Merge branch 'stable/gntdev' of git://git.kernel.org/pub/scm/linux/kernel/git/konrad/xen
[platform/adaptation/renesas_rcar/renesas_kernel.git] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include "cfq.h"
18
19 /*
20  * tunables
21  */
22 /* max queue in one round of service */
23 static const int cfq_quantum = 8;
24 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
25 /* maximum backwards seek, in KiB */
26 static const int cfq_back_max = 16 * 1024;
27 /* penalty of a backwards seek */
28 static const int cfq_back_penalty = 2;
29 static const int cfq_slice_sync = HZ / 10;
30 static int cfq_slice_async = HZ / 25;
31 static const int cfq_slice_async_rq = 2;
32 static int cfq_slice_idle = HZ / 125;
33 static int cfq_group_idle = HZ / 125;
34 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
35 static const int cfq_hist_divisor = 4;
36
37 /*
38  * offset from end of service tree
39  */
40 #define CFQ_IDLE_DELAY          (HZ / 5)
41
42 /*
43  * below this threshold, we consider thinktime immediate
44  */
45 #define CFQ_MIN_TT              (2)
46
47 #define CFQ_SLICE_SCALE         (5)
48 #define CFQ_HW_QUEUE_MIN        (5)
49 #define CFQ_SERVICE_SHIFT       12
50
51 #define CFQQ_SEEK_THR           (sector_t)(8 * 100)
52 #define CFQQ_CLOSE_THR          (sector_t)(8 * 1024)
53 #define CFQQ_SECT_THR_NONROT    (sector_t)(2 * 32)
54 #define CFQQ_SEEKY(cfqq)        (hweight32(cfqq->seek_history) > 32/8)
55
56 #define RQ_CIC(rq)              \
57         ((struct cfq_io_context *) (rq)->elevator_private)
58 #define RQ_CFQQ(rq)             (struct cfq_queue *) ((rq)->elevator_private2)
59 #define RQ_CFQG(rq)             (struct cfq_group *) ((rq)->elevator_private3)
60
61 static struct kmem_cache *cfq_pool;
62 static struct kmem_cache *cfq_ioc_pool;
63
64 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
65 static struct completion *ioc_gone;
66 static DEFINE_SPINLOCK(ioc_gone_lock);
67
68 static DEFINE_SPINLOCK(cic_index_lock);
69 static DEFINE_IDA(cic_index_ida);
70
71 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
72 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
73 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
74
75 #define sample_valid(samples)   ((samples) > 80)
76 #define rb_entry_cfqg(node)     rb_entry((node), struct cfq_group, rb_node)
77
78 /*
79  * Most of our rbtree usage is for sorting with min extraction, so
80  * if we cache the leftmost node we don't have to walk down the tree
81  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82  * move this into the elevator for the rq sorting as well.
83  */
84 struct cfq_rb_root {
85         struct rb_root rb;
86         struct rb_node *left;
87         unsigned count;
88         unsigned total_weight;
89         u64 min_vdisktime;
90 };
91 #define CFQ_RB_ROOT     (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
92                         .count = 0, .min_vdisktime = 0, }
93
94 /*
95  * Per process-grouping structure
96  */
97 struct cfq_queue {
98         /* reference count */
99         int ref;
100         /* various state flags, see below */
101         unsigned int flags;
102         /* parent cfq_data */
103         struct cfq_data *cfqd;
104         /* service_tree member */
105         struct rb_node rb_node;
106         /* service_tree key */
107         unsigned long rb_key;
108         /* prio tree member */
109         struct rb_node p_node;
110         /* prio tree root we belong to, if any */
111         struct rb_root *p_root;
112         /* sorted list of pending requests */
113         struct rb_root sort_list;
114         /* if fifo isn't expired, next request to serve */
115         struct request *next_rq;
116         /* requests queued in sort_list */
117         int queued[2];
118         /* currently allocated requests */
119         int allocated[2];
120         /* fifo list of requests in sort_list */
121         struct list_head fifo;
122
123         /* time when queue got scheduled in to dispatch first request. */
124         unsigned long dispatch_start;
125         unsigned int allocated_slice;
126         unsigned int slice_dispatch;
127         /* time when first request from queue completed and slice started. */
128         unsigned long slice_start;
129         unsigned long slice_end;
130         long slice_resid;
131
132         /* pending metadata requests */
133         int meta_pending;
134         /* number of requests that are on the dispatch list or inside driver */
135         int dispatched;
136
137         /* io prio of this group */
138         unsigned short ioprio, org_ioprio;
139         unsigned short ioprio_class, org_ioprio_class;
140
141         pid_t pid;
142
143         u32 seek_history;
144         sector_t last_request_pos;
145
146         struct cfq_rb_root *service_tree;
147         struct cfq_queue *new_cfqq;
148         struct cfq_group *cfqg;
149         struct cfq_group *orig_cfqg;
150         /* Number of sectors dispatched from queue in single dispatch round */
151         unsigned long nr_sectors;
152 };
153
154 /*
155  * First index in the service_trees.
156  * IDLE is handled separately, so it has negative index
157  */
158 enum wl_prio_t {
159         BE_WORKLOAD = 0,
160         RT_WORKLOAD = 1,
161         IDLE_WORKLOAD = 2,
162         CFQ_PRIO_NR,
163 };
164
165 /*
166  * Second index in the service_trees.
167  */
168 enum wl_type_t {
169         ASYNC_WORKLOAD = 0,
170         SYNC_NOIDLE_WORKLOAD = 1,
171         SYNC_WORKLOAD = 2
172 };
173
174 /* This is per cgroup per device grouping structure */
175 struct cfq_group {
176         /* group service_tree member */
177         struct rb_node rb_node;
178
179         /* group service_tree key */
180         u64 vdisktime;
181         unsigned int weight;
182
183         /* number of cfqq currently on this group */
184         int nr_cfqq;
185
186         /*
187          * Per group busy queus average. Useful for workload slice calc. We
188          * create the array for each prio class but at run time it is used
189          * only for RT and BE class and slot for IDLE class remains unused.
190          * This is primarily done to avoid confusion and a gcc warning.
191          */
192         unsigned int busy_queues_avg[CFQ_PRIO_NR];
193         /*
194          * rr lists of queues with requests. We maintain service trees for
195          * RT and BE classes. These trees are subdivided in subclasses
196          * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
197          * class there is no subclassification and all the cfq queues go on
198          * a single tree service_tree_idle.
199          * Counts are embedded in the cfq_rb_root
200          */
201         struct cfq_rb_root service_trees[2][3];
202         struct cfq_rb_root service_tree_idle;
203
204         unsigned long saved_workload_slice;
205         enum wl_type_t saved_workload;
206         enum wl_prio_t saved_serving_prio;
207         struct blkio_group blkg;
208 #ifdef CONFIG_CFQ_GROUP_IOSCHED
209         struct hlist_node cfqd_node;
210         int ref;
211 #endif
212         /* number of requests that are on the dispatch list or inside driver */
213         int dispatched;
214 };
215
216 /*
217  * Per block device queue structure
218  */
219 struct cfq_data {
220         struct request_queue *queue;
221         /* Root service tree for cfq_groups */
222         struct cfq_rb_root grp_service_tree;
223         struct cfq_group root_group;
224
225         /*
226          * The priority currently being served
227          */
228         enum wl_prio_t serving_prio;
229         enum wl_type_t serving_type;
230         unsigned long workload_expires;
231         struct cfq_group *serving_group;
232
233         /*
234          * Each priority tree is sorted by next_request position.  These
235          * trees are used when determining if two or more queues are
236          * interleaving requests (see cfq_close_cooperator).
237          */
238         struct rb_root prio_trees[CFQ_PRIO_LISTS];
239
240         unsigned int busy_queues;
241
242         int rq_in_driver;
243         int rq_in_flight[2];
244
245         /*
246          * queue-depth detection
247          */
248         int rq_queued;
249         int hw_tag;
250         /*
251          * hw_tag can be
252          * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
253          *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
254          *  0 => no NCQ
255          */
256         int hw_tag_est_depth;
257         unsigned int hw_tag_samples;
258
259         /*
260          * idle window management
261          */
262         struct timer_list idle_slice_timer;
263         struct work_struct unplug_work;
264
265         struct cfq_queue *active_queue;
266         struct cfq_io_context *active_cic;
267
268         /*
269          * async queue for each priority case
270          */
271         struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
272         struct cfq_queue *async_idle_cfqq;
273
274         sector_t last_position;
275
276         /*
277          * tunables, see top of file
278          */
279         unsigned int cfq_quantum;
280         unsigned int cfq_fifo_expire[2];
281         unsigned int cfq_back_penalty;
282         unsigned int cfq_back_max;
283         unsigned int cfq_slice[2];
284         unsigned int cfq_slice_async_rq;
285         unsigned int cfq_slice_idle;
286         unsigned int cfq_group_idle;
287         unsigned int cfq_latency;
288         unsigned int cfq_group_isolation;
289
290         unsigned int cic_index;
291         struct list_head cic_list;
292
293         /*
294          * Fallback dummy cfqq for extreme OOM conditions
295          */
296         struct cfq_queue oom_cfqq;
297
298         unsigned long last_delayed_sync;
299
300         /* List of cfq groups being managed on this device*/
301         struct hlist_head cfqg_list;
302         struct rcu_head rcu;
303 };
304
305 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
306
307 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
308                                             enum wl_prio_t prio,
309                                             enum wl_type_t type)
310 {
311         if (!cfqg)
312                 return NULL;
313
314         if (prio == IDLE_WORKLOAD)
315                 return &cfqg->service_tree_idle;
316
317         return &cfqg->service_trees[prio][type];
318 }
319
320 enum cfqq_state_flags {
321         CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
322         CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
323         CFQ_CFQQ_FLAG_must_dispatch,    /* must be allowed a dispatch */
324         CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
325         CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
326         CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
327         CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
328         CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
329         CFQ_CFQQ_FLAG_sync,             /* synchronous queue */
330         CFQ_CFQQ_FLAG_coop,             /* cfqq is shared */
331         CFQ_CFQQ_FLAG_split_coop,       /* shared cfqq will be splitted */
332         CFQ_CFQQ_FLAG_deep,             /* sync cfqq experienced large depth */
333         CFQ_CFQQ_FLAG_wait_busy,        /* Waiting for next request */
334 };
335
336 #define CFQ_CFQQ_FNS(name)                                              \
337 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
338 {                                                                       \
339         (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);                   \
340 }                                                                       \
341 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
342 {                                                                       \
343         (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                  \
344 }                                                                       \
345 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
346 {                                                                       \
347         return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;      \
348 }
349
350 CFQ_CFQQ_FNS(on_rr);
351 CFQ_CFQQ_FNS(wait_request);
352 CFQ_CFQQ_FNS(must_dispatch);
353 CFQ_CFQQ_FNS(must_alloc_slice);
354 CFQ_CFQQ_FNS(fifo_expire);
355 CFQ_CFQQ_FNS(idle_window);
356 CFQ_CFQQ_FNS(prio_changed);
357 CFQ_CFQQ_FNS(slice_new);
358 CFQ_CFQQ_FNS(sync);
359 CFQ_CFQQ_FNS(coop);
360 CFQ_CFQQ_FNS(split_coop);
361 CFQ_CFQQ_FNS(deep);
362 CFQ_CFQQ_FNS(wait_busy);
363 #undef CFQ_CFQQ_FNS
364
365 #ifdef CONFIG_CFQ_GROUP_IOSCHED
366 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
367         blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
368                         cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
369                         blkg_path(&(cfqq)->cfqg->blkg), ##args);
370
371 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)                          \
372         blk_add_trace_msg((cfqd)->queue, "%s " fmt,                     \
373                                 blkg_path(&(cfqg)->blkg), ##args);      \
374
375 #else
376 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
377         blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
378 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)          do {} while (0);
379 #endif
380 #define cfq_log(cfqd, fmt, args...)     \
381         blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
382
383 /* Traverses through cfq group service trees */
384 #define for_each_cfqg_st(cfqg, i, j, st) \
385         for (i = 0; i <= IDLE_WORKLOAD; i++) \
386                 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
387                         : &cfqg->service_tree_idle; \
388                         (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
389                         (i == IDLE_WORKLOAD && j == 0); \
390                         j++, st = i < IDLE_WORKLOAD ? \
391                         &cfqg->service_trees[i][j]: NULL) \
392
393
394 static inline bool iops_mode(struct cfq_data *cfqd)
395 {
396         /*
397          * If we are not idling on queues and it is a NCQ drive, parallel
398          * execution of requests is on and measuring time is not possible
399          * in most of the cases until and unless we drive shallower queue
400          * depths and that becomes a performance bottleneck. In such cases
401          * switch to start providing fairness in terms of number of IOs.
402          */
403         if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
404                 return true;
405         else
406                 return false;
407 }
408
409 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
410 {
411         if (cfq_class_idle(cfqq))
412                 return IDLE_WORKLOAD;
413         if (cfq_class_rt(cfqq))
414                 return RT_WORKLOAD;
415         return BE_WORKLOAD;
416 }
417
418
419 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
420 {
421         if (!cfq_cfqq_sync(cfqq))
422                 return ASYNC_WORKLOAD;
423         if (!cfq_cfqq_idle_window(cfqq))
424                 return SYNC_NOIDLE_WORKLOAD;
425         return SYNC_WORKLOAD;
426 }
427
428 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
429                                         struct cfq_data *cfqd,
430                                         struct cfq_group *cfqg)
431 {
432         if (wl == IDLE_WORKLOAD)
433                 return cfqg->service_tree_idle.count;
434
435         return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
436                 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
437                 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
438 }
439
440 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
441                                         struct cfq_group *cfqg)
442 {
443         return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
444                 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
445 }
446
447 static void cfq_dispatch_insert(struct request_queue *, struct request *);
448 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
449                                        struct io_context *, gfp_t);
450 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
451                                                 struct io_context *);
452
453 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
454                                             bool is_sync)
455 {
456         return cic->cfqq[is_sync];
457 }
458
459 static inline void cic_set_cfqq(struct cfq_io_context *cic,
460                                 struct cfq_queue *cfqq, bool is_sync)
461 {
462         cic->cfqq[is_sync] = cfqq;
463 }
464
465 #define CIC_DEAD_KEY    1ul
466 #define CIC_DEAD_INDEX_SHIFT    1
467
468 static inline void *cfqd_dead_key(struct cfq_data *cfqd)
469 {
470         return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
471 }
472
473 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
474 {
475         struct cfq_data *cfqd = cic->key;
476
477         if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
478                 return NULL;
479
480         return cfqd;
481 }
482
483 /*
484  * We regard a request as SYNC, if it's either a read or has the SYNC bit
485  * set (in which case it could also be direct WRITE).
486  */
487 static inline bool cfq_bio_sync(struct bio *bio)
488 {
489         return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
490 }
491
492 /*
493  * scheduler run of queue, if there are requests pending and no one in the
494  * driver that will restart queueing
495  */
496 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
497 {
498         if (cfqd->busy_queues) {
499                 cfq_log(cfqd, "schedule dispatch");
500                 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
501         }
502 }
503
504 static int cfq_queue_empty(struct request_queue *q)
505 {
506         struct cfq_data *cfqd = q->elevator->elevator_data;
507
508         return !cfqd->rq_queued;
509 }
510
511 /*
512  * Scale schedule slice based on io priority. Use the sync time slice only
513  * if a queue is marked sync and has sync io queued. A sync queue with async
514  * io only, should not get full sync slice length.
515  */
516 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
517                                  unsigned short prio)
518 {
519         const int base_slice = cfqd->cfq_slice[sync];
520
521         WARN_ON(prio >= IOPRIO_BE_NR);
522
523         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
524 }
525
526 static inline int
527 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
528 {
529         return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
530 }
531
532 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
533 {
534         u64 d = delta << CFQ_SERVICE_SHIFT;
535
536         d = d * BLKIO_WEIGHT_DEFAULT;
537         do_div(d, cfqg->weight);
538         return d;
539 }
540
541 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
542 {
543         s64 delta = (s64)(vdisktime - min_vdisktime);
544         if (delta > 0)
545                 min_vdisktime = vdisktime;
546
547         return min_vdisktime;
548 }
549
550 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
551 {
552         s64 delta = (s64)(vdisktime - min_vdisktime);
553         if (delta < 0)
554                 min_vdisktime = vdisktime;
555
556         return min_vdisktime;
557 }
558
559 static void update_min_vdisktime(struct cfq_rb_root *st)
560 {
561         u64 vdisktime = st->min_vdisktime;
562         struct cfq_group *cfqg;
563
564         if (st->left) {
565                 cfqg = rb_entry_cfqg(st->left);
566                 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
567         }
568
569         st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
570 }
571
572 /*
573  * get averaged number of queues of RT/BE priority.
574  * average is updated, with a formula that gives more weight to higher numbers,
575  * to quickly follows sudden increases and decrease slowly
576  */
577
578 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
579                                         struct cfq_group *cfqg, bool rt)
580 {
581         unsigned min_q, max_q;
582         unsigned mult  = cfq_hist_divisor - 1;
583         unsigned round = cfq_hist_divisor / 2;
584         unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
585
586         min_q = min(cfqg->busy_queues_avg[rt], busy);
587         max_q = max(cfqg->busy_queues_avg[rt], busy);
588         cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
589                 cfq_hist_divisor;
590         return cfqg->busy_queues_avg[rt];
591 }
592
593 static inline unsigned
594 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
595 {
596         struct cfq_rb_root *st = &cfqd->grp_service_tree;
597
598         return cfq_target_latency * cfqg->weight / st->total_weight;
599 }
600
601 static inline void
602 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
603 {
604         unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
605         if (cfqd->cfq_latency) {
606                 /*
607                  * interested queues (we consider only the ones with the same
608                  * priority class in the cfq group)
609                  */
610                 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
611                                                 cfq_class_rt(cfqq));
612                 unsigned sync_slice = cfqd->cfq_slice[1];
613                 unsigned expect_latency = sync_slice * iq;
614                 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
615
616                 if (expect_latency > group_slice) {
617                         unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
618                         /* scale low_slice according to IO priority
619                          * and sync vs async */
620                         unsigned low_slice =
621                                 min(slice, base_low_slice * slice / sync_slice);
622                         /* the adapted slice value is scaled to fit all iqs
623                          * into the target latency */
624                         slice = max(slice * group_slice / expect_latency,
625                                     low_slice);
626                 }
627         }
628         cfqq->slice_start = jiffies;
629         cfqq->slice_end = jiffies + slice;
630         cfqq->allocated_slice = slice;
631         cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
632 }
633
634 /*
635  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
636  * isn't valid until the first request from the dispatch is activated
637  * and the slice time set.
638  */
639 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
640 {
641         if (cfq_cfqq_slice_new(cfqq))
642                 return false;
643         if (time_before(jiffies, cfqq->slice_end))
644                 return false;
645
646         return true;
647 }
648
649 /*
650  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
651  * We choose the request that is closest to the head right now. Distance
652  * behind the head is penalized and only allowed to a certain extent.
653  */
654 static struct request *
655 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
656 {
657         sector_t s1, s2, d1 = 0, d2 = 0;
658         unsigned long back_max;
659 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
660 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
661         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
662
663         if (rq1 == NULL || rq1 == rq2)
664                 return rq2;
665         if (rq2 == NULL)
666                 return rq1;
667
668         if (rq_is_sync(rq1) && !rq_is_sync(rq2))
669                 return rq1;
670         else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
671                 return rq2;
672         if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
673                 return rq1;
674         else if ((rq2->cmd_flags & REQ_META) &&
675                  !(rq1->cmd_flags & REQ_META))
676                 return rq2;
677
678         s1 = blk_rq_pos(rq1);
679         s2 = blk_rq_pos(rq2);
680
681         /*
682          * by definition, 1KiB is 2 sectors
683          */
684         back_max = cfqd->cfq_back_max * 2;
685
686         /*
687          * Strict one way elevator _except_ in the case where we allow
688          * short backward seeks which are biased as twice the cost of a
689          * similar forward seek.
690          */
691         if (s1 >= last)
692                 d1 = s1 - last;
693         else if (s1 + back_max >= last)
694                 d1 = (last - s1) * cfqd->cfq_back_penalty;
695         else
696                 wrap |= CFQ_RQ1_WRAP;
697
698         if (s2 >= last)
699                 d2 = s2 - last;
700         else if (s2 + back_max >= last)
701                 d2 = (last - s2) * cfqd->cfq_back_penalty;
702         else
703                 wrap |= CFQ_RQ2_WRAP;
704
705         /* Found required data */
706
707         /*
708          * By doing switch() on the bit mask "wrap" we avoid having to
709          * check two variables for all permutations: --> faster!
710          */
711         switch (wrap) {
712         case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
713                 if (d1 < d2)
714                         return rq1;
715                 else if (d2 < d1)
716                         return rq2;
717                 else {
718                         if (s1 >= s2)
719                                 return rq1;
720                         else
721                                 return rq2;
722                 }
723
724         case CFQ_RQ2_WRAP:
725                 return rq1;
726         case CFQ_RQ1_WRAP:
727                 return rq2;
728         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
729         default:
730                 /*
731                  * Since both rqs are wrapped,
732                  * start with the one that's further behind head
733                  * (--> only *one* back seek required),
734                  * since back seek takes more time than forward.
735                  */
736                 if (s1 <= s2)
737                         return rq1;
738                 else
739                         return rq2;
740         }
741 }
742
743 /*
744  * The below is leftmost cache rbtree addon
745  */
746 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
747 {
748         /* Service tree is empty */
749         if (!root->count)
750                 return NULL;
751
752         if (!root->left)
753                 root->left = rb_first(&root->rb);
754
755         if (root->left)
756                 return rb_entry(root->left, struct cfq_queue, rb_node);
757
758         return NULL;
759 }
760
761 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
762 {
763         if (!root->left)
764                 root->left = rb_first(&root->rb);
765
766         if (root->left)
767                 return rb_entry_cfqg(root->left);
768
769         return NULL;
770 }
771
772 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
773 {
774         rb_erase(n, root);
775         RB_CLEAR_NODE(n);
776 }
777
778 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
779 {
780         if (root->left == n)
781                 root->left = NULL;
782         rb_erase_init(n, &root->rb);
783         --root->count;
784 }
785
786 /*
787  * would be nice to take fifo expire time into account as well
788  */
789 static struct request *
790 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
791                   struct request *last)
792 {
793         struct rb_node *rbnext = rb_next(&last->rb_node);
794         struct rb_node *rbprev = rb_prev(&last->rb_node);
795         struct request *next = NULL, *prev = NULL;
796
797         BUG_ON(RB_EMPTY_NODE(&last->rb_node));
798
799         if (rbprev)
800                 prev = rb_entry_rq(rbprev);
801
802         if (rbnext)
803                 next = rb_entry_rq(rbnext);
804         else {
805                 rbnext = rb_first(&cfqq->sort_list);
806                 if (rbnext && rbnext != &last->rb_node)
807                         next = rb_entry_rq(rbnext);
808         }
809
810         return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
811 }
812
813 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
814                                       struct cfq_queue *cfqq)
815 {
816         /*
817          * just an approximation, should be ok.
818          */
819         return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
820                        cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
821 }
822
823 static inline s64
824 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
825 {
826         return cfqg->vdisktime - st->min_vdisktime;
827 }
828
829 static void
830 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
831 {
832         struct rb_node **node = &st->rb.rb_node;
833         struct rb_node *parent = NULL;
834         struct cfq_group *__cfqg;
835         s64 key = cfqg_key(st, cfqg);
836         int left = 1;
837
838         while (*node != NULL) {
839                 parent = *node;
840                 __cfqg = rb_entry_cfqg(parent);
841
842                 if (key < cfqg_key(st, __cfqg))
843                         node = &parent->rb_left;
844                 else {
845                         node = &parent->rb_right;
846                         left = 0;
847                 }
848         }
849
850         if (left)
851                 st->left = &cfqg->rb_node;
852
853         rb_link_node(&cfqg->rb_node, parent, node);
854         rb_insert_color(&cfqg->rb_node, &st->rb);
855 }
856
857 static void
858 cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
859 {
860         struct cfq_rb_root *st = &cfqd->grp_service_tree;
861         struct cfq_group *__cfqg;
862         struct rb_node *n;
863
864         cfqg->nr_cfqq++;
865         if (!RB_EMPTY_NODE(&cfqg->rb_node))
866                 return;
867
868         /*
869          * Currently put the group at the end. Later implement something
870          * so that groups get lesser vtime based on their weights, so that
871          * if group does not loose all if it was not continously backlogged.
872          */
873         n = rb_last(&st->rb);
874         if (n) {
875                 __cfqg = rb_entry_cfqg(n);
876                 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
877         } else
878                 cfqg->vdisktime = st->min_vdisktime;
879
880         __cfq_group_service_tree_add(st, cfqg);
881         st->total_weight += cfqg->weight;
882 }
883
884 static void
885 cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
886 {
887         struct cfq_rb_root *st = &cfqd->grp_service_tree;
888
889         BUG_ON(cfqg->nr_cfqq < 1);
890         cfqg->nr_cfqq--;
891
892         /* If there are other cfq queues under this group, don't delete it */
893         if (cfqg->nr_cfqq)
894                 return;
895
896         cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
897         st->total_weight -= cfqg->weight;
898         if (!RB_EMPTY_NODE(&cfqg->rb_node))
899                 cfq_rb_erase(&cfqg->rb_node, st);
900         cfqg->saved_workload_slice = 0;
901         cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
902 }
903
904 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
905 {
906         unsigned int slice_used;
907
908         /*
909          * Queue got expired before even a single request completed or
910          * got expired immediately after first request completion.
911          */
912         if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
913                 /*
914                  * Also charge the seek time incurred to the group, otherwise
915                  * if there are mutiple queues in the group, each can dispatch
916                  * a single request on seeky media and cause lots of seek time
917                  * and group will never know it.
918                  */
919                 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
920                                         1);
921         } else {
922                 slice_used = jiffies - cfqq->slice_start;
923                 if (slice_used > cfqq->allocated_slice)
924                         slice_used = cfqq->allocated_slice;
925         }
926
927         return slice_used;
928 }
929
930 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
931                                 struct cfq_queue *cfqq)
932 {
933         struct cfq_rb_root *st = &cfqd->grp_service_tree;
934         unsigned int used_sl, charge;
935         int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
936                         - cfqg->service_tree_idle.count;
937
938         BUG_ON(nr_sync < 0);
939         used_sl = charge = cfq_cfqq_slice_usage(cfqq);
940
941         if (iops_mode(cfqd))
942                 charge = cfqq->slice_dispatch;
943         else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
944                 charge = cfqq->allocated_slice;
945
946         /* Can't update vdisktime while group is on service tree */
947         cfq_rb_erase(&cfqg->rb_node, st);
948         cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
949         __cfq_group_service_tree_add(st, cfqg);
950
951         /* This group is being expired. Save the context */
952         if (time_after(cfqd->workload_expires, jiffies)) {
953                 cfqg->saved_workload_slice = cfqd->workload_expires
954                                                 - jiffies;
955                 cfqg->saved_workload = cfqd->serving_type;
956                 cfqg->saved_serving_prio = cfqd->serving_prio;
957         } else
958                 cfqg->saved_workload_slice = 0;
959
960         cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
961                                         st->min_vdisktime);
962         cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u disp=%u charge=%u iops=%u"
963                         " sect=%u", used_sl, cfqq->slice_dispatch, charge,
964                         iops_mode(cfqd), cfqq->nr_sectors);
965         cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl);
966         cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
967 }
968
969 #ifdef CONFIG_CFQ_GROUP_IOSCHED
970 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
971 {
972         if (blkg)
973                 return container_of(blkg, struct cfq_group, blkg);
974         return NULL;
975 }
976
977 void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
978                                         unsigned int weight)
979 {
980         cfqg_of_blkg(blkg)->weight = weight;
981 }
982
983 static struct cfq_group *
984 cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
985 {
986         struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
987         struct cfq_group *cfqg = NULL;
988         void *key = cfqd;
989         int i, j;
990         struct cfq_rb_root *st;
991         struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
992         unsigned int major, minor;
993
994         cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
995         if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
996                 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
997                 cfqg->blkg.dev = MKDEV(major, minor);
998                 goto done;
999         }
1000         if (cfqg || !create)
1001                 goto done;
1002
1003         cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
1004         if (!cfqg)
1005                 goto done;
1006
1007         for_each_cfqg_st(cfqg, i, j, st)
1008                 *st = CFQ_RB_ROOT;
1009         RB_CLEAR_NODE(&cfqg->rb_node);
1010
1011         /*
1012          * Take the initial reference that will be released on destroy
1013          * This can be thought of a joint reference by cgroup and
1014          * elevator which will be dropped by either elevator exit
1015          * or cgroup deletion path depending on who is exiting first.
1016          */
1017         cfqg->ref = 1;
1018
1019         /*
1020          * Add group onto cgroup list. It might happen that bdi->dev is
1021          * not initialized yet. Initialize this new group without major
1022          * and minor info and this info will be filled in once a new thread
1023          * comes for IO. See code above.
1024          */
1025         if (bdi->dev) {
1026                 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1027                 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
1028                                         MKDEV(major, minor));
1029         } else
1030                 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
1031                                         0);
1032
1033         cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
1034
1035         /* Add group on cfqd list */
1036         hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1037
1038 done:
1039         return cfqg;
1040 }
1041
1042 /*
1043  * Search for the cfq group current task belongs to. If create = 1, then also
1044  * create the cfq group if it does not exist. request_queue lock must be held.
1045  */
1046 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1047 {
1048         struct cgroup *cgroup;
1049         struct cfq_group *cfqg = NULL;
1050
1051         rcu_read_lock();
1052         cgroup = task_cgroup(current, blkio_subsys_id);
1053         cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
1054         if (!cfqg && create)
1055                 cfqg = &cfqd->root_group;
1056         rcu_read_unlock();
1057         return cfqg;
1058 }
1059
1060 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1061 {
1062         cfqg->ref++;
1063         return cfqg;
1064 }
1065
1066 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1067 {
1068         /* Currently, all async queues are mapped to root group */
1069         if (!cfq_cfqq_sync(cfqq))
1070                 cfqg = &cfqq->cfqd->root_group;
1071
1072         cfqq->cfqg = cfqg;
1073         /* cfqq reference on cfqg */
1074         cfqq->cfqg->ref++;
1075 }
1076
1077 static void cfq_put_cfqg(struct cfq_group *cfqg)
1078 {
1079         struct cfq_rb_root *st;
1080         int i, j;
1081
1082         BUG_ON(cfqg->ref <= 0);
1083         cfqg->ref--;
1084         if (cfqg->ref)
1085                 return;
1086         for_each_cfqg_st(cfqg, i, j, st)
1087                 BUG_ON(!RB_EMPTY_ROOT(&st->rb));
1088         kfree(cfqg);
1089 }
1090
1091 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1092 {
1093         /* Something wrong if we are trying to remove same group twice */
1094         BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1095
1096         hlist_del_init(&cfqg->cfqd_node);
1097
1098         /*
1099          * Put the reference taken at the time of creation so that when all
1100          * queues are gone, group can be destroyed.
1101          */
1102         cfq_put_cfqg(cfqg);
1103 }
1104
1105 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1106 {
1107         struct hlist_node *pos, *n;
1108         struct cfq_group *cfqg;
1109
1110         hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1111                 /*
1112                  * If cgroup removal path got to blk_group first and removed
1113                  * it from cgroup list, then it will take care of destroying
1114                  * cfqg also.
1115                  */
1116                 if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
1117                         cfq_destroy_cfqg(cfqd, cfqg);
1118         }
1119 }
1120
1121 /*
1122  * Blk cgroup controller notification saying that blkio_group object is being
1123  * delinked as associated cgroup object is going away. That also means that
1124  * no new IO will come in this group. So get rid of this group as soon as
1125  * any pending IO in the group is finished.
1126  *
1127  * This function is called under rcu_read_lock(). key is the rcu protected
1128  * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1129  * read lock.
1130  *
1131  * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1132  * it should not be NULL as even if elevator was exiting, cgroup deltion
1133  * path got to it first.
1134  */
1135 void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1136 {
1137         unsigned long  flags;
1138         struct cfq_data *cfqd = key;
1139
1140         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1141         cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1142         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1143 }
1144
1145 #else /* GROUP_IOSCHED */
1146 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1147 {
1148         return &cfqd->root_group;
1149 }
1150
1151 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1152 {
1153         return cfqg;
1154 }
1155
1156 static inline void
1157 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1158         cfqq->cfqg = cfqg;
1159 }
1160
1161 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1162 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1163
1164 #endif /* GROUP_IOSCHED */
1165
1166 /*
1167  * The cfqd->service_trees holds all pending cfq_queue's that have
1168  * requests waiting to be processed. It is sorted in the order that
1169  * we will service the queues.
1170  */
1171 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1172                                  bool add_front)
1173 {
1174         struct rb_node **p, *parent;
1175         struct cfq_queue *__cfqq;
1176         unsigned long rb_key;
1177         struct cfq_rb_root *service_tree;
1178         int left;
1179         int new_cfqq = 1;
1180         int group_changed = 0;
1181
1182 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1183         if (!cfqd->cfq_group_isolation
1184             && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1185             && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1186                 /* Move this cfq to root group */
1187                 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1188                 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1189                         cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1190                 cfqq->orig_cfqg = cfqq->cfqg;
1191                 cfqq->cfqg = &cfqd->root_group;
1192                 cfqd->root_group.ref++;
1193                 group_changed = 1;
1194         } else if (!cfqd->cfq_group_isolation
1195                    && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1196                 /* cfqq is sequential now needs to go to its original group */
1197                 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1198                 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1199                         cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1200                 cfq_put_cfqg(cfqq->cfqg);
1201                 cfqq->cfqg = cfqq->orig_cfqg;
1202                 cfqq->orig_cfqg = NULL;
1203                 group_changed = 1;
1204                 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1205         }
1206 #endif
1207
1208         service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1209                                                 cfqq_type(cfqq));
1210         if (cfq_class_idle(cfqq)) {
1211                 rb_key = CFQ_IDLE_DELAY;
1212                 parent = rb_last(&service_tree->rb);
1213                 if (parent && parent != &cfqq->rb_node) {
1214                         __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1215                         rb_key += __cfqq->rb_key;
1216                 } else
1217                         rb_key += jiffies;
1218         } else if (!add_front) {
1219                 /*
1220                  * Get our rb key offset. Subtract any residual slice
1221                  * value carried from last service. A negative resid
1222                  * count indicates slice overrun, and this should position
1223                  * the next service time further away in the tree.
1224                  */
1225                 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1226                 rb_key -= cfqq->slice_resid;
1227                 cfqq->slice_resid = 0;
1228         } else {
1229                 rb_key = -HZ;
1230                 __cfqq = cfq_rb_first(service_tree);
1231                 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1232         }
1233
1234         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1235                 new_cfqq = 0;
1236                 /*
1237                  * same position, nothing more to do
1238                  */
1239                 if (rb_key == cfqq->rb_key &&
1240                     cfqq->service_tree == service_tree)
1241                         return;
1242
1243                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1244                 cfqq->service_tree = NULL;
1245         }
1246
1247         left = 1;
1248         parent = NULL;
1249         cfqq->service_tree = service_tree;
1250         p = &service_tree->rb.rb_node;
1251         while (*p) {
1252                 struct rb_node **n;
1253
1254                 parent = *p;
1255                 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1256
1257                 /*
1258                  * sort by key, that represents service time.
1259                  */
1260                 if (time_before(rb_key, __cfqq->rb_key))
1261                         n = &(*p)->rb_left;
1262                 else {
1263                         n = &(*p)->rb_right;
1264                         left = 0;
1265                 }
1266
1267                 p = n;
1268         }
1269
1270         if (left)
1271                 service_tree->left = &cfqq->rb_node;
1272
1273         cfqq->rb_key = rb_key;
1274         rb_link_node(&cfqq->rb_node, parent, p);
1275         rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1276         service_tree->count++;
1277         if ((add_front || !new_cfqq) && !group_changed)
1278                 return;
1279         cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1280 }
1281
1282 static struct cfq_queue *
1283 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1284                      sector_t sector, struct rb_node **ret_parent,
1285                      struct rb_node ***rb_link)
1286 {
1287         struct rb_node **p, *parent;
1288         struct cfq_queue *cfqq = NULL;
1289
1290         parent = NULL;
1291         p = &root->rb_node;
1292         while (*p) {
1293                 struct rb_node **n;
1294
1295                 parent = *p;
1296                 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1297
1298                 /*
1299                  * Sort strictly based on sector.  Smallest to the left,
1300                  * largest to the right.
1301                  */
1302                 if (sector > blk_rq_pos(cfqq->next_rq))
1303                         n = &(*p)->rb_right;
1304                 else if (sector < blk_rq_pos(cfqq->next_rq))
1305                         n = &(*p)->rb_left;
1306                 else
1307                         break;
1308                 p = n;
1309                 cfqq = NULL;
1310         }
1311
1312         *ret_parent = parent;
1313         if (rb_link)
1314                 *rb_link = p;
1315         return cfqq;
1316 }
1317
1318 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1319 {
1320         struct rb_node **p, *parent;
1321         struct cfq_queue *__cfqq;
1322
1323         if (cfqq->p_root) {
1324                 rb_erase(&cfqq->p_node, cfqq->p_root);
1325                 cfqq->p_root = NULL;
1326         }
1327
1328         if (cfq_class_idle(cfqq))
1329                 return;
1330         if (!cfqq->next_rq)
1331                 return;
1332
1333         cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1334         __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1335                                       blk_rq_pos(cfqq->next_rq), &parent, &p);
1336         if (!__cfqq) {
1337                 rb_link_node(&cfqq->p_node, parent, p);
1338                 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1339         } else
1340                 cfqq->p_root = NULL;
1341 }
1342
1343 /*
1344  * Update cfqq's position in the service tree.
1345  */
1346 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1347 {
1348         /*
1349          * Resorting requires the cfqq to be on the RR list already.
1350          */
1351         if (cfq_cfqq_on_rr(cfqq)) {
1352                 cfq_service_tree_add(cfqd, cfqq, 0);
1353                 cfq_prio_tree_add(cfqd, cfqq);
1354         }
1355 }
1356
1357 /*
1358  * add to busy list of queues for service, trying to be fair in ordering
1359  * the pending list according to last request service
1360  */
1361 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1362 {
1363         cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1364         BUG_ON(cfq_cfqq_on_rr(cfqq));
1365         cfq_mark_cfqq_on_rr(cfqq);
1366         cfqd->busy_queues++;
1367
1368         cfq_resort_rr_list(cfqd, cfqq);
1369 }
1370
1371 /*
1372  * Called when the cfqq no longer has requests pending, remove it from
1373  * the service tree.
1374  */
1375 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1376 {
1377         cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1378         BUG_ON(!cfq_cfqq_on_rr(cfqq));
1379         cfq_clear_cfqq_on_rr(cfqq);
1380
1381         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1382                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1383                 cfqq->service_tree = NULL;
1384         }
1385         if (cfqq->p_root) {
1386                 rb_erase(&cfqq->p_node, cfqq->p_root);
1387                 cfqq->p_root = NULL;
1388         }
1389
1390         cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1391         BUG_ON(!cfqd->busy_queues);
1392         cfqd->busy_queues--;
1393 }
1394
1395 /*
1396  * rb tree support functions
1397  */
1398 static void cfq_del_rq_rb(struct request *rq)
1399 {
1400         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1401         const int sync = rq_is_sync(rq);
1402
1403         BUG_ON(!cfqq->queued[sync]);
1404         cfqq->queued[sync]--;
1405
1406         elv_rb_del(&cfqq->sort_list, rq);
1407
1408         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1409                 /*
1410                  * Queue will be deleted from service tree when we actually
1411                  * expire it later. Right now just remove it from prio tree
1412                  * as it is empty.
1413                  */
1414                 if (cfqq->p_root) {
1415                         rb_erase(&cfqq->p_node, cfqq->p_root);
1416                         cfqq->p_root = NULL;
1417                 }
1418         }
1419 }
1420
1421 static void cfq_add_rq_rb(struct request *rq)
1422 {
1423         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1424         struct cfq_data *cfqd = cfqq->cfqd;
1425         struct request *__alias, *prev;
1426
1427         cfqq->queued[rq_is_sync(rq)]++;
1428
1429         /*
1430          * looks a little odd, but the first insert might return an alias.
1431          * if that happens, put the alias on the dispatch list
1432          */
1433         while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1434                 cfq_dispatch_insert(cfqd->queue, __alias);
1435
1436         if (!cfq_cfqq_on_rr(cfqq))
1437                 cfq_add_cfqq_rr(cfqd, cfqq);
1438
1439         /*
1440          * check if this request is a better next-serve candidate
1441          */
1442         prev = cfqq->next_rq;
1443         cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1444
1445         /*
1446          * adjust priority tree position, if ->next_rq changes
1447          */
1448         if (prev != cfqq->next_rq)
1449                 cfq_prio_tree_add(cfqd, cfqq);
1450
1451         BUG_ON(!cfqq->next_rq);
1452 }
1453
1454 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1455 {
1456         elv_rb_del(&cfqq->sort_list, rq);
1457         cfqq->queued[rq_is_sync(rq)]--;
1458         cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1459                                         rq_data_dir(rq), rq_is_sync(rq));
1460         cfq_add_rq_rb(rq);
1461         cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
1462                         &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1463                         rq_is_sync(rq));
1464 }
1465
1466 static struct request *
1467 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1468 {
1469         struct task_struct *tsk = current;
1470         struct cfq_io_context *cic;
1471         struct cfq_queue *cfqq;
1472
1473         cic = cfq_cic_lookup(cfqd, tsk->io_context);
1474         if (!cic)
1475                 return NULL;
1476
1477         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1478         if (cfqq) {
1479                 sector_t sector = bio->bi_sector + bio_sectors(bio);
1480
1481                 return elv_rb_find(&cfqq->sort_list, sector);
1482         }
1483
1484         return NULL;
1485 }
1486
1487 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1488 {
1489         struct cfq_data *cfqd = q->elevator->elevator_data;
1490
1491         cfqd->rq_in_driver++;
1492         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1493                                                 cfqd->rq_in_driver);
1494
1495         cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1496 }
1497
1498 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1499 {
1500         struct cfq_data *cfqd = q->elevator->elevator_data;
1501
1502         WARN_ON(!cfqd->rq_in_driver);
1503         cfqd->rq_in_driver--;
1504         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1505                                                 cfqd->rq_in_driver);
1506 }
1507
1508 static void cfq_remove_request(struct request *rq)
1509 {
1510         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1511
1512         if (cfqq->next_rq == rq)
1513                 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1514
1515         list_del_init(&rq->queuelist);
1516         cfq_del_rq_rb(rq);
1517
1518         cfqq->cfqd->rq_queued--;
1519         cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1520                                         rq_data_dir(rq), rq_is_sync(rq));
1521         if (rq->cmd_flags & REQ_META) {
1522                 WARN_ON(!cfqq->meta_pending);
1523                 cfqq->meta_pending--;
1524         }
1525 }
1526
1527 static int cfq_merge(struct request_queue *q, struct request **req,
1528                      struct bio *bio)
1529 {
1530         struct cfq_data *cfqd = q->elevator->elevator_data;
1531         struct request *__rq;
1532
1533         __rq = cfq_find_rq_fmerge(cfqd, bio);
1534         if (__rq && elv_rq_merge_ok(__rq, bio)) {
1535                 *req = __rq;
1536                 return ELEVATOR_FRONT_MERGE;
1537         }
1538
1539         return ELEVATOR_NO_MERGE;
1540 }
1541
1542 static void cfq_merged_request(struct request_queue *q, struct request *req,
1543                                int type)
1544 {
1545         if (type == ELEVATOR_FRONT_MERGE) {
1546                 struct cfq_queue *cfqq = RQ_CFQQ(req);
1547
1548                 cfq_reposition_rq_rb(cfqq, req);
1549         }
1550 }
1551
1552 static void cfq_bio_merged(struct request_queue *q, struct request *req,
1553                                 struct bio *bio)
1554 {
1555         cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1556                                         bio_data_dir(bio), cfq_bio_sync(bio));
1557 }
1558
1559 static void
1560 cfq_merged_requests(struct request_queue *q, struct request *rq,
1561                     struct request *next)
1562 {
1563         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1564         /*
1565          * reposition in fifo if next is older than rq
1566          */
1567         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1568             time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1569                 list_move(&rq->queuelist, &next->queuelist);
1570                 rq_set_fifo_time(rq, rq_fifo_time(next));
1571         }
1572
1573         if (cfqq->next_rq == next)
1574                 cfqq->next_rq = rq;
1575         cfq_remove_request(next);
1576         cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1577                                         rq_data_dir(next), rq_is_sync(next));
1578 }
1579
1580 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1581                            struct bio *bio)
1582 {
1583         struct cfq_data *cfqd = q->elevator->elevator_data;
1584         struct cfq_io_context *cic;
1585         struct cfq_queue *cfqq;
1586
1587         /*
1588          * Disallow merge of a sync bio into an async request.
1589          */
1590         if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1591                 return false;
1592
1593         /*
1594          * Lookup the cfqq that this bio will be queued with. Allow
1595          * merge only if rq is queued there.
1596          */
1597         cic = cfq_cic_lookup(cfqd, current->io_context);
1598         if (!cic)
1599                 return false;
1600
1601         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1602         return cfqq == RQ_CFQQ(rq);
1603 }
1604
1605 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1606 {
1607         del_timer(&cfqd->idle_slice_timer);
1608         cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
1609 }
1610
1611 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1612                                    struct cfq_queue *cfqq)
1613 {
1614         if (cfqq) {
1615                 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1616                                 cfqd->serving_prio, cfqd->serving_type);
1617                 cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1618                 cfqq->slice_start = 0;
1619                 cfqq->dispatch_start = jiffies;
1620                 cfqq->allocated_slice = 0;
1621                 cfqq->slice_end = 0;
1622                 cfqq->slice_dispatch = 0;
1623                 cfqq->nr_sectors = 0;
1624
1625                 cfq_clear_cfqq_wait_request(cfqq);
1626                 cfq_clear_cfqq_must_dispatch(cfqq);
1627                 cfq_clear_cfqq_must_alloc_slice(cfqq);
1628                 cfq_clear_cfqq_fifo_expire(cfqq);
1629                 cfq_mark_cfqq_slice_new(cfqq);
1630
1631                 cfq_del_timer(cfqd, cfqq);
1632         }
1633
1634         cfqd->active_queue = cfqq;
1635 }
1636
1637 /*
1638  * current cfqq expired its slice (or was too idle), select new one
1639  */
1640 static void
1641 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1642                     bool timed_out)
1643 {
1644         cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1645
1646         if (cfq_cfqq_wait_request(cfqq))
1647                 cfq_del_timer(cfqd, cfqq);
1648
1649         cfq_clear_cfqq_wait_request(cfqq);
1650         cfq_clear_cfqq_wait_busy(cfqq);
1651
1652         /*
1653          * If this cfqq is shared between multiple processes, check to
1654          * make sure that those processes are still issuing I/Os within
1655          * the mean seek distance.  If not, it may be time to break the
1656          * queues apart again.
1657          */
1658         if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1659                 cfq_mark_cfqq_split_coop(cfqq);
1660
1661         /*
1662          * store what was left of this slice, if the queue idled/timed out
1663          */
1664         if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1665                 cfqq->slice_resid = cfqq->slice_end - jiffies;
1666                 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1667         }
1668
1669         cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1670
1671         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1672                 cfq_del_cfqq_rr(cfqd, cfqq);
1673
1674         cfq_resort_rr_list(cfqd, cfqq);
1675
1676         if (cfqq == cfqd->active_queue)
1677                 cfqd->active_queue = NULL;
1678
1679         if (cfqd->active_cic) {
1680                 put_io_context(cfqd->active_cic->ioc);
1681                 cfqd->active_cic = NULL;
1682         }
1683 }
1684
1685 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1686 {
1687         struct cfq_queue *cfqq = cfqd->active_queue;
1688
1689         if (cfqq)
1690                 __cfq_slice_expired(cfqd, cfqq, timed_out);
1691 }
1692
1693 /*
1694  * Get next queue for service. Unless we have a queue preemption,
1695  * we'll simply select the first cfqq in the service tree.
1696  */
1697 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1698 {
1699         struct cfq_rb_root *service_tree =
1700                 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1701                                         cfqd->serving_type);
1702
1703         if (!cfqd->rq_queued)
1704                 return NULL;
1705
1706         /* There is nothing to dispatch */
1707         if (!service_tree)
1708                 return NULL;
1709         if (RB_EMPTY_ROOT(&service_tree->rb))
1710                 return NULL;
1711         return cfq_rb_first(service_tree);
1712 }
1713
1714 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1715 {
1716         struct cfq_group *cfqg;
1717         struct cfq_queue *cfqq;
1718         int i, j;
1719         struct cfq_rb_root *st;
1720
1721         if (!cfqd->rq_queued)
1722                 return NULL;
1723
1724         cfqg = cfq_get_next_cfqg(cfqd);
1725         if (!cfqg)
1726                 return NULL;
1727
1728         for_each_cfqg_st(cfqg, i, j, st)
1729                 if ((cfqq = cfq_rb_first(st)) != NULL)
1730                         return cfqq;
1731         return NULL;
1732 }
1733
1734 /*
1735  * Get and set a new active queue for service.
1736  */
1737 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1738                                               struct cfq_queue *cfqq)
1739 {
1740         if (!cfqq)
1741                 cfqq = cfq_get_next_queue(cfqd);
1742
1743         __cfq_set_active_queue(cfqd, cfqq);
1744         return cfqq;
1745 }
1746
1747 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1748                                           struct request *rq)
1749 {
1750         if (blk_rq_pos(rq) >= cfqd->last_position)
1751                 return blk_rq_pos(rq) - cfqd->last_position;
1752         else
1753                 return cfqd->last_position - blk_rq_pos(rq);
1754 }
1755
1756 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1757                                struct request *rq)
1758 {
1759         return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1760 }
1761
1762 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1763                                     struct cfq_queue *cur_cfqq)
1764 {
1765         struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1766         struct rb_node *parent, *node;
1767         struct cfq_queue *__cfqq;
1768         sector_t sector = cfqd->last_position;
1769
1770         if (RB_EMPTY_ROOT(root))
1771                 return NULL;
1772
1773         /*
1774          * First, if we find a request starting at the end of the last
1775          * request, choose it.
1776          */
1777         __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1778         if (__cfqq)
1779                 return __cfqq;
1780
1781         /*
1782          * If the exact sector wasn't found, the parent of the NULL leaf
1783          * will contain the closest sector.
1784          */
1785         __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1786         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1787                 return __cfqq;
1788
1789         if (blk_rq_pos(__cfqq->next_rq) < sector)
1790                 node = rb_next(&__cfqq->p_node);
1791         else
1792                 node = rb_prev(&__cfqq->p_node);
1793         if (!node)
1794                 return NULL;
1795
1796         __cfqq = rb_entry(node, struct cfq_queue, p_node);
1797         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1798                 return __cfqq;
1799
1800         return NULL;
1801 }
1802
1803 /*
1804  * cfqd - obvious
1805  * cur_cfqq - passed in so that we don't decide that the current queue is
1806  *            closely cooperating with itself.
1807  *
1808  * So, basically we're assuming that that cur_cfqq has dispatched at least
1809  * one request, and that cfqd->last_position reflects a position on the disk
1810  * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1811  * assumption.
1812  */
1813 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1814                                               struct cfq_queue *cur_cfqq)
1815 {
1816         struct cfq_queue *cfqq;
1817
1818         if (cfq_class_idle(cur_cfqq))
1819                 return NULL;
1820         if (!cfq_cfqq_sync(cur_cfqq))
1821                 return NULL;
1822         if (CFQQ_SEEKY(cur_cfqq))
1823                 return NULL;
1824
1825         /*
1826          * Don't search priority tree if it's the only queue in the group.
1827          */
1828         if (cur_cfqq->cfqg->nr_cfqq == 1)
1829                 return NULL;
1830
1831         /*
1832          * We should notice if some of the queues are cooperating, eg
1833          * working closely on the same area of the disk. In that case,
1834          * we can group them together and don't waste time idling.
1835          */
1836         cfqq = cfqq_close(cfqd, cur_cfqq);
1837         if (!cfqq)
1838                 return NULL;
1839
1840         /* If new queue belongs to different cfq_group, don't choose it */
1841         if (cur_cfqq->cfqg != cfqq->cfqg)
1842                 return NULL;
1843
1844         /*
1845          * It only makes sense to merge sync queues.
1846          */
1847         if (!cfq_cfqq_sync(cfqq))
1848                 return NULL;
1849         if (CFQQ_SEEKY(cfqq))
1850                 return NULL;
1851
1852         /*
1853          * Do not merge queues of different priority classes
1854          */
1855         if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1856                 return NULL;
1857
1858         return cfqq;
1859 }
1860
1861 /*
1862  * Determine whether we should enforce idle window for this queue.
1863  */
1864
1865 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1866 {
1867         enum wl_prio_t prio = cfqq_prio(cfqq);
1868         struct cfq_rb_root *service_tree = cfqq->service_tree;
1869
1870         BUG_ON(!service_tree);
1871         BUG_ON(!service_tree->count);
1872
1873         if (!cfqd->cfq_slice_idle)
1874                 return false;
1875
1876         /* We never do for idle class queues. */
1877         if (prio == IDLE_WORKLOAD)
1878                 return false;
1879
1880         /* We do for queues that were marked with idle window flag. */
1881         if (cfq_cfqq_idle_window(cfqq) &&
1882            !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1883                 return true;
1884
1885         /*
1886          * Otherwise, we do only if they are the last ones
1887          * in their service tree.
1888          */
1889         if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
1890                 return true;
1891         cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1892                         service_tree->count);
1893         return false;
1894 }
1895
1896 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1897 {
1898         struct cfq_queue *cfqq = cfqd->active_queue;
1899         struct cfq_io_context *cic;
1900         unsigned long sl, group_idle = 0;
1901
1902         /*
1903          * SSD device without seek penalty, disable idling. But only do so
1904          * for devices that support queuing, otherwise we still have a problem
1905          * with sync vs async workloads.
1906          */
1907         if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1908                 return;
1909
1910         WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1911         WARN_ON(cfq_cfqq_slice_new(cfqq));
1912
1913         /*
1914          * idle is disabled, either manually or by past process history
1915          */
1916         if (!cfq_should_idle(cfqd, cfqq)) {
1917                 /* no queue idling. Check for group idling */
1918                 if (cfqd->cfq_group_idle)
1919                         group_idle = cfqd->cfq_group_idle;
1920                 else
1921                         return;
1922         }
1923
1924         /*
1925          * still active requests from this queue, don't idle
1926          */
1927         if (cfqq->dispatched)
1928                 return;
1929
1930         /*
1931          * task has exited, don't wait
1932          */
1933         cic = cfqd->active_cic;
1934         if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1935                 return;
1936
1937         /*
1938          * If our average think time is larger than the remaining time
1939          * slice, then don't idle. This avoids overrunning the allotted
1940          * time slice.
1941          */
1942         if (sample_valid(cic->ttime_samples) &&
1943             (cfqq->slice_end - jiffies < cic->ttime_mean)) {
1944                 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
1945                                 cic->ttime_mean);
1946                 return;
1947         }
1948
1949         /* There are other queues in the group, don't do group idle */
1950         if (group_idle && cfqq->cfqg->nr_cfqq > 1)
1951                 return;
1952
1953         cfq_mark_cfqq_wait_request(cfqq);
1954
1955         if (group_idle)
1956                 sl = cfqd->cfq_group_idle;
1957         else
1958                 sl = cfqd->cfq_slice_idle;
1959
1960         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1961         cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
1962         cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
1963                         group_idle ? 1 : 0);
1964 }
1965
1966 /*
1967  * Move request from internal lists to the request queue dispatch list.
1968  */
1969 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1970 {
1971         struct cfq_data *cfqd = q->elevator->elevator_data;
1972         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1973
1974         cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1975
1976         cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1977         cfq_remove_request(rq);
1978         cfqq->dispatched++;
1979         (RQ_CFQG(rq))->dispatched++;
1980         elv_dispatch_sort(q, rq);
1981
1982         cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
1983         cfqq->nr_sectors += blk_rq_sectors(rq);
1984         cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
1985                                         rq_data_dir(rq), rq_is_sync(rq));
1986 }
1987
1988 /*
1989  * return expired entry, or NULL to just start from scratch in rbtree
1990  */
1991 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1992 {
1993         struct request *rq = NULL;
1994
1995         if (cfq_cfqq_fifo_expire(cfqq))
1996                 return NULL;
1997
1998         cfq_mark_cfqq_fifo_expire(cfqq);
1999
2000         if (list_empty(&cfqq->fifo))
2001                 return NULL;
2002
2003         rq = rq_entry_fifo(cfqq->fifo.next);
2004         if (time_before(jiffies, rq_fifo_time(rq)))
2005                 rq = NULL;
2006
2007         cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2008         return rq;
2009 }
2010
2011 static inline int
2012 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2013 {
2014         const int base_rq = cfqd->cfq_slice_async_rq;
2015
2016         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2017
2018         return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
2019 }
2020
2021 /*
2022  * Must be called with the queue_lock held.
2023  */
2024 static int cfqq_process_refs(struct cfq_queue *cfqq)
2025 {
2026         int process_refs, io_refs;
2027
2028         io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2029         process_refs = cfqq->ref - io_refs;
2030         BUG_ON(process_refs < 0);
2031         return process_refs;
2032 }
2033
2034 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2035 {
2036         int process_refs, new_process_refs;
2037         struct cfq_queue *__cfqq;
2038
2039         /*
2040          * If there are no process references on the new_cfqq, then it is
2041          * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2042          * chain may have dropped their last reference (not just their
2043          * last process reference).
2044          */
2045         if (!cfqq_process_refs(new_cfqq))
2046                 return;
2047
2048         /* Avoid a circular list and skip interim queue merges */
2049         while ((__cfqq = new_cfqq->new_cfqq)) {
2050                 if (__cfqq == cfqq)
2051                         return;
2052                 new_cfqq = __cfqq;
2053         }
2054
2055         process_refs = cfqq_process_refs(cfqq);
2056         new_process_refs = cfqq_process_refs(new_cfqq);
2057         /*
2058          * If the process for the cfqq has gone away, there is no
2059          * sense in merging the queues.
2060          */
2061         if (process_refs == 0 || new_process_refs == 0)
2062                 return;
2063
2064         /*
2065          * Merge in the direction of the lesser amount of work.
2066          */
2067         if (new_process_refs >= process_refs) {
2068                 cfqq->new_cfqq = new_cfqq;
2069                 new_cfqq->ref += process_refs;
2070         } else {
2071                 new_cfqq->new_cfqq = cfqq;
2072                 cfqq->ref += new_process_refs;
2073         }
2074 }
2075
2076 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
2077                                 struct cfq_group *cfqg, enum wl_prio_t prio)
2078 {
2079         struct cfq_queue *queue;
2080         int i;
2081         bool key_valid = false;
2082         unsigned long lowest_key = 0;
2083         enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2084
2085         for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2086                 /* select the one with lowest rb_key */
2087                 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2088                 if (queue &&
2089                     (!key_valid || time_before(queue->rb_key, lowest_key))) {
2090                         lowest_key = queue->rb_key;
2091                         cur_best = i;
2092                         key_valid = true;
2093                 }
2094         }
2095
2096         return cur_best;
2097 }
2098
2099 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2100 {
2101         unsigned slice;
2102         unsigned count;
2103         struct cfq_rb_root *st;
2104         unsigned group_slice;
2105         enum wl_prio_t original_prio = cfqd->serving_prio;
2106
2107         /* Choose next priority. RT > BE > IDLE */
2108         if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2109                 cfqd->serving_prio = RT_WORKLOAD;
2110         else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2111                 cfqd->serving_prio = BE_WORKLOAD;
2112         else {
2113                 cfqd->serving_prio = IDLE_WORKLOAD;
2114                 cfqd->workload_expires = jiffies + 1;
2115                 return;
2116         }
2117
2118         if (original_prio != cfqd->serving_prio)
2119                 goto new_workload;
2120
2121         /*
2122          * For RT and BE, we have to choose also the type
2123          * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2124          * expiration time
2125          */
2126         st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2127         count = st->count;
2128
2129         /*
2130          * check workload expiration, and that we still have other queues ready
2131          */
2132         if (count && !time_after(jiffies, cfqd->workload_expires))
2133                 return;
2134
2135 new_workload:
2136         /* otherwise select new workload type */
2137         cfqd->serving_type =
2138                 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2139         st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2140         count = st->count;
2141
2142         /*
2143          * the workload slice is computed as a fraction of target latency
2144          * proportional to the number of queues in that workload, over
2145          * all the queues in the same priority class
2146          */
2147         group_slice = cfq_group_slice(cfqd, cfqg);
2148
2149         slice = group_slice * count /
2150                 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2151                       cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2152
2153         if (cfqd->serving_type == ASYNC_WORKLOAD) {
2154                 unsigned int tmp;
2155
2156                 /*
2157                  * Async queues are currently system wide. Just taking
2158                  * proportion of queues with-in same group will lead to higher
2159                  * async ratio system wide as generally root group is going
2160                  * to have higher weight. A more accurate thing would be to
2161                  * calculate system wide asnc/sync ratio.
2162                  */
2163                 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2164                 tmp = tmp/cfqd->busy_queues;
2165                 slice = min_t(unsigned, slice, tmp);
2166
2167                 /* async workload slice is scaled down according to
2168                  * the sync/async slice ratio. */
2169                 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2170         } else
2171                 /* sync workload slice is at least 2 * cfq_slice_idle */
2172                 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2173
2174         slice = max_t(unsigned, slice, CFQ_MIN_TT);
2175         cfq_log(cfqd, "workload slice:%d", slice);
2176         cfqd->workload_expires = jiffies + slice;
2177 }
2178
2179 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2180 {
2181         struct cfq_rb_root *st = &cfqd->grp_service_tree;
2182         struct cfq_group *cfqg;
2183
2184         if (RB_EMPTY_ROOT(&st->rb))
2185                 return NULL;
2186         cfqg = cfq_rb_first_group(st);
2187         update_min_vdisktime(st);
2188         return cfqg;
2189 }
2190
2191 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2192 {
2193         struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2194
2195         cfqd->serving_group = cfqg;
2196
2197         /* Restore the workload type data */
2198         if (cfqg->saved_workload_slice) {
2199                 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2200                 cfqd->serving_type = cfqg->saved_workload;
2201                 cfqd->serving_prio = cfqg->saved_serving_prio;
2202         } else
2203                 cfqd->workload_expires = jiffies - 1;
2204
2205         choose_service_tree(cfqd, cfqg);
2206 }
2207
2208 /*
2209  * Select a queue for service. If we have a current active queue,
2210  * check whether to continue servicing it, or retrieve and set a new one.
2211  */
2212 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2213 {
2214         struct cfq_queue *cfqq, *new_cfqq = NULL;
2215
2216         cfqq = cfqd->active_queue;
2217         if (!cfqq)
2218                 goto new_queue;
2219
2220         if (!cfqd->rq_queued)
2221                 return NULL;
2222
2223         /*
2224          * We were waiting for group to get backlogged. Expire the queue
2225          */
2226         if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2227                 goto expire;
2228
2229         /*
2230          * The active queue has run out of time, expire it and select new.
2231          */
2232         if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2233                 /*
2234                  * If slice had not expired at the completion of last request
2235                  * we might not have turned on wait_busy flag. Don't expire
2236                  * the queue yet. Allow the group to get backlogged.
2237                  *
2238                  * The very fact that we have used the slice, that means we
2239                  * have been idling all along on this queue and it should be
2240                  * ok to wait for this request to complete.
2241                  */
2242                 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2243                     && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2244                         cfqq = NULL;
2245                         goto keep_queue;
2246                 } else
2247                         goto check_group_idle;
2248         }
2249
2250         /*
2251          * The active queue has requests and isn't expired, allow it to
2252          * dispatch.
2253          */
2254         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2255                 goto keep_queue;
2256
2257         /*
2258          * If another queue has a request waiting within our mean seek
2259          * distance, let it run.  The expire code will check for close
2260          * cooperators and put the close queue at the front of the service
2261          * tree.  If possible, merge the expiring queue with the new cfqq.
2262          */
2263         new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2264         if (new_cfqq) {
2265                 if (!cfqq->new_cfqq)
2266                         cfq_setup_merge(cfqq, new_cfqq);
2267                 goto expire;
2268         }
2269
2270         /*
2271          * No requests pending. If the active queue still has requests in
2272          * flight or is idling for a new request, allow either of these
2273          * conditions to happen (or time out) before selecting a new queue.
2274          */
2275         if (timer_pending(&cfqd->idle_slice_timer)) {
2276                 cfqq = NULL;
2277                 goto keep_queue;
2278         }
2279
2280         /*
2281          * This is a deep seek queue, but the device is much faster than
2282          * the queue can deliver, don't idle
2283          **/
2284         if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2285             (cfq_cfqq_slice_new(cfqq) ||
2286             (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2287                 cfq_clear_cfqq_deep(cfqq);
2288                 cfq_clear_cfqq_idle_window(cfqq);
2289         }
2290
2291         if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2292                 cfqq = NULL;
2293                 goto keep_queue;
2294         }
2295
2296         /*
2297          * If group idle is enabled and there are requests dispatched from
2298          * this group, wait for requests to complete.
2299          */
2300 check_group_idle:
2301         if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1
2302             && cfqq->cfqg->dispatched) {
2303                 cfqq = NULL;
2304                 goto keep_queue;
2305         }
2306
2307 expire:
2308         cfq_slice_expired(cfqd, 0);
2309 new_queue:
2310         /*
2311          * Current queue expired. Check if we have to switch to a new
2312          * service tree
2313          */
2314         if (!new_cfqq)
2315                 cfq_choose_cfqg(cfqd);
2316
2317         cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2318 keep_queue:
2319         return cfqq;
2320 }
2321
2322 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2323 {
2324         int dispatched = 0;
2325
2326         while (cfqq->next_rq) {
2327                 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2328                 dispatched++;
2329         }
2330
2331         BUG_ON(!list_empty(&cfqq->fifo));
2332
2333         /* By default cfqq is not expired if it is empty. Do it explicitly */
2334         __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2335         return dispatched;
2336 }
2337
2338 /*
2339  * Drain our current requests. Used for barriers and when switching
2340  * io schedulers on-the-fly.
2341  */
2342 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2343 {
2344         struct cfq_queue *cfqq;
2345         int dispatched = 0;
2346
2347         /* Expire the timeslice of the current active queue first */
2348         cfq_slice_expired(cfqd, 0);
2349         while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2350                 __cfq_set_active_queue(cfqd, cfqq);
2351                 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2352         }
2353
2354         BUG_ON(cfqd->busy_queues);
2355
2356         cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2357         return dispatched;
2358 }
2359
2360 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2361         struct cfq_queue *cfqq)
2362 {
2363         /* the queue hasn't finished any request, can't estimate */
2364         if (cfq_cfqq_slice_new(cfqq))
2365                 return true;
2366         if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2367                 cfqq->slice_end))
2368                 return true;
2369
2370         return false;
2371 }
2372
2373 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2374 {
2375         unsigned int max_dispatch;
2376
2377         /*
2378          * Drain async requests before we start sync IO
2379          */
2380         if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2381                 return false;
2382
2383         /*
2384          * If this is an async queue and we have sync IO in flight, let it wait
2385          */
2386         if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2387                 return false;
2388
2389         max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2390         if (cfq_class_idle(cfqq))
2391                 max_dispatch = 1;
2392
2393         /*
2394          * Does this cfqq already have too much IO in flight?
2395          */
2396         if (cfqq->dispatched >= max_dispatch) {
2397                 /*
2398                  * idle queue must always only have a single IO in flight
2399                  */
2400                 if (cfq_class_idle(cfqq))
2401                         return false;
2402
2403                 /*
2404                  * We have other queues, don't allow more IO from this one
2405                  */
2406                 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
2407                         return false;
2408
2409                 /*
2410                  * Sole queue user, no limit
2411                  */
2412                 if (cfqd->busy_queues == 1)
2413                         max_dispatch = -1;
2414                 else
2415                         /*
2416                          * Normally we start throttling cfqq when cfq_quantum/2
2417                          * requests have been dispatched. But we can drive
2418                          * deeper queue depths at the beginning of slice
2419                          * subjected to upper limit of cfq_quantum.
2420                          * */
2421                         max_dispatch = cfqd->cfq_quantum;
2422         }
2423
2424         /*
2425          * Async queues must wait a bit before being allowed dispatch.
2426          * We also ramp up the dispatch depth gradually for async IO,
2427          * based on the last sync IO we serviced
2428          */
2429         if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2430                 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2431                 unsigned int depth;
2432
2433                 depth = last_sync / cfqd->cfq_slice[1];
2434                 if (!depth && !cfqq->dispatched)
2435                         depth = 1;
2436                 if (depth < max_dispatch)
2437                         max_dispatch = depth;
2438         }
2439
2440         /*
2441          * If we're below the current max, allow a dispatch
2442          */
2443         return cfqq->dispatched < max_dispatch;
2444 }
2445
2446 /*
2447  * Dispatch a request from cfqq, moving them to the request queue
2448  * dispatch list.
2449  */
2450 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2451 {
2452         struct request *rq;
2453
2454         BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2455
2456         if (!cfq_may_dispatch(cfqd, cfqq))
2457                 return false;
2458
2459         /*
2460          * follow expired path, else get first next available
2461          */
2462         rq = cfq_check_fifo(cfqq);
2463         if (!rq)
2464                 rq = cfqq->next_rq;
2465
2466         /*
2467          * insert request into driver dispatch list
2468          */
2469         cfq_dispatch_insert(cfqd->queue, rq);
2470
2471         if (!cfqd->active_cic) {
2472                 struct cfq_io_context *cic = RQ_CIC(rq);
2473
2474                 atomic_long_inc(&cic->ioc->refcount);
2475                 cfqd->active_cic = cic;
2476         }
2477
2478         return true;
2479 }
2480
2481 /*
2482  * Find the cfqq that we need to service and move a request from that to the
2483  * dispatch list
2484  */
2485 static int cfq_dispatch_requests(struct request_queue *q, int force)
2486 {
2487         struct cfq_data *cfqd = q->elevator->elevator_data;
2488         struct cfq_queue *cfqq;
2489
2490         if (!cfqd->busy_queues)
2491                 return 0;
2492
2493         if (unlikely(force))
2494                 return cfq_forced_dispatch(cfqd);
2495
2496         cfqq = cfq_select_queue(cfqd);
2497         if (!cfqq)
2498                 return 0;
2499
2500         /*
2501          * Dispatch a request from this cfqq, if it is allowed
2502          */
2503         if (!cfq_dispatch_request(cfqd, cfqq))
2504                 return 0;
2505
2506         cfqq->slice_dispatch++;
2507         cfq_clear_cfqq_must_dispatch(cfqq);
2508
2509         /*
2510          * expire an async queue immediately if it has used up its slice. idle
2511          * queue always expire after 1 dispatch round.
2512          */
2513         if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2514             cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2515             cfq_class_idle(cfqq))) {
2516                 cfqq->slice_end = jiffies + 1;
2517                 cfq_slice_expired(cfqd, 0);
2518         }
2519
2520         cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2521         return 1;
2522 }
2523
2524 /*
2525  * task holds one reference to the queue, dropped when task exits. each rq
2526  * in-flight on this queue also holds a reference, dropped when rq is freed.
2527  *
2528  * Each cfq queue took a reference on the parent group. Drop it now.
2529  * queue lock must be held here.
2530  */
2531 static void cfq_put_queue(struct cfq_queue *cfqq)
2532 {
2533         struct cfq_data *cfqd = cfqq->cfqd;
2534         struct cfq_group *cfqg, *orig_cfqg;
2535
2536         BUG_ON(cfqq->ref <= 0);
2537
2538         cfqq->ref--;
2539         if (cfqq->ref)
2540                 return;
2541
2542         cfq_log_cfqq(cfqd, cfqq, "put_queue");
2543         BUG_ON(rb_first(&cfqq->sort_list));
2544         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2545         cfqg = cfqq->cfqg;
2546         orig_cfqg = cfqq->orig_cfqg;
2547
2548         if (unlikely(cfqd->active_queue == cfqq)) {
2549                 __cfq_slice_expired(cfqd, cfqq, 0);
2550                 cfq_schedule_dispatch(cfqd);
2551         }
2552
2553         BUG_ON(cfq_cfqq_on_rr(cfqq));
2554         kmem_cache_free(cfq_pool, cfqq);
2555         cfq_put_cfqg(cfqg);
2556         if (orig_cfqg)
2557                 cfq_put_cfqg(orig_cfqg);
2558 }
2559
2560 /*
2561  * Must always be called with the rcu_read_lock() held
2562  */
2563 static void
2564 __call_for_each_cic(struct io_context *ioc,
2565                     void (*func)(struct io_context *, struct cfq_io_context *))
2566 {
2567         struct cfq_io_context *cic;
2568         struct hlist_node *n;
2569
2570         hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2571                 func(ioc, cic);
2572 }
2573
2574 /*
2575  * Call func for each cic attached to this ioc.
2576  */
2577 static void
2578 call_for_each_cic(struct io_context *ioc,
2579                   void (*func)(struct io_context *, struct cfq_io_context *))
2580 {
2581         rcu_read_lock();
2582         __call_for_each_cic(ioc, func);
2583         rcu_read_unlock();
2584 }
2585
2586 static void cfq_cic_free_rcu(struct rcu_head *head)
2587 {
2588         struct cfq_io_context *cic;
2589
2590         cic = container_of(head, struct cfq_io_context, rcu_head);
2591
2592         kmem_cache_free(cfq_ioc_pool, cic);
2593         elv_ioc_count_dec(cfq_ioc_count);
2594
2595         if (ioc_gone) {
2596                 /*
2597                  * CFQ scheduler is exiting, grab exit lock and check
2598                  * the pending io context count. If it hits zero,
2599                  * complete ioc_gone and set it back to NULL
2600                  */
2601                 spin_lock(&ioc_gone_lock);
2602                 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2603                         complete(ioc_gone);
2604                         ioc_gone = NULL;
2605                 }
2606                 spin_unlock(&ioc_gone_lock);
2607         }
2608 }
2609
2610 static void cfq_cic_free(struct cfq_io_context *cic)
2611 {
2612         call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2613 }
2614
2615 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2616 {
2617         unsigned long flags;
2618         unsigned long dead_key = (unsigned long) cic->key;
2619
2620         BUG_ON(!(dead_key & CIC_DEAD_KEY));
2621
2622         spin_lock_irqsave(&ioc->lock, flags);
2623         radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
2624         hlist_del_rcu(&cic->cic_list);
2625         spin_unlock_irqrestore(&ioc->lock, flags);
2626
2627         cfq_cic_free(cic);
2628 }
2629
2630 /*
2631  * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2632  * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2633  * and ->trim() which is called with the task lock held
2634  */
2635 static void cfq_free_io_context(struct io_context *ioc)
2636 {
2637         /*
2638          * ioc->refcount is zero here, or we are called from elv_unregister(),
2639          * so no more cic's are allowed to be linked into this ioc.  So it
2640          * should be ok to iterate over the known list, we will see all cic's
2641          * since no new ones are added.
2642          */
2643         __call_for_each_cic(ioc, cic_free_func);
2644 }
2645
2646 static void cfq_put_cooperator(struct cfq_queue *cfqq)
2647 {
2648         struct cfq_queue *__cfqq, *next;
2649
2650         /*
2651          * If this queue was scheduled to merge with another queue, be
2652          * sure to drop the reference taken on that queue (and others in
2653          * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
2654          */
2655         __cfqq = cfqq->new_cfqq;
2656         while (__cfqq) {
2657                 if (__cfqq == cfqq) {
2658                         WARN(1, "cfqq->new_cfqq loop detected\n");
2659                         break;
2660                 }
2661                 next = __cfqq->new_cfqq;
2662                 cfq_put_queue(__cfqq);
2663                 __cfqq = next;
2664         }
2665 }
2666
2667 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2668 {
2669         if (unlikely(cfqq == cfqd->active_queue)) {
2670                 __cfq_slice_expired(cfqd, cfqq, 0);
2671                 cfq_schedule_dispatch(cfqd);
2672         }
2673
2674         cfq_put_cooperator(cfqq);
2675
2676         cfq_put_queue(cfqq);
2677 }
2678
2679 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2680                                          struct cfq_io_context *cic)
2681 {
2682         struct io_context *ioc = cic->ioc;
2683
2684         list_del_init(&cic->queue_list);
2685
2686         /*
2687          * Make sure dead mark is seen for dead queues
2688          */
2689         smp_wmb();
2690         cic->key = cfqd_dead_key(cfqd);
2691
2692         if (ioc->ioc_data == cic)
2693                 rcu_assign_pointer(ioc->ioc_data, NULL);
2694
2695         if (cic->cfqq[BLK_RW_ASYNC]) {
2696                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2697                 cic->cfqq[BLK_RW_ASYNC] = NULL;
2698         }
2699
2700         if (cic->cfqq[BLK_RW_SYNC]) {
2701                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2702                 cic->cfqq[BLK_RW_SYNC] = NULL;
2703         }
2704 }
2705
2706 static void cfq_exit_single_io_context(struct io_context *ioc,
2707                                        struct cfq_io_context *cic)
2708 {
2709         struct cfq_data *cfqd = cic_to_cfqd(cic);
2710
2711         if (cfqd) {
2712                 struct request_queue *q = cfqd->queue;
2713                 unsigned long flags;
2714
2715                 spin_lock_irqsave(q->queue_lock, flags);
2716
2717                 /*
2718                  * Ensure we get a fresh copy of the ->key to prevent
2719                  * race between exiting task and queue
2720                  */
2721                 smp_read_barrier_depends();
2722                 if (cic->key == cfqd)
2723                         __cfq_exit_single_io_context(cfqd, cic);
2724
2725                 spin_unlock_irqrestore(q->queue_lock, flags);
2726         }
2727 }
2728
2729 /*
2730  * The process that ioc belongs to has exited, we need to clean up
2731  * and put the internal structures we have that belongs to that process.
2732  */
2733 static void cfq_exit_io_context(struct io_context *ioc)
2734 {
2735         call_for_each_cic(ioc, cfq_exit_single_io_context);
2736 }
2737
2738 static struct cfq_io_context *
2739 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2740 {
2741         struct cfq_io_context *cic;
2742
2743         cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2744                                                         cfqd->queue->node);
2745         if (cic) {
2746                 cic->last_end_request = jiffies;
2747                 INIT_LIST_HEAD(&cic->queue_list);
2748                 INIT_HLIST_NODE(&cic->cic_list);
2749                 cic->dtor = cfq_free_io_context;
2750                 cic->exit = cfq_exit_io_context;
2751                 elv_ioc_count_inc(cfq_ioc_count);
2752         }
2753
2754         return cic;
2755 }
2756
2757 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2758 {
2759         struct task_struct *tsk = current;
2760         int ioprio_class;
2761
2762         if (!cfq_cfqq_prio_changed(cfqq))
2763                 return;
2764
2765         ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2766         switch (ioprio_class) {
2767         default:
2768                 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2769         case IOPRIO_CLASS_NONE:
2770                 /*
2771                  * no prio set, inherit CPU scheduling settings
2772                  */
2773                 cfqq->ioprio = task_nice_ioprio(tsk);
2774                 cfqq->ioprio_class = task_nice_ioclass(tsk);
2775                 break;
2776         case IOPRIO_CLASS_RT:
2777                 cfqq->ioprio = task_ioprio(ioc);
2778                 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2779                 break;
2780         case IOPRIO_CLASS_BE:
2781                 cfqq->ioprio = task_ioprio(ioc);
2782                 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2783                 break;
2784         case IOPRIO_CLASS_IDLE:
2785                 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2786                 cfqq->ioprio = 7;
2787                 cfq_clear_cfqq_idle_window(cfqq);
2788                 break;
2789         }
2790
2791         /*
2792          * keep track of original prio settings in case we have to temporarily
2793          * elevate the priority of this queue
2794          */
2795         cfqq->org_ioprio = cfqq->ioprio;
2796         cfqq->org_ioprio_class = cfqq->ioprio_class;
2797         cfq_clear_cfqq_prio_changed(cfqq);
2798 }
2799
2800 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2801 {
2802         struct cfq_data *cfqd = cic_to_cfqd(cic);
2803         struct cfq_queue *cfqq;
2804         unsigned long flags;
2805
2806         if (unlikely(!cfqd))
2807                 return;
2808
2809         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2810
2811         cfqq = cic->cfqq[BLK_RW_ASYNC];
2812         if (cfqq) {
2813                 struct cfq_queue *new_cfqq;
2814                 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2815                                                 GFP_ATOMIC);
2816                 if (new_cfqq) {
2817                         cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2818                         cfq_put_queue(cfqq);
2819                 }
2820         }
2821
2822         cfqq = cic->cfqq[BLK_RW_SYNC];
2823         if (cfqq)
2824                 cfq_mark_cfqq_prio_changed(cfqq);
2825
2826         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2827 }
2828
2829 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2830 {
2831         call_for_each_cic(ioc, changed_ioprio);
2832         ioc->ioprio_changed = 0;
2833 }
2834
2835 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2836                           pid_t pid, bool is_sync)
2837 {
2838         RB_CLEAR_NODE(&cfqq->rb_node);
2839         RB_CLEAR_NODE(&cfqq->p_node);
2840         INIT_LIST_HEAD(&cfqq->fifo);
2841
2842         cfqq->ref = 0;
2843         cfqq->cfqd = cfqd;
2844
2845         cfq_mark_cfqq_prio_changed(cfqq);
2846
2847         if (is_sync) {
2848                 if (!cfq_class_idle(cfqq))
2849                         cfq_mark_cfqq_idle_window(cfqq);
2850                 cfq_mark_cfqq_sync(cfqq);
2851         }
2852         cfqq->pid = pid;
2853 }
2854
2855 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2856 static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2857 {
2858         struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2859         struct cfq_data *cfqd = cic_to_cfqd(cic);
2860         unsigned long flags;
2861         struct request_queue *q;
2862
2863         if (unlikely(!cfqd))
2864                 return;
2865
2866         q = cfqd->queue;
2867
2868         spin_lock_irqsave(q->queue_lock, flags);
2869
2870         if (sync_cfqq) {
2871                 /*
2872                  * Drop reference to sync queue. A new sync queue will be
2873                  * assigned in new group upon arrival of a fresh request.
2874                  */
2875                 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2876                 cic_set_cfqq(cic, NULL, 1);
2877                 cfq_put_queue(sync_cfqq);
2878         }
2879
2880         spin_unlock_irqrestore(q->queue_lock, flags);
2881 }
2882
2883 static void cfq_ioc_set_cgroup(struct io_context *ioc)
2884 {
2885         call_for_each_cic(ioc, changed_cgroup);
2886         ioc->cgroup_changed = 0;
2887 }
2888 #endif  /* CONFIG_CFQ_GROUP_IOSCHED */
2889
2890 static struct cfq_queue *
2891 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2892                      struct io_context *ioc, gfp_t gfp_mask)
2893 {
2894         struct cfq_queue *cfqq, *new_cfqq = NULL;
2895         struct cfq_io_context *cic;
2896         struct cfq_group *cfqg;
2897
2898 retry:
2899         cfqg = cfq_get_cfqg(cfqd, 1);
2900         cic = cfq_cic_lookup(cfqd, ioc);
2901         /* cic always exists here */
2902         cfqq = cic_to_cfqq(cic, is_sync);
2903
2904         /*
2905          * Always try a new alloc if we fell back to the OOM cfqq
2906          * originally, since it should just be a temporary situation.
2907          */
2908         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2909                 cfqq = NULL;
2910                 if (new_cfqq) {
2911                         cfqq = new_cfqq;
2912                         new_cfqq = NULL;
2913                 } else if (gfp_mask & __GFP_WAIT) {
2914                         spin_unlock_irq(cfqd->queue->queue_lock);
2915                         new_cfqq = kmem_cache_alloc_node(cfq_pool,
2916                                         gfp_mask | __GFP_ZERO,
2917                                         cfqd->queue->node);
2918                         spin_lock_irq(cfqd->queue->queue_lock);
2919                         if (new_cfqq)
2920                                 goto retry;
2921                 } else {
2922                         cfqq = kmem_cache_alloc_node(cfq_pool,
2923                                         gfp_mask | __GFP_ZERO,
2924                                         cfqd->queue->node);
2925                 }
2926
2927                 if (cfqq) {
2928                         cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2929                         cfq_init_prio_data(cfqq, ioc);
2930                         cfq_link_cfqq_cfqg(cfqq, cfqg);
2931                         cfq_log_cfqq(cfqd, cfqq, "alloced");
2932                 } else
2933                         cfqq = &cfqd->oom_cfqq;
2934         }
2935
2936         if (new_cfqq)
2937                 kmem_cache_free(cfq_pool, new_cfqq);
2938
2939         return cfqq;
2940 }
2941
2942 static struct cfq_queue **
2943 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2944 {
2945         switch (ioprio_class) {
2946         case IOPRIO_CLASS_RT:
2947                 return &cfqd->async_cfqq[0][ioprio];
2948         case IOPRIO_CLASS_BE:
2949                 return &cfqd->async_cfqq[1][ioprio];
2950         case IOPRIO_CLASS_IDLE:
2951                 return &cfqd->async_idle_cfqq;
2952         default:
2953                 BUG();
2954         }
2955 }
2956
2957 static struct cfq_queue *
2958 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2959               gfp_t gfp_mask)
2960 {
2961         const int ioprio = task_ioprio(ioc);
2962         const int ioprio_class = task_ioprio_class(ioc);
2963         struct cfq_queue **async_cfqq = NULL;
2964         struct cfq_queue *cfqq = NULL;
2965
2966         if (!is_sync) {
2967                 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2968                 cfqq = *async_cfqq;
2969         }
2970
2971         if (!cfqq)
2972                 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2973
2974         /*
2975          * pin the queue now that it's allocated, scheduler exit will prune it
2976          */
2977         if (!is_sync && !(*async_cfqq)) {
2978                 cfqq->ref++;
2979                 *async_cfqq = cfqq;
2980         }
2981
2982         cfqq->ref++;
2983         return cfqq;
2984 }
2985
2986 /*
2987  * We drop cfq io contexts lazily, so we may find a dead one.
2988  */
2989 static void
2990 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2991                   struct cfq_io_context *cic)
2992 {
2993         unsigned long flags;
2994
2995         WARN_ON(!list_empty(&cic->queue_list));
2996         BUG_ON(cic->key != cfqd_dead_key(cfqd));
2997
2998         spin_lock_irqsave(&ioc->lock, flags);
2999
3000         BUG_ON(ioc->ioc_data == cic);
3001
3002         radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
3003         hlist_del_rcu(&cic->cic_list);
3004         spin_unlock_irqrestore(&ioc->lock, flags);
3005
3006         cfq_cic_free(cic);
3007 }
3008
3009 static struct cfq_io_context *
3010 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
3011 {
3012         struct cfq_io_context *cic;
3013         unsigned long flags;
3014
3015         if (unlikely(!ioc))
3016                 return NULL;
3017
3018         rcu_read_lock();
3019
3020         /*
3021          * we maintain a last-hit cache, to avoid browsing over the tree
3022          */
3023         cic = rcu_dereference(ioc->ioc_data);
3024         if (cic && cic->key == cfqd) {
3025                 rcu_read_unlock();
3026                 return cic;
3027         }
3028
3029         do {
3030                 cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
3031                 rcu_read_unlock();
3032                 if (!cic)
3033                         break;
3034                 if (unlikely(cic->key != cfqd)) {
3035                         cfq_drop_dead_cic(cfqd, ioc, cic);
3036                         rcu_read_lock();
3037                         continue;
3038                 }
3039
3040                 spin_lock_irqsave(&ioc->lock, flags);
3041                 rcu_assign_pointer(ioc->ioc_data, cic);
3042                 spin_unlock_irqrestore(&ioc->lock, flags);
3043                 break;
3044         } while (1);
3045
3046         return cic;
3047 }
3048
3049 /*
3050  * Add cic into ioc, using cfqd as the search key. This enables us to lookup
3051  * the process specific cfq io context when entered from the block layer.
3052  * Also adds the cic to a per-cfqd list, used when this queue is removed.
3053  */
3054 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
3055                         struct cfq_io_context *cic, gfp_t gfp_mask)
3056 {
3057         unsigned long flags;
3058         int ret;
3059
3060         ret = radix_tree_preload(gfp_mask);
3061         if (!ret) {
3062                 cic->ioc = ioc;
3063                 cic->key = cfqd;
3064
3065                 spin_lock_irqsave(&ioc->lock, flags);
3066                 ret = radix_tree_insert(&ioc->radix_root,
3067                                                 cfqd->cic_index, cic);
3068                 if (!ret)
3069                         hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
3070                 spin_unlock_irqrestore(&ioc->lock, flags);
3071
3072                 radix_tree_preload_end();
3073
3074                 if (!ret) {
3075                         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3076                         list_add(&cic->queue_list, &cfqd->cic_list);
3077                         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3078                 }
3079         }
3080
3081         if (ret)
3082                 printk(KERN_ERR "cfq: cic link failed!\n");
3083
3084         return ret;
3085 }
3086
3087 /*
3088  * Setup general io context and cfq io context. There can be several cfq
3089  * io contexts per general io context, if this process is doing io to more
3090  * than one device managed by cfq.
3091  */
3092 static struct cfq_io_context *
3093 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
3094 {
3095         struct io_context *ioc = NULL;
3096         struct cfq_io_context *cic;
3097
3098         might_sleep_if(gfp_mask & __GFP_WAIT);
3099
3100         ioc = get_io_context(gfp_mask, cfqd->queue->node);
3101         if (!ioc)
3102                 return NULL;
3103
3104         cic = cfq_cic_lookup(cfqd, ioc);
3105         if (cic)
3106                 goto out;
3107
3108         cic = cfq_alloc_io_context(cfqd, gfp_mask);
3109         if (cic == NULL)
3110                 goto err;
3111
3112         if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
3113                 goto err_free;
3114
3115 out:
3116         smp_read_barrier_depends();
3117         if (unlikely(ioc->ioprio_changed))
3118                 cfq_ioc_set_ioprio(ioc);
3119
3120 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3121         if (unlikely(ioc->cgroup_changed))
3122                 cfq_ioc_set_cgroup(ioc);
3123 #endif
3124         return cic;
3125 err_free:
3126         cfq_cic_free(cic);
3127 err:
3128         put_io_context(ioc);
3129         return NULL;
3130 }
3131
3132 static void
3133 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
3134 {
3135         unsigned long elapsed = jiffies - cic->last_end_request;
3136         unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
3137
3138         cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
3139         cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
3140         cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
3141 }
3142
3143 static void
3144 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3145                        struct request *rq)
3146 {
3147         sector_t sdist = 0;
3148         sector_t n_sec = blk_rq_sectors(rq);
3149         if (cfqq->last_request_pos) {
3150                 if (cfqq->last_request_pos < blk_rq_pos(rq))
3151                         sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3152                 else
3153                         sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3154         }
3155
3156         cfqq->seek_history <<= 1;
3157         if (blk_queue_nonrot(cfqd->queue))
3158                 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3159         else
3160                 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3161 }
3162
3163 /*
3164  * Disable idle window if the process thinks too long or seeks so much that
3165  * it doesn't matter
3166  */
3167 static void
3168 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3169                        struct cfq_io_context *cic)
3170 {
3171         int old_idle, enable_idle;
3172
3173         /*
3174          * Don't idle for async or idle io prio class
3175          */
3176         if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3177                 return;
3178
3179         enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3180
3181         if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3182                 cfq_mark_cfqq_deep(cfqq);
3183
3184         if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3185                 enable_idle = 0;
3186         else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3187             (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3188                 enable_idle = 0;
3189         else if (sample_valid(cic->ttime_samples)) {
3190                 if (cic->ttime_mean > cfqd->cfq_slice_idle)
3191                         enable_idle = 0;
3192                 else
3193                         enable_idle = 1;
3194         }
3195
3196         if (old_idle != enable_idle) {
3197                 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3198                 if (enable_idle)
3199                         cfq_mark_cfqq_idle_window(cfqq);
3200                 else
3201                         cfq_clear_cfqq_idle_window(cfqq);
3202         }
3203 }
3204
3205 /*
3206  * Check if new_cfqq should preempt the currently active queue. Return 0 for
3207  * no or if we aren't sure, a 1 will cause a preempt.
3208  */
3209 static bool
3210 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3211                    struct request *rq)
3212 {
3213         struct cfq_queue *cfqq;
3214
3215         cfqq = cfqd->active_queue;
3216         if (!cfqq)
3217                 return false;
3218
3219         if (cfq_class_idle(new_cfqq))
3220                 return false;
3221
3222         if (cfq_class_idle(cfqq))
3223                 return true;
3224
3225         /*
3226          * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3227          */
3228         if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3229                 return false;
3230
3231         /*
3232          * if the new request is sync, but the currently running queue is
3233          * not, let the sync request have priority.
3234          */
3235         if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3236                 return true;
3237
3238         if (new_cfqq->cfqg != cfqq->cfqg)
3239                 return false;
3240
3241         if (cfq_slice_used(cfqq))
3242                 return true;
3243
3244         /* Allow preemption only if we are idling on sync-noidle tree */
3245         if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3246             cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3247             new_cfqq->service_tree->count == 2 &&
3248             RB_EMPTY_ROOT(&cfqq->sort_list))
3249                 return true;
3250
3251         /*
3252          * So both queues are sync. Let the new request get disk time if
3253          * it's a metadata request and the current queue is doing regular IO.
3254          */
3255         if ((rq->cmd_flags & REQ_META) && !cfqq->meta_pending)
3256                 return true;
3257
3258         /*
3259          * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3260          */
3261         if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3262                 return true;
3263
3264         /* An idle queue should not be idle now for some reason */
3265         if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3266                 return true;
3267
3268         if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3269                 return false;
3270
3271         /*
3272          * if this request is as-good as one we would expect from the
3273          * current cfqq, let it preempt
3274          */
3275         if (cfq_rq_close(cfqd, cfqq, rq))
3276                 return true;
3277
3278         return false;
3279 }
3280
3281 /*
3282  * cfqq preempts the active queue. if we allowed preempt with no slice left,
3283  * let it have half of its nominal slice.
3284  */
3285 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3286 {
3287         cfq_log_cfqq(cfqd, cfqq, "preempt");
3288         cfq_slice_expired(cfqd, 1);
3289
3290         /*
3291          * Put the new queue at the front of the of the current list,
3292          * so we know that it will be selected next.
3293          */
3294         BUG_ON(!cfq_cfqq_on_rr(cfqq));
3295
3296         cfq_service_tree_add(cfqd, cfqq, 1);
3297
3298         cfqq->slice_end = 0;
3299         cfq_mark_cfqq_slice_new(cfqq);
3300 }
3301
3302 /*
3303  * Called when a new fs request (rq) is added (to cfqq). Check if there's
3304  * something we should do about it
3305  */
3306 static void
3307 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3308                 struct request *rq)
3309 {
3310         struct cfq_io_context *cic = RQ_CIC(rq);
3311
3312         cfqd->rq_queued++;
3313         if (rq->cmd_flags & REQ_META)
3314                 cfqq->meta_pending++;
3315
3316         cfq_update_io_thinktime(cfqd, cic);
3317         cfq_update_io_seektime(cfqd, cfqq, rq);
3318         cfq_update_idle_window(cfqd, cfqq, cic);
3319
3320         cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3321
3322         if (cfqq == cfqd->active_queue) {
3323                 /*
3324                  * Remember that we saw a request from this process, but
3325                  * don't start queuing just yet. Otherwise we risk seeing lots
3326                  * of tiny requests, because we disrupt the normal plugging
3327                  * and merging. If the request is already larger than a single
3328                  * page, let it rip immediately. For that case we assume that
3329                  * merging is already done. Ditto for a busy system that
3330                  * has other work pending, don't risk delaying until the
3331                  * idle timer unplug to continue working.
3332                  */
3333                 if (cfq_cfqq_wait_request(cfqq)) {
3334                         if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3335                             cfqd->busy_queues > 1) {
3336                                 cfq_del_timer(cfqd, cfqq);
3337                                 cfq_clear_cfqq_wait_request(cfqq);
3338                                 __blk_run_queue(cfqd->queue);
3339                         } else {
3340                                 cfq_blkiocg_update_idle_time_stats(
3341                                                 &cfqq->cfqg->blkg);
3342                                 cfq_mark_cfqq_must_dispatch(cfqq);
3343                         }
3344                 }
3345         } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3346                 /*
3347                  * not the active queue - expire current slice if it is
3348                  * idle and has expired it's mean thinktime or this new queue
3349                  * has some old slice time left and is of higher priority or
3350                  * this new queue is RT and the current one is BE
3351                  */
3352                 cfq_preempt_queue(cfqd, cfqq);
3353                 __blk_run_queue(cfqd->queue);
3354         }
3355 }
3356
3357 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3358 {
3359         struct cfq_data *cfqd = q->elevator->elevator_data;
3360         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3361
3362         cfq_log_cfqq(cfqd, cfqq, "insert_request");
3363         cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3364
3365         rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3366         list_add_tail(&rq->queuelist, &cfqq->fifo);
3367         cfq_add_rq_rb(rq);
3368         cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
3369                         &cfqd->serving_group->blkg, rq_data_dir(rq),
3370                         rq_is_sync(rq));
3371         cfq_rq_enqueued(cfqd, cfqq, rq);
3372 }
3373
3374 /*
3375  * Update hw_tag based on peak queue depth over 50 samples under
3376  * sufficient load.
3377  */
3378 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3379 {
3380         struct cfq_queue *cfqq = cfqd->active_queue;
3381
3382         if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3383                 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3384
3385         if (cfqd->hw_tag == 1)
3386                 return;
3387
3388         if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3389             cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3390                 return;
3391
3392         /*
3393          * If active queue hasn't enough requests and can idle, cfq might not
3394          * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3395          * case
3396          */
3397         if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3398             cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3399             CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3400                 return;
3401
3402         if (cfqd->hw_tag_samples++ < 50)
3403                 return;
3404
3405         if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3406                 cfqd->hw_tag = 1;
3407         else
3408                 cfqd->hw_tag = 0;
3409 }
3410
3411 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3412 {
3413         struct cfq_io_context *cic = cfqd->active_cic;
3414
3415         /* If there are other queues in the group, don't wait */
3416         if (cfqq->cfqg->nr_cfqq > 1)
3417                 return false;
3418
3419         if (cfq_slice_used(cfqq))
3420                 return true;
3421
3422         /* if slice left is less than think time, wait busy */
3423         if (cic && sample_valid(cic->ttime_samples)
3424             && (cfqq->slice_end - jiffies < cic->ttime_mean))
3425                 return true;
3426
3427         /*
3428          * If think times is less than a jiffy than ttime_mean=0 and above
3429          * will not be true. It might happen that slice has not expired yet
3430          * but will expire soon (4-5 ns) during select_queue(). To cover the
3431          * case where think time is less than a jiffy, mark the queue wait
3432          * busy if only 1 jiffy is left in the slice.
3433          */
3434         if (cfqq->slice_end - jiffies == 1)
3435                 return true;
3436
3437         return false;
3438 }
3439
3440 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3441 {
3442         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3443         struct cfq_data *cfqd = cfqq->cfqd;
3444         const int sync = rq_is_sync(rq);
3445         unsigned long now;
3446
3447         now = jiffies;
3448         cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3449                      !!(rq->cmd_flags & REQ_NOIDLE));
3450
3451         cfq_update_hw_tag(cfqd);
3452
3453         WARN_ON(!cfqd->rq_in_driver);
3454         WARN_ON(!cfqq->dispatched);
3455         cfqd->rq_in_driver--;
3456         cfqq->dispatched--;
3457         (RQ_CFQG(rq))->dispatched--;
3458         cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3459                         rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3460                         rq_data_dir(rq), rq_is_sync(rq));
3461
3462         cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3463
3464         if (sync) {
3465                 RQ_CIC(rq)->last_end_request = now;
3466                 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3467                         cfqd->last_delayed_sync = now;
3468         }
3469
3470         /*
3471          * If this is the active queue, check if it needs to be expired,
3472          * or if we want to idle in case it has no pending requests.
3473          */
3474         if (cfqd->active_queue == cfqq) {
3475                 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3476
3477                 if (cfq_cfqq_slice_new(cfqq)) {
3478                         cfq_set_prio_slice(cfqd, cfqq);
3479                         cfq_clear_cfqq_slice_new(cfqq);
3480                 }
3481
3482                 /*
3483                  * Should we wait for next request to come in before we expire
3484                  * the queue.
3485                  */
3486                 if (cfq_should_wait_busy(cfqd, cfqq)) {
3487                         unsigned long extend_sl = cfqd->cfq_slice_idle;
3488                         if (!cfqd->cfq_slice_idle)
3489                                 extend_sl = cfqd->cfq_group_idle;
3490                         cfqq->slice_end = jiffies + extend_sl;
3491                         cfq_mark_cfqq_wait_busy(cfqq);
3492                         cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3493                 }
3494
3495                 /*
3496                  * Idling is not enabled on:
3497                  * - expired queues
3498                  * - idle-priority queues
3499                  * - async queues
3500                  * - queues with still some requests queued
3501                  * - when there is a close cooperator
3502                  */
3503                 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3504                         cfq_slice_expired(cfqd, 1);
3505                 else if (sync && cfqq_empty &&
3506                          !cfq_close_cooperator(cfqd, cfqq)) {
3507                         cfq_arm_slice_timer(cfqd);
3508                 }
3509         }
3510
3511         if (!cfqd->rq_in_driver)
3512                 cfq_schedule_dispatch(cfqd);
3513 }
3514
3515 /*
3516  * we temporarily boost lower priority queues if they are holding fs exclusive
3517  * resources. they are boosted to normal prio (CLASS_BE/4)
3518  */
3519 static void cfq_prio_boost(struct cfq_queue *cfqq)
3520 {
3521         if (has_fs_excl()) {
3522                 /*
3523                  * boost idle prio on transactions that would lock out other
3524                  * users of the filesystem
3525                  */
3526                 if (cfq_class_idle(cfqq))
3527                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
3528                 if (cfqq->ioprio > IOPRIO_NORM)
3529                         cfqq->ioprio = IOPRIO_NORM;
3530         } else {
3531                 /*
3532                  * unboost the queue (if needed)
3533                  */
3534                 cfqq->ioprio_class = cfqq->org_ioprio_class;
3535                 cfqq->ioprio = cfqq->org_ioprio;
3536         }
3537 }
3538
3539 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3540 {
3541         if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3542                 cfq_mark_cfqq_must_alloc_slice(cfqq);
3543                 return ELV_MQUEUE_MUST;
3544         }
3545
3546         return ELV_MQUEUE_MAY;
3547 }
3548
3549 static int cfq_may_queue(struct request_queue *q, int rw)
3550 {
3551         struct cfq_data *cfqd = q->elevator->elevator_data;
3552         struct task_struct *tsk = current;
3553         struct cfq_io_context *cic;
3554         struct cfq_queue *cfqq;
3555
3556         /*
3557          * don't force setup of a queue from here, as a call to may_queue
3558          * does not necessarily imply that a request actually will be queued.
3559          * so just lookup a possibly existing queue, or return 'may queue'
3560          * if that fails
3561          */
3562         cic = cfq_cic_lookup(cfqd, tsk->io_context);
3563         if (!cic)
3564                 return ELV_MQUEUE_MAY;
3565
3566         cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3567         if (cfqq) {
3568                 cfq_init_prio_data(cfqq, cic->ioc);
3569                 cfq_prio_boost(cfqq);
3570
3571                 return __cfq_may_queue(cfqq);
3572         }
3573
3574         return ELV_MQUEUE_MAY;
3575 }
3576
3577 /*
3578  * queue lock held here
3579  */
3580 static void cfq_put_request(struct request *rq)
3581 {
3582         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3583
3584         if (cfqq) {
3585                 const int rw = rq_data_dir(rq);
3586
3587                 BUG_ON(!cfqq->allocated[rw]);
3588                 cfqq->allocated[rw]--;
3589
3590                 put_io_context(RQ_CIC(rq)->ioc);
3591
3592                 rq->elevator_private = NULL;
3593                 rq->elevator_private2 = NULL;
3594
3595                 /* Put down rq reference on cfqg */
3596                 cfq_put_cfqg(RQ_CFQG(rq));
3597                 rq->elevator_private3 = NULL;
3598
3599                 cfq_put_queue(cfqq);
3600         }
3601 }
3602
3603 static struct cfq_queue *
3604 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3605                 struct cfq_queue *cfqq)
3606 {
3607         cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3608         cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3609         cfq_mark_cfqq_coop(cfqq->new_cfqq);
3610         cfq_put_queue(cfqq);
3611         return cic_to_cfqq(cic, 1);
3612 }
3613
3614 /*
3615  * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3616  * was the last process referring to said cfqq.
3617  */
3618 static struct cfq_queue *
3619 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3620 {
3621         if (cfqq_process_refs(cfqq) == 1) {
3622                 cfqq->pid = current->pid;
3623                 cfq_clear_cfqq_coop(cfqq);
3624                 cfq_clear_cfqq_split_coop(cfqq);
3625                 return cfqq;
3626         }
3627
3628         cic_set_cfqq(cic, NULL, 1);
3629
3630         cfq_put_cooperator(cfqq);
3631
3632         cfq_put_queue(cfqq);
3633         return NULL;
3634 }
3635 /*
3636  * Allocate cfq data structures associated with this request.
3637  */
3638 static int
3639 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3640 {
3641         struct cfq_data *cfqd = q->elevator->elevator_data;
3642         struct cfq_io_context *cic;
3643         const int rw = rq_data_dir(rq);
3644         const bool is_sync = rq_is_sync(rq);
3645         struct cfq_queue *cfqq;
3646         unsigned long flags;
3647
3648         might_sleep_if(gfp_mask & __GFP_WAIT);
3649
3650         cic = cfq_get_io_context(cfqd, gfp_mask);
3651
3652         spin_lock_irqsave(q->queue_lock, flags);
3653
3654         if (!cic)
3655                 goto queue_fail;
3656
3657 new_queue:
3658         cfqq = cic_to_cfqq(cic, is_sync);
3659         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3660                 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3661                 cic_set_cfqq(cic, cfqq, is_sync);
3662         } else {
3663                 /*
3664                  * If the queue was seeky for too long, break it apart.
3665                  */
3666                 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3667                         cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3668                         cfqq = split_cfqq(cic, cfqq);
3669                         if (!cfqq)
3670                                 goto new_queue;
3671                 }
3672
3673                 /*
3674                  * Check to see if this queue is scheduled to merge with
3675                  * another, closely cooperating queue.  The merging of
3676                  * queues happens here as it must be done in process context.
3677                  * The reference on new_cfqq was taken in merge_cfqqs.
3678                  */
3679                 if (cfqq->new_cfqq)
3680                         cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3681         }
3682
3683         cfqq->allocated[rw]++;
3684         cfqq->ref++;
3685         rq->elevator_private = cic;
3686         rq->elevator_private2 = cfqq;
3687         rq->elevator_private3 = cfq_ref_get_cfqg(cfqq->cfqg);
3688
3689         spin_unlock_irqrestore(q->queue_lock, flags);
3690
3691         return 0;
3692
3693 queue_fail:
3694         if (cic)
3695                 put_io_context(cic->ioc);
3696
3697         cfq_schedule_dispatch(cfqd);
3698         spin_unlock_irqrestore(q->queue_lock, flags);
3699         cfq_log(cfqd, "set_request fail");
3700         return 1;
3701 }
3702
3703 static void cfq_kick_queue(struct work_struct *work)
3704 {
3705         struct cfq_data *cfqd =
3706                 container_of(work, struct cfq_data, unplug_work);
3707         struct request_queue *q = cfqd->queue;
3708
3709         spin_lock_irq(q->queue_lock);
3710         __blk_run_queue(cfqd->queue);
3711         spin_unlock_irq(q->queue_lock);
3712 }
3713
3714 /*
3715  * Timer running if the active_queue is currently idling inside its time slice
3716  */
3717 static void cfq_idle_slice_timer(unsigned long data)
3718 {
3719         struct cfq_data *cfqd = (struct cfq_data *) data;
3720         struct cfq_queue *cfqq;
3721         unsigned long flags;
3722         int timed_out = 1;
3723
3724         cfq_log(cfqd, "idle timer fired");
3725
3726         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3727
3728         cfqq = cfqd->active_queue;
3729         if (cfqq) {
3730                 timed_out = 0;
3731
3732                 /*
3733                  * We saw a request before the queue expired, let it through
3734                  */
3735                 if (cfq_cfqq_must_dispatch(cfqq))
3736                         goto out_kick;
3737
3738                 /*
3739                  * expired
3740                  */
3741                 if (cfq_slice_used(cfqq))
3742                         goto expire;
3743
3744                 /*
3745                  * only expire and reinvoke request handler, if there are
3746                  * other queues with pending requests
3747                  */
3748                 if (!cfqd->busy_queues)
3749                         goto out_cont;
3750
3751                 /*
3752                  * not expired and it has a request pending, let it dispatch
3753                  */
3754                 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3755                         goto out_kick;
3756
3757                 /*
3758                  * Queue depth flag is reset only when the idle didn't succeed
3759                  */
3760                 cfq_clear_cfqq_deep(cfqq);
3761         }
3762 expire:
3763         cfq_slice_expired(cfqd, timed_out);
3764 out_kick:
3765         cfq_schedule_dispatch(cfqd);
3766 out_cont:
3767         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3768 }
3769
3770 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3771 {
3772         del_timer_sync(&cfqd->idle_slice_timer);
3773         cancel_work_sync(&cfqd->unplug_work);
3774 }
3775
3776 static void cfq_put_async_queues(struct cfq_data *cfqd)
3777 {
3778         int i;
3779
3780         for (i = 0; i < IOPRIO_BE_NR; i++) {
3781                 if (cfqd->async_cfqq[0][i])
3782                         cfq_put_queue(cfqd->async_cfqq[0][i]);
3783                 if (cfqd->async_cfqq[1][i])
3784                         cfq_put_queue(cfqd->async_cfqq[1][i]);
3785         }
3786
3787         if (cfqd->async_idle_cfqq)
3788                 cfq_put_queue(cfqd->async_idle_cfqq);
3789 }
3790
3791 static void cfq_cfqd_free(struct rcu_head *head)
3792 {
3793         kfree(container_of(head, struct cfq_data, rcu));
3794 }
3795
3796 static void cfq_exit_queue(struct elevator_queue *e)
3797 {
3798         struct cfq_data *cfqd = e->elevator_data;
3799         struct request_queue *q = cfqd->queue;
3800
3801         cfq_shutdown_timer_wq(cfqd);
3802
3803         spin_lock_irq(q->queue_lock);
3804
3805         if (cfqd->active_queue)
3806                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3807
3808         while (!list_empty(&cfqd->cic_list)) {
3809                 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3810                                                         struct cfq_io_context,
3811                                                         queue_list);
3812
3813                 __cfq_exit_single_io_context(cfqd, cic);
3814         }
3815
3816         cfq_put_async_queues(cfqd);
3817         cfq_release_cfq_groups(cfqd);
3818         cfq_blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3819
3820         spin_unlock_irq(q->queue_lock);
3821
3822         cfq_shutdown_timer_wq(cfqd);
3823
3824         spin_lock(&cic_index_lock);
3825         ida_remove(&cic_index_ida, cfqd->cic_index);
3826         spin_unlock(&cic_index_lock);
3827
3828         /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3829         call_rcu(&cfqd->rcu, cfq_cfqd_free);
3830 }
3831
3832 static int cfq_alloc_cic_index(void)
3833 {
3834         int index, error;
3835
3836         do {
3837                 if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
3838                         return -ENOMEM;
3839
3840                 spin_lock(&cic_index_lock);
3841                 error = ida_get_new(&cic_index_ida, &index);
3842                 spin_unlock(&cic_index_lock);
3843                 if (error && error != -EAGAIN)
3844                         return error;
3845         } while (error);
3846
3847         return index;
3848 }
3849
3850 static void *cfq_init_queue(struct request_queue *q)
3851 {
3852         struct cfq_data *cfqd;
3853         int i, j;
3854         struct cfq_group *cfqg;
3855         struct cfq_rb_root *st;
3856
3857         i = cfq_alloc_cic_index();
3858         if (i < 0)
3859                 return NULL;
3860
3861         cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3862         if (!cfqd)
3863                 return NULL;
3864
3865         /*
3866          * Don't need take queue_lock in the routine, since we are
3867          * initializing the ioscheduler, and nobody is using cfqd
3868          */
3869         cfqd->cic_index = i;
3870
3871         /* Init root service tree */
3872         cfqd->grp_service_tree = CFQ_RB_ROOT;
3873
3874         /* Init root group */
3875         cfqg = &cfqd->root_group;
3876         for_each_cfqg_st(cfqg, i, j, st)
3877                 *st = CFQ_RB_ROOT;
3878         RB_CLEAR_NODE(&cfqg->rb_node);
3879
3880         /* Give preference to root group over other groups */
3881         cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3882
3883 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3884         /*
3885          * Take a reference to root group which we never drop. This is just
3886          * to make sure that cfq_put_cfqg() does not try to kfree root group
3887          */
3888         cfqg->ref = 1;
3889         rcu_read_lock();
3890         cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
3891                                         (void *)cfqd, 0);
3892         rcu_read_unlock();
3893 #endif
3894         /*
3895          * Not strictly needed (since RB_ROOT just clears the node and we
3896          * zeroed cfqd on alloc), but better be safe in case someone decides
3897          * to add magic to the rb code
3898          */
3899         for (i = 0; i < CFQ_PRIO_LISTS; i++)
3900                 cfqd->prio_trees[i] = RB_ROOT;
3901
3902         /*
3903          * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3904          * Grab a permanent reference to it, so that the normal code flow
3905          * will not attempt to free it.
3906          */
3907         cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3908         cfqd->oom_cfqq.ref++;
3909         cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3910
3911         INIT_LIST_HEAD(&cfqd->cic_list);
3912
3913         cfqd->queue = q;
3914
3915         init_timer(&cfqd->idle_slice_timer);
3916         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3917         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3918
3919         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3920
3921         cfqd->cfq_quantum = cfq_quantum;
3922         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3923         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3924         cfqd->cfq_back_max = cfq_back_max;
3925         cfqd->cfq_back_penalty = cfq_back_penalty;
3926         cfqd->cfq_slice[0] = cfq_slice_async;
3927         cfqd->cfq_slice[1] = cfq_slice_sync;
3928         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3929         cfqd->cfq_slice_idle = cfq_slice_idle;
3930         cfqd->cfq_group_idle = cfq_group_idle;
3931         cfqd->cfq_latency = 1;
3932         cfqd->cfq_group_isolation = 0;
3933         cfqd->hw_tag = -1;
3934         /*
3935          * we optimistically start assuming sync ops weren't delayed in last
3936          * second, in order to have larger depth for async operations.
3937          */
3938         cfqd->last_delayed_sync = jiffies - HZ;
3939         return cfqd;
3940 }
3941
3942 static void cfq_slab_kill(void)
3943 {
3944         /*
3945          * Caller already ensured that pending RCU callbacks are completed,
3946          * so we should have no busy allocations at this point.
3947          */
3948         if (cfq_pool)
3949                 kmem_cache_destroy(cfq_pool);
3950         if (cfq_ioc_pool)
3951                 kmem_cache_destroy(cfq_ioc_pool);
3952 }
3953
3954 static int __init cfq_slab_setup(void)
3955 {
3956         cfq_pool = KMEM_CACHE(cfq_queue, 0);
3957         if (!cfq_pool)
3958                 goto fail;
3959
3960         cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3961         if (!cfq_ioc_pool)
3962                 goto fail;
3963
3964         return 0;
3965 fail:
3966         cfq_slab_kill();
3967         return -ENOMEM;
3968 }
3969
3970 /*
3971  * sysfs parts below -->
3972  */
3973 static ssize_t
3974 cfq_var_show(unsigned int var, char *page)
3975 {
3976         return sprintf(page, "%d\n", var);
3977 }
3978
3979 static ssize_t
3980 cfq_var_store(unsigned int *var, const char *page, size_t count)
3981 {
3982         char *p = (char *) page;
3983
3984         *var = simple_strtoul(p, &p, 10);
3985         return count;
3986 }
3987
3988 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
3989 static ssize_t __FUNC(struct elevator_queue *e, char *page)             \
3990 {                                                                       \
3991         struct cfq_data *cfqd = e->elevator_data;                       \
3992         unsigned int __data = __VAR;                                    \
3993         if (__CONV)                                                     \
3994                 __data = jiffies_to_msecs(__data);                      \
3995         return cfq_var_show(__data, (page));                            \
3996 }
3997 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3998 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3999 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4000 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4001 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4002 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4003 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4004 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4005 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4006 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4007 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4008 SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
4009 #undef SHOW_FUNCTION
4010
4011 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
4012 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4013 {                                                                       \
4014         struct cfq_data *cfqd = e->elevator_data;                       \
4015         unsigned int __data;                                            \
4016         int ret = cfq_var_store(&__data, (page), count);                \
4017         if (__data < (MIN))                                             \
4018                 __data = (MIN);                                         \
4019         else if (__data > (MAX))                                        \
4020                 __data = (MAX);                                         \
4021         if (__CONV)                                                     \
4022                 *(__PTR) = msecs_to_jiffies(__data);                    \
4023         else                                                            \
4024                 *(__PTR) = __data;                                      \
4025         return ret;                                                     \
4026 }
4027 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4028 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4029                 UINT_MAX, 1);
4030 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4031                 UINT_MAX, 1);
4032 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4033 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4034                 UINT_MAX, 0);
4035 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4036 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4037 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4038 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4039 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4040                 UINT_MAX, 0);
4041 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4042 STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
4043 #undef STORE_FUNCTION
4044
4045 #define CFQ_ATTR(name) \
4046         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4047
4048 static struct elv_fs_entry cfq_attrs[] = {
4049         CFQ_ATTR(quantum),
4050         CFQ_ATTR(fifo_expire_sync),
4051         CFQ_ATTR(fifo_expire_async),
4052         CFQ_ATTR(back_seek_max),
4053         CFQ_ATTR(back_seek_penalty),
4054         CFQ_ATTR(slice_sync),
4055         CFQ_ATTR(slice_async),
4056         CFQ_ATTR(slice_async_rq),
4057         CFQ_ATTR(slice_idle),
4058         CFQ_ATTR(group_idle),
4059         CFQ_ATTR(low_latency),
4060         CFQ_ATTR(group_isolation),
4061         __ATTR_NULL
4062 };
4063
4064 static struct elevator_type iosched_cfq = {
4065         .ops = {
4066                 .elevator_merge_fn =            cfq_merge,
4067                 .elevator_merged_fn =           cfq_merged_request,
4068                 .elevator_merge_req_fn =        cfq_merged_requests,
4069                 .elevator_allow_merge_fn =      cfq_allow_merge,
4070                 .elevator_bio_merged_fn =       cfq_bio_merged,
4071                 .elevator_dispatch_fn =         cfq_dispatch_requests,
4072                 .elevator_add_req_fn =          cfq_insert_request,
4073                 .elevator_activate_req_fn =     cfq_activate_request,
4074                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
4075                 .elevator_queue_empty_fn =      cfq_queue_empty,
4076                 .elevator_completed_req_fn =    cfq_completed_request,
4077                 .elevator_former_req_fn =       elv_rb_former_request,
4078                 .elevator_latter_req_fn =       elv_rb_latter_request,
4079                 .elevator_set_req_fn =          cfq_set_request,
4080                 .elevator_put_req_fn =          cfq_put_request,
4081                 .elevator_may_queue_fn =        cfq_may_queue,
4082                 .elevator_init_fn =             cfq_init_queue,
4083                 .elevator_exit_fn =             cfq_exit_queue,
4084                 .trim =                         cfq_free_io_context,
4085         },
4086         .elevator_attrs =       cfq_attrs,
4087         .elevator_name =        "cfq",
4088         .elevator_owner =       THIS_MODULE,
4089 };
4090
4091 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4092 static struct blkio_policy_type blkio_policy_cfq = {
4093         .ops = {
4094                 .blkio_unlink_group_fn =        cfq_unlink_blkio_group,
4095                 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
4096         },
4097         .plid = BLKIO_POLICY_PROP,
4098 };
4099 #else
4100 static struct blkio_policy_type blkio_policy_cfq;
4101 #endif
4102
4103 static int __init cfq_init(void)
4104 {
4105         /*
4106          * could be 0 on HZ < 1000 setups
4107          */
4108         if (!cfq_slice_async)
4109                 cfq_slice_async = 1;
4110         if (!cfq_slice_idle)
4111                 cfq_slice_idle = 1;
4112
4113 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4114         if (!cfq_group_idle)
4115                 cfq_group_idle = 1;
4116 #else
4117                 cfq_group_idle = 0;
4118 #endif
4119         if (cfq_slab_setup())
4120                 return -ENOMEM;
4121
4122         elv_register(&iosched_cfq);
4123         blkio_policy_register(&blkio_policy_cfq);
4124
4125         return 0;
4126 }
4127
4128 static void __exit cfq_exit(void)
4129 {
4130         DECLARE_COMPLETION_ONSTACK(all_gone);
4131         blkio_policy_unregister(&blkio_policy_cfq);
4132         elv_unregister(&iosched_cfq);
4133         ioc_gone = &all_gone;
4134         /* ioc_gone's update must be visible before reading ioc_count */
4135         smp_wmb();
4136
4137         /*
4138          * this also protects us from entering cfq_slab_kill() with
4139          * pending RCU callbacks
4140          */
4141         if (elv_ioc_count_read(cfq_ioc_count))
4142                 wait_for_completion(&all_gone);
4143         ida_destroy(&cic_index_ida);
4144         cfq_slab_kill();
4145 }
4146
4147 module_init(cfq_init);
4148 module_exit(cfq_exit);
4149
4150 MODULE_AUTHOR("Jens Axboe");
4151 MODULE_LICENSE("GPL");
4152 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");