1 // SPDX-License-Identifier: GPL-2.0
3 * The Kyber I/O scheduler. Controls latency by throttling queue depths using
6 * Copyright (C) 2017 Facebook
9 #include <linux/kernel.h>
10 #include <linux/blkdev.h>
11 #include <linux/module.h>
12 #include <linux/sbitmap.h>
14 #include <trace/events/block.h>
19 #include "blk-mq-debugfs.h"
20 #include "blk-mq-sched.h"
22 #define CREATE_TRACE_POINTS
23 #include <trace/events/kyber.h>
26 * Scheduling domains: the device is divided into multiple domains based on the
37 static const char *kyber_domain_names[] = {
38 [KYBER_READ] = "READ",
39 [KYBER_WRITE] = "WRITE",
40 [KYBER_DISCARD] = "DISCARD",
41 [KYBER_OTHER] = "OTHER",
46 * In order to prevent starvation of synchronous requests by a flood of
47 * asynchronous requests, we reserve 25% of requests for synchronous
50 KYBER_ASYNC_PERCENT = 75,
54 * Maximum device-wide depth for each scheduling domain.
56 * Even for fast devices with lots of tags like NVMe, you can saturate the
57 * device with only a fraction of the maximum possible queue depth. So, we cap
58 * these to a reasonable value.
60 static const unsigned int kyber_depth[] = {
68 * Default latency targets for each scheduling domain.
70 static const u64 kyber_latency_targets[] = {
71 [KYBER_READ] = 2ULL * NSEC_PER_MSEC,
72 [KYBER_WRITE] = 10ULL * NSEC_PER_MSEC,
73 [KYBER_DISCARD] = 5ULL * NSEC_PER_SEC,
77 * Batch size (number of requests we'll dispatch in a row) for each scheduling
80 static const unsigned int kyber_batch_size[] = {
88 * Requests latencies are recorded in a histogram with buckets defined relative
89 * to the target latency:
91 * <= 1/4 * target latency
92 * <= 1/2 * target latency
93 * <= 3/4 * target latency
95 * <= 1 1/4 * target latency
96 * <= 1 1/2 * target latency
97 * <= 1 3/4 * target latency
98 * > 1 3/4 * target latency
102 * The width of the latency histogram buckets is
103 * 1 / (1 << KYBER_LATENCY_SHIFT) * target latency.
105 KYBER_LATENCY_SHIFT = 2,
107 * The first (1 << KYBER_LATENCY_SHIFT) buckets are <= target latency,
110 KYBER_GOOD_BUCKETS = 1 << KYBER_LATENCY_SHIFT,
111 /* There are also (1 << KYBER_LATENCY_SHIFT) "bad" buckets. */
112 KYBER_LATENCY_BUCKETS = 2 << KYBER_LATENCY_SHIFT,
116 * We measure both the total latency and the I/O latency (i.e., latency after
117 * submitting to the device).
124 static const char *kyber_latency_type_names[] = {
125 [KYBER_TOTAL_LATENCY] = "total",
126 [KYBER_IO_LATENCY] = "I/O",
130 * Per-cpu latency histograms: total latency and I/O latency for each scheduling
131 * domain except for KYBER_OTHER.
133 struct kyber_cpu_latency {
134 atomic_t buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
138 * There is a same mapping between ctx & hctx and kcq & khd,
139 * we use request->mq_ctx->index_hw to index the kcq in khd.
141 struct kyber_ctx_queue {
143 * Used to ensure operations on rq_list and kcq_map to be an atmoic one.
144 * Also protect the rqs on rq_list when merge.
147 struct list_head rq_list[KYBER_NUM_DOMAINS];
148 } ____cacheline_aligned_in_smp;
150 struct kyber_queue_data {
151 struct request_queue *q;
155 * Each scheduling domain has a limited number of in-flight requests
156 * device-wide, limited by these tokens.
158 struct sbitmap_queue domain_tokens[KYBER_NUM_DOMAINS];
161 * Async request percentage, converted to per-word depth for
162 * sbitmap_get_shallow().
164 unsigned int async_depth;
166 struct kyber_cpu_latency __percpu *cpu_latency;
168 /* Timer for stats aggregation and adjusting domain tokens. */
169 struct timer_list timer;
171 unsigned int latency_buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
173 unsigned long latency_timeout[KYBER_OTHER];
175 int domain_p99[KYBER_OTHER];
177 /* Target latencies in nanoseconds. */
178 u64 latency_targets[KYBER_OTHER];
181 struct kyber_hctx_data {
183 struct list_head rqs[KYBER_NUM_DOMAINS];
184 unsigned int cur_domain;
185 unsigned int batching;
186 struct kyber_ctx_queue *kcqs;
187 struct sbitmap kcq_map[KYBER_NUM_DOMAINS];
188 struct sbq_wait domain_wait[KYBER_NUM_DOMAINS];
189 struct sbq_wait_state *domain_ws[KYBER_NUM_DOMAINS];
190 atomic_t wait_index[KYBER_NUM_DOMAINS];
193 static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
196 static unsigned int kyber_sched_domain(blk_opf_t opf)
198 switch (opf & REQ_OP_MASK) {
204 return KYBER_DISCARD;
210 static void flush_latency_buckets(struct kyber_queue_data *kqd,
211 struct kyber_cpu_latency *cpu_latency,
212 unsigned int sched_domain, unsigned int type)
214 unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
215 atomic_t *cpu_buckets = cpu_latency->buckets[sched_domain][type];
218 for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
219 buckets[bucket] += atomic_xchg(&cpu_buckets[bucket], 0);
223 * Calculate the histogram bucket with the given percentile rank, or -1 if there
224 * aren't enough samples yet.
226 static int calculate_percentile(struct kyber_queue_data *kqd,
227 unsigned int sched_domain, unsigned int type,
228 unsigned int percentile)
230 unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
231 unsigned int bucket, samples = 0, percentile_samples;
233 for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
234 samples += buckets[bucket];
240 * We do the calculation once we have 500 samples or one second passes
241 * since the first sample was recorded, whichever comes first.
243 if (!kqd->latency_timeout[sched_domain])
244 kqd->latency_timeout[sched_domain] = max(jiffies + HZ, 1UL);
246 time_is_after_jiffies(kqd->latency_timeout[sched_domain])) {
249 kqd->latency_timeout[sched_domain] = 0;
251 percentile_samples = DIV_ROUND_UP(samples * percentile, 100);
252 for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS - 1; bucket++) {
253 if (buckets[bucket] >= percentile_samples)
255 percentile_samples -= buckets[bucket];
257 memset(buckets, 0, sizeof(kqd->latency_buckets[sched_domain][type]));
259 trace_kyber_latency(kqd->dev, kyber_domain_names[sched_domain],
260 kyber_latency_type_names[type], percentile,
261 bucket + 1, 1 << KYBER_LATENCY_SHIFT, samples);
266 static void kyber_resize_domain(struct kyber_queue_data *kqd,
267 unsigned int sched_domain, unsigned int depth)
269 depth = clamp(depth, 1U, kyber_depth[sched_domain]);
270 if (depth != kqd->domain_tokens[sched_domain].sb.depth) {
271 sbitmap_queue_resize(&kqd->domain_tokens[sched_domain], depth);
272 trace_kyber_adjust(kqd->dev, kyber_domain_names[sched_domain],
277 static void kyber_timer_fn(struct timer_list *t)
279 struct kyber_queue_data *kqd = from_timer(kqd, t, timer);
280 unsigned int sched_domain;
284 /* Sum all of the per-cpu latency histograms. */
285 for_each_online_cpu(cpu) {
286 struct kyber_cpu_latency *cpu_latency;
288 cpu_latency = per_cpu_ptr(kqd->cpu_latency, cpu);
289 for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
290 flush_latency_buckets(kqd, cpu_latency, sched_domain,
291 KYBER_TOTAL_LATENCY);
292 flush_latency_buckets(kqd, cpu_latency, sched_domain,
298 * Check if any domains have a high I/O latency, which might indicate
299 * congestion in the device. Note that we use the p90; we don't want to
300 * be too sensitive to outliers here.
302 for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
305 p90 = calculate_percentile(kqd, sched_domain, KYBER_IO_LATENCY,
307 if (p90 >= KYBER_GOOD_BUCKETS)
312 * Adjust the scheduling domain depths. If we determined that there was
313 * congestion, we throttle all domains with good latencies. Either way,
314 * we ease up on throttling domains with bad latencies.
316 for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
317 unsigned int orig_depth, depth;
320 p99 = calculate_percentile(kqd, sched_domain,
321 KYBER_TOTAL_LATENCY, 99);
323 * This is kind of subtle: different domains will not
324 * necessarily have enough samples to calculate the latency
325 * percentiles during the same window, so we have to remember
326 * the p99 for the next time we observe congestion; once we do,
327 * we don't want to throttle again until we get more data, so we
332 p99 = kqd->domain_p99[sched_domain];
333 kqd->domain_p99[sched_domain] = -1;
334 } else if (p99 >= 0) {
335 kqd->domain_p99[sched_domain] = p99;
341 * If this domain has bad latency, throttle less. Otherwise,
342 * throttle more iff we determined that there is congestion.
344 * The new depth is scaled linearly with the p99 latency vs the
345 * latency target. E.g., if the p99 is 3/4 of the target, then
346 * we throttle down to 3/4 of the current depth, and if the p99
347 * is 2x the target, then we double the depth.
349 if (bad || p99 >= KYBER_GOOD_BUCKETS) {
350 orig_depth = kqd->domain_tokens[sched_domain].sb.depth;
351 depth = (orig_depth * (p99 + 1)) >> KYBER_LATENCY_SHIFT;
352 kyber_resize_domain(kqd, sched_domain, depth);
357 static struct kyber_queue_data *kyber_queue_data_alloc(struct request_queue *q)
359 struct kyber_queue_data *kqd;
363 kqd = kzalloc_node(sizeof(*kqd), GFP_KERNEL, q->node);
368 kqd->dev = disk_devt(q->disk);
370 kqd->cpu_latency = alloc_percpu_gfp(struct kyber_cpu_latency,
371 GFP_KERNEL | __GFP_ZERO);
372 if (!kqd->cpu_latency)
375 timer_setup(&kqd->timer, kyber_timer_fn, 0);
377 for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
378 WARN_ON(!kyber_depth[i]);
379 WARN_ON(!kyber_batch_size[i]);
380 ret = sbitmap_queue_init_node(&kqd->domain_tokens[i],
381 kyber_depth[i], -1, false,
382 GFP_KERNEL, q->node);
385 sbitmap_queue_free(&kqd->domain_tokens[i]);
390 for (i = 0; i < KYBER_OTHER; i++) {
391 kqd->domain_p99[i] = -1;
392 kqd->latency_targets[i] = kyber_latency_targets[i];
398 free_percpu(kqd->cpu_latency);
405 static int kyber_init_sched(struct request_queue *q, struct elevator_type *e)
407 struct kyber_queue_data *kqd;
408 struct elevator_queue *eq;
410 eq = elevator_alloc(q, e);
414 kqd = kyber_queue_data_alloc(q);
416 kobject_put(&eq->kobj);
420 blk_stat_enable_accounting(q);
422 blk_queue_flag_clear(QUEUE_FLAG_SQ_SCHED, q);
424 eq->elevator_data = kqd;
430 static void kyber_exit_sched(struct elevator_queue *e)
432 struct kyber_queue_data *kqd = e->elevator_data;
435 timer_shutdown_sync(&kqd->timer);
436 blk_stat_disable_accounting(kqd->q);
438 for (i = 0; i < KYBER_NUM_DOMAINS; i++)
439 sbitmap_queue_free(&kqd->domain_tokens[i]);
440 free_percpu(kqd->cpu_latency);
444 static void kyber_ctx_queue_init(struct kyber_ctx_queue *kcq)
448 spin_lock_init(&kcq->lock);
449 for (i = 0; i < KYBER_NUM_DOMAINS; i++)
450 INIT_LIST_HEAD(&kcq->rq_list[i]);
453 static void kyber_depth_updated(struct blk_mq_hw_ctx *hctx)
455 struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
456 struct blk_mq_tags *tags = hctx->sched_tags;
457 unsigned int shift = tags->bitmap_tags.sb.shift;
459 kqd->async_depth = (1U << shift) * KYBER_ASYNC_PERCENT / 100U;
461 sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, kqd->async_depth);
464 static int kyber_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
466 struct kyber_hctx_data *khd;
469 khd = kmalloc_node(sizeof(*khd), GFP_KERNEL, hctx->numa_node);
473 khd->kcqs = kmalloc_array_node(hctx->nr_ctx,
474 sizeof(struct kyber_ctx_queue),
475 GFP_KERNEL, hctx->numa_node);
479 for (i = 0; i < hctx->nr_ctx; i++)
480 kyber_ctx_queue_init(&khd->kcqs[i]);
482 for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
483 if (sbitmap_init_node(&khd->kcq_map[i], hctx->nr_ctx,
484 ilog2(8), GFP_KERNEL, hctx->numa_node,
487 sbitmap_free(&khd->kcq_map[i]);
492 spin_lock_init(&khd->lock);
494 for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
495 INIT_LIST_HEAD(&khd->rqs[i]);
496 khd->domain_wait[i].sbq = NULL;
497 init_waitqueue_func_entry(&khd->domain_wait[i].wait,
499 khd->domain_wait[i].wait.private = hctx;
500 INIT_LIST_HEAD(&khd->domain_wait[i].wait.entry);
501 atomic_set(&khd->wait_index[i], 0);
507 hctx->sched_data = khd;
508 kyber_depth_updated(hctx);
519 static void kyber_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
521 struct kyber_hctx_data *khd = hctx->sched_data;
524 for (i = 0; i < KYBER_NUM_DOMAINS; i++)
525 sbitmap_free(&khd->kcq_map[i]);
527 kfree(hctx->sched_data);
530 static int rq_get_domain_token(struct request *rq)
532 return (long)rq->elv.priv[0];
535 static void rq_set_domain_token(struct request *rq, int token)
537 rq->elv.priv[0] = (void *)(long)token;
540 static void rq_clear_domain_token(struct kyber_queue_data *kqd,
543 unsigned int sched_domain;
546 nr = rq_get_domain_token(rq);
548 sched_domain = kyber_sched_domain(rq->cmd_flags);
549 sbitmap_queue_clear(&kqd->domain_tokens[sched_domain], nr,
554 static void kyber_limit_depth(blk_opf_t opf, struct blk_mq_alloc_data *data)
557 * We use the scheduler tags as per-hardware queue queueing tokens.
558 * Async requests can be limited at this stage.
560 if (!op_is_sync(opf)) {
561 struct kyber_queue_data *kqd = data->q->elevator->elevator_data;
563 data->shallow_depth = kqd->async_depth;
567 static bool kyber_bio_merge(struct request_queue *q, struct bio *bio,
568 unsigned int nr_segs)
570 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
571 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
572 struct kyber_hctx_data *khd = hctx->sched_data;
573 struct kyber_ctx_queue *kcq = &khd->kcqs[ctx->index_hw[hctx->type]];
574 unsigned int sched_domain = kyber_sched_domain(bio->bi_opf);
575 struct list_head *rq_list = &kcq->rq_list[sched_domain];
578 spin_lock(&kcq->lock);
579 merged = blk_bio_list_merge(hctx->queue, rq_list, bio, nr_segs);
580 spin_unlock(&kcq->lock);
585 static void kyber_prepare_request(struct request *rq)
587 rq_set_domain_token(rq, -1);
590 static void kyber_insert_requests(struct blk_mq_hw_ctx *hctx,
591 struct list_head *rq_list,
594 struct kyber_hctx_data *khd = hctx->sched_data;
595 struct request *rq, *next;
597 list_for_each_entry_safe(rq, next, rq_list, queuelist) {
598 unsigned int sched_domain = kyber_sched_domain(rq->cmd_flags);
599 struct kyber_ctx_queue *kcq = &khd->kcqs[rq->mq_ctx->index_hw[hctx->type]];
600 struct list_head *head = &kcq->rq_list[sched_domain];
602 spin_lock(&kcq->lock);
603 trace_block_rq_insert(rq);
604 if (flags & BLK_MQ_INSERT_AT_HEAD)
605 list_move(&rq->queuelist, head);
607 list_move_tail(&rq->queuelist, head);
608 sbitmap_set_bit(&khd->kcq_map[sched_domain],
609 rq->mq_ctx->index_hw[hctx->type]);
610 spin_unlock(&kcq->lock);
614 static void kyber_finish_request(struct request *rq)
616 struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
618 rq_clear_domain_token(kqd, rq);
621 static void add_latency_sample(struct kyber_cpu_latency *cpu_latency,
622 unsigned int sched_domain, unsigned int type,
623 u64 target, u64 latency)
629 divisor = max_t(u64, target >> KYBER_LATENCY_SHIFT, 1);
630 bucket = min_t(unsigned int, div64_u64(latency - 1, divisor),
631 KYBER_LATENCY_BUCKETS - 1);
636 atomic_inc(&cpu_latency->buckets[sched_domain][type][bucket]);
639 static void kyber_completed_request(struct request *rq, u64 now)
641 struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
642 struct kyber_cpu_latency *cpu_latency;
643 unsigned int sched_domain;
646 sched_domain = kyber_sched_domain(rq->cmd_flags);
647 if (sched_domain == KYBER_OTHER)
650 cpu_latency = get_cpu_ptr(kqd->cpu_latency);
651 target = kqd->latency_targets[sched_domain];
652 add_latency_sample(cpu_latency, sched_domain, KYBER_TOTAL_LATENCY,
653 target, now - rq->start_time_ns);
654 add_latency_sample(cpu_latency, sched_domain, KYBER_IO_LATENCY, target,
655 now - rq->io_start_time_ns);
656 put_cpu_ptr(kqd->cpu_latency);
658 timer_reduce(&kqd->timer, jiffies + HZ / 10);
661 struct flush_kcq_data {
662 struct kyber_hctx_data *khd;
663 unsigned int sched_domain;
664 struct list_head *list;
667 static bool flush_busy_kcq(struct sbitmap *sb, unsigned int bitnr, void *data)
669 struct flush_kcq_data *flush_data = data;
670 struct kyber_ctx_queue *kcq = &flush_data->khd->kcqs[bitnr];
672 spin_lock(&kcq->lock);
673 list_splice_tail_init(&kcq->rq_list[flush_data->sched_domain],
675 sbitmap_clear_bit(sb, bitnr);
676 spin_unlock(&kcq->lock);
681 static void kyber_flush_busy_kcqs(struct kyber_hctx_data *khd,
682 unsigned int sched_domain,
683 struct list_head *list)
685 struct flush_kcq_data data = {
687 .sched_domain = sched_domain,
691 sbitmap_for_each_set(&khd->kcq_map[sched_domain],
692 flush_busy_kcq, &data);
695 static int kyber_domain_wake(wait_queue_entry_t *wqe, unsigned mode, int flags,
698 struct blk_mq_hw_ctx *hctx = READ_ONCE(wqe->private);
699 struct sbq_wait *wait = container_of(wqe, struct sbq_wait, wait);
701 sbitmap_del_wait_queue(wait);
702 blk_mq_run_hw_queue(hctx, true);
706 static int kyber_get_domain_token(struct kyber_queue_data *kqd,
707 struct kyber_hctx_data *khd,
708 struct blk_mq_hw_ctx *hctx)
710 unsigned int sched_domain = khd->cur_domain;
711 struct sbitmap_queue *domain_tokens = &kqd->domain_tokens[sched_domain];
712 struct sbq_wait *wait = &khd->domain_wait[sched_domain];
713 struct sbq_wait_state *ws;
716 nr = __sbitmap_queue_get(domain_tokens);
719 * If we failed to get a domain token, make sure the hardware queue is
720 * run when one becomes available. Note that this is serialized on
721 * khd->lock, but we still need to be careful about the waker.
723 if (nr < 0 && list_empty_careful(&wait->wait.entry)) {
724 ws = sbq_wait_ptr(domain_tokens,
725 &khd->wait_index[sched_domain]);
726 khd->domain_ws[sched_domain] = ws;
727 sbitmap_add_wait_queue(domain_tokens, ws, wait);
730 * Try again in case a token was freed before we got on the wait
733 nr = __sbitmap_queue_get(domain_tokens);
737 * If we got a token while we were on the wait queue, remove ourselves
738 * from the wait queue to ensure that all wake ups make forward
739 * progress. It's possible that the waker already deleted the entry
740 * between the !list_empty_careful() check and us grabbing the lock, but
741 * list_del_init() is okay with that.
743 if (nr >= 0 && !list_empty_careful(&wait->wait.entry)) {
744 ws = khd->domain_ws[sched_domain];
745 spin_lock_irq(&ws->wait.lock);
746 sbitmap_del_wait_queue(wait);
747 spin_unlock_irq(&ws->wait.lock);
753 static struct request *
754 kyber_dispatch_cur_domain(struct kyber_queue_data *kqd,
755 struct kyber_hctx_data *khd,
756 struct blk_mq_hw_ctx *hctx)
758 struct list_head *rqs;
762 rqs = &khd->rqs[khd->cur_domain];
765 * If we already have a flushed request, then we just need to get a
766 * token for it. Otherwise, if there are pending requests in the kcqs,
767 * flush the kcqs, but only if we can get a token. If not, we should
768 * leave the requests in the kcqs so that they can be merged. Note that
769 * khd->lock serializes the flushes, so if we observed any bit set in
770 * the kcq_map, we will always get a request.
772 rq = list_first_entry_or_null(rqs, struct request, queuelist);
774 nr = kyber_get_domain_token(kqd, khd, hctx);
777 rq_set_domain_token(rq, nr);
778 list_del_init(&rq->queuelist);
781 trace_kyber_throttled(kqd->dev,
782 kyber_domain_names[khd->cur_domain]);
784 } else if (sbitmap_any_bit_set(&khd->kcq_map[khd->cur_domain])) {
785 nr = kyber_get_domain_token(kqd, khd, hctx);
787 kyber_flush_busy_kcqs(khd, khd->cur_domain, rqs);
788 rq = list_first_entry(rqs, struct request, queuelist);
790 rq_set_domain_token(rq, nr);
791 list_del_init(&rq->queuelist);
794 trace_kyber_throttled(kqd->dev,
795 kyber_domain_names[khd->cur_domain]);
799 /* There were either no pending requests or no tokens. */
803 static struct request *kyber_dispatch_request(struct blk_mq_hw_ctx *hctx)
805 struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
806 struct kyber_hctx_data *khd = hctx->sched_data;
810 spin_lock(&khd->lock);
813 * First, if we are still entitled to batch, try to dispatch a request
816 if (khd->batching < kyber_batch_size[khd->cur_domain]) {
817 rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
824 * 1. We were no longer entitled to a batch.
825 * 2. The domain we were batching didn't have any requests.
826 * 3. The domain we were batching was out of tokens.
828 * Start another batch. Note that this wraps back around to the original
829 * domain if no other domains have requests or tokens.
832 for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
833 if (khd->cur_domain == KYBER_NUM_DOMAINS - 1)
838 rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
845 spin_unlock(&khd->lock);
849 static bool kyber_has_work(struct blk_mq_hw_ctx *hctx)
851 struct kyber_hctx_data *khd = hctx->sched_data;
854 for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
855 if (!list_empty_careful(&khd->rqs[i]) ||
856 sbitmap_any_bit_set(&khd->kcq_map[i]))
863 #define KYBER_LAT_SHOW_STORE(domain, name) \
864 static ssize_t kyber_##name##_lat_show(struct elevator_queue *e, \
867 struct kyber_queue_data *kqd = e->elevator_data; \
869 return sprintf(page, "%llu\n", kqd->latency_targets[domain]); \
872 static ssize_t kyber_##name##_lat_store(struct elevator_queue *e, \
873 const char *page, size_t count) \
875 struct kyber_queue_data *kqd = e->elevator_data; \
876 unsigned long long nsec; \
879 ret = kstrtoull(page, 10, &nsec); \
883 kqd->latency_targets[domain] = nsec; \
887 KYBER_LAT_SHOW_STORE(KYBER_READ, read);
888 KYBER_LAT_SHOW_STORE(KYBER_WRITE, write);
889 #undef KYBER_LAT_SHOW_STORE
891 #define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store)
892 static struct elv_fs_entry kyber_sched_attrs[] = {
893 KYBER_LAT_ATTR(read),
894 KYBER_LAT_ATTR(write),
897 #undef KYBER_LAT_ATTR
899 #ifdef CONFIG_BLK_DEBUG_FS
900 #define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name) \
901 static int kyber_##name##_tokens_show(void *data, struct seq_file *m) \
903 struct request_queue *q = data; \
904 struct kyber_queue_data *kqd = q->elevator->elevator_data; \
906 sbitmap_queue_show(&kqd->domain_tokens[domain], m); \
910 static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos) \
911 __acquires(&khd->lock) \
913 struct blk_mq_hw_ctx *hctx = m->private; \
914 struct kyber_hctx_data *khd = hctx->sched_data; \
916 spin_lock(&khd->lock); \
917 return seq_list_start(&khd->rqs[domain], *pos); \
920 static void *kyber_##name##_rqs_next(struct seq_file *m, void *v, \
923 struct blk_mq_hw_ctx *hctx = m->private; \
924 struct kyber_hctx_data *khd = hctx->sched_data; \
926 return seq_list_next(v, &khd->rqs[domain], pos); \
929 static void kyber_##name##_rqs_stop(struct seq_file *m, void *v) \
930 __releases(&khd->lock) \
932 struct blk_mq_hw_ctx *hctx = m->private; \
933 struct kyber_hctx_data *khd = hctx->sched_data; \
935 spin_unlock(&khd->lock); \
938 static const struct seq_operations kyber_##name##_rqs_seq_ops = { \
939 .start = kyber_##name##_rqs_start, \
940 .next = kyber_##name##_rqs_next, \
941 .stop = kyber_##name##_rqs_stop, \
942 .show = blk_mq_debugfs_rq_show, \
945 static int kyber_##name##_waiting_show(void *data, struct seq_file *m) \
947 struct blk_mq_hw_ctx *hctx = data; \
948 struct kyber_hctx_data *khd = hctx->sched_data; \
949 wait_queue_entry_t *wait = &khd->domain_wait[domain].wait; \
951 seq_printf(m, "%d\n", !list_empty_careful(&wait->entry)); \
954 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ, read)
955 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_WRITE, write)
956 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_DISCARD, discard)
957 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER, other)
958 #undef KYBER_DEBUGFS_DOMAIN_ATTRS
960 static int kyber_async_depth_show(void *data, struct seq_file *m)
962 struct request_queue *q = data;
963 struct kyber_queue_data *kqd = q->elevator->elevator_data;
965 seq_printf(m, "%u\n", kqd->async_depth);
969 static int kyber_cur_domain_show(void *data, struct seq_file *m)
971 struct blk_mq_hw_ctx *hctx = data;
972 struct kyber_hctx_data *khd = hctx->sched_data;
974 seq_printf(m, "%s\n", kyber_domain_names[khd->cur_domain]);
978 static int kyber_batching_show(void *data, struct seq_file *m)
980 struct blk_mq_hw_ctx *hctx = data;
981 struct kyber_hctx_data *khd = hctx->sched_data;
983 seq_printf(m, "%u\n", khd->batching);
987 #define KYBER_QUEUE_DOMAIN_ATTRS(name) \
988 {#name "_tokens", 0400, kyber_##name##_tokens_show}
989 static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs[] = {
990 KYBER_QUEUE_DOMAIN_ATTRS(read),
991 KYBER_QUEUE_DOMAIN_ATTRS(write),
992 KYBER_QUEUE_DOMAIN_ATTRS(discard),
993 KYBER_QUEUE_DOMAIN_ATTRS(other),
994 {"async_depth", 0400, kyber_async_depth_show},
997 #undef KYBER_QUEUE_DOMAIN_ATTRS
999 #define KYBER_HCTX_DOMAIN_ATTRS(name) \
1000 {#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops}, \
1001 {#name "_waiting", 0400, kyber_##name##_waiting_show}
1002 static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs[] = {
1003 KYBER_HCTX_DOMAIN_ATTRS(read),
1004 KYBER_HCTX_DOMAIN_ATTRS(write),
1005 KYBER_HCTX_DOMAIN_ATTRS(discard),
1006 KYBER_HCTX_DOMAIN_ATTRS(other),
1007 {"cur_domain", 0400, kyber_cur_domain_show},
1008 {"batching", 0400, kyber_batching_show},
1011 #undef KYBER_HCTX_DOMAIN_ATTRS
1014 static struct elevator_type kyber_sched = {
1016 .init_sched = kyber_init_sched,
1017 .exit_sched = kyber_exit_sched,
1018 .init_hctx = kyber_init_hctx,
1019 .exit_hctx = kyber_exit_hctx,
1020 .limit_depth = kyber_limit_depth,
1021 .bio_merge = kyber_bio_merge,
1022 .prepare_request = kyber_prepare_request,
1023 .insert_requests = kyber_insert_requests,
1024 .finish_request = kyber_finish_request,
1025 .requeue_request = kyber_finish_request,
1026 .completed_request = kyber_completed_request,
1027 .dispatch_request = kyber_dispatch_request,
1028 .has_work = kyber_has_work,
1029 .depth_updated = kyber_depth_updated,
1031 #ifdef CONFIG_BLK_DEBUG_FS
1032 .queue_debugfs_attrs = kyber_queue_debugfs_attrs,
1033 .hctx_debugfs_attrs = kyber_hctx_debugfs_attrs,
1035 .elevator_attrs = kyber_sched_attrs,
1036 .elevator_name = "kyber",
1037 .elevator_owner = THIS_MODULE,
1040 static int __init kyber_init(void)
1042 return elv_register(&kyber_sched);
1045 static void __exit kyber_exit(void)
1047 elv_unregister(&kyber_sched);
1050 module_init(kyber_init);
1051 module_exit(kyber_exit);
1053 MODULE_AUTHOR("Omar Sandoval");
1054 MODULE_LICENSE("GPL");
1055 MODULE_DESCRIPTION("Kyber I/O scheduler");