq)))
359 spin_unlock_irqrestore(&dd->zone_lock, flags);
365 * For the specified data direction, return the next request to
366 * dispatch using sector position sorted lists.
368 static struct request *
369 deadline_next_request(struct deadline_data *dd, struct dd_per_prio *per_prio,
370 enum dd_data_dir data_dir)
375 rq = per_prio->next_rq[data_dir];
379 if (data_dir == DD_READ || !blk_queue_is_zoned(rq->q))
383 * Look for a write request that can be dispatched, that is one with
384 * an unlocked target zone. For some HDDs, breaking a sequential
385 * write stream can lead to lower throughput, so make sure to preserve
386 * sequential write streams, even if that stream crosses into the next
387 * zones and these zones are unlocked.
389 spin_lock_irqsave(&dd->zone_lock, flags);
391 if (blk_req_can_dispatch_to_zone(rq))
393 if (blk_queue_nonrot(rq->q))
394 rq = deadline_latter_request(rq);
396 rq = deadline_skip_seq_writes(dd, rq);
398 spin_unlock_irqrestore(&dd->zone_lock, flags);
404 * Returns true if and only if @rq started after @latest_start where
405 * @latest_start is in jiffies.
407 static bool started_after(struct deadline_data *dd, struct request *rq,
408 unsigned long latest_start)
410 unsigned long start_time = (unsigned long)rq->fifo_time;
412 start_time -= dd->fifo_expire[rq_data_dir(rq)];
414 return time_after(start_time, latest_start);
418 * deadline_dispatch_requests selects the best request according to
419 * read/write expire, fifo_batch, etc and with a start time <= @latest_start.
421 static struct request *__dd_dispatch_request(struct deadline_data *dd,
422 struct dd_per_prio *per_prio,
423 unsigned long latest_start)
425 struct request *rq, *next_rq;
426 enum dd_data_dir data_dir;
430 lockdep_assert_held(&dd->lock);
432 if (!list_empty(&per_prio->dispatch)) {
433 rq = list_first_entry(&per_prio->dispatch, struct request,
435 if (started_after(dd, rq, latest_start))
437 list_del_init(&rq->queuelist);
442 * batches are currently reads XOR writes
444 rq = deadline_next_request(dd, per_prio, dd->last_dir);
445 if (rq && dd->batching < dd->fifo_batch)
446 /* we have a next request are still entitled to batch */
447 goto dispatch_request;
450 * at this point we are not running a batch. select the appropriate
451 * data direction (read / write)
454 if (!list_empty(&per_prio->fifo_list[DD_READ])) {
455 BUG_ON(RB_EMPTY_ROOT(&per_prio->sort_list[DD_READ]));
457 if (deadline_fifo_request(dd, per_prio, DD_WRITE) &&
458 (dd->starved++ >= dd->writes_starved))
459 goto dispatch_writes;
463 goto dispatch_find_request;
467 * there are either no reads or writes have been starved
470 if (!list_empty(&per_prio->fifo_list[DD_WRITE])) {
472 BUG_ON(RB_EMPTY_ROOT(&per_prio->sort_list[DD_WRITE]));
478 goto dispatch_find_request;
483 dispatch_find_request:
485 * we are not running a batch, find best request for selected data_dir
487 next_rq = deadline_next_request(dd, per_prio, data_dir);
488 if (deadline_check_fifo(per_prio, data_dir) || !next_rq) {
490 * A deadline has expired, the last request was in the other
491 * direction, or we have run out of higher-sectored requests.
492 * Start again from the request with the earliest expiry time.
494 rq = deadline_fifo_request(dd, per_prio, data_dir);
497 * The last req was the same dir and we have a next request in
498 * sort order. No expired requests so continue on from here.
504 * For a zoned block device, if we only have writes queued and none of
505 * them can be dispatched, rq will be NULL.
510 dd->last_dir = data_dir;
514 if (started_after(dd, rq, latest_start))
518 * rq is the selected appropriate request.
521 deadline_move_request(dd, per_prio, rq);
523 ioprio_class = dd_rq_ioclass(rq);
524 prio = ioprio_class_to_prio[ioprio_class];
525 dd->per_prio[prio].stats.dispatched++;
527 * If the request needs its target zone locked, do it.
529 blk_req_zone_write_lock(rq);
530 rq->rq_flags |= RQF_STARTED;
535 * Check whether there are any requests with priority other than DD_RT_PRIO
536 * that were inserted more than prio_aging_expire jiffies ago.
538 static struct request *dd_dispatch_prio_aged_requests(struct deadline_data *dd,
545 lockdep_assert_held(&dd->lock);
547 prio_cnt = !!dd_queued(dd, DD_RT_PRIO) + !!dd_queued(dd, DD_BE_PRIO) +
548 !!dd_queued(dd, DD_IDLE_PRIO);
552 for (prio = DD_BE_PRIO; prio <= DD_PRIO_MAX; prio++) {
553 rq = __dd_dispatch_request(dd, &dd->per_prio[prio],
554 now - dd->prio_aging_expire);
563 * Called from blk_mq_run_hw_queue() -> __blk_mq_sched_dispatch_requests().
565 * One confusing aspect here is that we get called for a specific
566 * hardware queue, but we may return a request that is for a
567 * different hardware queue. This is because mq-deadline has shared
568 * state for all hardware queues, in terms of sorting, FIFOs, etc.
570 static struct request *dd_dispatch_request(struct blk_mq_hw_ctx *hctx)
572 struct deadline_data *dd = hctx->queue->elevator->elevator_data;
573 const unsigned long now = jiffies;
577 spin_lock(&dd->lock);
578 rq = dd_dispatch_prio_aged_requests(dd, now);
583 * Next, dispatch requests in priority order. Ignore lower priority
584 * requests if any higher priority requests are pending.
586 for (prio = 0; prio <= DD_PRIO_MAX; prio++) {
587 rq = __dd_dispatch_request(dd, &dd->per_prio[prio], now);
588 if (rq || dd_queued(dd, prio))
593 spin_unlock(&dd->lock);
599 * Called by __blk_mq_alloc_request(). The shallow_depth value set by this
600 * function is used by __blk_mq_get_tag().
602 static void dd_limit_depth(blk_opf_t opf, struct blk_mq_alloc_data *data)
604 struct deadline_data *dd = data->q->elevator->elevator_data;
606 /* Do not throttle synchronous reads. */
607 if (op_is_sync(opf) && !op_is_write(opf))
611 * Throttle asynchronous requests and writes such that these requests
612 * do not block the allocation of synchronous requests.
614 data->shallow_depth = dd->async_depth;
617 /* Called by blk_mq_update_nr_requests(). */
618 static void dd_depth_updated(struct blk_mq_hw_ctx *hctx)
620 struct request_queue *q = hctx->queue;
621 struct deadline_data *dd = q->elevator->elevator_data;
622 struct blk_mq_tags *tags = hctx->sched_tags;
624 dd->async_depth = max(1UL, 3 * q->nr_requests / 4);
626 sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, dd->async_depth);
629 /* Called by blk_mq_init_hctx() and blk_mq_init_sched(). */
630 static int dd_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
632 dd_depth_updated(hctx);
636 static void dd_exit_sched(struct elevator_queue *e)
638 struct deadline_data *dd = e->elevator_data;
641 for (prio = 0; prio <= DD_PRIO_MAX; prio++) {
642 struct dd_per_prio *per_prio = &dd->per_prio[prio];
643 const struct io_stats_per_prio *stats = &per_prio->stats;
646 WARN_ON_ONCE(!list_empty(&per_prio->fifo_list[DD_READ]));
647 WARN_ON_ONCE(!list_empty(&per_prio->fifo_list[DD_WRITE]));
649 spin_lock(&dd->lock);
650 queued = dd_queued(dd, prio);
651 spin_unlock(&dd->lock);
653 WARN_ONCE(queued != 0,
654 "statistics for priority %d: i %u m %u d %u c %u\n",
655 prio, stats->inserted, stats->merged,
656 stats->dispatched, atomic_read(&stats->completed));
663 * initialize elevator private data (deadline_data).
665 static int dd_init_sched(struct request_queue *q, struct elevator_type *e)
667 struct deadline_data *dd;
668 struct elevator_queue *eq;
672 eq = elevator_alloc(q, e);
676 dd = kzalloc_node(sizeof(*dd), GFP_KERNEL, q->node);
680 eq->elevator_data = dd;
682 for (prio = 0; prio <= DD_PRIO_MAX; prio++) {
683 struct dd_per_prio *per_prio = &dd->per_prio[prio];
685 INIT_LIST_HEAD(&per_prio->dispatch);
686 INIT_LIST_HEAD(&per_prio->fifo_list[DD_READ]);
687 INIT_LIST_HEAD(&per_prio->fifo_list[DD_WRITE]);
688 per_prio->sort_list[DD_READ] = RB_ROOT;
689 per_prio->sort_list[DD_WRITE] = RB_ROOT;
691 dd->fifo_expire[DD_READ] = read_expire;
692 dd->fifo_expire[DD_WRITE] = write_expire;
693 dd->writes_starved = writes_starved;
694 dd->front_merges = 1;
695 dd->last_dir = DD_WRITE;
696 dd->fifo_batch = fifo_batch;
697 dd->prio_aging_expire = prio_aging_expire;
698 spin_lock_init(&dd->lock);
699 spin_lock_init(&dd->zone_lock);
701 /* We dispatch from request queue wide instead of hw queue */
702 blk_queue_flag_set(QUEUE_FLAG_SQ_SCHED, q);
708 kobject_put(&eq->kobj);
713 * Try to merge @bio into an existing request. If @bio has been merged into
714 * an existing request, store the pointer to that request into *@rq.
716 static int dd_request_merge(struct request_queue *q, struct request **rq,
719 struct deadline_data *dd = q->elevator->elevator_data;
720 const u8 ioprio_class = IOPRIO_PRIO_CLASS(bio->bi_ioprio);
721 const enum dd_prio prio = ioprio_class_to_prio[ioprio_class];
722 struct dd_per_prio *per_prio = &dd->per_prio[prio];
723 sector_t sector = bio_end_sector(bio);
724 struct request *__rq;
726 if (!dd->front_merges)
727 return ELEVATOR_NO_MERGE;
729 __rq = elv_rb_find(&per_prio->sort_list[bio_data_dir(bio)], sector);
731 BUG_ON(sector != blk_rq_pos(__rq));
733 if (elv_bio_merge_ok(__rq, bio)) {
735 if (blk_discard_mergable(__rq))
736 return ELEVATOR_DISCARD_MERGE;
737 return ELEVATOR_FRONT_MERGE;
741 return ELEVATOR_NO_MERGE;
745 * Attempt to merge a bio into an existing request. This function is called
746 * before @bio is associated with a request.
748 static bool dd_bio_merge(struct request_queue *q, struct bio *bio,
749 unsigned int nr_segs)
751 struct deadline_data *dd = q->elevator->elevator_data;
752 struct request *free = NULL;
755 spin_lock(&dd->lock);
756 ret = blk_mq_sched_try_merge(q, bio, nr_segs, &free);
757 spin_unlock(&dd->lock);
760 blk_mq_free_request(free);
766 * add rq to rbtree and fifo
768 static void dd_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
771 struct request_queue *q = hctx->queue;
772 struct deadline_data *dd = q->elevator->elevator_data;
773 const enum dd_data_dir data_dir = rq_data_dir(rq);
774 u16 ioprio = req_get_ioprio(rq);
775 u8 ioprio_class = IOPRIO_PRIO_CLASS(ioprio);
776 struct dd_per_prio *per_prio;
780 lockdep_assert_held(&dd->lock);
783 * This may be a requeue of a write request that has locked its
784 * target zone. If it is the case, this releases the zone lock.
786 blk_req_zone_write_unlock(rq);
788 prio = ioprio_class_to_prio[ioprio_class];
789 per_prio = &dd->per_prio[prio];
790 if (!rq->elv.priv[0]) {
791 per_prio->stats.inserted++;
792 rq->elv.priv[0] = (void *)(uintptr_t)1;
795 if (blk_mq_sched_try_insert_merge(q, rq, &free)) {
796 blk_mq_free_requests(&free);
800 trace_block_rq_insert(rq);
802 if (flags & BLK_MQ_INSERT_AT_HEAD) {
803 list_add(&rq->queuelist, &per_prio->dispatch);
804 rq->fifo_time = jiffies;
806 deadline_add_rq_rb(per_prio, rq);
808 if (rq_mergeable(rq)) {
809 elv_rqhash_add(q, rq);
815 * set expire time and add to fifo list
817 rq->fifo_time = jiffies + dd->fifo_expire[data_dir];
818 list_add_tail(&rq->queuelist, &per_prio->fifo_list[data_dir]);
823 * Called from blk_mq_insert_request() or blk_mq_dispatch_plug_list().
825 static void dd_insert_requests(struct blk_mq_hw_ctx *hctx,
826 struct list_head *list,
829 struct request_queue *q = hctx->queue;
830 struct deadline_data *dd = q->elevator->elevator_data;
832 spin_lock(&dd->lock);
833 while (!list_empty(list)) {
836 rq = list_first_entry(list, struct request, queuelist);
837 list_del_init(&rq->queuelist);
838 dd_insert_request(hctx, rq, flags);
840 spin_unlock(&dd->lock);
843 /* Callback from inside blk_mq_rq_ctx_init(). */
844 static void dd_prepare_request(struct request *rq)
846 rq->elv.priv[0] = NULL;
849 static bool dd_has_write_work(struct blk_mq_hw_ctx *hctx)
851 struct deadline_data *dd = hctx->queue->elevator->elevator_data;
854 for (p = 0; p <= DD_PRIO_MAX; p++)
855 if (!list_empty_careful(&dd->per_prio[p].fifo_list[DD_WRITE]))
862 * Callback from inside blk_mq_free_request().
864 * For zoned block devices, write unlock the target zone of
865 * completed write requests. Do this while holding the zone lock
866 * spinlock so that the zone is never unlocked while deadline_fifo_request()
867 * or deadline_next_request() are executing. This function is called for
868 * all requests, whether or not these requests complete successfully.
870 * For a zoned block device, __dd_dispatch_request() may have stopped
871 * dispatching requests if all the queued requests are write requests directed
872 * at zones that are already locked due to on-going write requests. To ensure
873 * write request dispatch progress in this case, mark the queue as needing a
874 * restart to ensure that the queue is run again after completion of the
875 * request and zones being unlocked.
877 static void dd_finish_request(struct request *rq)
879 struct request_queue *q = rq->q;
880 struct deadline_data *dd = q->elevator->elevator_data;
881 const u8 ioprio_class = dd_rq_ioclass(rq);
882 const enum dd_prio prio = ioprio_class_to_prio[ioprio_class];
883 struct dd_per_prio *per_prio = &dd->per_prio[prio];
886 * The block layer core may call dd_finish_request() without having
887 * called dd_insert_requests(). Skip requests that bypassed I/O
888 * scheduling. See also blk_mq_request_bypass_insert().
890 if (!rq->elv.priv[0])
893 atomic_inc(&per_prio->stats.completed);
895 if (blk_queue_is_zoned(q)) {
898 spin_lock_irqsave(&dd->zone_lock, flags);
899 blk_req_zone_write_unlock(rq);
900 spin_unlock_irqrestore(&dd->zone_lock, flags);
902 if (dd_has_write_work(rq->mq_hctx))
903 blk_mq_sched_mark_restart_hctx(rq->mq_hctx);
907 static bool dd_has_work_for_prio(struct dd_per_prio *per_prio)
909 return !list_empty_careful(&per_prio->dispatch) ||
910 !list_empty_careful(&per_prio->fifo_list[DD_READ]) ||
911 !list_empty_careful(&per_prio->fifo_list[DD_WRITE]);
914 static bool dd_has_work(struct blk_mq_hw_ctx *hctx)
916 struct deadline_data *dd = hctx->queue->elevator->elevator_data;
919 for (prio = 0; prio <= DD_PRIO_MAX; prio++)
920 if (dd_has_work_for_prio(&dd->per_prio[prio]))
929 #define SHOW_INT(__FUNC, __VAR) \
930 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
932 struct deadline_data *dd = e->elevator_data; \
934 return sysfs_emit(page, "%d\n", __VAR); \
936 #define SHOW_JIFFIES(__FUNC, __VAR) SHOW_INT(__FUNC, jiffies_to_msecs(__VAR))
937 SHOW_JIFFIES(deadline_read_expire_show, dd->fifo_expire[DD_READ]);
938 SHOW_JIFFIES(deadline_write_expire_show, dd->fifo_expire[DD_WRITE]);
939 SHOW_JIFFIES(deadline_prio_aging_expire_show, dd->prio_aging_expire);
940 SHOW_INT(deadline_writes_starved_show, dd->writes_starved);
941 SHOW_INT(deadline_front_merges_show, dd->front_merges);
942 SHOW_INT(deadline_async_depth_show, dd->async_depth);
943 SHOW_INT(deadline_fifo_batch_show, dd->fifo_batch);
947 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
948 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
950 struct deadline_data *dd = e->elevator_data; \
953 __ret = kstrtoint(page, 0, &__data); \
956 if (__data < (MIN)) \
958 else if (__data > (MAX)) \
960 *(__PTR) = __CONV(__data); \
963 #define STORE_INT(__FUNC, __PTR, MIN, MAX) \
964 STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, )
965 #define STORE_JIFFIES(__FUNC, __PTR, MIN, MAX) \
966 STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, msecs_to_jiffies)
967 STORE_JIFFIES(deadline_read_expire_store, &dd->fifo_expire[DD_READ], 0, INT_MAX);
968 STORE_JIFFIES(deadline_write_expire_store, &dd->fifo_expire[DD_WRITE], 0, INT_MAX);
969 STORE_JIFFIES(deadline_prio_aging_expire_store, &dd->prio_aging_expire, 0, INT_MAX);
970 STORE_INT(deadline_writes_starved_store, &dd->writes_starved, INT_MIN, INT_MAX);
971 STORE_INT(deadline_front_merges_store, &dd->front_merges, 0, 1);
972 STORE_INT(deadline_async_depth_store, &dd->async_depth, 1, INT_MAX);
973 STORE_INT(deadline_fifo_batch_store, &dd->fifo_batch, 0, INT_MAX);
974 #undef STORE_FUNCTION
978 #define DD_ATTR(name) \
979 __ATTR(name, 0644, deadline_##name##_show, deadline_##name##_store)
981 static struct elv_fs_entry deadline_attrs[] = {
982 DD_ATTR(read_expire),
983 DD_ATTR(write_expire),
984 DD_ATTR(writes_starved),
985 DD_ATTR(front_merges),
986 DD_ATTR(async_depth),
988 DD_ATTR(prio_aging_expire),
992 #ifdef CONFIG_BLK_DEBUG_FS
993 #define DEADLINE_DEBUGFS_DDIR_ATTRS(prio, data_dir, name) \
994 static void *deadline_##name##_fifo_start(struct seq_file *m, \
996 __acquires(&dd->lock) \
998 struct request_queue *q = m->private; \
999 struct deadline_data *dd = q->elevator->elevator_data; \
1000 struct dd_per_prio *per_prio = &dd->per_prio[prio]; \
1002 spin_lock(&dd->lock); \
1003 return seq_list_start(&per_prio->fifo_list[data_dir], *pos); \
1006 static void *deadline_##name##_fifo_next(struct seq_file *m, void *v, \
1009 struct request_queue *q = m->private; \
1010 struct deadline_data *dd = q->elevator->elevator_data; \
1011 struct dd_per_prio *per_prio = &dd->per_prio[prio]; \
1013 return seq_list_next(v, &per_prio->fifo_list[data_dir], pos); \
1016 static void deadline_##name##_fifo_stop(struct seq_file *m, void *v) \
1017 __releases(&dd->lock) \
1019 struct request_queue *q = m->private; \
1020 struct deadline_data *dd = q->elevator->elevator_data; \
1022 spin_unlock(&dd->lock); \
1025 static const struct seq_operations deadline_##name##_fifo_seq_ops = { \
1026 .start = deadline_##name##_fifo_start, \
1027 .next = deadline_##name##_fifo_next, \
1028 .stop = deadline_##name##_fifo_stop, \
1029 .show = blk_mq_debugfs_rq_show, \
1032 static int deadline_##name##_next_rq_show(void *data, \
1033 struct seq_file *m) \
1035 struct request_queue *q = data; \
1036 struct deadline_data *dd = q->elevator->elevator_data; \
1037 struct dd_per_prio *per_prio = &dd->per_prio[prio]; \
1038 struct request *rq = per_prio->next_rq[data_dir]; \
1041 __blk_mq_debugfs_rq_show(m, rq); \
1045 DEADLINE_DEBUGFS_DDIR_ATTRS(DD_RT_PRIO, DD_READ, read0);
1046 DEADLINE_DEBUGFS_DDIR_ATTRS(DD_RT_PRIO, DD_WRITE, write0);
1047 DEADLINE_DEBUGFS_DDIR_ATTRS(DD_BE_PRIO, DD_READ, read1);
1048 DEADLINE_DEBUGFS_DDIR_ATTRS(DD_BE_PRIO, DD_WRITE, write1);
1049 DEADLINE_DEBUGFS_DDIR_ATTRS(DD_IDLE_PRIO, DD_READ, read2);
1050 DEADLINE_DEBUGFS_DDIR_ATTRS(DD_IDLE_PRIO, DD_WRITE, write2);
1051 #undef DEADLINE_DEBUGFS_DDIR_ATTRS
1053 static int deadline_batching_show(void *data, struct seq_file *m)
1055 struct request_queue *q = data;
1056 struct deadline_data *dd = q->elevator->elevator_data;
1058 seq_printf(m, "%u\n", dd->batching);
1062 static int deadline_starved_show(void *data, struct seq_file *m)
1064 struct request_queue *q = data;
1065 struct deadline_data *dd = q->elevator->elevator_data;
1067 seq_printf(m, "%u\n", dd->starved);
1071 static int dd_async_depth_show(void *data, struct seq_file *m)
1073 struct request_queue *q = data;
1074 struct deadline_data *dd = q->elevator->elevator_data;
1076 seq_printf(m, "%u\n", dd->async_depth);
1080 static int dd_queued_show(void *data, struct seq_file *m)
1082 struct request_queue *q = data;
1083 struct deadline_data *dd = q->elevator->elevator_data;
1086 spin_lock(&dd->lock);
1087 rt = dd_queued(dd, DD_RT_PRIO);
1088 be = dd_queued(dd, DD_BE_PRIO);
1089 idle = dd_queued(dd, DD_IDLE_PRIO);
1090 spin_unlock(&dd->lock);
1092 seq_printf(m, "%u %u %u\n", rt, be, idle);
1097 /* Number of requests owned by the block driver for a given priority. */
1098 static u32 dd_owned_by_driver(struct deadline_data *dd, enum dd_prio prio)
1100 const struct io_stats_per_prio *stats = &dd->per_prio[prio].stats;
1102 lockdep_assert_held(&dd->lock);
1104 return stats->dispatched + stats->merged -
1105 atomic_read(&stats->completed);
1108 static int dd_owned_by_driver_show(void *data, struct seq_file *m)
1110 struct request_queue *q = data;
1111 struct deadline_data *dd = q->elevator->elevator_data;
1114 spin_lock(&dd->lock);
1115 rt = dd_owned_by_driver(dd, DD_RT_PRIO);
1116 be = dd_owned_by_driver(dd, DD_BE_PRIO);
1117 idle = dd_owned_by_driver(dd, DD_IDLE_PRIO);
1118 spin_unlock(&dd->lock);
1120 seq_printf(m, "%u %u %u\n", rt, be, idle);
1125 #define DEADLINE_DISPATCH_ATTR(prio) \
1126 static void *deadline_dispatch##prio##_start(struct seq_file *m, \
1128 __acquires(&dd->lock) \
1130 struct request_queue *q = m->private; \
1131 struct deadline_data *dd = q->elevator->elevator_data; \
1132 struct dd_per_prio *per_prio = &dd->per_prio[prio]; \
1134 spin_lock(&dd->lock); \
1135 return seq_list_start(&per_prio->dispatch, *pos); \
1138 static void *deadline_dispatch##prio##_next(struct seq_file *m, \
1139 void *v, loff_t *pos) \
1141 struct request_queue *q = m->private; \
1142 struct deadline_data *dd = q->elevator->elevator_data; \
1143 struct dd_per_prio *per_prio = &dd->per_prio[prio]; \
1145 return seq_list_next(v, &per_prio->dispatch, pos); \
1148 static void deadline_dispatch##prio##_stop(struct seq_file *m, void *v) \
1149 __releases(&dd->lock) \
1151 struct request_queue *q = m->private; \
1152 struct deadline_data *dd = q->elevator->elevator_data; \
1154 spin_unlock(&dd->lock); \
1157 static const struct seq_operations deadline_dispatch##prio##_seq_ops = { \
1158 .start = deadline_dispatch##prio##_start, \
1159 .next = deadline_dispatch##prio##_next, \
1160 .stop = deadline_dispatch##prio##_stop, \
1161 .show = blk_mq_debugfs_rq_show, \
1164 DEADLINE_DISPATCH_ATTR(0);
1165 DEADLINE_DISPATCH_ATTR(1);
1166 DEADLINE_DISPATCH_ATTR(2);
1167 #undef DEADLINE_DISPATCH_ATTR
1169 #define DEADLINE_QUEUE_DDIR_ATTRS(name) \
1170 {#name "_fifo_list", 0400, \
1171 .seq_ops = &deadline_##name##_fifo_seq_ops}
1172 #define DEADLINE_NEXT_RQ_ATTR(name) \
1173 {#name "_next_rq", 0400, deadline_##name##_next_rq_show}
1174 static const struct blk_mq_debugfs_attr deadline_queue_debugfs_attrs[] = {
1175 DEADLINE_QUEUE_DDIR_ATTRS(read0),
1176 DEADLINE_QUEUE_DDIR_ATTRS(write0),
1177 DEADLINE_QUEUE_DDIR_ATTRS(read1),
1178 DEADLINE_QUEUE_DDIR_ATTRS(write1),
1179 DEADLINE_QUEUE_DDIR_ATTRS(read2),
1180 DEADLINE_QUEUE_DDIR_ATTRS(write2),
1181 DEADLINE_NEXT_RQ_ATTR(read0),
1182 DEADLINE_NEXT_RQ_ATTR(write0),
1183 DEADLINE_NEXT_RQ_ATTR(read1),
1184 DEADLINE_NEXT_RQ_ATTR(write1),
1185 DEADLINE_NEXT_RQ_ATTR(read2),
1186 DEADLINE_NEXT_RQ_ATTR(write2),
1187 {"batching", 0400, deadline_batching_show},
1188 {"starved", 0400, deadline_starved_show},
1189 {"async_depth", 0400, dd_async_depth_show},
1190 {"dispatch0", 0400, .seq_ops = &deadline_dispatch0_seq_ops},
1191 {"dispatch1", 0400, .seq_ops = &deadline_dispatch1_seq_ops},
1192 {"dispatch2", 0400, .seq_ops = &deadline_dispatch2_seq_ops},
1193 {"owned_by_driver", 0400, dd_owned_by_driver_show},
1194 {"queued", 0400, dd_queued_show},
1197 #undef DEADLINE_QUEUE_DDIR_ATTRS
1200 static struct elevator_type mq_deadline = {
1202 .depth_updated = dd_depth_updated,
1203 .limit_depth = dd_limit_depth,
1204 .insert_requests = dd_insert_requests,
1205 .dispatch_request = dd_dispatch_request,
1206 .prepare_request = dd_prepare_request,
1207 .finish_request = dd_finish_request,
1208 .next_request = elv_rb_latter_request,
1209 .former_request = elv_rb_former_request,
1210 .bio_merge = dd_bio_merge,
1211 .request_merge = dd_request_merge,
1212 .requests_merged = dd_merged_requests,
1213 .request_merged = dd_request_merged,
1214 .has_work = dd_has_work,
1215 .init_sched = dd_init_sched,
1216 .exit_sched = dd_exit_sched,
1217 .init_hctx = dd_init_hctx,
1220 #ifdef CONFIG_BLK_DEBUG_FS
1221 .queue_debugfs_attrs = deadline_queue_debugfs_attrs,
1223 .elevator_attrs = deadline_attrs,
1224 .elevator_name = "mq-deadline",
1225 .elevator_alias = "deadline",
1226 .elevator_features = ELEVATOR_F_ZBD_SEQ_WRITE,
1227 .elevator_owner = THIS_MODULE,
1229 MODULE_ALIAS("mq-deadline-iosched");
1231 static int __init deadline_init(void)
1233 return elv_register(&mq_deadline);
1236 static void __exit deadline_exit(void)
1238 elv_unregister(&mq_deadline);
1241 module_init(deadline_init);
1242 module_exit(deadline_exit);
1244 MODULE_AUTHOR("Jens Axboe, Damien Le Moal and Bart Van Assche");
1245 MODULE_LICENSE("GPL");
1246 MODULE_DESCRIPTION("MQ deadline IO scheduler");