packaging: Add spec file for VisionFive2
[platform/kernel/linux-starfive.git] / block / kyber-iosched.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * The Kyber I/O scheduler. Controls latency by throttling queue depths using
4  * scalable techniques.
5  *
6  * Copyright (C) 2017 Facebook
7  */
8
9 #include <linux/kernel.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/elevator.h>
13 #include <linux/module.h>
14 #include <linux/sbitmap.h>
15
16 #include <trace/events/block.h>
17
18 #include "blk.h"
19 #include "blk-mq.h"
20 #include "blk-mq-debugfs.h"
21 #include "blk-mq-sched.h"
22 #include "blk-mq-tag.h"
23
24 #define CREATE_TRACE_POINTS
25 #include <trace/events/kyber.h>
26
27 /*
28  * Scheduling domains: the device is divided into multiple domains based on the
29  * request type.
30  */
31 enum {
32         KYBER_READ,
33         KYBER_WRITE,
34         KYBER_DISCARD,
35         KYBER_OTHER,
36         KYBER_NUM_DOMAINS,
37 };
38
39 static const char *kyber_domain_names[] = {
40         [KYBER_READ] = "READ",
41         [KYBER_WRITE] = "WRITE",
42         [KYBER_DISCARD] = "DISCARD",
43         [KYBER_OTHER] = "OTHER",
44 };
45
46 enum {
47         /*
48          * In order to prevent starvation of synchronous requests by a flood of
49          * asynchronous requests, we reserve 25% of requests for synchronous
50          * operations.
51          */
52         KYBER_ASYNC_PERCENT = 75,
53 };
54
55 /*
56  * Maximum device-wide depth for each scheduling domain.
57  *
58  * Even for fast devices with lots of tags like NVMe, you can saturate the
59  * device with only a fraction of the maximum possible queue depth. So, we cap
60  * these to a reasonable value.
61  */
62 static const unsigned int kyber_depth[] = {
63         [KYBER_READ] = 256,
64         [KYBER_WRITE] = 128,
65         [KYBER_DISCARD] = 64,
66         [KYBER_OTHER] = 16,
67 };
68
69 /*
70  * Default latency targets for each scheduling domain.
71  */
72 static const u64 kyber_latency_targets[] = {
73         [KYBER_READ] = 2ULL * NSEC_PER_MSEC,
74         [KYBER_WRITE] = 10ULL * NSEC_PER_MSEC,
75         [KYBER_DISCARD] = 5ULL * NSEC_PER_SEC,
76 };
77
78 /*
79  * Batch size (number of requests we'll dispatch in a row) for each scheduling
80  * domain.
81  */
82 static const unsigned int kyber_batch_size[] = {
83         [KYBER_READ] = 16,
84         [KYBER_WRITE] = 8,
85         [KYBER_DISCARD] = 1,
86         [KYBER_OTHER] = 1,
87 };
88
89 /*
90  * Requests latencies are recorded in a histogram with buckets defined relative
91  * to the target latency:
92  *
93  * <= 1/4 * target latency
94  * <= 1/2 * target latency
95  * <= 3/4 * target latency
96  * <= target latency
97  * <= 1 1/4 * target latency
98  * <= 1 1/2 * target latency
99  * <= 1 3/4 * target latency
100  * > 1 3/4 * target latency
101  */
102 enum {
103         /*
104          * The width of the latency histogram buckets is
105          * 1 / (1 << KYBER_LATENCY_SHIFT) * target latency.
106          */
107         KYBER_LATENCY_SHIFT = 2,
108         /*
109          * The first (1 << KYBER_LATENCY_SHIFT) buckets are <= target latency,
110          * thus, "good".
111          */
112         KYBER_GOOD_BUCKETS = 1 << KYBER_LATENCY_SHIFT,
113         /* There are also (1 << KYBER_LATENCY_SHIFT) "bad" buckets. */
114         KYBER_LATENCY_BUCKETS = 2 << KYBER_LATENCY_SHIFT,
115 };
116
117 /*
118  * We measure both the total latency and the I/O latency (i.e., latency after
119  * submitting to the device).
120  */
121 enum {
122         KYBER_TOTAL_LATENCY,
123         KYBER_IO_LATENCY,
124 };
125
126 static const char *kyber_latency_type_names[] = {
127         [KYBER_TOTAL_LATENCY] = "total",
128         [KYBER_IO_LATENCY] = "I/O",
129 };
130
131 /*
132  * Per-cpu latency histograms: total latency and I/O latency for each scheduling
133  * domain except for KYBER_OTHER.
134  */
135 struct kyber_cpu_latency {
136         atomic_t buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
137 };
138
139 /*
140  * There is a same mapping between ctx & hctx and kcq & khd,
141  * we use request->mq_ctx->index_hw to index the kcq in khd.
142  */
143 struct kyber_ctx_queue {
144         /*
145          * Used to ensure operations on rq_list and kcq_map to be an atmoic one.
146          * Also protect the rqs on rq_list when merge.
147          */
148         spinlock_t lock;
149         struct list_head rq_list[KYBER_NUM_DOMAINS];
150 } ____cacheline_aligned_in_smp;
151
152 struct kyber_queue_data {
153         struct request_queue *q;
154         dev_t dev;
155
156         /*
157          * Each scheduling domain has a limited number of in-flight requests
158          * device-wide, limited by these tokens.
159          */
160         struct sbitmap_queue domain_tokens[KYBER_NUM_DOMAINS];
161
162         /*
163          * Async request percentage, converted to per-word depth for
164          * sbitmap_get_shallow().
165          */
166         unsigned int async_depth;
167
168         struct kyber_cpu_latency __percpu *cpu_latency;
169
170         /* Timer for stats aggregation and adjusting domain tokens. */
171         struct timer_list timer;
172
173         unsigned int latency_buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
174
175         unsigned long latency_timeout[KYBER_OTHER];
176
177         int domain_p99[KYBER_OTHER];
178
179         /* Target latencies in nanoseconds. */
180         u64 latency_targets[KYBER_OTHER];
181 };
182
183 struct kyber_hctx_data {
184         spinlock_t lock;
185         struct list_head rqs[KYBER_NUM_DOMAINS];
186         unsigned int cur_domain;
187         unsigned int batching;
188         struct kyber_ctx_queue *kcqs;
189         struct sbitmap kcq_map[KYBER_NUM_DOMAINS];
190         struct sbq_wait domain_wait[KYBER_NUM_DOMAINS];
191         struct sbq_wait_state *domain_ws[KYBER_NUM_DOMAINS];
192         atomic_t wait_index[KYBER_NUM_DOMAINS];
193 };
194
195 static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
196                              void *key);
197
198 static unsigned int kyber_sched_domain(unsigned int op)
199 {
200         switch (op & REQ_OP_MASK) {
201         case REQ_OP_READ:
202                 return KYBER_READ;
203         case REQ_OP_WRITE:
204                 return KYBER_WRITE;
205         case REQ_OP_DISCARD:
206                 return KYBER_DISCARD;
207         default:
208                 return KYBER_OTHER;
209         }
210 }
211
212 static void flush_latency_buckets(struct kyber_queue_data *kqd,
213                                   struct kyber_cpu_latency *cpu_latency,
214                                   unsigned int sched_domain, unsigned int type)
215 {
216         unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
217         atomic_t *cpu_buckets = cpu_latency->buckets[sched_domain][type];
218         unsigned int bucket;
219
220         for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
221                 buckets[bucket] += atomic_xchg(&cpu_buckets[bucket], 0);
222 }
223
224 /*
225  * Calculate the histogram bucket with the given percentile rank, or -1 if there
226  * aren't enough samples yet.
227  */
228 static int calculate_percentile(struct kyber_queue_data *kqd,
229                                 unsigned int sched_domain, unsigned int type,
230                                 unsigned int percentile)
231 {
232         unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
233         unsigned int bucket, samples = 0, percentile_samples;
234
235         for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
236                 samples += buckets[bucket];
237
238         if (!samples)
239                 return -1;
240
241         /*
242          * We do the calculation once we have 500 samples or one second passes
243          * since the first sample was recorded, whichever comes first.
244          */
245         if (!kqd->latency_timeout[sched_domain])
246                 kqd->latency_timeout[sched_domain] = max(jiffies + HZ, 1UL);
247         if (samples < 500 &&
248             time_is_after_jiffies(kqd->latency_timeout[sched_domain])) {
249                 return -1;
250         }
251         kqd->latency_timeout[sched_domain] = 0;
252
253         percentile_samples = DIV_ROUND_UP(samples * percentile, 100);
254         for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS - 1; bucket++) {
255                 if (buckets[bucket] >= percentile_samples)
256                         break;
257                 percentile_samples -= buckets[bucket];
258         }
259         memset(buckets, 0, sizeof(kqd->latency_buckets[sched_domain][type]));
260
261         trace_kyber_latency(kqd->dev, kyber_domain_names[sched_domain],
262                             kyber_latency_type_names[type], percentile,
263                             bucket + 1, 1 << KYBER_LATENCY_SHIFT, samples);
264
265         return bucket;
266 }
267
268 static void kyber_resize_domain(struct kyber_queue_data *kqd,
269                                 unsigned int sched_domain, unsigned int depth)
270 {
271         depth = clamp(depth, 1U, kyber_depth[sched_domain]);
272         if (depth != kqd->domain_tokens[sched_domain].sb.depth) {
273                 sbitmap_queue_resize(&kqd->domain_tokens[sched_domain], depth);
274                 trace_kyber_adjust(kqd->dev, kyber_domain_names[sched_domain],
275                                    depth);
276         }
277 }
278
279 static void kyber_timer_fn(struct timer_list *t)
280 {
281         struct kyber_queue_data *kqd = from_timer(kqd, t, timer);
282         unsigned int sched_domain;
283         int cpu;
284         bool bad = false;
285
286         /* Sum all of the per-cpu latency histograms. */
287         for_each_online_cpu(cpu) {
288                 struct kyber_cpu_latency *cpu_latency;
289
290                 cpu_latency = per_cpu_ptr(kqd->cpu_latency, cpu);
291                 for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
292                         flush_latency_buckets(kqd, cpu_latency, sched_domain,
293                                               KYBER_TOTAL_LATENCY);
294                         flush_latency_buckets(kqd, cpu_latency, sched_domain,
295                                               KYBER_IO_LATENCY);
296                 }
297         }
298
299         /*
300          * Check if any domains have a high I/O latency, which might indicate
301          * congestion in the device. Note that we use the p90; we don't want to
302          * be too sensitive to outliers here.
303          */
304         for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
305                 int p90;
306
307                 p90 = calculate_percentile(kqd, sched_domain, KYBER_IO_LATENCY,
308                                            90);
309                 if (p90 >= KYBER_GOOD_BUCKETS)
310                         bad = true;
311         }
312
313         /*
314          * Adjust the scheduling domain depths. If we determined that there was
315          * congestion, we throttle all domains with good latencies. Either way,
316          * we ease up on throttling domains with bad latencies.
317          */
318         for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
319                 unsigned int orig_depth, depth;
320                 int p99;
321
322                 p99 = calculate_percentile(kqd, sched_domain,
323                                            KYBER_TOTAL_LATENCY, 99);
324                 /*
325                  * This is kind of subtle: different domains will not
326                  * necessarily have enough samples to calculate the latency
327                  * percentiles during the same window, so we have to remember
328                  * the p99 for the next time we observe congestion; once we do,
329                  * we don't want to throttle again until we get more data, so we
330                  * reset it to -1.
331                  */
332                 if (bad) {
333                         if (p99 < 0)
334                                 p99 = kqd->domain_p99[sched_domain];
335                         kqd->domain_p99[sched_domain] = -1;
336                 } else if (p99 >= 0) {
337                         kqd->domain_p99[sched_domain] = p99;
338                 }
339                 if (p99 < 0)
340                         continue;
341
342                 /*
343                  * If this domain has bad latency, throttle less. Otherwise,
344                  * throttle more iff we determined that there is congestion.
345                  *
346                  * The new depth is scaled linearly with the p99 latency vs the
347                  * latency target. E.g., if the p99 is 3/4 of the target, then
348                  * we throttle down to 3/4 of the current depth, and if the p99
349                  * is 2x the target, then we double the depth.
350                  */
351                 if (bad || p99 >= KYBER_GOOD_BUCKETS) {
352                         orig_depth = kqd->domain_tokens[sched_domain].sb.depth;
353                         depth = (orig_depth * (p99 + 1)) >> KYBER_LATENCY_SHIFT;
354                         kyber_resize_domain(kqd, sched_domain, depth);
355                 }
356         }
357 }
358
359 static struct kyber_queue_data *kyber_queue_data_alloc(struct request_queue *q)
360 {
361         struct kyber_queue_data *kqd;
362         int ret = -ENOMEM;
363         int i;
364
365         kqd = kzalloc_node(sizeof(*kqd), GFP_KERNEL, q->node);
366         if (!kqd)
367                 goto err;
368
369         kqd->q = q;
370         kqd->dev = disk_devt(q->disk);
371
372         kqd->cpu_latency = alloc_percpu_gfp(struct kyber_cpu_latency,
373                                             GFP_KERNEL | __GFP_ZERO);
374         if (!kqd->cpu_latency)
375                 goto err_kqd;
376
377         timer_setup(&kqd->timer, kyber_timer_fn, 0);
378
379         for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
380                 WARN_ON(!kyber_depth[i]);
381                 WARN_ON(!kyber_batch_size[i]);
382                 ret = sbitmap_queue_init_node(&kqd->domain_tokens[i],
383                                               kyber_depth[i], -1, false,
384                                               GFP_KERNEL, q->node);
385                 if (ret) {
386                         while (--i >= 0)
387                                 sbitmap_queue_free(&kqd->domain_tokens[i]);
388                         goto err_buckets;
389                 }
390         }
391
392         for (i = 0; i < KYBER_OTHER; i++) {
393                 kqd->domain_p99[i] = -1;
394                 kqd->latency_targets[i] = kyber_latency_targets[i];
395         }
396
397         return kqd;
398
399 err_buckets:
400         free_percpu(kqd->cpu_latency);
401 err_kqd:
402         kfree(kqd);
403 err:
404         return ERR_PTR(ret);
405 }
406
407 static int kyber_init_sched(struct request_queue *q, struct elevator_type *e)
408 {
409         struct kyber_queue_data *kqd;
410         struct elevator_queue *eq;
411
412         eq = elevator_alloc(q, e);
413         if (!eq)
414                 return -ENOMEM;
415
416         kqd = kyber_queue_data_alloc(q);
417         if (IS_ERR(kqd)) {
418                 kobject_put(&eq->kobj);
419                 return PTR_ERR(kqd);
420         }
421
422         blk_stat_enable_accounting(q);
423
424         eq->elevator_data = kqd;
425         q->elevator = eq;
426
427         return 0;
428 }
429
430 static void kyber_exit_sched(struct elevator_queue *e)
431 {
432         struct kyber_queue_data *kqd = e->elevator_data;
433         int i;
434
435         del_timer_sync(&kqd->timer);
436
437         for (i = 0; i < KYBER_NUM_DOMAINS; i++)
438                 sbitmap_queue_free(&kqd->domain_tokens[i]);
439         free_percpu(kqd->cpu_latency);
440         kfree(kqd);
441 }
442
443 static void kyber_ctx_queue_init(struct kyber_ctx_queue *kcq)
444 {
445         unsigned int i;
446
447         spin_lock_init(&kcq->lock);
448         for (i = 0; i < KYBER_NUM_DOMAINS; i++)
449                 INIT_LIST_HEAD(&kcq->rq_list[i]);
450 }
451
452 static void kyber_depth_updated(struct blk_mq_hw_ctx *hctx)
453 {
454         struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
455         struct blk_mq_tags *tags = hctx->sched_tags;
456         unsigned int shift = tags->bitmap_tags->sb.shift;
457
458         kqd->async_depth = (1U << shift) * KYBER_ASYNC_PERCENT / 100U;
459
460         sbitmap_queue_min_shallow_depth(tags->bitmap_tags, kqd->async_depth);
461 }
462
463 static int kyber_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
464 {
465         struct kyber_hctx_data *khd;
466         int i;
467
468         khd = kmalloc_node(sizeof(*khd), GFP_KERNEL, hctx->numa_node);
469         if (!khd)
470                 return -ENOMEM;
471
472         khd->kcqs = kmalloc_array_node(hctx->nr_ctx,
473                                        sizeof(struct kyber_ctx_queue),
474                                        GFP_KERNEL, hctx->numa_node);
475         if (!khd->kcqs)
476                 goto err_khd;
477
478         for (i = 0; i < hctx->nr_ctx; i++)
479                 kyber_ctx_queue_init(&khd->kcqs[i]);
480
481         for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
482                 if (sbitmap_init_node(&khd->kcq_map[i], hctx->nr_ctx,
483                                       ilog2(8), GFP_KERNEL, hctx->numa_node,
484                                       false, false)) {
485                         while (--i >= 0)
486                                 sbitmap_free(&khd->kcq_map[i]);
487                         goto err_kcqs;
488                 }
489         }
490
491         spin_lock_init(&khd->lock);
492
493         for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
494                 INIT_LIST_HEAD(&khd->rqs[i]);
495                 khd->domain_wait[i].sbq = NULL;
496                 init_waitqueue_func_entry(&khd->domain_wait[i].wait,
497                                           kyber_domain_wake);
498                 khd->domain_wait[i].wait.private = hctx;
499                 INIT_LIST_HEAD(&khd->domain_wait[i].wait.entry);
500                 atomic_set(&khd->wait_index[i], 0);
501         }
502
503         khd->cur_domain = 0;
504         khd->batching = 0;
505
506         hctx->sched_data = khd;
507         kyber_depth_updated(hctx);
508
509         return 0;
510
511 err_kcqs:
512         kfree(khd->kcqs);
513 err_khd:
514         kfree(khd);
515         return -ENOMEM;
516 }
517
518 static void kyber_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
519 {
520         struct kyber_hctx_data *khd = hctx->sched_data;
521         int i;
522
523         for (i = 0; i < KYBER_NUM_DOMAINS; i++)
524                 sbitmap_free(&khd->kcq_map[i]);
525         kfree(khd->kcqs);
526         kfree(hctx->sched_data);
527 }
528
529 static int rq_get_domain_token(struct request *rq)
530 {
531         return (long)rq->elv.priv[0];
532 }
533
534 static void rq_set_domain_token(struct request *rq, int token)
535 {
536         rq->elv.priv[0] = (void *)(long)token;
537 }
538
539 static void rq_clear_domain_token(struct kyber_queue_data *kqd,
540                                   struct request *rq)
541 {
542         unsigned int sched_domain;
543         int nr;
544
545         nr = rq_get_domain_token(rq);
546         if (nr != -1) {
547                 sched_domain = kyber_sched_domain(rq->cmd_flags);
548                 sbitmap_queue_clear(&kqd->domain_tokens[sched_domain], nr,
549                                     rq->mq_ctx->cpu);
550         }
551 }
552
553 static void kyber_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
554 {
555         /*
556          * We use the scheduler tags as per-hardware queue queueing tokens.
557          * Async requests can be limited at this stage.
558          */
559         if (!op_is_sync(op)) {
560                 struct kyber_queue_data *kqd = data->q->elevator->elevator_data;
561
562                 data->shallow_depth = kqd->async_depth;
563         }
564 }
565
566 static bool kyber_bio_merge(struct request_queue *q, struct bio *bio,
567                 unsigned int nr_segs)
568 {
569         struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
570         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
571         struct kyber_hctx_data *khd = hctx->sched_data;
572         struct kyber_ctx_queue *kcq = &khd->kcqs[ctx->index_hw[hctx->type]];
573         unsigned int sched_domain = kyber_sched_domain(bio->bi_opf);
574         struct list_head *rq_list = &kcq->rq_list[sched_domain];
575         bool merged;
576
577         spin_lock(&kcq->lock);
578         merged = blk_bio_list_merge(hctx->queue, rq_list, bio, nr_segs);
579         spin_unlock(&kcq->lock);
580
581         return merged;
582 }
583
584 static void kyber_prepare_request(struct request *rq)
585 {
586         rq_set_domain_token(rq, -1);
587 }
588
589 static void kyber_insert_requests(struct blk_mq_hw_ctx *hctx,
590                                   struct list_head *rq_list, bool at_head)
591 {
592         struct kyber_hctx_data *khd = hctx->sched_data;
593         struct request *rq, *next;
594
595         list_for_each_entry_safe(rq, next, rq_list, queuelist) {
596                 unsigned int sched_domain = kyber_sched_domain(rq->cmd_flags);
597                 struct kyber_ctx_queue *kcq = &khd->kcqs[rq->mq_ctx->index_hw[hctx->type]];
598                 struct list_head *head = &kcq->rq_list[sched_domain];
599
600                 spin_lock(&kcq->lock);
601                 trace_block_rq_insert(rq);
602                 if (at_head)
603                         list_move(&rq->queuelist, head);
604                 else
605                         list_move_tail(&rq->queuelist, head);
606                 sbitmap_set_bit(&khd->kcq_map[sched_domain],
607                                 rq->mq_ctx->index_hw[hctx->type]);
608                 spin_unlock(&kcq->lock);
609         }
610 }
611
612 static void kyber_finish_request(struct request *rq)
613 {
614         struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
615
616         rq_clear_domain_token(kqd, rq);
617 }
618
619 static void add_latency_sample(struct kyber_cpu_latency *cpu_latency,
620                                unsigned int sched_domain, unsigned int type,
621                                u64 target, u64 latency)
622 {
623         unsigned int bucket;
624         u64 divisor;
625
626         if (latency > 0) {
627                 divisor = max_t(u64, target >> KYBER_LATENCY_SHIFT, 1);
628                 bucket = min_t(unsigned int, div64_u64(latency - 1, divisor),
629                                KYBER_LATENCY_BUCKETS - 1);
630         } else {
631                 bucket = 0;
632         }
633
634         atomic_inc(&cpu_latency->buckets[sched_domain][type][bucket]);
635 }
636
637 static void kyber_completed_request(struct request *rq, u64 now)
638 {
639         struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
640         struct kyber_cpu_latency *cpu_latency;
641         unsigned int sched_domain;
642         u64 target;
643
644         sched_domain = kyber_sched_domain(rq->cmd_flags);
645         if (sched_domain == KYBER_OTHER)
646                 return;
647
648         cpu_latency = get_cpu_ptr(kqd->cpu_latency);
649         target = kqd->latency_targets[sched_domain];
650         add_latency_sample(cpu_latency, sched_domain, KYBER_TOTAL_LATENCY,
651                            target, now - rq->start_time_ns);
652         add_latency_sample(cpu_latency, sched_domain, KYBER_IO_LATENCY, target,
653                            now - rq->io_start_time_ns);
654         put_cpu_ptr(kqd->cpu_latency);
655
656         timer_reduce(&kqd->timer, jiffies + HZ / 10);
657 }
658
659 struct flush_kcq_data {
660         struct kyber_hctx_data *khd;
661         unsigned int sched_domain;
662         struct list_head *list;
663 };
664
665 static bool flush_busy_kcq(struct sbitmap *sb, unsigned int bitnr, void *data)
666 {
667         struct flush_kcq_data *flush_data = data;
668         struct kyber_ctx_queue *kcq = &flush_data->khd->kcqs[bitnr];
669
670         spin_lock(&kcq->lock);
671         list_splice_tail_init(&kcq->rq_list[flush_data->sched_domain],
672                               flush_data->list);
673         sbitmap_clear_bit(sb, bitnr);
674         spin_unlock(&kcq->lock);
675
676         return true;
677 }
678
679 static void kyber_flush_busy_kcqs(struct kyber_hctx_data *khd,
680                                   unsigned int sched_domain,
681                                   struct list_head *list)
682 {
683         struct flush_kcq_data data = {
684                 .khd = khd,
685                 .sched_domain = sched_domain,
686                 .list = list,
687         };
688
689         sbitmap_for_each_set(&khd->kcq_map[sched_domain],
690                              flush_busy_kcq, &data);
691 }
692
693 static int kyber_domain_wake(wait_queue_entry_t *wqe, unsigned mode, int flags,
694                              void *key)
695 {
696         struct blk_mq_hw_ctx *hctx = READ_ONCE(wqe->private);
697         struct sbq_wait *wait = container_of(wqe, struct sbq_wait, wait);
698
699         sbitmap_del_wait_queue(wait);
700         blk_mq_run_hw_queue(hctx, true);
701         return 1;
702 }
703
704 static int kyber_get_domain_token(struct kyber_queue_data *kqd,
705                                   struct kyber_hctx_data *khd,
706                                   struct blk_mq_hw_ctx *hctx)
707 {
708         unsigned int sched_domain = khd->cur_domain;
709         struct sbitmap_queue *domain_tokens = &kqd->domain_tokens[sched_domain];
710         struct sbq_wait *wait = &khd->domain_wait[sched_domain];
711         struct sbq_wait_state *ws;
712         int nr;
713
714         nr = __sbitmap_queue_get(domain_tokens);
715
716         /*
717          * If we failed to get a domain token, make sure the hardware queue is
718          * run when one becomes available. Note that this is serialized on
719          * khd->lock, but we still need to be careful about the waker.
720          */
721         if (nr < 0 && list_empty_careful(&wait->wait.entry)) {
722                 ws = sbq_wait_ptr(domain_tokens,
723                                   &khd->wait_index[sched_domain]);
724                 khd->domain_ws[sched_domain] = ws;
725                 sbitmap_add_wait_queue(domain_tokens, ws, wait);
726
727                 /*
728                  * Try again in case a token was freed before we got on the wait
729                  * queue.
730                  */
731                 nr = __sbitmap_queue_get(domain_tokens);
732         }
733
734         /*
735          * If we got a token while we were on the wait queue, remove ourselves
736          * from the wait queue to ensure that all wake ups make forward
737          * progress. It's possible that the waker already deleted the entry
738          * between the !list_empty_careful() check and us grabbing the lock, but
739          * list_del_init() is okay with that.
740          */
741         if (nr >= 0 && !list_empty_careful(&wait->wait.entry)) {
742                 ws = khd->domain_ws[sched_domain];
743                 spin_lock_irq(&ws->wait.lock);
744                 sbitmap_del_wait_queue(wait);
745                 spin_unlock_irq(&ws->wait.lock);
746         }
747
748         return nr;
749 }
750
751 static struct request *
752 kyber_dispatch_cur_domain(struct kyber_queue_data *kqd,
753                           struct kyber_hctx_data *khd,
754                           struct blk_mq_hw_ctx *hctx)
755 {
756         struct list_head *rqs;
757         struct request *rq;
758         int nr;
759
760         rqs = &khd->rqs[khd->cur_domain];
761
762         /*
763          * If we already have a flushed request, then we just need to get a
764          * token for it. Otherwise, if there are pending requests in the kcqs,
765          * flush the kcqs, but only if we can get a token. If not, we should
766          * leave the requests in the kcqs so that they can be merged. Note that
767          * khd->lock serializes the flushes, so if we observed any bit set in
768          * the kcq_map, we will always get a request.
769          */
770         rq = list_first_entry_or_null(rqs, struct request, queuelist);
771         if (rq) {
772                 nr = kyber_get_domain_token(kqd, khd, hctx);
773                 if (nr >= 0) {
774                         khd->batching++;
775                         rq_set_domain_token(rq, nr);
776                         list_del_init(&rq->queuelist);
777                         return rq;
778                 } else {
779                         trace_kyber_throttled(kqd->dev,
780                                               kyber_domain_names[khd->cur_domain]);
781                 }
782         } else if (sbitmap_any_bit_set(&khd->kcq_map[khd->cur_domain])) {
783                 nr = kyber_get_domain_token(kqd, khd, hctx);
784                 if (nr >= 0) {
785                         kyber_flush_busy_kcqs(khd, khd->cur_domain, rqs);
786                         rq = list_first_entry(rqs, struct request, queuelist);
787                         khd->batching++;
788                         rq_set_domain_token(rq, nr);
789                         list_del_init(&rq->queuelist);
790                         return rq;
791                 } else {
792                         trace_kyber_throttled(kqd->dev,
793                                               kyber_domain_names[khd->cur_domain]);
794                 }
795         }
796
797         /* There were either no pending requests or no tokens. */
798         return NULL;
799 }
800
801 static struct request *kyber_dispatch_request(struct blk_mq_hw_ctx *hctx)
802 {
803         struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
804         struct kyber_hctx_data *khd = hctx->sched_data;
805         struct request *rq;
806         int i;
807
808         spin_lock(&khd->lock);
809
810         /*
811          * First, if we are still entitled to batch, try to dispatch a request
812          * from the batch.
813          */
814         if (khd->batching < kyber_batch_size[khd->cur_domain]) {
815                 rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
816                 if (rq)
817                         goto out;
818         }
819
820         /*
821          * Either,
822          * 1. We were no longer entitled to a batch.
823          * 2. The domain we were batching didn't have any requests.
824          * 3. The domain we were batching was out of tokens.
825          *
826          * Start another batch. Note that this wraps back around to the original
827          * domain if no other domains have requests or tokens.
828          */
829         khd->batching = 0;
830         for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
831                 if (khd->cur_domain == KYBER_NUM_DOMAINS - 1)
832                         khd->cur_domain = 0;
833                 else
834                         khd->cur_domain++;
835
836                 rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
837                 if (rq)
838                         goto out;
839         }
840
841         rq = NULL;
842 out:
843         spin_unlock(&khd->lock);
844         return rq;
845 }
846
847 static bool kyber_has_work(struct blk_mq_hw_ctx *hctx)
848 {
849         struct kyber_hctx_data *khd = hctx->sched_data;
850         int i;
851
852         for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
853                 if (!list_empty_careful(&khd->rqs[i]) ||
854                     sbitmap_any_bit_set(&khd->kcq_map[i]))
855                         return true;
856         }
857
858         return false;
859 }
860
861 #define KYBER_LAT_SHOW_STORE(domain, name)                              \
862 static ssize_t kyber_##name##_lat_show(struct elevator_queue *e,        \
863                                        char *page)                      \
864 {                                                                       \
865         struct kyber_queue_data *kqd = e->elevator_data;                \
866                                                                         \
867         return sprintf(page, "%llu\n", kqd->latency_targets[domain]);   \
868 }                                                                       \
869                                                                         \
870 static ssize_t kyber_##name##_lat_store(struct elevator_queue *e,       \
871                                         const char *page, size_t count) \
872 {                                                                       \
873         struct kyber_queue_data *kqd = e->elevator_data;                \
874         unsigned long long nsec;                                        \
875         int ret;                                                        \
876                                                                         \
877         ret = kstrtoull(page, 10, &nsec);                               \
878         if (ret)                                                        \
879                 return ret;                                             \
880                                                                         \
881         kqd->latency_targets[domain] = nsec;                            \
882                                                                         \
883         return count;                                                   \
884 }
885 KYBER_LAT_SHOW_STORE(KYBER_READ, read);
886 KYBER_LAT_SHOW_STORE(KYBER_WRITE, write);
887 #undef KYBER_LAT_SHOW_STORE
888
889 #define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store)
890 static struct elv_fs_entry kyber_sched_attrs[] = {
891         KYBER_LAT_ATTR(read),
892         KYBER_LAT_ATTR(write),
893         __ATTR_NULL
894 };
895 #undef KYBER_LAT_ATTR
896
897 #ifdef CONFIG_BLK_DEBUG_FS
898 #define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name)                        \
899 static int kyber_##name##_tokens_show(void *data, struct seq_file *m)   \
900 {                                                                       \
901         struct request_queue *q = data;                                 \
902         struct kyber_queue_data *kqd = q->elevator->elevator_data;      \
903                                                                         \
904         sbitmap_queue_show(&kqd->domain_tokens[domain], m);             \
905         return 0;                                                       \
906 }                                                                       \
907                                                                         \
908 static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos)  \
909         __acquires(&khd->lock)                                          \
910 {                                                                       \
911         struct blk_mq_hw_ctx *hctx = m->private;                        \
912         struct kyber_hctx_data *khd = hctx->sched_data;                 \
913                                                                         \
914         spin_lock(&khd->lock);                                          \
915         return seq_list_start(&khd->rqs[domain], *pos);                 \
916 }                                                                       \
917                                                                         \
918 static void *kyber_##name##_rqs_next(struct seq_file *m, void *v,       \
919                                      loff_t *pos)                       \
920 {                                                                       \
921         struct blk_mq_hw_ctx *hctx = m->private;                        \
922         struct kyber_hctx_data *khd = hctx->sched_data;                 \
923                                                                         \
924         return seq_list_next(v, &khd->rqs[domain], pos);                \
925 }                                                                       \
926                                                                         \
927 static void kyber_##name##_rqs_stop(struct seq_file *m, void *v)        \
928         __releases(&khd->lock)                                          \
929 {                                                                       \
930         struct blk_mq_hw_ctx *hctx = m->private;                        \
931         struct kyber_hctx_data *khd = hctx->sched_data;                 \
932                                                                         \
933         spin_unlock(&khd->lock);                                        \
934 }                                                                       \
935                                                                         \
936 static const struct seq_operations kyber_##name##_rqs_seq_ops = {       \
937         .start  = kyber_##name##_rqs_start,                             \
938         .next   = kyber_##name##_rqs_next,                              \
939         .stop   = kyber_##name##_rqs_stop,                              \
940         .show   = blk_mq_debugfs_rq_show,                               \
941 };                                                                      \
942                                                                         \
943 static int kyber_##name##_waiting_show(void *data, struct seq_file *m)  \
944 {                                                                       \
945         struct blk_mq_hw_ctx *hctx = data;                              \
946         struct kyber_hctx_data *khd = hctx->sched_data;                 \
947         wait_queue_entry_t *wait = &khd->domain_wait[domain].wait;      \
948                                                                         \
949         seq_printf(m, "%d\n", !list_empty_careful(&wait->entry));       \
950         return 0;                                                       \
951 }
952 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ, read)
953 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_WRITE, write)
954 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_DISCARD, discard)
955 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER, other)
956 #undef KYBER_DEBUGFS_DOMAIN_ATTRS
957
958 static int kyber_async_depth_show(void *data, struct seq_file *m)
959 {
960         struct request_queue *q = data;
961         struct kyber_queue_data *kqd = q->elevator->elevator_data;
962
963         seq_printf(m, "%u\n", kqd->async_depth);
964         return 0;
965 }
966
967 static int kyber_cur_domain_show(void *data, struct seq_file *m)
968 {
969         struct blk_mq_hw_ctx *hctx = data;
970         struct kyber_hctx_data *khd = hctx->sched_data;
971
972         seq_printf(m, "%s\n", kyber_domain_names[khd->cur_domain]);
973         return 0;
974 }
975
976 static int kyber_batching_show(void *data, struct seq_file *m)
977 {
978         struct blk_mq_hw_ctx *hctx = data;
979         struct kyber_hctx_data *khd = hctx->sched_data;
980
981         seq_printf(m, "%u\n", khd->batching);
982         return 0;
983 }
984
985 #define KYBER_QUEUE_DOMAIN_ATTRS(name)  \
986         {#name "_tokens", 0400, kyber_##name##_tokens_show}
987 static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs[] = {
988         KYBER_QUEUE_DOMAIN_ATTRS(read),
989         KYBER_QUEUE_DOMAIN_ATTRS(write),
990         KYBER_QUEUE_DOMAIN_ATTRS(discard),
991         KYBER_QUEUE_DOMAIN_ATTRS(other),
992         {"async_depth", 0400, kyber_async_depth_show},
993         {},
994 };
995 #undef KYBER_QUEUE_DOMAIN_ATTRS
996
997 #define KYBER_HCTX_DOMAIN_ATTRS(name)                                   \
998         {#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops},   \
999         {#name "_waiting", 0400, kyber_##name##_waiting_show}
1000 static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs[] = {
1001         KYBER_HCTX_DOMAIN_ATTRS(read),
1002         KYBER_HCTX_DOMAIN_ATTRS(write),
1003         KYBER_HCTX_DOMAIN_ATTRS(discard),
1004         KYBER_HCTX_DOMAIN_ATTRS(other),
1005         {"cur_domain", 0400, kyber_cur_domain_show},
1006         {"batching", 0400, kyber_batching_show},
1007         {},
1008 };
1009 #undef KYBER_HCTX_DOMAIN_ATTRS
1010 #endif
1011
1012 static struct elevator_type kyber_sched = {
1013         .ops = {
1014                 .init_sched = kyber_init_sched,
1015                 .exit_sched = kyber_exit_sched,
1016                 .init_hctx = kyber_init_hctx,
1017                 .exit_hctx = kyber_exit_hctx,
1018                 .limit_depth = kyber_limit_depth,
1019                 .bio_merge = kyber_bio_merge,
1020                 .prepare_request = kyber_prepare_request,
1021                 .insert_requests = kyber_insert_requests,
1022                 .finish_request = kyber_finish_request,
1023                 .requeue_request = kyber_finish_request,
1024                 .completed_request = kyber_completed_request,
1025                 .dispatch_request = kyber_dispatch_request,
1026                 .has_work = kyber_has_work,
1027                 .depth_updated = kyber_depth_updated,
1028         },
1029 #ifdef CONFIG_BLK_DEBUG_FS
1030         .queue_debugfs_attrs = kyber_queue_debugfs_attrs,
1031         .hctx_debugfs_attrs = kyber_hctx_debugfs_attrs,
1032 #endif
1033         .elevator_attrs = kyber_sched_attrs,
1034         .elevator_name = "kyber",
1035         .elevator_features = ELEVATOR_F_MQ_AWARE,
1036         .elevator_owner = THIS_MODULE,
1037 };
1038
1039 static int __init kyber_init(void)
1040 {
1041         return elv_register(&kyber_sched);
1042 }
1043
1044 static void __exit kyber_exit(void)
1045 {
1046         elv_unregister(&kyber_sched);
1047 }
1048
1049 module_init(kyber_init);
1050 module_exit(kyber_exit);
1051
1052 MODULE_AUTHOR("Omar Sandoval");
1053 MODULE_LICENSE("GPL");
1054 MODULE_DESCRIPTION("Kyber I/O scheduler");