1 // SPDX-License-Identifier: GPL-2.0
3 * The Kyber I/O scheduler. Controls latency by throttling queue depths using
6 * Copyright (C) 2017 Facebook
9 #include <linux/kernel.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/elevator.h>
13 #include <linux/module.h>
14 #include <linux/sbitmap.h>
18 #include "blk-mq-debugfs.h"
19 #include "blk-mq-sched.h"
20 #include "blk-mq-tag.h"
22 #define CREATE_TRACE_POINTS
23 #include <trace/events/kyber.h>
26 * Scheduling domains: the device is divided into multiple domains based on the
37 static const char *kyber_domain_names[] = {
38 [KYBER_READ] = "READ",
39 [KYBER_WRITE] = "WRITE",
40 [KYBER_DISCARD] = "DISCARD",
41 [KYBER_OTHER] = "OTHER",
46 * In order to prevent starvation of synchronous requests by a flood of
47 * asynchronous requests, we reserve 25% of requests for synchronous
50 KYBER_ASYNC_PERCENT = 75,
54 * Maximum device-wide depth for each scheduling domain.
56 * Even for fast devices with lots of tags like NVMe, you can saturate the
57 * device with only a fraction of the maximum possible queue depth. So, we cap
58 * these to a reasonable value.
60 static const unsigned int kyber_depth[] = {
68 * Default latency targets for each scheduling domain.
70 static const u64 kyber_latency_targets[] = {
71 [KYBER_READ] = 2ULL * NSEC_PER_MSEC,
72 [KYBER_WRITE] = 10ULL * NSEC_PER_MSEC,
73 [KYBER_DISCARD] = 5ULL * NSEC_PER_SEC,
77 * Batch size (number of requests we'll dispatch in a row) for each scheduling
80 static const unsigned int kyber_batch_size[] = {
88 * Requests latencies are recorded in a histogram with buckets defined relative
89 * to the target latency:
91 * <= 1/4 * target latency
92 * <= 1/2 * target latency
93 * <= 3/4 * target latency
95 * <= 1 1/4 * target latency
96 * <= 1 1/2 * target latency
97 * <= 1 3/4 * target latency
98 * > 1 3/4 * target latency
102 * The width of the latency histogram buckets is
103 * 1 / (1 << KYBER_LATENCY_SHIFT) * target latency.
105 KYBER_LATENCY_SHIFT = 2,
107 * The first (1 << KYBER_LATENCY_SHIFT) buckets are <= target latency,
110 KYBER_GOOD_BUCKETS = 1 << KYBER_LATENCY_SHIFT,
111 /* There are also (1 << KYBER_LATENCY_SHIFT) "bad" buckets. */
112 KYBER_LATENCY_BUCKETS = 2 << KYBER_LATENCY_SHIFT,
116 * We measure both the total latency and the I/O latency (i.e., latency after
117 * submitting to the device).
124 static const char *kyber_latency_type_names[] = {
125 [KYBER_TOTAL_LATENCY] = "total",
126 [KYBER_IO_LATENCY] = "I/O",
130 * Per-cpu latency histograms: total latency and I/O latency for each scheduling
131 * domain except for KYBER_OTHER.
133 struct kyber_cpu_latency {
134 atomic_t buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
138 * There is a same mapping between ctx & hctx and kcq & khd,
139 * we use request->mq_ctx->index_hw to index the kcq in khd.
141 struct kyber_ctx_queue {
143 * Used to ensure operations on rq_list and kcq_map to be an atmoic one.
144 * Also protect the rqs on rq_list when merge.
147 struct list_head rq_list[KYBER_NUM_DOMAINS];
148 } ____cacheline_aligned_in_smp;
150 struct kyber_queue_data {
151 struct request_queue *q;
154 * Each scheduling domain has a limited number of in-flight requests
155 * device-wide, limited by these tokens.
157 struct sbitmap_queue domain_tokens[KYBER_NUM_DOMAINS];
160 * Async request percentage, converted to per-word depth for
161 * sbitmap_get_shallow().
163 unsigned int async_depth;
165 struct kyber_cpu_latency __percpu *cpu_latency;
167 /* Timer for stats aggregation and adjusting domain tokens. */
168 struct timer_list timer;
170 unsigned int latency_buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
172 unsigned long latency_timeout[KYBER_OTHER];
174 int domain_p99[KYBER_OTHER];
176 /* Target latencies in nanoseconds. */
177 u64 latency_targets[KYBER_OTHER];
180 struct kyber_hctx_data {
182 struct list_head rqs[KYBER_NUM_DOMAINS];
183 unsigned int cur_domain;
184 unsigned int batching;
185 struct kyber_ctx_queue *kcqs;
186 struct sbitmap kcq_map[KYBER_NUM_DOMAINS];
187 struct sbq_wait domain_wait[KYBER_NUM_DOMAINS];
188 struct sbq_wait_state *domain_ws[KYBER_NUM_DOMAINS];
189 atomic_t wait_index[KYBER_NUM_DOMAINS];
192 static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
195 static unsigned int kyber_sched_domain(unsigned int op)
197 switch (op & REQ_OP_MASK) {
203 return KYBER_DISCARD;
209 static void flush_latency_buckets(struct kyber_queue_data *kqd,
210 struct kyber_cpu_latency *cpu_latency,
211 unsigned int sched_domain, unsigned int type)
213 unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
214 atomic_t *cpu_buckets = cpu_latency->buckets[sched_domain][type];
217 for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
218 buckets[bucket] += atomic_xchg(&cpu_buckets[bucket], 0);
222 * Calculate the histogram bucket with the given percentile rank, or -1 if there
223 * aren't enough samples yet.
225 static int calculate_percentile(struct kyber_queue_data *kqd,
226 unsigned int sched_domain, unsigned int type,
227 unsigned int percentile)
229 unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
230 unsigned int bucket, samples = 0, percentile_samples;
232 for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
233 samples += buckets[bucket];
239 * We do the calculation once we have 500 samples or one second passes
240 * since the first sample was recorded, whichever comes first.
242 if (!kqd->latency_timeout[sched_domain])
243 kqd->latency_timeout[sched_domain] = max(jiffies + HZ, 1UL);
245 time_is_after_jiffies(kqd->latency_timeout[sched_domain])) {
248 kqd->latency_timeout[sched_domain] = 0;
250 percentile_samples = DIV_ROUND_UP(samples * percentile, 100);
251 for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS - 1; bucket++) {
252 if (buckets[bucket] >= percentile_samples)
254 percentile_samples -= buckets[bucket];
256 memset(buckets, 0, sizeof(kqd->latency_buckets[sched_domain][type]));
258 trace_kyber_latency(kqd->q, kyber_domain_names[sched_domain],
259 kyber_latency_type_names[type], percentile,
260 bucket + 1, 1 << KYBER_LATENCY_SHIFT, samples);
265 static void kyber_resize_domain(struct kyber_queue_data *kqd,
266 unsigned int sched_domain, unsigned int depth)
268 depth = clamp(depth, 1U, kyber_depth[sched_domain]);
269 if (depth != kqd->domain_tokens[sched_domain].sb.depth) {
270 sbitmap_queue_resize(&kqd->domain_tokens[sched_domain], depth);
271 trace_kyber_adjust(kqd->q, kyber_domain_names[sched_domain],
276 static void kyber_timer_fn(struct timer_list *t)
278 struct kyber_queue_data *kqd = from_timer(kqd, t, timer);
279 unsigned int sched_domain;
283 /* Sum all of the per-cpu latency histograms. */
284 for_each_online_cpu(cpu) {
285 struct kyber_cpu_latency *cpu_latency;
287 cpu_latency = per_cpu_ptr(kqd->cpu_latency, cpu);
288 for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
289 flush_latency_buckets(kqd, cpu_latency, sched_domain,
290 KYBER_TOTAL_LATENCY);
291 flush_latency_buckets(kqd, cpu_latency, sched_domain,
297 * Check if any domains have a high I/O latency, which might indicate
298 * congestion in the device. Note that we use the p90; we don't want to
299 * be too sensitive to outliers here.
301 for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
304 p90 = calculate_percentile(kqd, sched_domain, KYBER_IO_LATENCY,
306 if (p90 >= KYBER_GOOD_BUCKETS)
311 * Adjust the scheduling domain depths. If we determined that there was
312 * congestion, we throttle all domains with good latencies. Either way,
313 * we ease up on throttling domains with bad latencies.
315 for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
316 unsigned int orig_depth, depth;
319 p99 = calculate_percentile(kqd, sched_domain,
320 KYBER_TOTAL_LATENCY, 99);
322 * This is kind of subtle: different domains will not
323 * necessarily have enough samples to calculate the latency
324 * percentiles during the same window, so we have to remember
325 * the p99 for the next time we observe congestion; once we do,
326 * we don't want to throttle again until we get more data, so we
331 p99 = kqd->domain_p99[sched_domain];
332 kqd->domain_p99[sched_domain] = -1;
333 } else if (p99 >= 0) {
334 kqd->domain_p99[sched_domain] = p99;
340 * If this domain has bad latency, throttle less. Otherwise,
341 * throttle more iff we determined that there is congestion.
343 * The new depth is scaled linearly with the p99 latency vs the
344 * latency target. E.g., if the p99 is 3/4 of the target, then
345 * we throttle down to 3/4 of the current depth, and if the p99
346 * is 2x the target, then we double the depth.
348 if (bad || p99 >= KYBER_GOOD_BUCKETS) {
349 orig_depth = kqd->domain_tokens[sched_domain].sb.depth;
350 depth = (orig_depth * (p99 + 1)) >> KYBER_LATENCY_SHIFT;
351 kyber_resize_domain(kqd, sched_domain, depth);
356 static unsigned int kyber_sched_tags_shift(struct request_queue *q)
359 * All of the hardware queues have the same depth, so we can just grab
360 * the shift of the first one.
362 return q->queue_hw_ctx[0]->sched_tags->bitmap_tags.sb.shift;
365 static struct kyber_queue_data *kyber_queue_data_alloc(struct request_queue *q)
367 struct kyber_queue_data *kqd;
372 kqd = kzalloc_node(sizeof(*kqd), GFP_KERNEL, q->node);
378 kqd->cpu_latency = alloc_percpu_gfp(struct kyber_cpu_latency,
379 GFP_KERNEL | __GFP_ZERO);
380 if (!kqd->cpu_latency)
383 timer_setup(&kqd->timer, kyber_timer_fn, 0);
385 for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
386 WARN_ON(!kyber_depth[i]);
387 WARN_ON(!kyber_batch_size[i]);
388 ret = sbitmap_queue_init_node(&kqd->domain_tokens[i],
389 kyber_depth[i], -1, false,
390 GFP_KERNEL, q->node);
393 sbitmap_queue_free(&kqd->domain_tokens[i]);
398 for (i = 0; i < KYBER_OTHER; i++) {
399 kqd->domain_p99[i] = -1;
400 kqd->latency_targets[i] = kyber_latency_targets[i];
403 shift = kyber_sched_tags_shift(q);
404 kqd->async_depth = (1U << shift) * KYBER_ASYNC_PERCENT / 100U;
409 free_percpu(kqd->cpu_latency);
416 static int kyber_init_sched(struct request_queue *q, struct elevator_type *e)
418 struct kyber_queue_data *kqd;
419 struct elevator_queue *eq;
421 eq = elevator_alloc(q, e);
425 kqd = kyber_queue_data_alloc(q);
427 kobject_put(&eq->kobj);
431 blk_stat_enable_accounting(q);
433 eq->elevator_data = kqd;
439 static void kyber_exit_sched(struct elevator_queue *e)
441 struct kyber_queue_data *kqd = e->elevator_data;
444 del_timer_sync(&kqd->timer);
446 for (i = 0; i < KYBER_NUM_DOMAINS; i++)
447 sbitmap_queue_free(&kqd->domain_tokens[i]);
448 free_percpu(kqd->cpu_latency);
452 static void kyber_ctx_queue_init(struct kyber_ctx_queue *kcq)
456 spin_lock_init(&kcq->lock);
457 for (i = 0; i < KYBER_NUM_DOMAINS; i++)
458 INIT_LIST_HEAD(&kcq->rq_list[i]);
461 static int kyber_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
463 struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
464 struct kyber_hctx_data *khd;
467 khd = kmalloc_node(sizeof(*khd), GFP_KERNEL, hctx->numa_node);
471 khd->kcqs = kmalloc_array_node(hctx->nr_ctx,
472 sizeof(struct kyber_ctx_queue),
473 GFP_KERNEL, hctx->numa_node);
477 for (i = 0; i < hctx->nr_ctx; i++)
478 kyber_ctx_queue_init(&khd->kcqs[i]);
480 for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
481 if (sbitmap_init_node(&khd->kcq_map[i], hctx->nr_ctx,
482 ilog2(8), GFP_KERNEL, hctx->numa_node)) {
484 sbitmap_free(&khd->kcq_map[i]);
489 spin_lock_init(&khd->lock);
491 for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
492 INIT_LIST_HEAD(&khd->rqs[i]);
493 khd->domain_wait[i].sbq = NULL;
494 init_waitqueue_func_entry(&khd->domain_wait[i].wait,
496 khd->domain_wait[i].wait.private = hctx;
497 INIT_LIST_HEAD(&khd->domain_wait[i].wait.entry);
498 atomic_set(&khd->wait_index[i], 0);
504 hctx->sched_data = khd;
505 sbitmap_queue_min_shallow_depth(&hctx->sched_tags->bitmap_tags,
517 static void kyber_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
519 struct kyber_hctx_data *khd = hctx->sched_data;
522 for (i = 0; i < KYBER_NUM_DOMAINS; i++)
523 sbitmap_free(&khd->kcq_map[i]);
525 kfree(hctx->sched_data);
528 static int rq_get_domain_token(struct request *rq)
530 return (long)rq->elv.priv[0];
533 static void rq_set_domain_token(struct request *rq, int token)
535 rq->elv.priv[0] = (void *)(long)token;
538 static void rq_clear_domain_token(struct kyber_queue_data *kqd,
541 unsigned int sched_domain;
544 nr = rq_get_domain_token(rq);
546 sched_domain = kyber_sched_domain(rq->cmd_flags);
547 sbitmap_queue_clear(&kqd->domain_tokens[sched_domain], nr,
552 static void kyber_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
555 * We use the scheduler tags as per-hardware queue queueing tokens.
556 * Async requests can be limited at this stage.
558 if (!op_is_sync(op)) {
559 struct kyber_queue_data *kqd = data->q->elevator->elevator_data;
561 data->shallow_depth = kqd->async_depth;
565 static bool kyber_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio,
566 unsigned int nr_segs)
568 struct kyber_hctx_data *khd = hctx->sched_data;
569 struct blk_mq_ctx *ctx = blk_mq_get_ctx(hctx->queue);
570 struct kyber_ctx_queue *kcq = &khd->kcqs[ctx->index_hw[hctx->type]];
571 unsigned int sched_domain = kyber_sched_domain(bio->bi_opf);
572 struct list_head *rq_list = &kcq->rq_list[sched_domain];
575 spin_lock(&kcq->lock);
576 merged = blk_mq_bio_list_merge(hctx->queue, rq_list, bio, nr_segs);
577 spin_unlock(&kcq->lock);
582 static void kyber_prepare_request(struct request *rq, struct bio *bio)
584 rq_set_domain_token(rq, -1);
587 static void kyber_insert_requests(struct blk_mq_hw_ctx *hctx,
588 struct list_head *rq_list, bool at_head)
590 struct kyber_hctx_data *khd = hctx->sched_data;
591 struct request *rq, *next;
593 list_for_each_entry_safe(rq, next, rq_list, queuelist) {
594 unsigned int sched_domain = kyber_sched_domain(rq->cmd_flags);
595 struct kyber_ctx_queue *kcq = &khd->kcqs[rq->mq_ctx->index_hw[hctx->type]];
596 struct list_head *head = &kcq->rq_list[sched_domain];
598 spin_lock(&kcq->lock);
600 list_move(&rq->queuelist, head);
602 list_move_tail(&rq->queuelist, head);
603 sbitmap_set_bit(&khd->kcq_map[sched_domain],
604 rq->mq_ctx->index_hw[hctx->type]);
605 blk_mq_sched_request_inserted(rq);
606 spin_unlock(&kcq->lock);
610 static void kyber_finish_request(struct request *rq)
612 struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
614 rq_clear_domain_token(kqd, rq);
617 static void add_latency_sample(struct kyber_cpu_latency *cpu_latency,
618 unsigned int sched_domain, unsigned int type,
619 u64 target, u64 latency)
625 divisor = max_t(u64, target >> KYBER_LATENCY_SHIFT, 1);
626 bucket = min_t(unsigned int, div64_u64(latency - 1, divisor),
627 KYBER_LATENCY_BUCKETS - 1);
632 atomic_inc(&cpu_latency->buckets[sched_domain][type][bucket]);
635 static void kyber_completed_request(struct request *rq, u64 now)
637 struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
638 struct kyber_cpu_latency *cpu_latency;
639 unsigned int sched_domain;
642 sched_domain = kyber_sched_domain(rq->cmd_flags);
643 if (sched_domain == KYBER_OTHER)
646 cpu_latency = get_cpu_ptr(kqd->cpu_latency);
647 target = kqd->latency_targets[sched_domain];
648 add_latency_sample(cpu_latency, sched_domain, KYBER_TOTAL_LATENCY,
649 target, now - rq->start_time_ns);
650 add_latency_sample(cpu_latency, sched_domain, KYBER_IO_LATENCY, target,
651 now - rq->io_start_time_ns);
652 put_cpu_ptr(kqd->cpu_latency);
654 timer_reduce(&kqd->timer, jiffies + HZ / 10);
657 struct flush_kcq_data {
658 struct kyber_hctx_data *khd;
659 unsigned int sched_domain;
660 struct list_head *list;
663 static bool flush_busy_kcq(struct sbitmap *sb, unsigned int bitnr, void *data)
665 struct flush_kcq_data *flush_data = data;
666 struct kyber_ctx_queue *kcq = &flush_data->khd->kcqs[bitnr];
668 spin_lock(&kcq->lock);
669 list_splice_tail_init(&kcq->rq_list[flush_data->sched_domain],
671 sbitmap_clear_bit(sb, bitnr);
672 spin_unlock(&kcq->lock);
677 static void kyber_flush_busy_kcqs(struct kyber_hctx_data *khd,
678 unsigned int sched_domain,
679 struct list_head *list)
681 struct flush_kcq_data data = {
683 .sched_domain = sched_domain,
687 sbitmap_for_each_set(&khd->kcq_map[sched_domain],
688 flush_busy_kcq, &data);
691 static int kyber_domain_wake(wait_queue_entry_t *wqe, unsigned mode, int flags,
694 struct blk_mq_hw_ctx *hctx = READ_ONCE(wqe->private);
695 struct sbq_wait *wait = container_of(wqe, struct sbq_wait, wait);
697 sbitmap_del_wait_queue(wait);
698 blk_mq_run_hw_queue(hctx, true);
702 static int kyber_get_domain_token(struct kyber_queue_data *kqd,
703 struct kyber_hctx_data *khd,
704 struct blk_mq_hw_ctx *hctx)
706 unsigned int sched_domain = khd->cur_domain;
707 struct sbitmap_queue *domain_tokens = &kqd->domain_tokens[sched_domain];
708 struct sbq_wait *wait = &khd->domain_wait[sched_domain];
709 struct sbq_wait_state *ws;
712 nr = __sbitmap_queue_get(domain_tokens);
715 * If we failed to get a domain token, make sure the hardware queue is
716 * run when one becomes available. Note that this is serialized on
717 * khd->lock, but we still need to be careful about the waker.
719 if (nr < 0 && list_empty_careful(&wait->wait.entry)) {
720 ws = sbq_wait_ptr(domain_tokens,
721 &khd->wait_index[sched_domain]);
722 khd->domain_ws[sched_domain] = ws;
723 sbitmap_add_wait_queue(domain_tokens, ws, wait);
726 * Try again in case a token was freed before we got on the wait
729 nr = __sbitmap_queue_get(domain_tokens);
733 * If we got a token while we were on the wait queue, remove ourselves
734 * from the wait queue to ensure that all wake ups make forward
735 * progress. It's possible that the waker already deleted the entry
736 * between the !list_empty_careful() check and us grabbing the lock, but
737 * list_del_init() is okay with that.
739 if (nr >= 0 && !list_empty_careful(&wait->wait.entry)) {
740 ws = khd->domain_ws[sched_domain];
741 spin_lock_irq(&ws->wait.lock);
742 sbitmap_del_wait_queue(wait);
743 spin_unlock_irq(&ws->wait.lock);
749 static struct request *
750 kyber_dispatch_cur_domain(struct kyber_queue_data *kqd,
751 struct kyber_hctx_data *khd,
752 struct blk_mq_hw_ctx *hctx)
754 struct list_head *rqs;
758 rqs = &khd->rqs[khd->cur_domain];
761 * If we already have a flushed request, then we just need to get a
762 * token for it. Otherwise, if there are pending requests in the kcqs,
763 * flush the kcqs, but only if we can get a token. If not, we should
764 * leave the requests in the kcqs so that they can be merged. Note that
765 * khd->lock serializes the flushes, so if we observed any bit set in
766 * the kcq_map, we will always get a request.
768 rq = list_first_entry_or_null(rqs, struct request, queuelist);
770 nr = kyber_get_domain_token(kqd, khd, hctx);
773 rq_set_domain_token(rq, nr);
774 list_del_init(&rq->queuelist);
777 trace_kyber_throttled(kqd->q,
778 kyber_domain_names[khd->cur_domain]);
780 } else if (sbitmap_any_bit_set(&khd->kcq_map[khd->cur_domain])) {
781 nr = kyber_get_domain_token(kqd, khd, hctx);
783 kyber_flush_busy_kcqs(khd, khd->cur_domain, rqs);
784 rq = list_first_entry(rqs, struct request, queuelist);
786 rq_set_domain_token(rq, nr);
787 list_del_init(&rq->queuelist);
790 trace_kyber_throttled(kqd->q,
791 kyber_domain_names[khd->cur_domain]);
795 /* There were either no pending requests or no tokens. */
799 static struct request *kyber_dispatch_request(struct blk_mq_hw_ctx *hctx)
801 struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
802 struct kyber_hctx_data *khd = hctx->sched_data;
806 spin_lock(&khd->lock);
809 * First, if we are still entitled to batch, try to dispatch a request
812 if (khd->batching < kyber_batch_size[khd->cur_domain]) {
813 rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
820 * 1. We were no longer entitled to a batch.
821 * 2. The domain we were batching didn't have any requests.
822 * 3. The domain we were batching was out of tokens.
824 * Start another batch. Note that this wraps back around to the original
825 * domain if no other domains have requests or tokens.
828 for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
829 if (khd->cur_domain == KYBER_NUM_DOMAINS - 1)
834 rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
841 spin_unlock(&khd->lock);
845 static bool kyber_has_work(struct blk_mq_hw_ctx *hctx)
847 struct kyber_hctx_data *khd = hctx->sched_data;
850 for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
851 if (!list_empty_careful(&khd->rqs[i]) ||
852 sbitmap_any_bit_set(&khd->kcq_map[i]))
859 #define KYBER_LAT_SHOW_STORE(domain, name) \
860 static ssize_t kyber_##name##_lat_show(struct elevator_queue *e, \
863 struct kyber_queue_data *kqd = e->elevator_data; \
865 return sprintf(page, "%llu\n", kqd->latency_targets[domain]); \
868 static ssize_t kyber_##name##_lat_store(struct elevator_queue *e, \
869 const char *page, size_t count) \
871 struct kyber_queue_data *kqd = e->elevator_data; \
872 unsigned long long nsec; \
875 ret = kstrtoull(page, 10, &nsec); \
879 kqd->latency_targets[domain] = nsec; \
883 KYBER_LAT_SHOW_STORE(KYBER_READ, read);
884 KYBER_LAT_SHOW_STORE(KYBER_WRITE, write);
885 #undef KYBER_LAT_SHOW_STORE
887 #define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store)
888 static struct elv_fs_entry kyber_sched_attrs[] = {
889 KYBER_LAT_ATTR(read),
890 KYBER_LAT_ATTR(write),
893 #undef KYBER_LAT_ATTR
895 #ifdef CONFIG_BLK_DEBUG_FS
896 #define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name) \
897 static int kyber_##name##_tokens_show(void *data, struct seq_file *m) \
899 struct request_queue *q = data; \
900 struct kyber_queue_data *kqd = q->elevator->elevator_data; \
902 sbitmap_queue_show(&kqd->domain_tokens[domain], m); \
906 static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos) \
907 __acquires(&khd->lock) \
909 struct blk_mq_hw_ctx *hctx = m->private; \
910 struct kyber_hctx_data *khd = hctx->sched_data; \
912 spin_lock(&khd->lock); \
913 return seq_list_start(&khd->rqs[domain], *pos); \
916 static void *kyber_##name##_rqs_next(struct seq_file *m, void *v, \
919 struct blk_mq_hw_ctx *hctx = m->private; \
920 struct kyber_hctx_data *khd = hctx->sched_data; \
922 return seq_list_next(v, &khd->rqs[domain], pos); \
925 static void kyber_##name##_rqs_stop(struct seq_file *m, void *v) \
926 __releases(&khd->lock) \
928 struct blk_mq_hw_ctx *hctx = m->private; \
929 struct kyber_hctx_data *khd = hctx->sched_data; \
931 spin_unlock(&khd->lock); \
934 static const struct seq_operations kyber_##name##_rqs_seq_ops = { \
935 .start = kyber_##name##_rqs_start, \
936 .next = kyber_##name##_rqs_next, \
937 .stop = kyber_##name##_rqs_stop, \
938 .show = blk_mq_debugfs_rq_show, \
941 static int kyber_##name##_waiting_show(void *data, struct seq_file *m) \
943 struct blk_mq_hw_ctx *hctx = data; \
944 struct kyber_hctx_data *khd = hctx->sched_data; \
945 wait_queue_entry_t *wait = &khd->domain_wait[domain].wait; \
947 seq_printf(m, "%d\n", !list_empty_careful(&wait->entry)); \
950 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ, read)
951 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_WRITE, write)
952 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_DISCARD, discard)
953 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER, other)
954 #undef KYBER_DEBUGFS_DOMAIN_ATTRS
956 static int kyber_async_depth_show(void *data, struct seq_file *m)
958 struct request_queue *q = data;
959 struct kyber_queue_data *kqd = q->elevator->elevator_data;
961 seq_printf(m, "%u\n", kqd->async_depth);
965 static int kyber_cur_domain_show(void *data, struct seq_file *m)
967 struct blk_mq_hw_ctx *hctx = data;
968 struct kyber_hctx_data *khd = hctx->sched_data;
970 seq_printf(m, "%s\n", kyber_domain_names[khd->cur_domain]);
974 static int kyber_batching_show(void *data, struct seq_file *m)
976 struct blk_mq_hw_ctx *hctx = data;
977 struct kyber_hctx_data *khd = hctx->sched_data;
979 seq_printf(m, "%u\n", khd->batching);
983 #define KYBER_QUEUE_DOMAIN_ATTRS(name) \
984 {#name "_tokens", 0400, kyber_##name##_tokens_show}
985 static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs[] = {
986 KYBER_QUEUE_DOMAIN_ATTRS(read),
987 KYBER_QUEUE_DOMAIN_ATTRS(write),
988 KYBER_QUEUE_DOMAIN_ATTRS(discard),
989 KYBER_QUEUE_DOMAIN_ATTRS(other),
990 {"async_depth", 0400, kyber_async_depth_show},
993 #undef KYBER_QUEUE_DOMAIN_ATTRS
995 #define KYBER_HCTX_DOMAIN_ATTRS(name) \
996 {#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops}, \
997 {#name "_waiting", 0400, kyber_##name##_waiting_show}
998 static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs[] = {
999 KYBER_HCTX_DOMAIN_ATTRS(read),
1000 KYBER_HCTX_DOMAIN_ATTRS(write),
1001 KYBER_HCTX_DOMAIN_ATTRS(discard),
1002 KYBER_HCTX_DOMAIN_ATTRS(other),
1003 {"cur_domain", 0400, kyber_cur_domain_show},
1004 {"batching", 0400, kyber_batching_show},
1007 #undef KYBER_HCTX_DOMAIN_ATTRS
1010 static struct elevator_type kyber_sched = {
1012 .init_sched = kyber_init_sched,
1013 .exit_sched = kyber_exit_sched,
1014 .init_hctx = kyber_init_hctx,
1015 .exit_hctx = kyber_exit_hctx,
1016 .limit_depth = kyber_limit_depth,
1017 .bio_merge = kyber_bio_merge,
1018 .prepare_request = kyber_prepare_request,
1019 .insert_requests = kyber_insert_requests,
1020 .finish_request = kyber_finish_request,
1021 .requeue_request = kyber_finish_request,
1022 .completed_request = kyber_completed_request,
1023 .dispatch_request = kyber_dispatch_request,
1024 .has_work = kyber_has_work,
1026 #ifdef CONFIG_BLK_DEBUG_FS
1027 .queue_debugfs_attrs = kyber_queue_debugfs_attrs,
1028 .hctx_debugfs_attrs = kyber_hctx_debugfs_attrs,
1030 .elevator_attrs = kyber_sched_attrs,
1031 .elevator_name = "kyber",
1032 .elevator_owner = THIS_MODULE,
1035 static int __init kyber_init(void)
1037 return elv_register(&kyber_sched);
1040 static void __exit kyber_exit(void)
1042 elv_unregister(&kyber_sched);
1045 module_init(kyber_init);
1046 module_exit(kyber_exit);
1048 MODULE_AUTHOR("Omar Sandoval");
1049 MODULE_LICENSE("GPL");
1050 MODULE_DESCRIPTION("Kyber I/O scheduler");