arm64: dts: mediatek: asurada: Add display regulators
[platform/kernel/linux-starfive.git] / block / kyber-iosched.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * The Kyber I/O scheduler. Controls latency by throttling queue depths using
4  * scalable techniques.
5  *
6  * Copyright (C) 2017 Facebook
7  */
8
9 #include <linux/kernel.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/module.h>
13 #include <linux/sbitmap.h>
14
15 #include <trace/events/block.h>
16
17 #include "elevator.h"
18 #include "blk.h"
19 #include "blk-mq.h"
20 #include "blk-mq-debugfs.h"
21 #include "blk-mq-sched.h"
22 #include "blk-mq-tag.h"
23
24 #define CREATE_TRACE_POINTS
25 #include <trace/events/kyber.h>
26
27 /*
28  * Scheduling domains: the device is divided into multiple domains based on the
29  * request type.
30  */
31 enum {
32         KYBER_READ,
33         KYBER_WRITE,
34         KYBER_DISCARD,
35         KYBER_OTHER,
36         KYBER_NUM_DOMAINS,
37 };
38
39 static const char *kyber_domain_names[] = {
40         [KYBER_READ] = "READ",
41         [KYBER_WRITE] = "WRITE",
42         [KYBER_DISCARD] = "DISCARD",
43         [KYBER_OTHER] = "OTHER",
44 };
45
46 enum {
47         /*
48          * In order to prevent starvation of synchronous requests by a flood of
49          * asynchronous requests, we reserve 25% of requests for synchronous
50          * operations.
51          */
52         KYBER_ASYNC_PERCENT = 75,
53 };
54
55 /*
56  * Maximum device-wide depth for each scheduling domain.
57  *
58  * Even for fast devices with lots of tags like NVMe, you can saturate the
59  * device with only a fraction of the maximum possible queue depth. So, we cap
60  * these to a reasonable value.
61  */
62 static const unsigned int kyber_depth[] = {
63         [KYBER_READ] = 256,
64         [KYBER_WRITE] = 128,
65         [KYBER_DISCARD] = 64,
66         [KYBER_OTHER] = 16,
67 };
68
69 /*
70  * Default latency targets for each scheduling domain.
71  */
72 static const u64 kyber_latency_targets[] = {
73         [KYBER_READ] = 2ULL * NSEC_PER_MSEC,
74         [KYBER_WRITE] = 10ULL * NSEC_PER_MSEC,
75         [KYBER_DISCARD] = 5ULL * NSEC_PER_SEC,
76 };
77
78 /*
79  * Batch size (number of requests we'll dispatch in a row) for each scheduling
80  * domain.
81  */
82 static const unsigned int kyber_batch_size[] = {
83         [KYBER_READ] = 16,
84         [KYBER_WRITE] = 8,
85         [KYBER_DISCARD] = 1,
86         [KYBER_OTHER] = 1,
87 };
88
89 /*
90  * Requests latencies are recorded in a histogram with buckets defined relative
91  * to the target latency:
92  *
93  * <= 1/4 * target latency
94  * <= 1/2 * target latency
95  * <= 3/4 * target latency
96  * <= target latency
97  * <= 1 1/4 * target latency
98  * <= 1 1/2 * target latency
99  * <= 1 3/4 * target latency
100  * > 1 3/4 * target latency
101  */
102 enum {
103         /*
104          * The width of the latency histogram buckets is
105          * 1 / (1 << KYBER_LATENCY_SHIFT) * target latency.
106          */
107         KYBER_LATENCY_SHIFT = 2,
108         /*
109          * The first (1 << KYBER_LATENCY_SHIFT) buckets are <= target latency,
110          * thus, "good".
111          */
112         KYBER_GOOD_BUCKETS = 1 << KYBER_LATENCY_SHIFT,
113         /* There are also (1 << KYBER_LATENCY_SHIFT) "bad" buckets. */
114         KYBER_LATENCY_BUCKETS = 2 << KYBER_LATENCY_SHIFT,
115 };
116
117 /*
118  * We measure both the total latency and the I/O latency (i.e., latency after
119  * submitting to the device).
120  */
121 enum {
122         KYBER_TOTAL_LATENCY,
123         KYBER_IO_LATENCY,
124 };
125
126 static const char *kyber_latency_type_names[] = {
127         [KYBER_TOTAL_LATENCY] = "total",
128         [KYBER_IO_LATENCY] = "I/O",
129 };
130
131 /*
132  * Per-cpu latency histograms: total latency and I/O latency for each scheduling
133  * domain except for KYBER_OTHER.
134  */
135 struct kyber_cpu_latency {
136         atomic_t buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
137 };
138
139 /*
140  * There is a same mapping between ctx & hctx and kcq & khd,
141  * we use request->mq_ctx->index_hw to index the kcq in khd.
142  */
143 struct kyber_ctx_queue {
144         /*
145          * Used to ensure operations on rq_list and kcq_map to be an atmoic one.
146          * Also protect the rqs on rq_list when merge.
147          */
148         spinlock_t lock;
149         struct list_head rq_list[KYBER_NUM_DOMAINS];
150 } ____cacheline_aligned_in_smp;
151
152 struct kyber_queue_data {
153         struct request_queue *q;
154         dev_t dev;
155
156         /*
157          * Each scheduling domain has a limited number of in-flight requests
158          * device-wide, limited by these tokens.
159          */
160         struct sbitmap_queue domain_tokens[KYBER_NUM_DOMAINS];
161
162         /*
163          * Async request percentage, converted to per-word depth for
164          * sbitmap_get_shallow().
165          */
166         unsigned int async_depth;
167
168         struct kyber_cpu_latency __percpu *cpu_latency;
169
170         /* Timer for stats aggregation and adjusting domain tokens. */
171         struct timer_list timer;
172
173         unsigned int latency_buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
174
175         unsigned long latency_timeout[KYBER_OTHER];
176
177         int domain_p99[KYBER_OTHER];
178
179         /* Target latencies in nanoseconds. */
180         u64 latency_targets[KYBER_OTHER];
181 };
182
183 struct kyber_hctx_data {
184         spinlock_t lock;
185         struct list_head rqs[KYBER_NUM_DOMAINS];
186         unsigned int cur_domain;
187         unsigned int batching;
188         struct kyber_ctx_queue *kcqs;
189         struct sbitmap kcq_map[KYBER_NUM_DOMAINS];
190         struct sbq_wait domain_wait[KYBER_NUM_DOMAINS];
191         struct sbq_wait_state *domain_ws[KYBER_NUM_DOMAINS];
192         atomic_t wait_index[KYBER_NUM_DOMAINS];
193 };
194
195 static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
196                              void *key);
197
198 static unsigned int kyber_sched_domain(blk_opf_t opf)
199 {
200         switch (opf & REQ_OP_MASK) {
201         case REQ_OP_READ:
202                 return KYBER_READ;
203         case REQ_OP_WRITE:
204                 return KYBER_WRITE;
205         case REQ_OP_DISCARD:
206                 return KYBER_DISCARD;
207         default:
208                 return KYBER_OTHER;
209         }
210 }
211
212 static void flush_latency_buckets(struct kyber_queue_data *kqd,
213                                   struct kyber_cpu_latency *cpu_latency,
214                                   unsigned int sched_domain, unsigned int type)
215 {
216         unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
217         atomic_t *cpu_buckets = cpu_latency->buckets[sched_domain][type];
218         unsigned int bucket;
219
220         for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
221                 buckets[bucket] += atomic_xchg(&cpu_buckets[bucket], 0);
222 }
223
224 /*
225  * Calculate the histogram bucket with the given percentile rank, or -1 if there
226  * aren't enough samples yet.
227  */
228 static int calculate_percentile(struct kyber_queue_data *kqd,
229                                 unsigned int sched_domain, unsigned int type,
230                                 unsigned int percentile)
231 {
232         unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
233         unsigned int bucket, samples = 0, percentile_samples;
234
235         for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
236                 samples += buckets[bucket];
237
238         if (!samples)
239                 return -1;
240
241         /*
242          * We do the calculation once we have 500 samples or one second passes
243          * since the first sample was recorded, whichever comes first.
244          */
245         if (!kqd->latency_timeout[sched_domain])
246                 kqd->latency_timeout[sched_domain] = max(jiffies + HZ, 1UL);
247         if (samples < 500 &&
248             time_is_after_jiffies(kqd->latency_timeout[sched_domain])) {
249                 return -1;
250         }
251         kqd->latency_timeout[sched_domain] = 0;
252
253         percentile_samples = DIV_ROUND_UP(samples * percentile, 100);
254         for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS - 1; bucket++) {
255                 if (buckets[bucket] >= percentile_samples)
256                         break;
257                 percentile_samples -= buckets[bucket];
258         }
259         memset(buckets, 0, sizeof(kqd->latency_buckets[sched_domain][type]));
260
261         trace_kyber_latency(kqd->dev, kyber_domain_names[sched_domain],
262                             kyber_latency_type_names[type], percentile,
263                             bucket + 1, 1 << KYBER_LATENCY_SHIFT, samples);
264
265         return bucket;
266 }
267
268 static void kyber_resize_domain(struct kyber_queue_data *kqd,
269                                 unsigned int sched_domain, unsigned int depth)
270 {
271         depth = clamp(depth, 1U, kyber_depth[sched_domain]);
272         if (depth != kqd->domain_tokens[sched_domain].sb.depth) {
273                 sbitmap_queue_resize(&kqd->domain_tokens[sched_domain], depth);
274                 trace_kyber_adjust(kqd->dev, kyber_domain_names[sched_domain],
275                                    depth);
276         }
277 }
278
279 static void kyber_timer_fn(struct timer_list *t)
280 {
281         struct kyber_queue_data *kqd = from_timer(kqd, t, timer);
282         unsigned int sched_domain;
283         int cpu;
284         bool bad = false;
285
286         /* Sum all of the per-cpu latency histograms. */
287         for_each_online_cpu(cpu) {
288                 struct kyber_cpu_latency *cpu_latency;
289
290                 cpu_latency = per_cpu_ptr(kqd->cpu_latency, cpu);
291                 for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
292                         flush_latency_buckets(kqd, cpu_latency, sched_domain,
293                                               KYBER_TOTAL_LATENCY);
294                         flush_latency_buckets(kqd, cpu_latency, sched_domain,
295                                               KYBER_IO_LATENCY);
296                 }
297         }
298
299         /*
300          * Check if any domains have a high I/O latency, which might indicate
301          * congestion in the device. Note that we use the p90; we don't want to
302          * be too sensitive to outliers here.
303          */
304         for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
305                 int p90;
306
307                 p90 = calculate_percentile(kqd, sched_domain, KYBER_IO_LATENCY,
308                                            90);
309                 if (p90 >= KYBER_GOOD_BUCKETS)
310                         bad = true;
311         }
312
313         /*
314          * Adjust the scheduling domain depths. If we determined that there was
315          * congestion, we throttle all domains with good latencies. Either way,
316          * we ease up on throttling domains with bad latencies.
317          */
318         for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
319                 unsigned int orig_depth, depth;
320                 int p99;
321
322                 p99 = calculate_percentile(kqd, sched_domain,
323                                            KYBER_TOTAL_LATENCY, 99);
324                 /*
325                  * This is kind of subtle: different domains will not
326                  * necessarily have enough samples to calculate the latency
327                  * percentiles during the same window, so we have to remember
328                  * the p99 for the next time we observe congestion; once we do,
329                  * we don't want to throttle again until we get more data, so we
330                  * reset it to -1.
331                  */
332                 if (bad) {
333                         if (p99 < 0)
334                                 p99 = kqd->domain_p99[sched_domain];
335                         kqd->domain_p99[sched_domain] = -1;
336                 } else if (p99 >= 0) {
337                         kqd->domain_p99[sched_domain] = p99;
338                 }
339                 if (p99 < 0)
340                         continue;
341
342                 /*
343                  * If this domain has bad latency, throttle less. Otherwise,
344                  * throttle more iff we determined that there is congestion.
345                  *
346                  * The new depth is scaled linearly with the p99 latency vs the
347                  * latency target. E.g., if the p99 is 3/4 of the target, then
348                  * we throttle down to 3/4 of the current depth, and if the p99
349                  * is 2x the target, then we double the depth.
350                  */
351                 if (bad || p99 >= KYBER_GOOD_BUCKETS) {
352                         orig_depth = kqd->domain_tokens[sched_domain].sb.depth;
353                         depth = (orig_depth * (p99 + 1)) >> KYBER_LATENCY_SHIFT;
354                         kyber_resize_domain(kqd, sched_domain, depth);
355                 }
356         }
357 }
358
359 static struct kyber_queue_data *kyber_queue_data_alloc(struct request_queue *q)
360 {
361         struct kyber_queue_data *kqd;
362         int ret = -ENOMEM;
363         int i;
364
365         kqd = kzalloc_node(sizeof(*kqd), GFP_KERNEL, q->node);
366         if (!kqd)
367                 goto err;
368
369         kqd->q = q;
370         kqd->dev = disk_devt(q->disk);
371
372         kqd->cpu_latency = alloc_percpu_gfp(struct kyber_cpu_latency,
373                                             GFP_KERNEL | __GFP_ZERO);
374         if (!kqd->cpu_latency)
375                 goto err_kqd;
376
377         timer_setup(&kqd->timer, kyber_timer_fn, 0);
378
379         for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
380                 WARN_ON(!kyber_depth[i]);
381                 WARN_ON(!kyber_batch_size[i]);
382                 ret = sbitmap_queue_init_node(&kqd->domain_tokens[i],
383                                               kyber_depth[i], -1, false,
384                                               GFP_KERNEL, q->node);
385                 if (ret) {
386                         while (--i >= 0)
387                                 sbitmap_queue_free(&kqd->domain_tokens[i]);
388                         goto err_buckets;
389                 }
390         }
391
392         for (i = 0; i < KYBER_OTHER; i++) {
393                 kqd->domain_p99[i] = -1;
394                 kqd->latency_targets[i] = kyber_latency_targets[i];
395         }
396
397         return kqd;
398
399 err_buckets:
400         free_percpu(kqd->cpu_latency);
401 err_kqd:
402         kfree(kqd);
403 err:
404         return ERR_PTR(ret);
405 }
406
407 static int kyber_init_sched(struct request_queue *q, struct elevator_type *e)
408 {
409         struct kyber_queue_data *kqd;
410         struct elevator_queue *eq;
411
412         eq = elevator_alloc(q, e);
413         if (!eq)
414                 return -ENOMEM;
415
416         kqd = kyber_queue_data_alloc(q);
417         if (IS_ERR(kqd)) {
418                 kobject_put(&eq->kobj);
419                 return PTR_ERR(kqd);
420         }
421
422         blk_stat_enable_accounting(q);
423
424         blk_queue_flag_clear(QUEUE_FLAG_SQ_SCHED, q);
425
426         eq->elevator_data = kqd;
427         q->elevator = eq;
428
429         return 0;
430 }
431
432 static void kyber_exit_sched(struct elevator_queue *e)
433 {
434         struct kyber_queue_data *kqd = e->elevator_data;
435         int i;
436
437         timer_shutdown_sync(&kqd->timer);
438         blk_stat_disable_accounting(kqd->q);
439
440         for (i = 0; i < KYBER_NUM_DOMAINS; i++)
441                 sbitmap_queue_free(&kqd->domain_tokens[i]);
442         free_percpu(kqd->cpu_latency);
443         kfree(kqd);
444 }
445
446 static void kyber_ctx_queue_init(struct kyber_ctx_queue *kcq)
447 {
448         unsigned int i;
449
450         spin_lock_init(&kcq->lock);
451         for (i = 0; i < KYBER_NUM_DOMAINS; i++)
452                 INIT_LIST_HEAD(&kcq->rq_list[i]);
453 }
454
455 static void kyber_depth_updated(struct blk_mq_hw_ctx *hctx)
456 {
457         struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
458         struct blk_mq_tags *tags = hctx->sched_tags;
459         unsigned int shift = tags->bitmap_tags.sb.shift;
460
461         kqd->async_depth = (1U << shift) * KYBER_ASYNC_PERCENT / 100U;
462
463         sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, kqd->async_depth);
464 }
465
466 static int kyber_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
467 {
468         struct kyber_hctx_data *khd;
469         int i;
470
471         khd = kmalloc_node(sizeof(*khd), GFP_KERNEL, hctx->numa_node);
472         if (!khd)
473                 return -ENOMEM;
474
475         khd->kcqs = kmalloc_array_node(hctx->nr_ctx,
476                                        sizeof(struct kyber_ctx_queue),
477                                        GFP_KERNEL, hctx->numa_node);
478         if (!khd->kcqs)
479                 goto err_khd;
480
481         for (i = 0; i < hctx->nr_ctx; i++)
482                 kyber_ctx_queue_init(&khd->kcqs[i]);
483
484         for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
485                 if (sbitmap_init_node(&khd->kcq_map[i], hctx->nr_ctx,
486                                       ilog2(8), GFP_KERNEL, hctx->numa_node,
487                                       false, false)) {
488                         while (--i >= 0)
489                                 sbitmap_free(&khd->kcq_map[i]);
490                         goto err_kcqs;
491                 }
492         }
493
494         spin_lock_init(&khd->lock);
495
496         for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
497                 INIT_LIST_HEAD(&khd->rqs[i]);
498                 khd->domain_wait[i].sbq = NULL;
499                 init_waitqueue_func_entry(&khd->domain_wait[i].wait,
500                                           kyber_domain_wake);
501                 khd->domain_wait[i].wait.private = hctx;
502                 INIT_LIST_HEAD(&khd->domain_wait[i].wait.entry);
503                 atomic_set(&khd->wait_index[i], 0);
504         }
505
506         khd->cur_domain = 0;
507         khd->batching = 0;
508
509         hctx->sched_data = khd;
510         kyber_depth_updated(hctx);
511
512         return 0;
513
514 err_kcqs:
515         kfree(khd->kcqs);
516 err_khd:
517         kfree(khd);
518         return -ENOMEM;
519 }
520
521 static void kyber_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
522 {
523         struct kyber_hctx_data *khd = hctx->sched_data;
524         int i;
525
526         for (i = 0; i < KYBER_NUM_DOMAINS; i++)
527                 sbitmap_free(&khd->kcq_map[i]);
528         kfree(khd->kcqs);
529         kfree(hctx->sched_data);
530 }
531
532 static int rq_get_domain_token(struct request *rq)
533 {
534         return (long)rq->elv.priv[0];
535 }
536
537 static void rq_set_domain_token(struct request *rq, int token)
538 {
539         rq->elv.priv[0] = (void *)(long)token;
540 }
541
542 static void rq_clear_domain_token(struct kyber_queue_data *kqd,
543                                   struct request *rq)
544 {
545         unsigned int sched_domain;
546         int nr;
547
548         nr = rq_get_domain_token(rq);
549         if (nr != -1) {
550                 sched_domain = kyber_sched_domain(rq->cmd_flags);
551                 sbitmap_queue_clear(&kqd->domain_tokens[sched_domain], nr,
552                                     rq->mq_ctx->cpu);
553         }
554 }
555
556 static void kyber_limit_depth(blk_opf_t opf, struct blk_mq_alloc_data *data)
557 {
558         /*
559          * We use the scheduler tags as per-hardware queue queueing tokens.
560          * Async requests can be limited at this stage.
561          */
562         if (!op_is_sync(opf)) {
563                 struct kyber_queue_data *kqd = data->q->elevator->elevator_data;
564
565                 data->shallow_depth = kqd->async_depth;
566         }
567 }
568
569 static bool kyber_bio_merge(struct request_queue *q, struct bio *bio,
570                 unsigned int nr_segs)
571 {
572         struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
573         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
574         struct kyber_hctx_data *khd = hctx->sched_data;
575         struct kyber_ctx_queue *kcq = &khd->kcqs[ctx->index_hw[hctx->type]];
576         unsigned int sched_domain = kyber_sched_domain(bio->bi_opf);
577         struct list_head *rq_list = &kcq->rq_list[sched_domain];
578         bool merged;
579
580         spin_lock(&kcq->lock);
581         merged = blk_bio_list_merge(hctx->queue, rq_list, bio, nr_segs);
582         spin_unlock(&kcq->lock);
583
584         return merged;
585 }
586
587 static void kyber_prepare_request(struct request *rq)
588 {
589         rq_set_domain_token(rq, -1);
590 }
591
592 static void kyber_insert_requests(struct blk_mq_hw_ctx *hctx,
593                                   struct list_head *rq_list, bool at_head)
594 {
595         struct kyber_hctx_data *khd = hctx->sched_data;
596         struct request *rq, *next;
597
598         list_for_each_entry_safe(rq, next, rq_list, queuelist) {
599                 unsigned int sched_domain = kyber_sched_domain(rq->cmd_flags);
600                 struct kyber_ctx_queue *kcq = &khd->kcqs[rq->mq_ctx->index_hw[hctx->type]];
601                 struct list_head *head = &kcq->rq_list[sched_domain];
602
603                 spin_lock(&kcq->lock);
604                 trace_block_rq_insert(rq);
605                 if (at_head)
606                         list_move(&rq->queuelist, head);
607                 else
608                         list_move_tail(&rq->queuelist, head);
609                 sbitmap_set_bit(&khd->kcq_map[sched_domain],
610                                 rq->mq_ctx->index_hw[hctx->type]);
611                 spin_unlock(&kcq->lock);
612         }
613 }
614
615 static void kyber_finish_request(struct request *rq)
616 {
617         struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
618
619         rq_clear_domain_token(kqd, rq);
620 }
621
622 static void add_latency_sample(struct kyber_cpu_latency *cpu_latency,
623                                unsigned int sched_domain, unsigned int type,
624                                u64 target, u64 latency)
625 {
626         unsigned int bucket;
627         u64 divisor;
628
629         if (latency > 0) {
630                 divisor = max_t(u64, target >> KYBER_LATENCY_SHIFT, 1);
631                 bucket = min_t(unsigned int, div64_u64(latency - 1, divisor),
632                                KYBER_LATENCY_BUCKETS - 1);
633         } else {
634                 bucket = 0;
635         }
636
637         atomic_inc(&cpu_latency->buckets[sched_domain][type][bucket]);
638 }
639
640 static void kyber_completed_request(struct request *rq, u64 now)
641 {
642         struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
643         struct kyber_cpu_latency *cpu_latency;
644         unsigned int sched_domain;
645         u64 target;
646
647         sched_domain = kyber_sched_domain(rq->cmd_flags);
648         if (sched_domain == KYBER_OTHER)
649                 return;
650
651         cpu_latency = get_cpu_ptr(kqd->cpu_latency);
652         target = kqd->latency_targets[sched_domain];
653         add_latency_sample(cpu_latency, sched_domain, KYBER_TOTAL_LATENCY,
654                            target, now - rq->start_time_ns);
655         add_latency_sample(cpu_latency, sched_domain, KYBER_IO_LATENCY, target,
656                            now - rq->io_start_time_ns);
657         put_cpu_ptr(kqd->cpu_latency);
658
659         timer_reduce(&kqd->timer, jiffies + HZ / 10);
660 }
661
662 struct flush_kcq_data {
663         struct kyber_hctx_data *khd;
664         unsigned int sched_domain;
665         struct list_head *list;
666 };
667
668 static bool flush_busy_kcq(struct sbitmap *sb, unsigned int bitnr, void *data)
669 {
670         struct flush_kcq_data *flush_data = data;
671         struct kyber_ctx_queue *kcq = &flush_data->khd->kcqs[bitnr];
672
673         spin_lock(&kcq->lock);
674         list_splice_tail_init(&kcq->rq_list[flush_data->sched_domain],
675                               flush_data->list);
676         sbitmap_clear_bit(sb, bitnr);
677         spin_unlock(&kcq->lock);
678
679         return true;
680 }
681
682 static void kyber_flush_busy_kcqs(struct kyber_hctx_data *khd,
683                                   unsigned int sched_domain,
684                                   struct list_head *list)
685 {
686         struct flush_kcq_data data = {
687                 .khd = khd,
688                 .sched_domain = sched_domain,
689                 .list = list,
690         };
691
692         sbitmap_for_each_set(&khd->kcq_map[sched_domain],
693                              flush_busy_kcq, &data);
694 }
695
696 static int kyber_domain_wake(wait_queue_entry_t *wqe, unsigned mode, int flags,
697                              void *key)
698 {
699         struct blk_mq_hw_ctx *hctx = READ_ONCE(wqe->private);
700         struct sbq_wait *wait = container_of(wqe, struct sbq_wait, wait);
701
702         sbitmap_del_wait_queue(wait);
703         blk_mq_run_hw_queue(hctx, true);
704         return 1;
705 }
706
707 static int kyber_get_domain_token(struct kyber_queue_data *kqd,
708                                   struct kyber_hctx_data *khd,
709                                   struct blk_mq_hw_ctx *hctx)
710 {
711         unsigned int sched_domain = khd->cur_domain;
712         struct sbitmap_queue *domain_tokens = &kqd->domain_tokens[sched_domain];
713         struct sbq_wait *wait = &khd->domain_wait[sched_domain];
714         struct sbq_wait_state *ws;
715         int nr;
716
717         nr = __sbitmap_queue_get(domain_tokens);
718
719         /*
720          * If we failed to get a domain token, make sure the hardware queue is
721          * run when one becomes available. Note that this is serialized on
722          * khd->lock, but we still need to be careful about the waker.
723          */
724         if (nr < 0 && list_empty_careful(&wait->wait.entry)) {
725                 ws = sbq_wait_ptr(domain_tokens,
726                                   &khd->wait_index[sched_domain]);
727                 khd->domain_ws[sched_domain] = ws;
728                 sbitmap_add_wait_queue(domain_tokens, ws, wait);
729
730                 /*
731                  * Try again in case a token was freed before we got on the wait
732                  * queue.
733                  */
734                 nr = __sbitmap_queue_get(domain_tokens);
735         }
736
737         /*
738          * If we got a token while we were on the wait queue, remove ourselves
739          * from the wait queue to ensure that all wake ups make forward
740          * progress. It's possible that the waker already deleted the entry
741          * between the !list_empty_careful() check and us grabbing the lock, but
742          * list_del_init() is okay with that.
743          */
744         if (nr >= 0 && !list_empty_careful(&wait->wait.entry)) {
745                 ws = khd->domain_ws[sched_domain];
746                 spin_lock_irq(&ws->wait.lock);
747                 sbitmap_del_wait_queue(wait);
748                 spin_unlock_irq(&ws->wait.lock);
749         }
750
751         return nr;
752 }
753
754 static struct request *
755 kyber_dispatch_cur_domain(struct kyber_queue_data *kqd,
756                           struct kyber_hctx_data *khd,
757                           struct blk_mq_hw_ctx *hctx)
758 {
759         struct list_head *rqs;
760         struct request *rq;
761         int nr;
762
763         rqs = &khd->rqs[khd->cur_domain];
764
765         /*
766          * If we already have a flushed request, then we just need to get a
767          * token for it. Otherwise, if there are pending requests in the kcqs,
768          * flush the kcqs, but only if we can get a token. If not, we should
769          * leave the requests in the kcqs so that they can be merged. Note that
770          * khd->lock serializes the flushes, so if we observed any bit set in
771          * the kcq_map, we will always get a request.
772          */
773         rq = list_first_entry_or_null(rqs, struct request, queuelist);
774         if (rq) {
775                 nr = kyber_get_domain_token(kqd, khd, hctx);
776                 if (nr >= 0) {
777                         khd->batching++;
778                         rq_set_domain_token(rq, nr);
779                         list_del_init(&rq->queuelist);
780                         return rq;
781                 } else {
782                         trace_kyber_throttled(kqd->dev,
783                                               kyber_domain_names[khd->cur_domain]);
784                 }
785         } else if (sbitmap_any_bit_set(&khd->kcq_map[khd->cur_domain])) {
786                 nr = kyber_get_domain_token(kqd, khd, hctx);
787                 if (nr >= 0) {
788                         kyber_flush_busy_kcqs(khd, khd->cur_domain, rqs);
789                         rq = list_first_entry(rqs, struct request, queuelist);
790                         khd->batching++;
791                         rq_set_domain_token(rq, nr);
792                         list_del_init(&rq->queuelist);
793                         return rq;
794                 } else {
795                         trace_kyber_throttled(kqd->dev,
796                                               kyber_domain_names[khd->cur_domain]);
797                 }
798         }
799
800         /* There were either no pending requests or no tokens. */
801         return NULL;
802 }
803
804 static struct request *kyber_dispatch_request(struct blk_mq_hw_ctx *hctx)
805 {
806         struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
807         struct kyber_hctx_data *khd = hctx->sched_data;
808         struct request *rq;
809         int i;
810
811         spin_lock(&khd->lock);
812
813         /*
814          * First, if we are still entitled to batch, try to dispatch a request
815          * from the batch.
816          */
817         if (khd->batching < kyber_batch_size[khd->cur_domain]) {
818                 rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
819                 if (rq)
820                         goto out;
821         }
822
823         /*
824          * Either,
825          * 1. We were no longer entitled to a batch.
826          * 2. The domain we were batching didn't have any requests.
827          * 3. The domain we were batching was out of tokens.
828          *
829          * Start another batch. Note that this wraps back around to the original
830          * domain if no other domains have requests or tokens.
831          */
832         khd->batching = 0;
833         for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
834                 if (khd->cur_domain == KYBER_NUM_DOMAINS - 1)
835                         khd->cur_domain = 0;
836                 else
837                         khd->cur_domain++;
838
839                 rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
840                 if (rq)
841                         goto out;
842         }
843
844         rq = NULL;
845 out:
846         spin_unlock(&khd->lock);
847         return rq;
848 }
849
850 static bool kyber_has_work(struct blk_mq_hw_ctx *hctx)
851 {
852         struct kyber_hctx_data *khd = hctx->sched_data;
853         int i;
854
855         for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
856                 if (!list_empty_careful(&khd->rqs[i]) ||
857                     sbitmap_any_bit_set(&khd->kcq_map[i]))
858                         return true;
859         }
860
861         return false;
862 }
863
864 #define KYBER_LAT_SHOW_STORE(domain, name)                              \
865 static ssize_t kyber_##name##_lat_show(struct elevator_queue *e,        \
866                                        char *page)                      \
867 {                                                                       \
868         struct kyber_queue_data *kqd = e->elevator_data;                \
869                                                                         \
870         return sprintf(page, "%llu\n", kqd->latency_targets[domain]);   \
871 }                                                                       \
872                                                                         \
873 static ssize_t kyber_##name##_lat_store(struct elevator_queue *e,       \
874                                         const char *page, size_t count) \
875 {                                                                       \
876         struct kyber_queue_data *kqd = e->elevator_data;                \
877         unsigned long long nsec;                                        \
878         int ret;                                                        \
879                                                                         \
880         ret = kstrtoull(page, 10, &nsec);                               \
881         if (ret)                                                        \
882                 return ret;                                             \
883                                                                         \
884         kqd->latency_targets[domain] = nsec;                            \
885                                                                         \
886         return count;                                                   \
887 }
888 KYBER_LAT_SHOW_STORE(KYBER_READ, read);
889 KYBER_LAT_SHOW_STORE(KYBER_WRITE, write);
890 #undef KYBER_LAT_SHOW_STORE
891
892 #define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store)
893 static struct elv_fs_entry kyber_sched_attrs[] = {
894         KYBER_LAT_ATTR(read),
895         KYBER_LAT_ATTR(write),
896         __ATTR_NULL
897 };
898 #undef KYBER_LAT_ATTR
899
900 #ifdef CONFIG_BLK_DEBUG_FS
901 #define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name)                        \
902 static int kyber_##name##_tokens_show(void *data, struct seq_file *m)   \
903 {                                                                       \
904         struct request_queue *q = data;                                 \
905         struct kyber_queue_data *kqd = q->elevator->elevator_data;      \
906                                                                         \
907         sbitmap_queue_show(&kqd->domain_tokens[domain], m);             \
908         return 0;                                                       \
909 }                                                                       \
910                                                                         \
911 static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos)  \
912         __acquires(&khd->lock)                                          \
913 {                                                                       \
914         struct blk_mq_hw_ctx *hctx = m->private;                        \
915         struct kyber_hctx_data *khd = hctx->sched_data;                 \
916                                                                         \
917         spin_lock(&khd->lock);                                          \
918         return seq_list_start(&khd->rqs[domain], *pos);                 \
919 }                                                                       \
920                                                                         \
921 static void *kyber_##name##_rqs_next(struct seq_file *m, void *v,       \
922                                      loff_t *pos)                       \
923 {                                                                       \
924         struct blk_mq_hw_ctx *hctx = m->private;                        \
925         struct kyber_hctx_data *khd = hctx->sched_data;                 \
926                                                                         \
927         return seq_list_next(v, &khd->rqs[domain], pos);                \
928 }                                                                       \
929                                                                         \
930 static void kyber_##name##_rqs_stop(struct seq_file *m, void *v)        \
931         __releases(&khd->lock)                                          \
932 {                                                                       \
933         struct blk_mq_hw_ctx *hctx = m->private;                        \
934         struct kyber_hctx_data *khd = hctx->sched_data;                 \
935                                                                         \
936         spin_unlock(&khd->lock);                                        \
937 }                                                                       \
938                                                                         \
939 static const struct seq_operations kyber_##name##_rqs_seq_ops = {       \
940         .start  = kyber_##name##_rqs_start,                             \
941         .next   = kyber_##name##_rqs_next,                              \
942         .stop   = kyber_##name##_rqs_stop,                              \
943         .show   = blk_mq_debugfs_rq_show,                               \
944 };                                                                      \
945                                                                         \
946 static int kyber_##name##_waiting_show(void *data, struct seq_file *m)  \
947 {                                                                       \
948         struct blk_mq_hw_ctx *hctx = data;                              \
949         struct kyber_hctx_data *khd = hctx->sched_data;                 \
950         wait_queue_entry_t *wait = &khd->domain_wait[domain].wait;      \
951                                                                         \
952         seq_printf(m, "%d\n", !list_empty_careful(&wait->entry));       \
953         return 0;                                                       \
954 }
955 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ, read)
956 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_WRITE, write)
957 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_DISCARD, discard)
958 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER, other)
959 #undef KYBER_DEBUGFS_DOMAIN_ATTRS
960
961 static int kyber_async_depth_show(void *data, struct seq_file *m)
962 {
963         struct request_queue *q = data;
964         struct kyber_queue_data *kqd = q->elevator->elevator_data;
965
966         seq_printf(m, "%u\n", kqd->async_depth);
967         return 0;
968 }
969
970 static int kyber_cur_domain_show(void *data, struct seq_file *m)
971 {
972         struct blk_mq_hw_ctx *hctx = data;
973         struct kyber_hctx_data *khd = hctx->sched_data;
974
975         seq_printf(m, "%s\n", kyber_domain_names[khd->cur_domain]);
976         return 0;
977 }
978
979 static int kyber_batching_show(void *data, struct seq_file *m)
980 {
981         struct blk_mq_hw_ctx *hctx = data;
982         struct kyber_hctx_data *khd = hctx->sched_data;
983
984         seq_printf(m, "%u\n", khd->batching);
985         return 0;
986 }
987
988 #define KYBER_QUEUE_DOMAIN_ATTRS(name)  \
989         {#name "_tokens", 0400, kyber_##name##_tokens_show}
990 static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs[] = {
991         KYBER_QUEUE_DOMAIN_ATTRS(read),
992         KYBER_QUEUE_DOMAIN_ATTRS(write),
993         KYBER_QUEUE_DOMAIN_ATTRS(discard),
994         KYBER_QUEUE_DOMAIN_ATTRS(other),
995         {"async_depth", 0400, kyber_async_depth_show},
996         {},
997 };
998 #undef KYBER_QUEUE_DOMAIN_ATTRS
999
1000 #define KYBER_HCTX_DOMAIN_ATTRS(name)                                   \
1001         {#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops},   \
1002         {#name "_waiting", 0400, kyber_##name##_waiting_show}
1003 static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs[] = {
1004         KYBER_HCTX_DOMAIN_ATTRS(read),
1005         KYBER_HCTX_DOMAIN_ATTRS(write),
1006         KYBER_HCTX_DOMAIN_ATTRS(discard),
1007         KYBER_HCTX_DOMAIN_ATTRS(other),
1008         {"cur_domain", 0400, kyber_cur_domain_show},
1009         {"batching", 0400, kyber_batching_show},
1010         {},
1011 };
1012 #undef KYBER_HCTX_DOMAIN_ATTRS
1013 #endif
1014
1015 static struct elevator_type kyber_sched = {
1016         .ops = {
1017                 .init_sched = kyber_init_sched,
1018                 .exit_sched = kyber_exit_sched,
1019                 .init_hctx = kyber_init_hctx,
1020                 .exit_hctx = kyber_exit_hctx,
1021                 .limit_depth = kyber_limit_depth,
1022                 .bio_merge = kyber_bio_merge,
1023                 .prepare_request = kyber_prepare_request,
1024                 .insert_requests = kyber_insert_requests,
1025                 .finish_request = kyber_finish_request,
1026                 .requeue_request = kyber_finish_request,
1027                 .completed_request = kyber_completed_request,
1028                 .dispatch_request = kyber_dispatch_request,
1029                 .has_work = kyber_has_work,
1030                 .depth_updated = kyber_depth_updated,
1031         },
1032 #ifdef CONFIG_BLK_DEBUG_FS
1033         .queue_debugfs_attrs = kyber_queue_debugfs_attrs,
1034         .hctx_debugfs_attrs = kyber_hctx_debugfs_attrs,
1035 #endif
1036         .elevator_attrs = kyber_sched_attrs,
1037         .elevator_name = "kyber",
1038         .elevator_owner = THIS_MODULE,
1039 };
1040
1041 static int __init kyber_init(void)
1042 {
1043         return elv_register(&kyber_sched);
1044 }
1045
1046 static void __exit kyber_exit(void)
1047 {
1048         elv_unregister(&kyber_sched);
1049 }
1050
1051 module_init(kyber_init);
1052 module_exit(kyber_exit);
1053
1054 MODULE_AUTHOR("Omar Sandoval");
1055 MODULE_LICENSE("GPL");
1056 MODULE_DESCRIPTION("Kyber I/O scheduler");