Merge branch 'for-linus' of git://oss.sgi.com/xfs/xfs
[platform/adaptation/renesas_rcar/renesas_kernel.git] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include "cfq.h"
18
19 /*
20  * tunables
21  */
22 /* max queue in one round of service */
23 static const int cfq_quantum = 8;
24 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
25 /* maximum backwards seek, in KiB */
26 static const int cfq_back_max = 16 * 1024;
27 /* penalty of a backwards seek */
28 static const int cfq_back_penalty = 2;
29 static const int cfq_slice_sync = HZ / 10;
30 static int cfq_slice_async = HZ / 25;
31 static const int cfq_slice_async_rq = 2;
32 static int cfq_slice_idle = HZ / 125;
33 static int cfq_group_idle = HZ / 125;
34 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
35 static const int cfq_hist_divisor = 4;
36
37 /*
38  * offset from end of service tree
39  */
40 #define CFQ_IDLE_DELAY          (HZ / 5)
41
42 /*
43  * below this threshold, we consider thinktime immediate
44  */
45 #define CFQ_MIN_TT              (2)
46
47 #define CFQ_SLICE_SCALE         (5)
48 #define CFQ_HW_QUEUE_MIN        (5)
49 #define CFQ_SERVICE_SHIFT       12
50
51 #define CFQQ_SEEK_THR           (sector_t)(8 * 100)
52 #define CFQQ_CLOSE_THR          (sector_t)(8 * 1024)
53 #define CFQQ_SECT_THR_NONROT    (sector_t)(2 * 32)
54 #define CFQQ_SEEKY(cfqq)        (hweight32(cfqq->seek_history) > 32/8)
55
56 #define RQ_CIC(rq)              \
57         ((struct cfq_io_context *) (rq)->elevator_private[0])
58 #define RQ_CFQQ(rq)             (struct cfq_queue *) ((rq)->elevator_private[1])
59 #define RQ_CFQG(rq)             (struct cfq_group *) ((rq)->elevator_private[2])
60
61 static struct kmem_cache *cfq_pool;
62 static struct kmem_cache *cfq_ioc_pool;
63
64 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
65 static struct completion *ioc_gone;
66 static DEFINE_SPINLOCK(ioc_gone_lock);
67
68 static DEFINE_SPINLOCK(cic_index_lock);
69 static DEFINE_IDA(cic_index_ida);
70
71 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
72 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
73 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
74
75 #define sample_valid(samples)   ((samples) > 80)
76 #define rb_entry_cfqg(node)     rb_entry((node), struct cfq_group, rb_node)
77
78 /*
79  * Most of our rbtree usage is for sorting with min extraction, so
80  * if we cache the leftmost node we don't have to walk down the tree
81  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82  * move this into the elevator for the rq sorting as well.
83  */
84 struct cfq_rb_root {
85         struct rb_root rb;
86         struct rb_node *left;
87         unsigned count;
88         unsigned total_weight;
89         u64 min_vdisktime;
90 };
91 #define CFQ_RB_ROOT     (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
92                         .count = 0, .min_vdisktime = 0, }
93
94 /*
95  * Per process-grouping structure
96  */
97 struct cfq_queue {
98         /* reference count */
99         int ref;
100         /* various state flags, see below */
101         unsigned int flags;
102         /* parent cfq_data */
103         struct cfq_data *cfqd;
104         /* service_tree member */
105         struct rb_node rb_node;
106         /* service_tree key */
107         unsigned long rb_key;
108         /* prio tree member */
109         struct rb_node p_node;
110         /* prio tree root we belong to, if any */
111         struct rb_root *p_root;
112         /* sorted list of pending requests */
113         struct rb_root sort_list;
114         /* if fifo isn't expired, next request to serve */
115         struct request *next_rq;
116         /* requests queued in sort_list */
117         int queued[2];
118         /* currently allocated requests */
119         int allocated[2];
120         /* fifo list of requests in sort_list */
121         struct list_head fifo;
122
123         /* time when queue got scheduled in to dispatch first request. */
124         unsigned long dispatch_start;
125         unsigned int allocated_slice;
126         unsigned int slice_dispatch;
127         /* time when first request from queue completed and slice started. */
128         unsigned long slice_start;
129         unsigned long slice_end;
130         long slice_resid;
131
132         /* pending metadata requests */
133         int meta_pending;
134         /* number of requests that are on the dispatch list or inside driver */
135         int dispatched;
136
137         /* io prio of this group */
138         unsigned short ioprio, org_ioprio;
139         unsigned short ioprio_class, org_ioprio_class;
140
141         pid_t pid;
142
143         u32 seek_history;
144         sector_t last_request_pos;
145
146         struct cfq_rb_root *service_tree;
147         struct cfq_queue *new_cfqq;
148         struct cfq_group *cfqg;
149         /* Number of sectors dispatched from queue in single dispatch round */
150         unsigned long nr_sectors;
151 };
152
153 /*
154  * First index in the service_trees.
155  * IDLE is handled separately, so it has negative index
156  */
157 enum wl_prio_t {
158         BE_WORKLOAD = 0,
159         RT_WORKLOAD = 1,
160         IDLE_WORKLOAD = 2,
161         CFQ_PRIO_NR,
162 };
163
164 /*
165  * Second index in the service_trees.
166  */
167 enum wl_type_t {
168         ASYNC_WORKLOAD = 0,
169         SYNC_NOIDLE_WORKLOAD = 1,
170         SYNC_WORKLOAD = 2
171 };
172
173 /* This is per cgroup per device grouping structure */
174 struct cfq_group {
175         /* group service_tree member */
176         struct rb_node rb_node;
177
178         /* group service_tree key */
179         u64 vdisktime;
180         unsigned int weight;
181         unsigned int new_weight;
182         bool needs_update;
183
184         /* number of cfqq currently on this group */
185         int nr_cfqq;
186
187         /*
188          * Per group busy queus average. Useful for workload slice calc. We
189          * create the array for each prio class but at run time it is used
190          * only for RT and BE class and slot for IDLE class remains unused.
191          * This is primarily done to avoid confusion and a gcc warning.
192          */
193         unsigned int busy_queues_avg[CFQ_PRIO_NR];
194         /*
195          * rr lists of queues with requests. We maintain service trees for
196          * RT and BE classes. These trees are subdivided in subclasses
197          * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
198          * class there is no subclassification and all the cfq queues go on
199          * a single tree service_tree_idle.
200          * Counts are embedded in the cfq_rb_root
201          */
202         struct cfq_rb_root service_trees[2][3];
203         struct cfq_rb_root service_tree_idle;
204
205         unsigned long saved_workload_slice;
206         enum wl_type_t saved_workload;
207         enum wl_prio_t saved_serving_prio;
208         struct blkio_group blkg;
209 #ifdef CONFIG_CFQ_GROUP_IOSCHED
210         struct hlist_node cfqd_node;
211         int ref;
212 #endif
213         /* number of requests that are on the dispatch list or inside driver */
214         int dispatched;
215 };
216
217 /*
218  * Per block device queue structure
219  */
220 struct cfq_data {
221         struct request_queue *queue;
222         /* Root service tree for cfq_groups */
223         struct cfq_rb_root grp_service_tree;
224         struct cfq_group root_group;
225
226         /*
227          * The priority currently being served
228          */
229         enum wl_prio_t serving_prio;
230         enum wl_type_t serving_type;
231         unsigned long workload_expires;
232         struct cfq_group *serving_group;
233
234         /*
235          * Each priority tree is sorted by next_request position.  These
236          * trees are used when determining if two or more queues are
237          * interleaving requests (see cfq_close_cooperator).
238          */
239         struct rb_root prio_trees[CFQ_PRIO_LISTS];
240
241         unsigned int busy_queues;
242         unsigned int busy_sync_queues;
243
244         int rq_in_driver;
245         int rq_in_flight[2];
246
247         /*
248          * queue-depth detection
249          */
250         int rq_queued;
251         int hw_tag;
252         /*
253          * hw_tag can be
254          * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
255          *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
256          *  0 => no NCQ
257          */
258         int hw_tag_est_depth;
259         unsigned int hw_tag_samples;
260
261         /*
262          * idle window management
263          */
264         struct timer_list idle_slice_timer;
265         struct work_struct unplug_work;
266
267         struct cfq_queue *active_queue;
268         struct cfq_io_context *active_cic;
269
270         /*
271          * async queue for each priority case
272          */
273         struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
274         struct cfq_queue *async_idle_cfqq;
275
276         sector_t last_position;
277
278         /*
279          * tunables, see top of file
280          */
281         unsigned int cfq_quantum;
282         unsigned int cfq_fifo_expire[2];
283         unsigned int cfq_back_penalty;
284         unsigned int cfq_back_max;
285         unsigned int cfq_slice[2];
286         unsigned int cfq_slice_async_rq;
287         unsigned int cfq_slice_idle;
288         unsigned int cfq_group_idle;
289         unsigned int cfq_latency;
290
291         unsigned int cic_index;
292         struct list_head cic_list;
293
294         /*
295          * Fallback dummy cfqq for extreme OOM conditions
296          */
297         struct cfq_queue oom_cfqq;
298
299         unsigned long last_delayed_sync;
300
301         /* List of cfq groups being managed on this device*/
302         struct hlist_head cfqg_list;
303
304         /* Number of groups which are on blkcg->blkg_list */
305         unsigned int nr_blkcg_linked_grps;
306 };
307
308 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
309
310 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
311                                             enum wl_prio_t prio,
312                                             enum wl_type_t type)
313 {
314         if (!cfqg)
315                 return NULL;
316
317         if (prio == IDLE_WORKLOAD)
318                 return &cfqg->service_tree_idle;
319
320         return &cfqg->service_trees[prio][type];
321 }
322
323 enum cfqq_state_flags {
324         CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
325         CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
326         CFQ_CFQQ_FLAG_must_dispatch,    /* must be allowed a dispatch */
327         CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
328         CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
329         CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
330         CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
331         CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
332         CFQ_CFQQ_FLAG_sync,             /* synchronous queue */
333         CFQ_CFQQ_FLAG_coop,             /* cfqq is shared */
334         CFQ_CFQQ_FLAG_split_coop,       /* shared cfqq will be splitted */
335         CFQ_CFQQ_FLAG_deep,             /* sync cfqq experienced large depth */
336         CFQ_CFQQ_FLAG_wait_busy,        /* Waiting for next request */
337 };
338
339 #define CFQ_CFQQ_FNS(name)                                              \
340 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
341 {                                                                       \
342         (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);                   \
343 }                                                                       \
344 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
345 {                                                                       \
346         (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                  \
347 }                                                                       \
348 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
349 {                                                                       \
350         return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;      \
351 }
352
353 CFQ_CFQQ_FNS(on_rr);
354 CFQ_CFQQ_FNS(wait_request);
355 CFQ_CFQQ_FNS(must_dispatch);
356 CFQ_CFQQ_FNS(must_alloc_slice);
357 CFQ_CFQQ_FNS(fifo_expire);
358 CFQ_CFQQ_FNS(idle_window);
359 CFQ_CFQQ_FNS(prio_changed);
360 CFQ_CFQQ_FNS(slice_new);
361 CFQ_CFQQ_FNS(sync);
362 CFQ_CFQQ_FNS(coop);
363 CFQ_CFQQ_FNS(split_coop);
364 CFQ_CFQQ_FNS(deep);
365 CFQ_CFQQ_FNS(wait_busy);
366 #undef CFQ_CFQQ_FNS
367
368 #ifdef CONFIG_CFQ_GROUP_IOSCHED
369 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
370         blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
371                         cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
372                         blkg_path(&(cfqq)->cfqg->blkg), ##args);
373
374 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)                          \
375         blk_add_trace_msg((cfqd)->queue, "%s " fmt,                     \
376                                 blkg_path(&(cfqg)->blkg), ##args);      \
377
378 #else
379 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
380         blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
381 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)          do {} while (0);
382 #endif
383 #define cfq_log(cfqd, fmt, args...)     \
384         blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
385
386 /* Traverses through cfq group service trees */
387 #define for_each_cfqg_st(cfqg, i, j, st) \
388         for (i = 0; i <= IDLE_WORKLOAD; i++) \
389                 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
390                         : &cfqg->service_tree_idle; \
391                         (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
392                         (i == IDLE_WORKLOAD && j == 0); \
393                         j++, st = i < IDLE_WORKLOAD ? \
394                         &cfqg->service_trees[i][j]: NULL) \
395
396
397 static inline bool iops_mode(struct cfq_data *cfqd)
398 {
399         /*
400          * If we are not idling on queues and it is a NCQ drive, parallel
401          * execution of requests is on and measuring time is not possible
402          * in most of the cases until and unless we drive shallower queue
403          * depths and that becomes a performance bottleneck. In such cases
404          * switch to start providing fairness in terms of number of IOs.
405          */
406         if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
407                 return true;
408         else
409                 return false;
410 }
411
412 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
413 {
414         if (cfq_class_idle(cfqq))
415                 return IDLE_WORKLOAD;
416         if (cfq_class_rt(cfqq))
417                 return RT_WORKLOAD;
418         return BE_WORKLOAD;
419 }
420
421
422 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
423 {
424         if (!cfq_cfqq_sync(cfqq))
425                 return ASYNC_WORKLOAD;
426         if (!cfq_cfqq_idle_window(cfqq))
427                 return SYNC_NOIDLE_WORKLOAD;
428         return SYNC_WORKLOAD;
429 }
430
431 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
432                                         struct cfq_data *cfqd,
433                                         struct cfq_group *cfqg)
434 {
435         if (wl == IDLE_WORKLOAD)
436                 return cfqg->service_tree_idle.count;
437
438         return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
439                 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
440                 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
441 }
442
443 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
444                                         struct cfq_group *cfqg)
445 {
446         return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
447                 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
448 }
449
450 static void cfq_dispatch_insert(struct request_queue *, struct request *);
451 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
452                                        struct io_context *, gfp_t);
453 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
454                                                 struct io_context *);
455
456 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
457                                             bool is_sync)
458 {
459         return cic->cfqq[is_sync];
460 }
461
462 static inline void cic_set_cfqq(struct cfq_io_context *cic,
463                                 struct cfq_queue *cfqq, bool is_sync)
464 {
465         cic->cfqq[is_sync] = cfqq;
466 }
467
468 #define CIC_DEAD_KEY    1ul
469 #define CIC_DEAD_INDEX_SHIFT    1
470
471 static inline void *cfqd_dead_key(struct cfq_data *cfqd)
472 {
473         return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
474 }
475
476 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
477 {
478         struct cfq_data *cfqd = cic->key;
479
480         if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
481                 return NULL;
482
483         return cfqd;
484 }
485
486 /*
487  * We regard a request as SYNC, if it's either a read or has the SYNC bit
488  * set (in which case it could also be direct WRITE).
489  */
490 static inline bool cfq_bio_sync(struct bio *bio)
491 {
492         return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
493 }
494
495 /*
496  * scheduler run of queue, if there are requests pending and no one in the
497  * driver that will restart queueing
498  */
499 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
500 {
501         if (cfqd->busy_queues) {
502                 cfq_log(cfqd, "schedule dispatch");
503                 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
504         }
505 }
506
507 /*
508  * Scale schedule slice based on io priority. Use the sync time slice only
509  * if a queue is marked sync and has sync io queued. A sync queue with async
510  * io only, should not get full sync slice length.
511  */
512 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
513                                  unsigned short prio)
514 {
515         const int base_slice = cfqd->cfq_slice[sync];
516
517         WARN_ON(prio >= IOPRIO_BE_NR);
518
519         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
520 }
521
522 static inline int
523 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
524 {
525         return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
526 }
527
528 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
529 {
530         u64 d = delta << CFQ_SERVICE_SHIFT;
531
532         d = d * BLKIO_WEIGHT_DEFAULT;
533         do_div(d, cfqg->weight);
534         return d;
535 }
536
537 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
538 {
539         s64 delta = (s64)(vdisktime - min_vdisktime);
540         if (delta > 0)
541                 min_vdisktime = vdisktime;
542
543         return min_vdisktime;
544 }
545
546 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
547 {
548         s64 delta = (s64)(vdisktime - min_vdisktime);
549         if (delta < 0)
550                 min_vdisktime = vdisktime;
551
552         return min_vdisktime;
553 }
554
555 static void update_min_vdisktime(struct cfq_rb_root *st)
556 {
557         struct cfq_group *cfqg;
558
559         if (st->left) {
560                 cfqg = rb_entry_cfqg(st->left);
561                 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
562                                                   cfqg->vdisktime);
563         }
564 }
565
566 /*
567  * get averaged number of queues of RT/BE priority.
568  * average is updated, with a formula that gives more weight to higher numbers,
569  * to quickly follows sudden increases and decrease slowly
570  */
571
572 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
573                                         struct cfq_group *cfqg, bool rt)
574 {
575         unsigned min_q, max_q;
576         unsigned mult  = cfq_hist_divisor - 1;
577         unsigned round = cfq_hist_divisor / 2;
578         unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
579
580         min_q = min(cfqg->busy_queues_avg[rt], busy);
581         max_q = max(cfqg->busy_queues_avg[rt], busy);
582         cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
583                 cfq_hist_divisor;
584         return cfqg->busy_queues_avg[rt];
585 }
586
587 static inline unsigned
588 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
589 {
590         struct cfq_rb_root *st = &cfqd->grp_service_tree;
591
592         return cfq_target_latency * cfqg->weight / st->total_weight;
593 }
594
595 static inline unsigned
596 cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
597 {
598         unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
599         if (cfqd->cfq_latency) {
600                 /*
601                  * interested queues (we consider only the ones with the same
602                  * priority class in the cfq group)
603                  */
604                 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
605                                                 cfq_class_rt(cfqq));
606                 unsigned sync_slice = cfqd->cfq_slice[1];
607                 unsigned expect_latency = sync_slice * iq;
608                 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
609
610                 if (expect_latency > group_slice) {
611                         unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
612                         /* scale low_slice according to IO priority
613                          * and sync vs async */
614                         unsigned low_slice =
615                                 min(slice, base_low_slice * slice / sync_slice);
616                         /* the adapted slice value is scaled to fit all iqs
617                          * into the target latency */
618                         slice = max(slice * group_slice / expect_latency,
619                                     low_slice);
620                 }
621         }
622         return slice;
623 }
624
625 static inline void
626 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
627 {
628         unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
629
630         cfqq->slice_start = jiffies;
631         cfqq->slice_end = jiffies + slice;
632         cfqq->allocated_slice = slice;
633         cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
634 }
635
636 /*
637  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
638  * isn't valid until the first request from the dispatch is activated
639  * and the slice time set.
640  */
641 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
642 {
643         if (cfq_cfqq_slice_new(cfqq))
644                 return false;
645         if (time_before(jiffies, cfqq->slice_end))
646                 return false;
647
648         return true;
649 }
650
651 /*
652  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
653  * We choose the request that is closest to the head right now. Distance
654  * behind the head is penalized and only allowed to a certain extent.
655  */
656 static struct request *
657 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
658 {
659         sector_t s1, s2, d1 = 0, d2 = 0;
660         unsigned long back_max;
661 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
662 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
663         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
664
665         if (rq1 == NULL || rq1 == rq2)
666                 return rq2;
667         if (rq2 == NULL)
668                 return rq1;
669
670         if (rq_is_sync(rq1) != rq_is_sync(rq2))
671                 return rq_is_sync(rq1) ? rq1 : rq2;
672
673         if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_META)
674                 return rq1->cmd_flags & REQ_META ? rq1 : rq2;
675
676         s1 = blk_rq_pos(rq1);
677         s2 = blk_rq_pos(rq2);
678
679         /*
680          * by definition, 1KiB is 2 sectors
681          */
682         back_max = cfqd->cfq_back_max * 2;
683
684         /*
685          * Strict one way elevator _except_ in the case where we allow
686          * short backward seeks which are biased as twice the cost of a
687          * similar forward seek.
688          */
689         if (s1 >= last)
690                 d1 = s1 - last;
691         else if (s1 + back_max >= last)
692                 d1 = (last - s1) * cfqd->cfq_back_penalty;
693         else
694                 wrap |= CFQ_RQ1_WRAP;
695
696         if (s2 >= last)
697                 d2 = s2 - last;
698         else if (s2 + back_max >= last)
699                 d2 = (last - s2) * cfqd->cfq_back_penalty;
700         else
701                 wrap |= CFQ_RQ2_WRAP;
702
703         /* Found required data */
704
705         /*
706          * By doing switch() on the bit mask "wrap" we avoid having to
707          * check two variables for all permutations: --> faster!
708          */
709         switch (wrap) {
710         case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
711                 if (d1 < d2)
712                         return rq1;
713                 else if (d2 < d1)
714                         return rq2;
715                 else {
716                         if (s1 >= s2)
717                                 return rq1;
718                         else
719                                 return rq2;
720                 }
721
722         case CFQ_RQ2_WRAP:
723                 return rq1;
724         case CFQ_RQ1_WRAP:
725                 return rq2;
726         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
727         default:
728                 /*
729                  * Since both rqs are wrapped,
730                  * start with the one that's further behind head
731                  * (--> only *one* back seek required),
732                  * since back seek takes more time than forward.
733                  */
734                 if (s1 <= s2)
735                         return rq1;
736                 else
737                         return rq2;
738         }
739 }
740
741 /*
742  * The below is leftmost cache rbtree addon
743  */
744 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
745 {
746         /* Service tree is empty */
747         if (!root->count)
748                 return NULL;
749
750         if (!root->left)
751                 root->left = rb_first(&root->rb);
752
753         if (root->left)
754                 return rb_entry(root->left, struct cfq_queue, rb_node);
755
756         return NULL;
757 }
758
759 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
760 {
761         if (!root->left)
762                 root->left = rb_first(&root->rb);
763
764         if (root->left)
765                 return rb_entry_cfqg(root->left);
766
767         return NULL;
768 }
769
770 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
771 {
772         rb_erase(n, root);
773         RB_CLEAR_NODE(n);
774 }
775
776 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
777 {
778         if (root->left == n)
779                 root->left = NULL;
780         rb_erase_init(n, &root->rb);
781         --root->count;
782 }
783
784 /*
785  * would be nice to take fifo expire time into account as well
786  */
787 static struct request *
788 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
789                   struct request *last)
790 {
791         struct rb_node *rbnext = rb_next(&last->rb_node);
792         struct rb_node *rbprev = rb_prev(&last->rb_node);
793         struct request *next = NULL, *prev = NULL;
794
795         BUG_ON(RB_EMPTY_NODE(&last->rb_node));
796
797         if (rbprev)
798                 prev = rb_entry_rq(rbprev);
799
800         if (rbnext)
801                 next = rb_entry_rq(rbnext);
802         else {
803                 rbnext = rb_first(&cfqq->sort_list);
804                 if (rbnext && rbnext != &last->rb_node)
805                         next = rb_entry_rq(rbnext);
806         }
807
808         return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
809 }
810
811 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
812                                       struct cfq_queue *cfqq)
813 {
814         /*
815          * just an approximation, should be ok.
816          */
817         return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
818                        cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
819 }
820
821 static inline s64
822 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
823 {
824         return cfqg->vdisktime - st->min_vdisktime;
825 }
826
827 static void
828 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
829 {
830         struct rb_node **node = &st->rb.rb_node;
831         struct rb_node *parent = NULL;
832         struct cfq_group *__cfqg;
833         s64 key = cfqg_key(st, cfqg);
834         int left = 1;
835
836         while (*node != NULL) {
837                 parent = *node;
838                 __cfqg = rb_entry_cfqg(parent);
839
840                 if (key < cfqg_key(st, __cfqg))
841                         node = &parent->rb_left;
842                 else {
843                         node = &parent->rb_right;
844                         left = 0;
845                 }
846         }
847
848         if (left)
849                 st->left = &cfqg->rb_node;
850
851         rb_link_node(&cfqg->rb_node, parent, node);
852         rb_insert_color(&cfqg->rb_node, &st->rb);
853 }
854
855 static void
856 cfq_update_group_weight(struct cfq_group *cfqg)
857 {
858         BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
859         if (cfqg->needs_update) {
860                 cfqg->weight = cfqg->new_weight;
861                 cfqg->needs_update = false;
862         }
863 }
864
865 static void
866 cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
867 {
868         BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
869
870         cfq_update_group_weight(cfqg);
871         __cfq_group_service_tree_add(st, cfqg);
872         st->total_weight += cfqg->weight;
873 }
874
875 static void
876 cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
877 {
878         struct cfq_rb_root *st = &cfqd->grp_service_tree;
879         struct cfq_group *__cfqg;
880         struct rb_node *n;
881
882         cfqg->nr_cfqq++;
883         if (!RB_EMPTY_NODE(&cfqg->rb_node))
884                 return;
885
886         /*
887          * Currently put the group at the end. Later implement something
888          * so that groups get lesser vtime based on their weights, so that
889          * if group does not loose all if it was not continuously backlogged.
890          */
891         n = rb_last(&st->rb);
892         if (n) {
893                 __cfqg = rb_entry_cfqg(n);
894                 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
895         } else
896                 cfqg->vdisktime = st->min_vdisktime;
897         cfq_group_service_tree_add(st, cfqg);
898 }
899
900 static void
901 cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
902 {
903         st->total_weight -= cfqg->weight;
904         if (!RB_EMPTY_NODE(&cfqg->rb_node))
905                 cfq_rb_erase(&cfqg->rb_node, st);
906 }
907
908 static void
909 cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
910 {
911         struct cfq_rb_root *st = &cfqd->grp_service_tree;
912
913         BUG_ON(cfqg->nr_cfqq < 1);
914         cfqg->nr_cfqq--;
915
916         /* If there are other cfq queues under this group, don't delete it */
917         if (cfqg->nr_cfqq)
918                 return;
919
920         cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
921         cfq_group_service_tree_del(st, cfqg);
922         cfqg->saved_workload_slice = 0;
923         cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
924 }
925
926 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
927                                                 unsigned int *unaccounted_time)
928 {
929         unsigned int slice_used;
930
931         /*
932          * Queue got expired before even a single request completed or
933          * got expired immediately after first request completion.
934          */
935         if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
936                 /*
937                  * Also charge the seek time incurred to the group, otherwise
938                  * if there are mutiple queues in the group, each can dispatch
939                  * a single request on seeky media and cause lots of seek time
940                  * and group will never know it.
941                  */
942                 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
943                                         1);
944         } else {
945                 slice_used = jiffies - cfqq->slice_start;
946                 if (slice_used > cfqq->allocated_slice) {
947                         *unaccounted_time = slice_used - cfqq->allocated_slice;
948                         slice_used = cfqq->allocated_slice;
949                 }
950                 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
951                         *unaccounted_time += cfqq->slice_start -
952                                         cfqq->dispatch_start;
953         }
954
955         return slice_used;
956 }
957
958 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
959                                 struct cfq_queue *cfqq)
960 {
961         struct cfq_rb_root *st = &cfqd->grp_service_tree;
962         unsigned int used_sl, charge, unaccounted_sl = 0;
963         int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
964                         - cfqg->service_tree_idle.count;
965
966         BUG_ON(nr_sync < 0);
967         used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
968
969         if (iops_mode(cfqd))
970                 charge = cfqq->slice_dispatch;
971         else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
972                 charge = cfqq->allocated_slice;
973
974         /* Can't update vdisktime while group is on service tree */
975         cfq_group_service_tree_del(st, cfqg);
976         cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
977         /* If a new weight was requested, update now, off tree */
978         cfq_group_service_tree_add(st, cfqg);
979
980         /* This group is being expired. Save the context */
981         if (time_after(cfqd->workload_expires, jiffies)) {
982                 cfqg->saved_workload_slice = cfqd->workload_expires
983                                                 - jiffies;
984                 cfqg->saved_workload = cfqd->serving_type;
985                 cfqg->saved_serving_prio = cfqd->serving_prio;
986         } else
987                 cfqg->saved_workload_slice = 0;
988
989         cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
990                                         st->min_vdisktime);
991         cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u disp=%u charge=%u iops=%u"
992                         " sect=%u", used_sl, cfqq->slice_dispatch, charge,
993                         iops_mode(cfqd), cfqq->nr_sectors);
994         cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl,
995                                           unaccounted_sl);
996         cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
997 }
998
999 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1000 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
1001 {
1002         if (blkg)
1003                 return container_of(blkg, struct cfq_group, blkg);
1004         return NULL;
1005 }
1006
1007 void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
1008                                         unsigned int weight)
1009 {
1010         struct cfq_group *cfqg = cfqg_of_blkg(blkg);
1011         cfqg->new_weight = weight;
1012         cfqg->needs_update = true;
1013 }
1014
1015 static void cfq_init_add_cfqg_lists(struct cfq_data *cfqd,
1016                         struct cfq_group *cfqg, struct blkio_cgroup *blkcg)
1017 {
1018         struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1019         unsigned int major, minor;
1020
1021         /*
1022          * Add group onto cgroup list. It might happen that bdi->dev is
1023          * not initialized yet. Initialize this new group without major
1024          * and minor info and this info will be filled in once a new thread
1025          * comes for IO.
1026          */
1027         if (bdi->dev) {
1028                 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1029                 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1030                                         (void *)cfqd, MKDEV(major, minor));
1031         } else
1032                 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1033                                         (void *)cfqd, 0);
1034
1035         cfqd->nr_blkcg_linked_grps++;
1036         cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
1037
1038         /* Add group on cfqd list */
1039         hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1040 }
1041
1042 /*
1043  * Should be called from sleepable context. No request queue lock as per
1044  * cpu stats are allocated dynamically and alloc_percpu needs to be called
1045  * from sleepable context.
1046  */
1047 static struct cfq_group * cfq_alloc_cfqg(struct cfq_data *cfqd)
1048 {
1049         struct cfq_group *cfqg = NULL;
1050         int i, j, ret;
1051         struct cfq_rb_root *st;
1052
1053         cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
1054         if (!cfqg)
1055                 return NULL;
1056
1057         for_each_cfqg_st(cfqg, i, j, st)
1058                 *st = CFQ_RB_ROOT;
1059         RB_CLEAR_NODE(&cfqg->rb_node);
1060
1061         /*
1062          * Take the initial reference that will be released on destroy
1063          * This can be thought of a joint reference by cgroup and
1064          * elevator which will be dropped by either elevator exit
1065          * or cgroup deletion path depending on who is exiting first.
1066          */
1067         cfqg->ref = 1;
1068
1069         ret = blkio_alloc_blkg_stats(&cfqg->blkg);
1070         if (ret) {
1071                 kfree(cfqg);
1072                 return NULL;
1073         }
1074
1075         return cfqg;
1076 }
1077
1078 static struct cfq_group *
1079 cfq_find_cfqg(struct cfq_data *cfqd, struct blkio_cgroup *blkcg)
1080 {
1081         struct cfq_group *cfqg = NULL;
1082         void *key = cfqd;
1083         struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1084         unsigned int major, minor;
1085
1086         /*
1087          * This is the common case when there are no blkio cgroups.
1088          * Avoid lookup in this case
1089          */
1090         if (blkcg == &blkio_root_cgroup)
1091                 cfqg = &cfqd->root_group;
1092         else
1093                 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
1094
1095         if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
1096                 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1097                 cfqg->blkg.dev = MKDEV(major, minor);
1098         }
1099
1100         return cfqg;
1101 }
1102
1103 /*
1104  * Search for the cfq group current task belongs to. request_queue lock must
1105  * be held.
1106  */
1107 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
1108 {
1109         struct blkio_cgroup *blkcg;
1110         struct cfq_group *cfqg = NULL, *__cfqg = NULL;
1111         struct request_queue *q = cfqd->queue;
1112
1113         rcu_read_lock();
1114         blkcg = task_blkio_cgroup(current);
1115         cfqg = cfq_find_cfqg(cfqd, blkcg);
1116         if (cfqg) {
1117                 rcu_read_unlock();
1118                 return cfqg;
1119         }
1120
1121         /*
1122          * Need to allocate a group. Allocation of group also needs allocation
1123          * of per cpu stats which in-turn takes a mutex() and can block. Hence
1124          * we need to drop rcu lock and queue_lock before we call alloc.
1125          *
1126          * Not taking any queue reference here and assuming that queue is
1127          * around by the time we return. CFQ queue allocation code does
1128          * the same. It might be racy though.
1129          */
1130
1131         rcu_read_unlock();
1132         spin_unlock_irq(q->queue_lock);
1133
1134         cfqg = cfq_alloc_cfqg(cfqd);
1135
1136         spin_lock_irq(q->queue_lock);
1137
1138         rcu_read_lock();
1139         blkcg = task_blkio_cgroup(current);
1140
1141         /*
1142          * If some other thread already allocated the group while we were
1143          * not holding queue lock, free up the group
1144          */
1145         __cfqg = cfq_find_cfqg(cfqd, blkcg);
1146
1147         if (__cfqg) {
1148                 kfree(cfqg);
1149                 rcu_read_unlock();
1150                 return __cfqg;
1151         }
1152
1153         if (!cfqg)
1154                 cfqg = &cfqd->root_group;
1155
1156         cfq_init_add_cfqg_lists(cfqd, cfqg, blkcg);
1157         rcu_read_unlock();
1158         return cfqg;
1159 }
1160
1161 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1162 {
1163         cfqg->ref++;
1164         return cfqg;
1165 }
1166
1167 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1168 {
1169         /* Currently, all async queues are mapped to root group */
1170         if (!cfq_cfqq_sync(cfqq))
1171                 cfqg = &cfqq->cfqd->root_group;
1172
1173         cfqq->cfqg = cfqg;
1174         /* cfqq reference on cfqg */
1175         cfqq->cfqg->ref++;
1176 }
1177
1178 static void cfq_put_cfqg(struct cfq_group *cfqg)
1179 {
1180         struct cfq_rb_root *st;
1181         int i, j;
1182
1183         BUG_ON(cfqg->ref <= 0);
1184         cfqg->ref--;
1185         if (cfqg->ref)
1186                 return;
1187         for_each_cfqg_st(cfqg, i, j, st)
1188                 BUG_ON(!RB_EMPTY_ROOT(&st->rb));
1189         free_percpu(cfqg->blkg.stats_cpu);
1190         kfree(cfqg);
1191 }
1192
1193 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1194 {
1195         /* Something wrong if we are trying to remove same group twice */
1196         BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1197
1198         hlist_del_init(&cfqg->cfqd_node);
1199
1200         /*
1201          * Put the reference taken at the time of creation so that when all
1202          * queues are gone, group can be destroyed.
1203          */
1204         cfq_put_cfqg(cfqg);
1205 }
1206
1207 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1208 {
1209         struct hlist_node *pos, *n;
1210         struct cfq_group *cfqg;
1211
1212         hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1213                 /*
1214                  * If cgroup removal path got to blk_group first and removed
1215                  * it from cgroup list, then it will take care of destroying
1216                  * cfqg also.
1217                  */
1218                 if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
1219                         cfq_destroy_cfqg(cfqd, cfqg);
1220         }
1221 }
1222
1223 /*
1224  * Blk cgroup controller notification saying that blkio_group object is being
1225  * delinked as associated cgroup object is going away. That also means that
1226  * no new IO will come in this group. So get rid of this group as soon as
1227  * any pending IO in the group is finished.
1228  *
1229  * This function is called under rcu_read_lock(). key is the rcu protected
1230  * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1231  * read lock.
1232  *
1233  * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1234  * it should not be NULL as even if elevator was exiting, cgroup deltion
1235  * path got to it first.
1236  */
1237 void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1238 {
1239         unsigned long  flags;
1240         struct cfq_data *cfqd = key;
1241
1242         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1243         cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1244         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1245 }
1246
1247 #else /* GROUP_IOSCHED */
1248 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
1249 {
1250         return &cfqd->root_group;
1251 }
1252
1253 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1254 {
1255         return cfqg;
1256 }
1257
1258 static inline void
1259 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1260         cfqq->cfqg = cfqg;
1261 }
1262
1263 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1264 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1265
1266 #endif /* GROUP_IOSCHED */
1267
1268 /*
1269  * The cfqd->service_trees holds all pending cfq_queue's that have
1270  * requests waiting to be processed. It is sorted in the order that
1271  * we will service the queues.
1272  */
1273 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1274                                  bool add_front)
1275 {
1276         struct rb_node **p, *parent;
1277         struct cfq_queue *__cfqq;
1278         unsigned long rb_key;
1279         struct cfq_rb_root *service_tree;
1280         int left;
1281         int new_cfqq = 1;
1282
1283         service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1284                                                 cfqq_type(cfqq));
1285         if (cfq_class_idle(cfqq)) {
1286                 rb_key = CFQ_IDLE_DELAY;
1287                 parent = rb_last(&service_tree->rb);
1288                 if (parent && parent != &cfqq->rb_node) {
1289                         __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1290                         rb_key += __cfqq->rb_key;
1291                 } else
1292                         rb_key += jiffies;
1293         } else if (!add_front) {
1294                 /*
1295                  * Get our rb key offset. Subtract any residual slice
1296                  * value carried from last service. A negative resid
1297                  * count indicates slice overrun, and this should position
1298                  * the next service time further away in the tree.
1299                  */
1300                 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1301                 rb_key -= cfqq->slice_resid;
1302                 cfqq->slice_resid = 0;
1303         } else {
1304                 rb_key = -HZ;
1305                 __cfqq = cfq_rb_first(service_tree);
1306                 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1307         }
1308
1309         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1310                 new_cfqq = 0;
1311                 /*
1312                  * same position, nothing more to do
1313                  */
1314                 if (rb_key == cfqq->rb_key &&
1315                     cfqq->service_tree == service_tree)
1316                         return;
1317
1318                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1319                 cfqq->service_tree = NULL;
1320         }
1321
1322         left = 1;
1323         parent = NULL;
1324         cfqq->service_tree = service_tree;
1325         p = &service_tree->rb.rb_node;
1326         while (*p) {
1327                 struct rb_node **n;
1328
1329                 parent = *p;
1330                 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1331
1332                 /*
1333                  * sort by key, that represents service time.
1334                  */
1335                 if (time_before(rb_key, __cfqq->rb_key))
1336                         n = &(*p)->rb_left;
1337                 else {
1338                         n = &(*p)->rb_right;
1339                         left = 0;
1340                 }
1341
1342                 p = n;
1343         }
1344
1345         if (left)
1346                 service_tree->left = &cfqq->rb_node;
1347
1348         cfqq->rb_key = rb_key;
1349         rb_link_node(&cfqq->rb_node, parent, p);
1350         rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1351         service_tree->count++;
1352         if (add_front || !new_cfqq)
1353                 return;
1354         cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
1355 }
1356
1357 static struct cfq_queue *
1358 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1359                      sector_t sector, struct rb_node **ret_parent,
1360                      struct rb_node ***rb_link)
1361 {
1362         struct rb_node **p, *parent;
1363         struct cfq_queue *cfqq = NULL;
1364
1365         parent = NULL;
1366         p = &root->rb_node;
1367         while (*p) {
1368                 struct rb_node **n;
1369
1370                 parent = *p;
1371                 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1372
1373                 /*
1374                  * Sort strictly based on sector.  Smallest to the left,
1375                  * largest to the right.
1376                  */
1377                 if (sector > blk_rq_pos(cfqq->next_rq))
1378                         n = &(*p)->rb_right;
1379                 else if (sector < blk_rq_pos(cfqq->next_rq))
1380                         n = &(*p)->rb_left;
1381                 else
1382                         break;
1383                 p = n;
1384                 cfqq = NULL;
1385         }
1386
1387         *ret_parent = parent;
1388         if (rb_link)
1389                 *rb_link = p;
1390         return cfqq;
1391 }
1392
1393 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1394 {
1395         struct rb_node **p, *parent;
1396         struct cfq_queue *__cfqq;
1397
1398         if (cfqq->p_root) {
1399                 rb_erase(&cfqq->p_node, cfqq->p_root);
1400                 cfqq->p_root = NULL;
1401         }
1402
1403         if (cfq_class_idle(cfqq))
1404                 return;
1405         if (!cfqq->next_rq)
1406                 return;
1407
1408         cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1409         __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1410                                       blk_rq_pos(cfqq->next_rq), &parent, &p);
1411         if (!__cfqq) {
1412                 rb_link_node(&cfqq->p_node, parent, p);
1413                 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1414         } else
1415                 cfqq->p_root = NULL;
1416 }
1417
1418 /*
1419  * Update cfqq's position in the service tree.
1420  */
1421 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1422 {
1423         /*
1424          * Resorting requires the cfqq to be on the RR list already.
1425          */
1426         if (cfq_cfqq_on_rr(cfqq)) {
1427                 cfq_service_tree_add(cfqd, cfqq, 0);
1428                 cfq_prio_tree_add(cfqd, cfqq);
1429         }
1430 }
1431
1432 /*
1433  * add to busy list of queues for service, trying to be fair in ordering
1434  * the pending list according to last request service
1435  */
1436 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1437 {
1438         cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1439         BUG_ON(cfq_cfqq_on_rr(cfqq));
1440         cfq_mark_cfqq_on_rr(cfqq);
1441         cfqd->busy_queues++;
1442         if (cfq_cfqq_sync(cfqq))
1443                 cfqd->busy_sync_queues++;
1444
1445         cfq_resort_rr_list(cfqd, cfqq);
1446 }
1447
1448 /*
1449  * Called when the cfqq no longer has requests pending, remove it from
1450  * the service tree.
1451  */
1452 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1453 {
1454         cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1455         BUG_ON(!cfq_cfqq_on_rr(cfqq));
1456         cfq_clear_cfqq_on_rr(cfqq);
1457
1458         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1459                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1460                 cfqq->service_tree = NULL;
1461         }
1462         if (cfqq->p_root) {
1463                 rb_erase(&cfqq->p_node, cfqq->p_root);
1464                 cfqq->p_root = NULL;
1465         }
1466
1467         cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
1468         BUG_ON(!cfqd->busy_queues);
1469         cfqd->busy_queues--;
1470         if (cfq_cfqq_sync(cfqq))
1471                 cfqd->busy_sync_queues--;
1472 }
1473
1474 /*
1475  * rb tree support functions
1476  */
1477 static void cfq_del_rq_rb(struct request *rq)
1478 {
1479         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1480         const int sync = rq_is_sync(rq);
1481
1482         BUG_ON(!cfqq->queued[sync]);
1483         cfqq->queued[sync]--;
1484
1485         elv_rb_del(&cfqq->sort_list, rq);
1486
1487         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1488                 /*
1489                  * Queue will be deleted from service tree when we actually
1490                  * expire it later. Right now just remove it from prio tree
1491                  * as it is empty.
1492                  */
1493                 if (cfqq->p_root) {
1494                         rb_erase(&cfqq->p_node, cfqq->p_root);
1495                         cfqq->p_root = NULL;
1496                 }
1497         }
1498 }
1499
1500 static void cfq_add_rq_rb(struct request *rq)
1501 {
1502         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1503         struct cfq_data *cfqd = cfqq->cfqd;
1504         struct request *__alias, *prev;
1505
1506         cfqq->queued[rq_is_sync(rq)]++;
1507
1508         /*
1509          * looks a little odd, but the first insert might return an alias.
1510          * if that happens, put the alias on the dispatch list
1511          */
1512         while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1513                 cfq_dispatch_insert(cfqd->queue, __alias);
1514
1515         if (!cfq_cfqq_on_rr(cfqq))
1516                 cfq_add_cfqq_rr(cfqd, cfqq);
1517
1518         /*
1519          * check if this request is a better next-serve candidate
1520          */
1521         prev = cfqq->next_rq;
1522         cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1523
1524         /*
1525          * adjust priority tree position, if ->next_rq changes
1526          */
1527         if (prev != cfqq->next_rq)
1528                 cfq_prio_tree_add(cfqd, cfqq);
1529
1530         BUG_ON(!cfqq->next_rq);
1531 }
1532
1533 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1534 {
1535         elv_rb_del(&cfqq->sort_list, rq);
1536         cfqq->queued[rq_is_sync(rq)]--;
1537         cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1538                                         rq_data_dir(rq), rq_is_sync(rq));
1539         cfq_add_rq_rb(rq);
1540         cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
1541                         &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1542                         rq_is_sync(rq));
1543 }
1544
1545 static struct request *
1546 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1547 {
1548         struct task_struct *tsk = current;
1549         struct cfq_io_context *cic;
1550         struct cfq_queue *cfqq;
1551
1552         cic = cfq_cic_lookup(cfqd, tsk->io_context);
1553         if (!cic)
1554                 return NULL;
1555
1556         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1557         if (cfqq) {
1558                 sector_t sector = bio->bi_sector + bio_sectors(bio);
1559
1560                 return elv_rb_find(&cfqq->sort_list, sector);
1561         }
1562
1563         return NULL;
1564 }
1565
1566 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1567 {
1568         struct cfq_data *cfqd = q->elevator->elevator_data;
1569
1570         cfqd->rq_in_driver++;
1571         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1572                                                 cfqd->rq_in_driver);
1573
1574         cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1575 }
1576
1577 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1578 {
1579         struct cfq_data *cfqd = q->elevator->elevator_data;
1580
1581         WARN_ON(!cfqd->rq_in_driver);
1582         cfqd->rq_in_driver--;
1583         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1584                                                 cfqd->rq_in_driver);
1585 }
1586
1587 static void cfq_remove_request(struct request *rq)
1588 {
1589         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1590
1591         if (cfqq->next_rq == rq)
1592                 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1593
1594         list_del_init(&rq->queuelist);
1595         cfq_del_rq_rb(rq);
1596
1597         cfqq->cfqd->rq_queued--;
1598         cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1599                                         rq_data_dir(rq), rq_is_sync(rq));
1600         if (rq->cmd_flags & REQ_META) {
1601                 WARN_ON(!cfqq->meta_pending);
1602                 cfqq->meta_pending--;
1603         }
1604 }
1605
1606 static int cfq_merge(struct request_queue *q, struct request **req,
1607                      struct bio *bio)
1608 {
1609         struct cfq_data *cfqd = q->elevator->elevator_data;
1610         struct request *__rq;
1611
1612         __rq = cfq_find_rq_fmerge(cfqd, bio);
1613         if (__rq && elv_rq_merge_ok(__rq, bio)) {
1614                 *req = __rq;
1615                 return ELEVATOR_FRONT_MERGE;
1616         }
1617
1618         return ELEVATOR_NO_MERGE;
1619 }
1620
1621 static void cfq_merged_request(struct request_queue *q, struct request *req,
1622                                int type)
1623 {
1624         if (type == ELEVATOR_FRONT_MERGE) {
1625                 struct cfq_queue *cfqq = RQ_CFQQ(req);
1626
1627                 cfq_reposition_rq_rb(cfqq, req);
1628         }
1629 }
1630
1631 static void cfq_bio_merged(struct request_queue *q, struct request *req,
1632                                 struct bio *bio)
1633 {
1634         cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1635                                         bio_data_dir(bio), cfq_bio_sync(bio));
1636 }
1637
1638 static void
1639 cfq_merged_requests(struct request_queue *q, struct request *rq,
1640                     struct request *next)
1641 {
1642         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1643         /*
1644          * reposition in fifo if next is older than rq
1645          */
1646         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1647             time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1648                 list_move(&rq->queuelist, &next->queuelist);
1649                 rq_set_fifo_time(rq, rq_fifo_time(next));
1650         }
1651
1652         if (cfqq->next_rq == next)
1653                 cfqq->next_rq = rq;
1654         cfq_remove_request(next);
1655         cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1656                                         rq_data_dir(next), rq_is_sync(next));
1657 }
1658
1659 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1660                            struct bio *bio)
1661 {
1662         struct cfq_data *cfqd = q->elevator->elevator_data;
1663         struct cfq_io_context *cic;
1664         struct cfq_queue *cfqq;
1665
1666         /*
1667          * Disallow merge of a sync bio into an async request.
1668          */
1669         if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1670                 return false;
1671
1672         /*
1673          * Lookup the cfqq that this bio will be queued with. Allow
1674          * merge only if rq is queued there.
1675          */
1676         cic = cfq_cic_lookup(cfqd, current->io_context);
1677         if (!cic)
1678                 return false;
1679
1680         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1681         return cfqq == RQ_CFQQ(rq);
1682 }
1683
1684 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1685 {
1686         del_timer(&cfqd->idle_slice_timer);
1687         cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
1688 }
1689
1690 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1691                                    struct cfq_queue *cfqq)
1692 {
1693         if (cfqq) {
1694                 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1695                                 cfqd->serving_prio, cfqd->serving_type);
1696                 cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1697                 cfqq->slice_start = 0;
1698                 cfqq->dispatch_start = jiffies;
1699                 cfqq->allocated_slice = 0;
1700                 cfqq->slice_end = 0;
1701                 cfqq->slice_dispatch = 0;
1702                 cfqq->nr_sectors = 0;
1703
1704                 cfq_clear_cfqq_wait_request(cfqq);
1705                 cfq_clear_cfqq_must_dispatch(cfqq);
1706                 cfq_clear_cfqq_must_alloc_slice(cfqq);
1707                 cfq_clear_cfqq_fifo_expire(cfqq);
1708                 cfq_mark_cfqq_slice_new(cfqq);
1709
1710                 cfq_del_timer(cfqd, cfqq);
1711         }
1712
1713         cfqd->active_queue = cfqq;
1714 }
1715
1716 /*
1717  * current cfqq expired its slice (or was too idle), select new one
1718  */
1719 static void
1720 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1721                     bool timed_out)
1722 {
1723         cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1724
1725         if (cfq_cfqq_wait_request(cfqq))
1726                 cfq_del_timer(cfqd, cfqq);
1727
1728         cfq_clear_cfqq_wait_request(cfqq);
1729         cfq_clear_cfqq_wait_busy(cfqq);
1730
1731         /*
1732          * If this cfqq is shared between multiple processes, check to
1733          * make sure that those processes are still issuing I/Os within
1734          * the mean seek distance.  If not, it may be time to break the
1735          * queues apart again.
1736          */
1737         if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1738                 cfq_mark_cfqq_split_coop(cfqq);
1739
1740         /*
1741          * store what was left of this slice, if the queue idled/timed out
1742          */
1743         if (timed_out) {
1744                 if (cfq_cfqq_slice_new(cfqq))
1745                         cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
1746                 else
1747                         cfqq->slice_resid = cfqq->slice_end - jiffies;
1748                 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1749         }
1750
1751         cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1752
1753         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1754                 cfq_del_cfqq_rr(cfqd, cfqq);
1755
1756         cfq_resort_rr_list(cfqd, cfqq);
1757
1758         if (cfqq == cfqd->active_queue)
1759                 cfqd->active_queue = NULL;
1760
1761         if (cfqd->active_cic) {
1762                 put_io_context(cfqd->active_cic->ioc);
1763                 cfqd->active_cic = NULL;
1764         }
1765 }
1766
1767 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1768 {
1769         struct cfq_queue *cfqq = cfqd->active_queue;
1770
1771         if (cfqq)
1772                 __cfq_slice_expired(cfqd, cfqq, timed_out);
1773 }
1774
1775 /*
1776  * Get next queue for service. Unless we have a queue preemption,
1777  * we'll simply select the first cfqq in the service tree.
1778  */
1779 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1780 {
1781         struct cfq_rb_root *service_tree =
1782                 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1783                                         cfqd->serving_type);
1784
1785         if (!cfqd->rq_queued)
1786                 return NULL;
1787
1788         /* There is nothing to dispatch */
1789         if (!service_tree)
1790                 return NULL;
1791         if (RB_EMPTY_ROOT(&service_tree->rb))
1792                 return NULL;
1793         return cfq_rb_first(service_tree);
1794 }
1795
1796 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1797 {
1798         struct cfq_group *cfqg;
1799         struct cfq_queue *cfqq;
1800         int i, j;
1801         struct cfq_rb_root *st;
1802
1803         if (!cfqd->rq_queued)
1804                 return NULL;
1805
1806         cfqg = cfq_get_next_cfqg(cfqd);
1807         if (!cfqg)
1808                 return NULL;
1809
1810         for_each_cfqg_st(cfqg, i, j, st)
1811                 if ((cfqq = cfq_rb_first(st)) != NULL)
1812                         return cfqq;
1813         return NULL;
1814 }
1815
1816 /*
1817  * Get and set a new active queue for service.
1818  */
1819 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1820                                               struct cfq_queue *cfqq)
1821 {
1822         if (!cfqq)
1823                 cfqq = cfq_get_next_queue(cfqd);
1824
1825         __cfq_set_active_queue(cfqd, cfqq);
1826         return cfqq;
1827 }
1828
1829 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1830                                           struct request *rq)
1831 {
1832         if (blk_rq_pos(rq) >= cfqd->last_position)
1833                 return blk_rq_pos(rq) - cfqd->last_position;
1834         else
1835                 return cfqd->last_position - blk_rq_pos(rq);
1836 }
1837
1838 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1839                                struct request *rq)
1840 {
1841         return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1842 }
1843
1844 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1845                                     struct cfq_queue *cur_cfqq)
1846 {
1847         struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1848         struct rb_node *parent, *node;
1849         struct cfq_queue *__cfqq;
1850         sector_t sector = cfqd->last_position;
1851
1852         if (RB_EMPTY_ROOT(root))
1853                 return NULL;
1854
1855         /*
1856          * First, if we find a request starting at the end of the last
1857          * request, choose it.
1858          */
1859         __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1860         if (__cfqq)
1861                 return __cfqq;
1862
1863         /*
1864          * If the exact sector wasn't found, the parent of the NULL leaf
1865          * will contain the closest sector.
1866          */
1867         __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1868         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1869                 return __cfqq;
1870
1871         if (blk_rq_pos(__cfqq->next_rq) < sector)
1872                 node = rb_next(&__cfqq->p_node);
1873         else
1874                 node = rb_prev(&__cfqq->p_node);
1875         if (!node)
1876                 return NULL;
1877
1878         __cfqq = rb_entry(node, struct cfq_queue, p_node);
1879         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1880                 return __cfqq;
1881
1882         return NULL;
1883 }
1884
1885 /*
1886  * cfqd - obvious
1887  * cur_cfqq - passed in so that we don't decide that the current queue is
1888  *            closely cooperating with itself.
1889  *
1890  * So, basically we're assuming that that cur_cfqq has dispatched at least
1891  * one request, and that cfqd->last_position reflects a position on the disk
1892  * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1893  * assumption.
1894  */
1895 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1896                                               struct cfq_queue *cur_cfqq)
1897 {
1898         struct cfq_queue *cfqq;
1899
1900         if (cfq_class_idle(cur_cfqq))
1901                 return NULL;
1902         if (!cfq_cfqq_sync(cur_cfqq))
1903                 return NULL;
1904         if (CFQQ_SEEKY(cur_cfqq))
1905                 return NULL;
1906
1907         /*
1908          * Don't search priority tree if it's the only queue in the group.
1909          */
1910         if (cur_cfqq->cfqg->nr_cfqq == 1)
1911                 return NULL;
1912
1913         /*
1914          * We should notice if some of the queues are cooperating, eg
1915          * working closely on the same area of the disk. In that case,
1916          * we can group them together and don't waste time idling.
1917          */
1918         cfqq = cfqq_close(cfqd, cur_cfqq);
1919         if (!cfqq)
1920                 return NULL;
1921
1922         /* If new queue belongs to different cfq_group, don't choose it */
1923         if (cur_cfqq->cfqg != cfqq->cfqg)
1924                 return NULL;
1925
1926         /*
1927          * It only makes sense to merge sync queues.
1928          */
1929         if (!cfq_cfqq_sync(cfqq))
1930                 return NULL;
1931         if (CFQQ_SEEKY(cfqq))
1932                 return NULL;
1933
1934         /*
1935          * Do not merge queues of different priority classes
1936          */
1937         if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1938                 return NULL;
1939
1940         return cfqq;
1941 }
1942
1943 /*
1944  * Determine whether we should enforce idle window for this queue.
1945  */
1946
1947 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1948 {
1949         enum wl_prio_t prio = cfqq_prio(cfqq);
1950         struct cfq_rb_root *service_tree = cfqq->service_tree;
1951
1952         BUG_ON(!service_tree);
1953         BUG_ON(!service_tree->count);
1954
1955         if (!cfqd->cfq_slice_idle)
1956                 return false;
1957
1958         /* We never do for idle class queues. */
1959         if (prio == IDLE_WORKLOAD)
1960                 return false;
1961
1962         /* We do for queues that were marked with idle window flag. */
1963         if (cfq_cfqq_idle_window(cfqq) &&
1964            !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1965                 return true;
1966
1967         /*
1968          * Otherwise, we do only if they are the last ones
1969          * in their service tree.
1970          */
1971         if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
1972                 return true;
1973         cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1974                         service_tree->count);
1975         return false;
1976 }
1977
1978 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1979 {
1980         struct cfq_queue *cfqq = cfqd->active_queue;
1981         struct cfq_io_context *cic;
1982         unsigned long sl, group_idle = 0;
1983
1984         /*
1985          * SSD device without seek penalty, disable idling. But only do so
1986          * for devices that support queuing, otherwise we still have a problem
1987          * with sync vs async workloads.
1988          */
1989         if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1990                 return;
1991
1992         WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1993         WARN_ON(cfq_cfqq_slice_new(cfqq));
1994
1995         /*
1996          * idle is disabled, either manually or by past process history
1997          */
1998         if (!cfq_should_idle(cfqd, cfqq)) {
1999                 /* no queue idling. Check for group idling */
2000                 if (cfqd->cfq_group_idle)
2001                         group_idle = cfqd->cfq_group_idle;
2002                 else
2003                         return;
2004         }
2005
2006         /*
2007          * still active requests from this queue, don't idle
2008          */
2009         if (cfqq->dispatched)
2010                 return;
2011
2012         /*
2013          * task has exited, don't wait
2014          */
2015         cic = cfqd->active_cic;
2016         if (!cic || !atomic_read(&cic->ioc->nr_tasks))
2017                 return;
2018
2019         /*
2020          * If our average think time is larger than the remaining time
2021          * slice, then don't idle. This avoids overrunning the allotted
2022          * time slice.
2023          */
2024         if (sample_valid(cic->ttime_samples) &&
2025             (cfqq->slice_end - jiffies < cic->ttime_mean)) {
2026                 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
2027                                 cic->ttime_mean);
2028                 return;
2029         }
2030
2031         /* There are other queues in the group, don't do group idle */
2032         if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2033                 return;
2034
2035         cfq_mark_cfqq_wait_request(cfqq);
2036
2037         if (group_idle)
2038                 sl = cfqd->cfq_group_idle;
2039         else
2040                 sl = cfqd->cfq_slice_idle;
2041
2042         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2043         cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
2044         cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2045                         group_idle ? 1 : 0);
2046 }
2047
2048 /*
2049  * Move request from internal lists to the request queue dispatch list.
2050  */
2051 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2052 {
2053         struct cfq_data *cfqd = q->elevator->elevator_data;
2054         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2055
2056         cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2057
2058         cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2059         cfq_remove_request(rq);
2060         cfqq->dispatched++;
2061         (RQ_CFQG(rq))->dispatched++;
2062         elv_dispatch_sort(q, rq);
2063
2064         cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2065         cfqq->nr_sectors += blk_rq_sectors(rq);
2066         cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
2067                                         rq_data_dir(rq), rq_is_sync(rq));
2068 }
2069
2070 /*
2071  * return expired entry, or NULL to just start from scratch in rbtree
2072  */
2073 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2074 {
2075         struct request *rq = NULL;
2076
2077         if (cfq_cfqq_fifo_expire(cfqq))
2078                 return NULL;
2079
2080         cfq_mark_cfqq_fifo_expire(cfqq);
2081
2082         if (list_empty(&cfqq->fifo))
2083                 return NULL;
2084
2085         rq = rq_entry_fifo(cfqq->fifo.next);
2086         if (time_before(jiffies, rq_fifo_time(rq)))
2087                 rq = NULL;
2088
2089         cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2090         return rq;
2091 }
2092
2093 static inline int
2094 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2095 {
2096         const int base_rq = cfqd->cfq_slice_async_rq;
2097
2098         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2099
2100         return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
2101 }
2102
2103 /*
2104  * Must be called with the queue_lock held.
2105  */
2106 static int cfqq_process_refs(struct cfq_queue *cfqq)
2107 {
2108         int process_refs, io_refs;
2109
2110         io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2111         process_refs = cfqq->ref - io_refs;
2112         BUG_ON(process_refs < 0);
2113         return process_refs;
2114 }
2115
2116 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2117 {
2118         int process_refs, new_process_refs;
2119         struct cfq_queue *__cfqq;
2120
2121         /*
2122          * If there are no process references on the new_cfqq, then it is
2123          * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2124          * chain may have dropped their last reference (not just their
2125          * last process reference).
2126          */
2127         if (!cfqq_process_refs(new_cfqq))
2128                 return;
2129
2130         /* Avoid a circular list and skip interim queue merges */
2131         while ((__cfqq = new_cfqq->new_cfqq)) {
2132                 if (__cfqq == cfqq)
2133                         return;
2134                 new_cfqq = __cfqq;
2135         }
2136
2137         process_refs = cfqq_process_refs(cfqq);
2138         new_process_refs = cfqq_process_refs(new_cfqq);
2139         /*
2140          * If the process for the cfqq has gone away, there is no
2141          * sense in merging the queues.
2142          */
2143         if (process_refs == 0 || new_process_refs == 0)
2144                 return;
2145
2146         /*
2147          * Merge in the direction of the lesser amount of work.
2148          */
2149         if (new_process_refs >= process_refs) {
2150                 cfqq->new_cfqq = new_cfqq;
2151                 new_cfqq->ref += process_refs;
2152         } else {
2153                 new_cfqq->new_cfqq = cfqq;
2154                 cfqq->ref += new_process_refs;
2155         }
2156 }
2157
2158 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
2159                                 struct cfq_group *cfqg, enum wl_prio_t prio)
2160 {
2161         struct cfq_queue *queue;
2162         int i;
2163         bool key_valid = false;
2164         unsigned long lowest_key = 0;
2165         enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2166
2167         for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2168                 /* select the one with lowest rb_key */
2169                 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2170                 if (queue &&
2171                     (!key_valid || time_before(queue->rb_key, lowest_key))) {
2172                         lowest_key = queue->rb_key;
2173                         cur_best = i;
2174                         key_valid = true;
2175                 }
2176         }
2177
2178         return cur_best;
2179 }
2180
2181 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2182 {
2183         unsigned slice;
2184         unsigned count;
2185         struct cfq_rb_root *st;
2186         unsigned group_slice;
2187         enum wl_prio_t original_prio = cfqd->serving_prio;
2188
2189         /* Choose next priority. RT > BE > IDLE */
2190         if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2191                 cfqd->serving_prio = RT_WORKLOAD;
2192         else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2193                 cfqd->serving_prio = BE_WORKLOAD;
2194         else {
2195                 cfqd->serving_prio = IDLE_WORKLOAD;
2196                 cfqd->workload_expires = jiffies + 1;
2197                 return;
2198         }
2199
2200         if (original_prio != cfqd->serving_prio)
2201                 goto new_workload;
2202
2203         /*
2204          * For RT and BE, we have to choose also the type
2205          * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2206          * expiration time
2207          */
2208         st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2209         count = st->count;
2210
2211         /*
2212          * check workload expiration, and that we still have other queues ready
2213          */
2214         if (count && !time_after(jiffies, cfqd->workload_expires))
2215                 return;
2216
2217 new_workload:
2218         /* otherwise select new workload type */
2219         cfqd->serving_type =
2220                 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2221         st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2222         count = st->count;
2223
2224         /*
2225          * the workload slice is computed as a fraction of target latency
2226          * proportional to the number of queues in that workload, over
2227          * all the queues in the same priority class
2228          */
2229         group_slice = cfq_group_slice(cfqd, cfqg);
2230
2231         slice = group_slice * count /
2232                 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2233                       cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2234
2235         if (cfqd->serving_type == ASYNC_WORKLOAD) {
2236                 unsigned int tmp;
2237
2238                 /*
2239                  * Async queues are currently system wide. Just taking
2240                  * proportion of queues with-in same group will lead to higher
2241                  * async ratio system wide as generally root group is going
2242                  * to have higher weight. A more accurate thing would be to
2243                  * calculate system wide asnc/sync ratio.
2244                  */
2245                 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2246                 tmp = tmp/cfqd->busy_queues;
2247                 slice = min_t(unsigned, slice, tmp);
2248
2249                 /* async workload slice is scaled down according to
2250                  * the sync/async slice ratio. */
2251                 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2252         } else
2253                 /* sync workload slice is at least 2 * cfq_slice_idle */
2254                 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2255
2256         slice = max_t(unsigned, slice, CFQ_MIN_TT);
2257         cfq_log(cfqd, "workload slice:%d", slice);
2258         cfqd->workload_expires = jiffies + slice;
2259 }
2260
2261 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2262 {
2263         struct cfq_rb_root *st = &cfqd->grp_service_tree;
2264         struct cfq_group *cfqg;
2265
2266         if (RB_EMPTY_ROOT(&st->rb))
2267                 return NULL;
2268         cfqg = cfq_rb_first_group(st);
2269         update_min_vdisktime(st);
2270         return cfqg;
2271 }
2272
2273 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2274 {
2275         struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2276
2277         cfqd->serving_group = cfqg;
2278
2279         /* Restore the workload type data */
2280         if (cfqg->saved_workload_slice) {
2281                 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2282                 cfqd->serving_type = cfqg->saved_workload;
2283                 cfqd->serving_prio = cfqg->saved_serving_prio;
2284         } else
2285                 cfqd->workload_expires = jiffies - 1;
2286
2287         choose_service_tree(cfqd, cfqg);
2288 }
2289
2290 /*
2291  * Select a queue for service. If we have a current active queue,
2292  * check whether to continue servicing it, or retrieve and set a new one.
2293  */
2294 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2295 {
2296         struct cfq_queue *cfqq, *new_cfqq = NULL;
2297
2298         cfqq = cfqd->active_queue;
2299         if (!cfqq)
2300                 goto new_queue;
2301
2302         if (!cfqd->rq_queued)
2303                 return NULL;
2304
2305         /*
2306          * We were waiting for group to get backlogged. Expire the queue
2307          */
2308         if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2309                 goto expire;
2310
2311         /*
2312          * The active queue has run out of time, expire it and select new.
2313          */
2314         if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2315                 /*
2316                  * If slice had not expired at the completion of last request
2317                  * we might not have turned on wait_busy flag. Don't expire
2318                  * the queue yet. Allow the group to get backlogged.
2319                  *
2320                  * The very fact that we have used the slice, that means we
2321                  * have been idling all along on this queue and it should be
2322                  * ok to wait for this request to complete.
2323                  */
2324                 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2325                     && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2326                         cfqq = NULL;
2327                         goto keep_queue;
2328                 } else
2329                         goto check_group_idle;
2330         }
2331
2332         /*
2333          * The active queue has requests and isn't expired, allow it to
2334          * dispatch.
2335          */
2336         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2337                 goto keep_queue;
2338
2339         /*
2340          * If another queue has a request waiting within our mean seek
2341          * distance, let it run.  The expire code will check for close
2342          * cooperators and put the close queue at the front of the service
2343          * tree.  If possible, merge the expiring queue with the new cfqq.
2344          */
2345         new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2346         if (new_cfqq) {
2347                 if (!cfqq->new_cfqq)
2348                         cfq_setup_merge(cfqq, new_cfqq);
2349                 goto expire;
2350         }
2351
2352         /*
2353          * No requests pending. If the active queue still has requests in
2354          * flight or is idling for a new request, allow either of these
2355          * conditions to happen (or time out) before selecting a new queue.
2356          */
2357         if (timer_pending(&cfqd->idle_slice_timer)) {
2358                 cfqq = NULL;
2359                 goto keep_queue;
2360         }
2361
2362         /*
2363          * This is a deep seek queue, but the device is much faster than
2364          * the queue can deliver, don't idle
2365          **/
2366         if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2367             (cfq_cfqq_slice_new(cfqq) ||
2368             (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2369                 cfq_clear_cfqq_deep(cfqq);
2370                 cfq_clear_cfqq_idle_window(cfqq);
2371         }
2372
2373         if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2374                 cfqq = NULL;
2375                 goto keep_queue;
2376         }
2377
2378         /*
2379          * If group idle is enabled and there are requests dispatched from
2380          * this group, wait for requests to complete.
2381          */
2382 check_group_idle:
2383         if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1
2384             && cfqq->cfqg->dispatched) {
2385                 cfqq = NULL;
2386                 goto keep_queue;
2387         }
2388
2389 expire:
2390         cfq_slice_expired(cfqd, 0);
2391 new_queue:
2392         /*
2393          * Current queue expired. Check if we have to switch to a new
2394          * service tree
2395          */
2396         if (!new_cfqq)
2397                 cfq_choose_cfqg(cfqd);
2398
2399         cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2400 keep_queue:
2401         return cfqq;
2402 }
2403
2404 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2405 {
2406         int dispatched = 0;
2407
2408         while (cfqq->next_rq) {
2409                 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2410                 dispatched++;
2411         }
2412
2413         BUG_ON(!list_empty(&cfqq->fifo));
2414
2415         /* By default cfqq is not expired if it is empty. Do it explicitly */
2416         __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2417         return dispatched;
2418 }
2419
2420 /*
2421  * Drain our current requests. Used for barriers and when switching
2422  * io schedulers on-the-fly.
2423  */
2424 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2425 {
2426         struct cfq_queue *cfqq;
2427         int dispatched = 0;
2428
2429         /* Expire the timeslice of the current active queue first */
2430         cfq_slice_expired(cfqd, 0);
2431         while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2432                 __cfq_set_active_queue(cfqd, cfqq);
2433                 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2434         }
2435
2436         BUG_ON(cfqd->busy_queues);
2437
2438         cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2439         return dispatched;
2440 }
2441
2442 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2443         struct cfq_queue *cfqq)
2444 {
2445         /* the queue hasn't finished any request, can't estimate */
2446         if (cfq_cfqq_slice_new(cfqq))
2447                 return true;
2448         if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2449                 cfqq->slice_end))
2450                 return true;
2451
2452         return false;
2453 }
2454
2455 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2456 {
2457         unsigned int max_dispatch;
2458
2459         /*
2460          * Drain async requests before we start sync IO
2461          */
2462         if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2463                 return false;
2464
2465         /*
2466          * If this is an async queue and we have sync IO in flight, let it wait
2467          */
2468         if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2469                 return false;
2470
2471         max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2472         if (cfq_class_idle(cfqq))
2473                 max_dispatch = 1;
2474
2475         /*
2476          * Does this cfqq already have too much IO in flight?
2477          */
2478         if (cfqq->dispatched >= max_dispatch) {
2479                 bool promote_sync = false;
2480                 /*
2481                  * idle queue must always only have a single IO in flight
2482                  */
2483                 if (cfq_class_idle(cfqq))
2484                         return false;
2485
2486                 /*
2487                  * If there is only one sync queue
2488                  * we can ignore async queue here and give the sync
2489                  * queue no dispatch limit. The reason is a sync queue can
2490                  * preempt async queue, limiting the sync queue doesn't make
2491                  * sense. This is useful for aiostress test.
2492                  */
2493                 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
2494                         promote_sync = true;
2495
2496                 /*
2497                  * We have other queues, don't allow more IO from this one
2498                  */
2499                 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
2500                                 !promote_sync)
2501                         return false;
2502
2503                 /*
2504                  * Sole queue user, no limit
2505                  */
2506                 if (cfqd->busy_queues == 1 || promote_sync)
2507                         max_dispatch = -1;
2508                 else
2509                         /*
2510                          * Normally we start throttling cfqq when cfq_quantum/2
2511                          * requests have been dispatched. But we can drive
2512                          * deeper queue depths at the beginning of slice
2513                          * subjected to upper limit of cfq_quantum.
2514                          * */
2515                         max_dispatch = cfqd->cfq_quantum;
2516         }
2517
2518         /*
2519          * Async queues must wait a bit before being allowed dispatch.
2520          * We also ramp up the dispatch depth gradually for async IO,
2521          * based on the last sync IO we serviced
2522          */
2523         if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2524                 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2525                 unsigned int depth;
2526
2527                 depth = last_sync / cfqd->cfq_slice[1];
2528                 if (!depth && !cfqq->dispatched)
2529                         depth = 1;
2530                 if (depth < max_dispatch)
2531                         max_dispatch = depth;
2532         }
2533
2534         /*
2535          * If we're below the current max, allow a dispatch
2536          */
2537         return cfqq->dispatched < max_dispatch;
2538 }
2539
2540 /*
2541  * Dispatch a request from cfqq, moving them to the request queue
2542  * dispatch list.
2543  */
2544 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2545 {
2546         struct request *rq;
2547
2548         BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2549
2550         if (!cfq_may_dispatch(cfqd, cfqq))
2551                 return false;
2552
2553         /*
2554          * follow expired path, else get first next available
2555          */
2556         rq = cfq_check_fifo(cfqq);
2557         if (!rq)
2558                 rq = cfqq->next_rq;
2559
2560         /*
2561          * insert request into driver dispatch list
2562          */
2563         cfq_dispatch_insert(cfqd->queue, rq);
2564
2565         if (!cfqd->active_cic) {
2566                 struct cfq_io_context *cic = RQ_CIC(rq);
2567
2568                 atomic_long_inc(&cic->ioc->refcount);
2569                 cfqd->active_cic = cic;
2570         }
2571
2572         return true;
2573 }
2574
2575 /*
2576  * Find the cfqq that we need to service and move a request from that to the
2577  * dispatch list
2578  */
2579 static int cfq_dispatch_requests(struct request_queue *q, int force)
2580 {
2581         struct cfq_data *cfqd = q->elevator->elevator_data;
2582         struct cfq_queue *cfqq;
2583
2584         if (!cfqd->busy_queues)
2585                 return 0;
2586
2587         if (unlikely(force))
2588                 return cfq_forced_dispatch(cfqd);
2589
2590         cfqq = cfq_select_queue(cfqd);
2591         if (!cfqq)
2592                 return 0;
2593
2594         /*
2595          * Dispatch a request from this cfqq, if it is allowed
2596          */
2597         if (!cfq_dispatch_request(cfqd, cfqq))
2598                 return 0;
2599
2600         cfqq->slice_dispatch++;
2601         cfq_clear_cfqq_must_dispatch(cfqq);
2602
2603         /*
2604          * expire an async queue immediately if it has used up its slice. idle
2605          * queue always expire after 1 dispatch round.
2606          */
2607         if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2608             cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2609             cfq_class_idle(cfqq))) {
2610                 cfqq->slice_end = jiffies + 1;
2611                 cfq_slice_expired(cfqd, 0);
2612         }
2613
2614         cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2615         return 1;
2616 }
2617
2618 /*
2619  * task holds one reference to the queue, dropped when task exits. each rq
2620  * in-flight on this queue also holds a reference, dropped when rq is freed.
2621  *
2622  * Each cfq queue took a reference on the parent group. Drop it now.
2623  * queue lock must be held here.
2624  */
2625 static void cfq_put_queue(struct cfq_queue *cfqq)
2626 {
2627         struct cfq_data *cfqd = cfqq->cfqd;
2628         struct cfq_group *cfqg;
2629
2630         BUG_ON(cfqq->ref <= 0);
2631
2632         cfqq->ref--;
2633         if (cfqq->ref)
2634                 return;
2635
2636         cfq_log_cfqq(cfqd, cfqq, "put_queue");
2637         BUG_ON(rb_first(&cfqq->sort_list));
2638         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2639         cfqg = cfqq->cfqg;
2640
2641         if (unlikely(cfqd->active_queue == cfqq)) {
2642                 __cfq_slice_expired(cfqd, cfqq, 0);
2643                 cfq_schedule_dispatch(cfqd);
2644         }
2645
2646         BUG_ON(cfq_cfqq_on_rr(cfqq));
2647         kmem_cache_free(cfq_pool, cfqq);
2648         cfq_put_cfqg(cfqg);
2649 }
2650
2651 /*
2652  * Call func for each cic attached to this ioc.
2653  */
2654 static void
2655 call_for_each_cic(struct io_context *ioc,
2656                   void (*func)(struct io_context *, struct cfq_io_context *))
2657 {
2658         struct cfq_io_context *cic;
2659         struct hlist_node *n;
2660
2661         rcu_read_lock();
2662
2663         hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2664                 func(ioc, cic);
2665
2666         rcu_read_unlock();
2667 }
2668
2669 static void cfq_cic_free_rcu(struct rcu_head *head)
2670 {
2671         struct cfq_io_context *cic;
2672
2673         cic = container_of(head, struct cfq_io_context, rcu_head);
2674
2675         kmem_cache_free(cfq_ioc_pool, cic);
2676         elv_ioc_count_dec(cfq_ioc_count);
2677
2678         if (ioc_gone) {
2679                 /*
2680                  * CFQ scheduler is exiting, grab exit lock and check
2681                  * the pending io context count. If it hits zero,
2682                  * complete ioc_gone and set it back to NULL
2683                  */
2684                 spin_lock(&ioc_gone_lock);
2685                 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2686                         complete(ioc_gone);
2687                         ioc_gone = NULL;
2688                 }
2689                 spin_unlock(&ioc_gone_lock);
2690         }
2691 }
2692
2693 static void cfq_cic_free(struct cfq_io_context *cic)
2694 {
2695         call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2696 }
2697
2698 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2699 {
2700         unsigned long flags;
2701         unsigned long dead_key = (unsigned long) cic->key;
2702
2703         BUG_ON(!(dead_key & CIC_DEAD_KEY));
2704
2705         spin_lock_irqsave(&ioc->lock, flags);
2706         radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
2707         hlist_del_rcu(&cic->cic_list);
2708         spin_unlock_irqrestore(&ioc->lock, flags);
2709
2710         cfq_cic_free(cic);
2711 }
2712
2713 /*
2714  * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2715  * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2716  * and ->trim() which is called with the task lock held
2717  */
2718 static void cfq_free_io_context(struct io_context *ioc)
2719 {
2720         /*
2721          * ioc->refcount is zero here, or we are called from elv_unregister(),
2722          * so no more cic's are allowed to be linked into this ioc.  So it
2723          * should be ok to iterate over the known list, we will see all cic's
2724          * since no new ones are added.
2725          */
2726         call_for_each_cic(ioc, cic_free_func);
2727 }
2728
2729 static void cfq_put_cooperator(struct cfq_queue *cfqq)
2730 {
2731         struct cfq_queue *__cfqq, *next;
2732
2733         /*
2734          * If this queue was scheduled to merge with another queue, be
2735          * sure to drop the reference taken on that queue (and others in
2736          * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
2737          */
2738         __cfqq = cfqq->new_cfqq;
2739         while (__cfqq) {
2740                 if (__cfqq == cfqq) {
2741                         WARN(1, "cfqq->new_cfqq loop detected\n");
2742                         break;
2743                 }
2744                 next = __cfqq->new_cfqq;
2745                 cfq_put_queue(__cfqq);
2746                 __cfqq = next;
2747         }
2748 }
2749
2750 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2751 {
2752         if (unlikely(cfqq == cfqd->active_queue)) {
2753                 __cfq_slice_expired(cfqd, cfqq, 0);
2754                 cfq_schedule_dispatch(cfqd);
2755         }
2756
2757         cfq_put_cooperator(cfqq);
2758
2759         cfq_put_queue(cfqq);
2760 }
2761
2762 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2763                                          struct cfq_io_context *cic)
2764 {
2765         struct io_context *ioc = cic->ioc;
2766
2767         list_del_init(&cic->queue_list);
2768
2769         /*
2770          * Make sure dead mark is seen for dead queues
2771          */
2772         smp_wmb();
2773         cic->key = cfqd_dead_key(cfqd);
2774
2775         if (ioc->ioc_data == cic)
2776                 rcu_assign_pointer(ioc->ioc_data, NULL);
2777
2778         if (cic->cfqq[BLK_RW_ASYNC]) {
2779                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2780                 cic->cfqq[BLK_RW_ASYNC] = NULL;
2781         }
2782
2783         if (cic->cfqq[BLK_RW_SYNC]) {
2784                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2785                 cic->cfqq[BLK_RW_SYNC] = NULL;
2786         }
2787 }
2788
2789 static void cfq_exit_single_io_context(struct io_context *ioc,
2790                                        struct cfq_io_context *cic)
2791 {
2792         struct cfq_data *cfqd = cic_to_cfqd(cic);
2793
2794         if (cfqd) {
2795                 struct request_queue *q = cfqd->queue;
2796                 unsigned long flags;
2797
2798                 spin_lock_irqsave(q->queue_lock, flags);
2799
2800                 /*
2801                  * Ensure we get a fresh copy of the ->key to prevent
2802                  * race between exiting task and queue
2803                  */
2804                 smp_read_barrier_depends();
2805                 if (cic->key == cfqd)
2806                         __cfq_exit_single_io_context(cfqd, cic);
2807
2808                 spin_unlock_irqrestore(q->queue_lock, flags);
2809         }
2810 }
2811
2812 /*
2813  * The process that ioc belongs to has exited, we need to clean up
2814  * and put the internal structures we have that belongs to that process.
2815  */
2816 static void cfq_exit_io_context(struct io_context *ioc)
2817 {
2818         call_for_each_cic(ioc, cfq_exit_single_io_context);
2819 }
2820
2821 static struct cfq_io_context *
2822 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2823 {
2824         struct cfq_io_context *cic;
2825
2826         cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2827                                                         cfqd->queue->node);
2828         if (cic) {
2829                 cic->last_end_request = jiffies;
2830                 INIT_LIST_HEAD(&cic->queue_list);
2831                 INIT_HLIST_NODE(&cic->cic_list);
2832                 cic->dtor = cfq_free_io_context;
2833                 cic->exit = cfq_exit_io_context;
2834                 elv_ioc_count_inc(cfq_ioc_count);
2835         }
2836
2837         return cic;
2838 }
2839
2840 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2841 {
2842         struct task_struct *tsk = current;
2843         int ioprio_class;
2844
2845         if (!cfq_cfqq_prio_changed(cfqq))
2846                 return;
2847
2848         ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2849         switch (ioprio_class) {
2850         default:
2851                 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2852         case IOPRIO_CLASS_NONE:
2853                 /*
2854                  * no prio set, inherit CPU scheduling settings
2855                  */
2856                 cfqq->ioprio = task_nice_ioprio(tsk);
2857                 cfqq->ioprio_class = task_nice_ioclass(tsk);
2858                 break;
2859         case IOPRIO_CLASS_RT:
2860                 cfqq->ioprio = task_ioprio(ioc);
2861                 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2862                 break;
2863         case IOPRIO_CLASS_BE:
2864                 cfqq->ioprio = task_ioprio(ioc);
2865                 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2866                 break;
2867         case IOPRIO_CLASS_IDLE:
2868                 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2869                 cfqq->ioprio = 7;
2870                 cfq_clear_cfqq_idle_window(cfqq);
2871                 break;
2872         }
2873
2874         /*
2875          * keep track of original prio settings in case we have to temporarily
2876          * elevate the priority of this queue
2877          */
2878         cfqq->org_ioprio = cfqq->ioprio;
2879         cfqq->org_ioprio_class = cfqq->ioprio_class;
2880         cfq_clear_cfqq_prio_changed(cfqq);
2881 }
2882
2883 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2884 {
2885         struct cfq_data *cfqd = cic_to_cfqd(cic);
2886         struct cfq_queue *cfqq;
2887         unsigned long flags;
2888
2889         if (unlikely(!cfqd))
2890                 return;
2891
2892         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2893
2894         cfqq = cic->cfqq[BLK_RW_ASYNC];
2895         if (cfqq) {
2896                 struct cfq_queue *new_cfqq;
2897                 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2898                                                 GFP_ATOMIC);
2899                 if (new_cfqq) {
2900                         cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2901                         cfq_put_queue(cfqq);
2902                 }
2903         }
2904
2905         cfqq = cic->cfqq[BLK_RW_SYNC];
2906         if (cfqq)
2907                 cfq_mark_cfqq_prio_changed(cfqq);
2908
2909         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2910 }
2911
2912 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2913 {
2914         call_for_each_cic(ioc, changed_ioprio);
2915         ioc->ioprio_changed = 0;
2916 }
2917
2918 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2919                           pid_t pid, bool is_sync)
2920 {
2921         RB_CLEAR_NODE(&cfqq->rb_node);
2922         RB_CLEAR_NODE(&cfqq->p_node);
2923         INIT_LIST_HEAD(&cfqq->fifo);
2924
2925         cfqq->ref = 0;
2926         cfqq->cfqd = cfqd;
2927
2928         cfq_mark_cfqq_prio_changed(cfqq);
2929
2930         if (is_sync) {
2931                 if (!cfq_class_idle(cfqq))
2932                         cfq_mark_cfqq_idle_window(cfqq);
2933                 cfq_mark_cfqq_sync(cfqq);
2934         }
2935         cfqq->pid = pid;
2936 }
2937
2938 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2939 static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2940 {
2941         struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2942         struct cfq_data *cfqd = cic_to_cfqd(cic);
2943         unsigned long flags;
2944         struct request_queue *q;
2945
2946         if (unlikely(!cfqd))
2947                 return;
2948
2949         q = cfqd->queue;
2950
2951         spin_lock_irqsave(q->queue_lock, flags);
2952
2953         if (sync_cfqq) {
2954                 /*
2955                  * Drop reference to sync queue. A new sync queue will be
2956                  * assigned in new group upon arrival of a fresh request.
2957                  */
2958                 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2959                 cic_set_cfqq(cic, NULL, 1);
2960                 cfq_put_queue(sync_cfqq);
2961         }
2962
2963         spin_unlock_irqrestore(q->queue_lock, flags);
2964 }
2965
2966 static void cfq_ioc_set_cgroup(struct io_context *ioc)
2967 {
2968         call_for_each_cic(ioc, changed_cgroup);
2969         ioc->cgroup_changed = 0;
2970 }
2971 #endif  /* CONFIG_CFQ_GROUP_IOSCHED */
2972
2973 static struct cfq_queue *
2974 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2975                      struct io_context *ioc, gfp_t gfp_mask)
2976 {
2977         struct cfq_queue *cfqq, *new_cfqq = NULL;
2978         struct cfq_io_context *cic;
2979         struct cfq_group *cfqg;
2980
2981 retry:
2982         cfqg = cfq_get_cfqg(cfqd);
2983         cic = cfq_cic_lookup(cfqd, ioc);
2984         /* cic always exists here */
2985         cfqq = cic_to_cfqq(cic, is_sync);
2986
2987         /*
2988          * Always try a new alloc if we fell back to the OOM cfqq
2989          * originally, since it should just be a temporary situation.
2990          */
2991         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2992                 cfqq = NULL;
2993                 if (new_cfqq) {
2994                         cfqq = new_cfqq;
2995                         new_cfqq = NULL;
2996                 } else if (gfp_mask & __GFP_WAIT) {
2997                         spin_unlock_irq(cfqd->queue->queue_lock);
2998                         new_cfqq = kmem_cache_alloc_node(cfq_pool,
2999                                         gfp_mask | __GFP_ZERO,
3000                                         cfqd->queue->node);
3001                         spin_lock_irq(cfqd->queue->queue_lock);
3002                         if (new_cfqq)
3003                                 goto retry;
3004                 } else {
3005                         cfqq = kmem_cache_alloc_node(cfq_pool,
3006                                         gfp_mask | __GFP_ZERO,
3007                                         cfqd->queue->node);
3008                 }
3009
3010                 if (cfqq) {
3011                         cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3012                         cfq_init_prio_data(cfqq, ioc);
3013                         cfq_link_cfqq_cfqg(cfqq, cfqg);
3014                         cfq_log_cfqq(cfqd, cfqq, "alloced");
3015                 } else
3016                         cfqq = &cfqd->oom_cfqq;
3017         }
3018
3019         if (new_cfqq)
3020                 kmem_cache_free(cfq_pool, new_cfqq);
3021
3022         return cfqq;
3023 }
3024
3025 static struct cfq_queue **
3026 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
3027 {
3028         switch (ioprio_class) {
3029         case IOPRIO_CLASS_RT:
3030                 return &cfqd->async_cfqq[0][ioprio];
3031         case IOPRIO_CLASS_BE:
3032                 return &cfqd->async_cfqq[1][ioprio];
3033         case IOPRIO_CLASS_IDLE:
3034                 return &cfqd->async_idle_cfqq;
3035         default:
3036                 BUG();
3037         }
3038 }
3039
3040 static struct cfq_queue *
3041 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
3042               gfp_t gfp_mask)
3043 {
3044         const int ioprio = task_ioprio(ioc);
3045         const int ioprio_class = task_ioprio_class(ioc);
3046         struct cfq_queue **async_cfqq = NULL;
3047         struct cfq_queue *cfqq = NULL;
3048
3049         if (!is_sync) {
3050                 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
3051                 cfqq = *async_cfqq;
3052         }
3053
3054         if (!cfqq)
3055                 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
3056
3057         /*
3058          * pin the queue now that it's allocated, scheduler exit will prune it
3059          */
3060         if (!is_sync && !(*async_cfqq)) {
3061                 cfqq->ref++;
3062                 *async_cfqq = cfqq;
3063         }
3064
3065         cfqq->ref++;
3066         return cfqq;
3067 }
3068
3069 /*
3070  * We drop cfq io contexts lazily, so we may find a dead one.
3071  */
3072 static void
3073 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
3074                   struct cfq_io_context *cic)
3075 {
3076         unsigned long flags;
3077
3078         WARN_ON(!list_empty(&cic->queue_list));
3079         BUG_ON(cic->key != cfqd_dead_key(cfqd));
3080
3081         spin_lock_irqsave(&ioc->lock, flags);
3082
3083         BUG_ON(ioc->ioc_data == cic);
3084
3085         radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
3086         hlist_del_rcu(&cic->cic_list);
3087         spin_unlock_irqrestore(&ioc->lock, flags);
3088
3089         cfq_cic_free(cic);
3090 }
3091
3092 static struct cfq_io_context *
3093 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
3094 {
3095         struct cfq_io_context *cic;
3096         unsigned long flags;
3097
3098         if (unlikely(!ioc))
3099                 return NULL;
3100
3101         rcu_read_lock();
3102
3103         /*
3104          * we maintain a last-hit cache, to avoid browsing over the tree
3105          */
3106         cic = rcu_dereference(ioc->ioc_data);
3107         if (cic && cic->key == cfqd) {
3108                 rcu_read_unlock();
3109                 return cic;
3110         }
3111
3112         do {
3113                 cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
3114                 rcu_read_unlock();
3115                 if (!cic)
3116                         break;
3117                 if (unlikely(cic->key != cfqd)) {
3118                         cfq_drop_dead_cic(cfqd, ioc, cic);
3119                         rcu_read_lock();
3120                         continue;
3121                 }
3122
3123                 spin_lock_irqsave(&ioc->lock, flags);
3124                 rcu_assign_pointer(ioc->ioc_data, cic);
3125                 spin_unlock_irqrestore(&ioc->lock, flags);
3126                 break;
3127         } while (1);
3128
3129         return cic;
3130 }
3131
3132 /*
3133  * Add cic into ioc, using cfqd as the search key. This enables us to lookup
3134  * the process specific cfq io context when entered from the block layer.
3135  * Also adds the cic to a per-cfqd list, used when this queue is removed.
3136  */
3137 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
3138                         struct cfq_io_context *cic, gfp_t gfp_mask)
3139 {
3140         unsigned long flags;
3141         int ret;
3142
3143         ret = radix_tree_preload(gfp_mask);
3144         if (!ret) {
3145                 cic->ioc = ioc;
3146                 cic->key = cfqd;
3147
3148                 spin_lock_irqsave(&ioc->lock, flags);
3149                 ret = radix_tree_insert(&ioc->radix_root,
3150                                                 cfqd->cic_index, cic);
3151                 if (!ret)
3152                         hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
3153                 spin_unlock_irqrestore(&ioc->lock, flags);
3154
3155                 radix_tree_preload_end();
3156
3157                 if (!ret) {
3158                         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3159                         list_add(&cic->queue_list, &cfqd->cic_list);
3160                         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3161                 }
3162         }
3163
3164         if (ret)
3165                 printk(KERN_ERR "cfq: cic link failed!\n");
3166
3167         return ret;
3168 }
3169
3170 /*
3171  * Setup general io context and cfq io context. There can be several cfq
3172  * io contexts per general io context, if this process is doing io to more
3173  * than one device managed by cfq.
3174  */
3175 static struct cfq_io_context *
3176 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
3177 {
3178         struct io_context *ioc = NULL;
3179         struct cfq_io_context *cic;
3180
3181         might_sleep_if(gfp_mask & __GFP_WAIT);
3182
3183         ioc = get_io_context(gfp_mask, cfqd->queue->node);
3184         if (!ioc)
3185                 return NULL;
3186
3187         cic = cfq_cic_lookup(cfqd, ioc);
3188         if (cic)
3189                 goto out;
3190
3191         cic = cfq_alloc_io_context(cfqd, gfp_mask);
3192         if (cic == NULL)
3193                 goto err;
3194
3195         if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
3196                 goto err_free;
3197
3198 out:
3199         smp_read_barrier_depends();
3200         if (unlikely(ioc->ioprio_changed))
3201                 cfq_ioc_set_ioprio(ioc);
3202
3203 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3204         if (unlikely(ioc->cgroup_changed))
3205                 cfq_ioc_set_cgroup(ioc);
3206 #endif
3207         return cic;
3208 err_free:
3209         cfq_cic_free(cic);
3210 err:
3211         put_io_context(ioc);
3212         return NULL;
3213 }
3214
3215 static void
3216 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
3217 {
3218         unsigned long elapsed = jiffies - cic->last_end_request;
3219         unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
3220
3221         cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
3222         cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
3223         cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
3224 }
3225
3226 static void
3227 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3228                        struct request *rq)
3229 {
3230         sector_t sdist = 0;
3231         sector_t n_sec = blk_rq_sectors(rq);
3232         if (cfqq->last_request_pos) {
3233                 if (cfqq->last_request_pos < blk_rq_pos(rq))
3234                         sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3235                 else
3236                         sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3237         }
3238
3239         cfqq->seek_history <<= 1;
3240         if (blk_queue_nonrot(cfqd->queue))
3241                 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3242         else
3243                 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3244 }
3245
3246 /*
3247  * Disable idle window if the process thinks too long or seeks so much that
3248  * it doesn't matter
3249  */
3250 static void
3251 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3252                        struct cfq_io_context *cic)
3253 {
3254         int old_idle, enable_idle;
3255
3256         /*
3257          * Don't idle for async or idle io prio class
3258          */
3259         if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3260                 return;
3261
3262         enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3263
3264         if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3265                 cfq_mark_cfqq_deep(cfqq);
3266
3267         if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3268                 enable_idle = 0;
3269         else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3270             (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3271                 enable_idle = 0;
3272         else if (sample_valid(cic->ttime_samples)) {
3273                 if (cic->ttime_mean > cfqd->cfq_slice_idle)
3274                         enable_idle = 0;
3275                 else
3276                         enable_idle = 1;
3277         }
3278
3279         if (old_idle != enable_idle) {
3280                 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3281                 if (enable_idle)
3282                         cfq_mark_cfqq_idle_window(cfqq);
3283                 else
3284                         cfq_clear_cfqq_idle_window(cfqq);
3285         }
3286 }
3287
3288 /*
3289  * Check if new_cfqq should preempt the currently active queue. Return 0 for
3290  * no or if we aren't sure, a 1 will cause a preempt.
3291  */
3292 static bool
3293 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3294                    struct request *rq)
3295 {
3296         struct cfq_queue *cfqq;
3297
3298         cfqq = cfqd->active_queue;
3299         if (!cfqq)
3300                 return false;
3301
3302         if (cfq_class_idle(new_cfqq))
3303                 return false;
3304
3305         if (cfq_class_idle(cfqq))
3306                 return true;
3307
3308         /*
3309          * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3310          */
3311         if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3312                 return false;
3313
3314         /*
3315          * if the new request is sync, but the currently running queue is
3316          * not, let the sync request have priority.
3317          */
3318         if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3319                 return true;
3320
3321         if (new_cfqq->cfqg != cfqq->cfqg)
3322                 return false;
3323
3324         if (cfq_slice_used(cfqq))
3325                 return true;
3326
3327         /* Allow preemption only if we are idling on sync-noidle tree */
3328         if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3329             cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3330             new_cfqq->service_tree->count == 2 &&
3331             RB_EMPTY_ROOT(&cfqq->sort_list))
3332                 return true;
3333
3334         /*
3335          * So both queues are sync. Let the new request get disk time if
3336          * it's a metadata request and the current queue is doing regular IO.
3337          */
3338         if ((rq->cmd_flags & REQ_META) && !cfqq->meta_pending)
3339                 return true;
3340
3341         /*
3342          * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3343          */
3344         if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3345                 return true;
3346
3347         /* An idle queue should not be idle now for some reason */
3348         if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3349                 return true;
3350
3351         if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3352                 return false;
3353
3354         /*
3355          * if this request is as-good as one we would expect from the
3356          * current cfqq, let it preempt
3357          */
3358         if (cfq_rq_close(cfqd, cfqq, rq))
3359                 return true;
3360
3361         return false;
3362 }
3363
3364 /*
3365  * cfqq preempts the active queue. if we allowed preempt with no slice left,
3366  * let it have half of its nominal slice.
3367  */
3368 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3369 {
3370         struct cfq_queue *old_cfqq = cfqd->active_queue;
3371
3372         cfq_log_cfqq(cfqd, cfqq, "preempt");
3373         cfq_slice_expired(cfqd, 1);
3374
3375         /*
3376          * workload type is changed, don't save slice, otherwise preempt
3377          * doesn't happen
3378          */
3379         if (cfqq_type(old_cfqq) != cfqq_type(cfqq))
3380                 cfqq->cfqg->saved_workload_slice = 0;
3381
3382         /*
3383          * Put the new queue at the front of the of the current list,
3384          * so we know that it will be selected next.
3385          */
3386         BUG_ON(!cfq_cfqq_on_rr(cfqq));
3387
3388         cfq_service_tree_add(cfqd, cfqq, 1);
3389
3390         cfqq->slice_end = 0;
3391         cfq_mark_cfqq_slice_new(cfqq);
3392 }
3393
3394 /*
3395  * Called when a new fs request (rq) is added (to cfqq). Check if there's
3396  * something we should do about it
3397  */
3398 static void
3399 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3400                 struct request *rq)
3401 {
3402         struct cfq_io_context *cic = RQ_CIC(rq);
3403
3404         cfqd->rq_queued++;
3405         if (rq->cmd_flags & REQ_META)
3406                 cfqq->meta_pending++;
3407
3408         cfq_update_io_thinktime(cfqd, cic);
3409         cfq_update_io_seektime(cfqd, cfqq, rq);
3410         cfq_update_idle_window(cfqd, cfqq, cic);
3411
3412         cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3413
3414         if (cfqq == cfqd->active_queue) {
3415                 /*
3416                  * Remember that we saw a request from this process, but
3417                  * don't start queuing just yet. Otherwise we risk seeing lots
3418                  * of tiny requests, because we disrupt the normal plugging
3419                  * and merging. If the request is already larger than a single
3420                  * page, let it rip immediately. For that case we assume that
3421                  * merging is already done. Ditto for a busy system that
3422                  * has other work pending, don't risk delaying until the
3423                  * idle timer unplug to continue working.
3424                  */
3425                 if (cfq_cfqq_wait_request(cfqq)) {
3426                         if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3427                             cfqd->busy_queues > 1) {
3428                                 cfq_del_timer(cfqd, cfqq);
3429                                 cfq_clear_cfqq_wait_request(cfqq);
3430                                 __blk_run_queue(cfqd->queue);
3431                         } else {
3432                                 cfq_blkiocg_update_idle_time_stats(
3433                                                 &cfqq->cfqg->blkg);
3434                                 cfq_mark_cfqq_must_dispatch(cfqq);
3435                         }
3436                 }
3437         } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3438                 /*
3439                  * not the active queue - expire current slice if it is
3440                  * idle and has expired it's mean thinktime or this new queue
3441                  * has some old slice time left and is of higher priority or
3442                  * this new queue is RT and the current one is BE
3443                  */
3444                 cfq_preempt_queue(cfqd, cfqq);
3445                 __blk_run_queue(cfqd->queue);
3446         }
3447 }
3448
3449 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3450 {
3451         struct cfq_data *cfqd = q->elevator->elevator_data;
3452         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3453
3454         cfq_log_cfqq(cfqd, cfqq, "insert_request");
3455         cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3456
3457         rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3458         list_add_tail(&rq->queuelist, &cfqq->fifo);
3459         cfq_add_rq_rb(rq);
3460         cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
3461                         &cfqd->serving_group->blkg, rq_data_dir(rq),
3462                         rq_is_sync(rq));
3463         cfq_rq_enqueued(cfqd, cfqq, rq);
3464 }
3465
3466 /*
3467  * Update hw_tag based on peak queue depth over 50 samples under
3468  * sufficient load.
3469  */
3470 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3471 {
3472         struct cfq_queue *cfqq = cfqd->active_queue;
3473
3474         if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3475                 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3476
3477         if (cfqd->hw_tag == 1)
3478                 return;
3479
3480         if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3481             cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3482                 return;
3483
3484         /*
3485          * If active queue hasn't enough requests and can idle, cfq might not
3486          * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3487          * case
3488          */
3489         if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3490             cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3491             CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3492                 return;
3493
3494         if (cfqd->hw_tag_samples++ < 50)
3495                 return;
3496
3497         if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3498                 cfqd->hw_tag = 1;
3499         else
3500                 cfqd->hw_tag = 0;
3501 }
3502
3503 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3504 {
3505         struct cfq_io_context *cic = cfqd->active_cic;
3506
3507         /* If the queue already has requests, don't wait */
3508         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3509                 return false;
3510
3511         /* If there are other queues in the group, don't wait */
3512         if (cfqq->cfqg->nr_cfqq > 1)
3513                 return false;
3514
3515         if (cfq_slice_used(cfqq))
3516                 return true;
3517
3518         /* if slice left is less than think time, wait busy */
3519         if (cic && sample_valid(cic->ttime_samples)
3520             && (cfqq->slice_end - jiffies < cic->ttime_mean))
3521                 return true;
3522
3523         /*
3524          * If think times is less than a jiffy than ttime_mean=0 and above
3525          * will not be true. It might happen that slice has not expired yet
3526          * but will expire soon (4-5 ns) during select_queue(). To cover the
3527          * case where think time is less than a jiffy, mark the queue wait
3528          * busy if only 1 jiffy is left in the slice.
3529          */
3530         if (cfqq->slice_end - jiffies == 1)
3531                 return true;
3532
3533         return false;
3534 }
3535
3536 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3537 {
3538         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3539         struct cfq_data *cfqd = cfqq->cfqd;
3540         const int sync = rq_is_sync(rq);
3541         unsigned long now;
3542
3543         now = jiffies;
3544         cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3545                      !!(rq->cmd_flags & REQ_NOIDLE));
3546
3547         cfq_update_hw_tag(cfqd);
3548
3549         WARN_ON(!cfqd->rq_in_driver);
3550         WARN_ON(!cfqq->dispatched);
3551         cfqd->rq_in_driver--;
3552         cfqq->dispatched--;
3553         (RQ_CFQG(rq))->dispatched--;
3554         cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3555                         rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3556                         rq_data_dir(rq), rq_is_sync(rq));
3557
3558         cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3559
3560         if (sync) {
3561                 RQ_CIC(rq)->last_end_request = now;
3562                 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3563                         cfqd->last_delayed_sync = now;
3564         }
3565
3566         /*
3567          * If this is the active queue, check if it needs to be expired,
3568          * or if we want to idle in case it has no pending requests.
3569          */
3570         if (cfqd->active_queue == cfqq) {
3571                 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3572
3573                 if (cfq_cfqq_slice_new(cfqq)) {
3574                         cfq_set_prio_slice(cfqd, cfqq);
3575                         cfq_clear_cfqq_slice_new(cfqq);
3576                 }
3577
3578                 /*
3579                  * Should we wait for next request to come in before we expire
3580                  * the queue.
3581                  */
3582                 if (cfq_should_wait_busy(cfqd, cfqq)) {
3583                         unsigned long extend_sl = cfqd->cfq_slice_idle;
3584                         if (!cfqd->cfq_slice_idle)
3585                                 extend_sl = cfqd->cfq_group_idle;
3586                         cfqq->slice_end = jiffies + extend_sl;
3587                         cfq_mark_cfqq_wait_busy(cfqq);
3588                         cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3589                 }
3590
3591                 /*
3592                  * Idling is not enabled on:
3593                  * - expired queues
3594                  * - idle-priority queues
3595                  * - async queues
3596                  * - queues with still some requests queued
3597                  * - when there is a close cooperator
3598                  */
3599                 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3600                         cfq_slice_expired(cfqd, 1);
3601                 else if (sync && cfqq_empty &&
3602                          !cfq_close_cooperator(cfqd, cfqq)) {
3603                         cfq_arm_slice_timer(cfqd);
3604                 }
3605         }
3606
3607         if (!cfqd->rq_in_driver)
3608                 cfq_schedule_dispatch(cfqd);
3609 }
3610
3611 /*
3612  * we temporarily boost lower priority queues if they are holding fs exclusive
3613  * resources. they are boosted to normal prio (CLASS_BE/4)
3614  */
3615 static void cfq_prio_boost(struct cfq_queue *cfqq)
3616 {
3617         if (has_fs_excl()) {
3618                 /*
3619                  * boost idle prio on transactions that would lock out other
3620                  * users of the filesystem
3621                  */
3622                 if (cfq_class_idle(cfqq))
3623                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
3624                 if (cfqq->ioprio > IOPRIO_NORM)
3625                         cfqq->ioprio = IOPRIO_NORM;
3626         } else {
3627                 /*
3628                  * unboost the queue (if needed)
3629                  */
3630                 cfqq->ioprio_class = cfqq->org_ioprio_class;
3631                 cfqq->ioprio = cfqq->org_ioprio;
3632         }
3633 }
3634
3635 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3636 {
3637         if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3638                 cfq_mark_cfqq_must_alloc_slice(cfqq);
3639                 return ELV_MQUEUE_MUST;
3640         }
3641
3642         return ELV_MQUEUE_MAY;
3643 }
3644
3645 static int cfq_may_queue(struct request_queue *q, int rw)
3646 {
3647         struct cfq_data *cfqd = q->elevator->elevator_data;
3648         struct task_struct *tsk = current;
3649         struct cfq_io_context *cic;
3650         struct cfq_queue *cfqq;
3651
3652         /*
3653          * don't force setup of a queue from here, as a call to may_queue
3654          * does not necessarily imply that a request actually will be queued.
3655          * so just lookup a possibly existing queue, or return 'may queue'
3656          * if that fails
3657          */
3658         cic = cfq_cic_lookup(cfqd, tsk->io_context);
3659         if (!cic)
3660                 return ELV_MQUEUE_MAY;
3661
3662         cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3663         if (cfqq) {
3664                 cfq_init_prio_data(cfqq, cic->ioc);
3665                 cfq_prio_boost(cfqq);
3666
3667                 return __cfq_may_queue(cfqq);
3668         }
3669
3670         return ELV_MQUEUE_MAY;
3671 }
3672
3673 /*
3674  * queue lock held here
3675  */
3676 static void cfq_put_request(struct request *rq)
3677 {
3678         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3679
3680         if (cfqq) {
3681                 const int rw = rq_data_dir(rq);
3682
3683                 BUG_ON(!cfqq->allocated[rw]);
3684                 cfqq->allocated[rw]--;
3685
3686                 put_io_context(RQ_CIC(rq)->ioc);
3687
3688                 rq->elevator_private[0] = NULL;
3689                 rq->elevator_private[1] = NULL;
3690
3691                 /* Put down rq reference on cfqg */
3692                 cfq_put_cfqg(RQ_CFQG(rq));
3693                 rq->elevator_private[2] = NULL;
3694
3695                 cfq_put_queue(cfqq);
3696         }
3697 }
3698
3699 static struct cfq_queue *
3700 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3701                 struct cfq_queue *cfqq)
3702 {
3703         cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3704         cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3705         cfq_mark_cfqq_coop(cfqq->new_cfqq);
3706         cfq_put_queue(cfqq);
3707         return cic_to_cfqq(cic, 1);
3708 }
3709
3710 /*
3711  * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3712  * was the last process referring to said cfqq.
3713  */
3714 static struct cfq_queue *
3715 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3716 {
3717         if (cfqq_process_refs(cfqq) == 1) {
3718                 cfqq->pid = current->pid;
3719                 cfq_clear_cfqq_coop(cfqq);
3720                 cfq_clear_cfqq_split_coop(cfqq);
3721                 return cfqq;
3722         }
3723
3724         cic_set_cfqq(cic, NULL, 1);
3725
3726         cfq_put_cooperator(cfqq);
3727
3728         cfq_put_queue(cfqq);
3729         return NULL;
3730 }
3731 /*
3732  * Allocate cfq data structures associated with this request.
3733  */
3734 static int
3735 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3736 {
3737         struct cfq_data *cfqd = q->elevator->elevator_data;
3738         struct cfq_io_context *cic;
3739         const int rw = rq_data_dir(rq);
3740         const bool is_sync = rq_is_sync(rq);
3741         struct cfq_queue *cfqq;
3742         unsigned long flags;
3743
3744         might_sleep_if(gfp_mask & __GFP_WAIT);
3745
3746         cic = cfq_get_io_context(cfqd, gfp_mask);
3747
3748         spin_lock_irqsave(q->queue_lock, flags);
3749
3750         if (!cic)
3751                 goto queue_fail;
3752
3753 new_queue:
3754         cfqq = cic_to_cfqq(cic, is_sync);
3755         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3756                 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3757                 cic_set_cfqq(cic, cfqq, is_sync);
3758         } else {
3759                 /*
3760                  * If the queue was seeky for too long, break it apart.
3761                  */
3762                 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3763                         cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3764                         cfqq = split_cfqq(cic, cfqq);
3765                         if (!cfqq)
3766                                 goto new_queue;
3767                 }
3768
3769                 /*
3770                  * Check to see if this queue is scheduled to merge with
3771                  * another, closely cooperating queue.  The merging of
3772                  * queues happens here as it must be done in process context.
3773                  * The reference on new_cfqq was taken in merge_cfqqs.
3774                  */
3775                 if (cfqq->new_cfqq)
3776                         cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3777         }
3778
3779         cfqq->allocated[rw]++;
3780
3781         cfqq->ref++;
3782         rq->elevator_private[0] = cic;
3783         rq->elevator_private[1] = cfqq;
3784         rq->elevator_private[2] = cfq_ref_get_cfqg(cfqq->cfqg);
3785         spin_unlock_irqrestore(q->queue_lock, flags);
3786         return 0;
3787
3788 queue_fail:
3789         if (cic)
3790                 put_io_context(cic->ioc);
3791
3792         cfq_schedule_dispatch(cfqd);
3793         spin_unlock_irqrestore(q->queue_lock, flags);
3794         cfq_log(cfqd, "set_request fail");
3795         return 1;
3796 }
3797
3798 static void cfq_kick_queue(struct work_struct *work)
3799 {
3800         struct cfq_data *cfqd =
3801                 container_of(work, struct cfq_data, unplug_work);
3802         struct request_queue *q = cfqd->queue;
3803
3804         spin_lock_irq(q->queue_lock);
3805         __blk_run_queue(cfqd->queue);
3806         spin_unlock_irq(q->queue_lock);
3807 }
3808
3809 /*
3810  * Timer running if the active_queue is currently idling inside its time slice
3811  */
3812 static void cfq_idle_slice_timer(unsigned long data)
3813 {
3814         struct cfq_data *cfqd = (struct cfq_data *) data;
3815         struct cfq_queue *cfqq;
3816         unsigned long flags;
3817         int timed_out = 1;
3818
3819         cfq_log(cfqd, "idle timer fired");
3820
3821         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3822
3823         cfqq = cfqd->active_queue;
3824         if (cfqq) {
3825                 timed_out = 0;
3826
3827                 /*
3828                  * We saw a request before the queue expired, let it through
3829                  */
3830                 if (cfq_cfqq_must_dispatch(cfqq))
3831                         goto out_kick;
3832
3833                 /*
3834                  * expired
3835                  */
3836                 if (cfq_slice_used(cfqq))
3837                         goto expire;
3838
3839                 /*
3840                  * only expire and reinvoke request handler, if there are
3841                  * other queues with pending requests
3842                  */
3843                 if (!cfqd->busy_queues)
3844                         goto out_cont;
3845
3846                 /*
3847                  * not expired and it has a request pending, let it dispatch
3848                  */
3849                 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3850                         goto out_kick;
3851
3852                 /*
3853                  * Queue depth flag is reset only when the idle didn't succeed
3854                  */
3855                 cfq_clear_cfqq_deep(cfqq);
3856         }
3857 expire:
3858         cfq_slice_expired(cfqd, timed_out);
3859 out_kick:
3860         cfq_schedule_dispatch(cfqd);
3861 out_cont:
3862         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3863 }
3864
3865 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3866 {
3867         del_timer_sync(&cfqd->idle_slice_timer);
3868         cancel_work_sync(&cfqd->unplug_work);
3869 }
3870
3871 static void cfq_put_async_queues(struct cfq_data *cfqd)
3872 {
3873         int i;
3874
3875         for (i = 0; i < IOPRIO_BE_NR; i++) {
3876                 if (cfqd->async_cfqq[0][i])
3877                         cfq_put_queue(cfqd->async_cfqq[0][i]);
3878                 if (cfqd->async_cfqq[1][i])
3879                         cfq_put_queue(cfqd->async_cfqq[1][i]);
3880         }
3881
3882         if (cfqd->async_idle_cfqq)
3883                 cfq_put_queue(cfqd->async_idle_cfqq);
3884 }
3885
3886 static void cfq_exit_queue(struct elevator_queue *e)
3887 {
3888         struct cfq_data *cfqd = e->elevator_data;
3889         struct request_queue *q = cfqd->queue;
3890         bool wait = false;
3891
3892         cfq_shutdown_timer_wq(cfqd);
3893
3894         spin_lock_irq(q->queue_lock);
3895
3896         if (cfqd->active_queue)
3897                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3898
3899         while (!list_empty(&cfqd->cic_list)) {
3900                 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3901                                                         struct cfq_io_context,
3902                                                         queue_list);
3903
3904                 __cfq_exit_single_io_context(cfqd, cic);
3905         }
3906
3907         cfq_put_async_queues(cfqd);
3908         cfq_release_cfq_groups(cfqd);
3909
3910         /*
3911          * If there are groups which we could not unlink from blkcg list,
3912          * wait for a rcu period for them to be freed.
3913          */
3914         if (cfqd->nr_blkcg_linked_grps)
3915                 wait = true;
3916
3917         spin_unlock_irq(q->queue_lock);
3918
3919         cfq_shutdown_timer_wq(cfqd);
3920
3921         spin_lock(&cic_index_lock);
3922         ida_remove(&cic_index_ida, cfqd->cic_index);
3923         spin_unlock(&cic_index_lock);
3924
3925         /*
3926          * Wait for cfqg->blkg->key accessors to exit their grace periods.
3927          * Do this wait only if there are other unlinked groups out
3928          * there. This can happen if cgroup deletion path claimed the
3929          * responsibility of cleaning up a group before queue cleanup code
3930          * get to the group.
3931          *
3932          * Do not call synchronize_rcu() unconditionally as there are drivers
3933          * which create/delete request queue hundreds of times during scan/boot
3934          * and synchronize_rcu() can take significant time and slow down boot.
3935          */
3936         if (wait)
3937                 synchronize_rcu();
3938
3939 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3940         /* Free up per cpu stats for root group */
3941         free_percpu(cfqd->root_group.blkg.stats_cpu);
3942 #endif
3943         kfree(cfqd);
3944 }
3945
3946 static int cfq_alloc_cic_index(void)
3947 {
3948         int index, error;
3949
3950         do {
3951                 if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
3952                         return -ENOMEM;
3953
3954                 spin_lock(&cic_index_lock);
3955                 error = ida_get_new(&cic_index_ida, &index);
3956                 spin_unlock(&cic_index_lock);
3957                 if (error && error != -EAGAIN)
3958                         return error;
3959         } while (error);
3960
3961         return index;
3962 }
3963
3964 static void *cfq_init_queue(struct request_queue *q)
3965 {
3966         struct cfq_data *cfqd;
3967         int i, j;
3968         struct cfq_group *cfqg;
3969         struct cfq_rb_root *st;
3970
3971         i = cfq_alloc_cic_index();
3972         if (i < 0)
3973                 return NULL;
3974
3975         cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3976         if (!cfqd) {
3977                 spin_lock(&cic_index_lock);
3978                 ida_remove(&cic_index_ida, i);
3979                 spin_unlock(&cic_index_lock);
3980                 return NULL;
3981         }
3982
3983         /*
3984          * Don't need take queue_lock in the routine, since we are
3985          * initializing the ioscheduler, and nobody is using cfqd
3986          */
3987         cfqd->cic_index = i;
3988
3989         /* Init root service tree */
3990         cfqd->grp_service_tree = CFQ_RB_ROOT;
3991
3992         /* Init root group */
3993         cfqg = &cfqd->root_group;
3994         for_each_cfqg_st(cfqg, i, j, st)
3995                 *st = CFQ_RB_ROOT;
3996         RB_CLEAR_NODE(&cfqg->rb_node);
3997
3998         /* Give preference to root group over other groups */
3999         cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
4000
4001 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4002         /*
4003          * Set root group reference to 2. One reference will be dropped when
4004          * all groups on cfqd->cfqg_list are being deleted during queue exit.
4005          * Other reference will remain there as we don't want to delete this
4006          * group as it is statically allocated and gets destroyed when
4007          * throtl_data goes away.
4008          */
4009         cfqg->ref = 2;
4010
4011         if (blkio_alloc_blkg_stats(&cfqg->blkg)) {
4012                 kfree(cfqg);
4013                 kfree(cfqd);
4014                 return NULL;
4015         }
4016
4017         rcu_read_lock();
4018
4019         cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
4020                                         (void *)cfqd, 0);
4021         rcu_read_unlock();
4022         cfqd->nr_blkcg_linked_grps++;
4023
4024         /* Add group on cfqd->cfqg_list */
4025         hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
4026 #endif
4027         /*
4028          * Not strictly needed (since RB_ROOT just clears the node and we
4029          * zeroed cfqd on alloc), but better be safe in case someone decides
4030          * to add magic to the rb code
4031          */
4032         for (i = 0; i < CFQ_PRIO_LISTS; i++)
4033                 cfqd->prio_trees[i] = RB_ROOT;
4034
4035         /*
4036          * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
4037          * Grab a permanent reference to it, so that the normal code flow
4038          * will not attempt to free it.
4039          */
4040         cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4041         cfqd->oom_cfqq.ref++;
4042         cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
4043
4044         INIT_LIST_HEAD(&cfqd->cic_list);
4045
4046         cfqd->queue = q;
4047
4048         init_timer(&cfqd->idle_slice_timer);
4049         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4050         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4051
4052         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4053
4054         cfqd->cfq_quantum = cfq_quantum;
4055         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4056         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4057         cfqd->cfq_back_max = cfq_back_max;
4058         cfqd->cfq_back_penalty = cfq_back_penalty;
4059         cfqd->cfq_slice[0] = cfq_slice_async;
4060         cfqd->cfq_slice[1] = cfq_slice_sync;
4061         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4062         cfqd->cfq_slice_idle = cfq_slice_idle;
4063         cfqd->cfq_group_idle = cfq_group_idle;
4064         cfqd->cfq_latency = 1;
4065         cfqd->hw_tag = -1;
4066         /*
4067          * we optimistically start assuming sync ops weren't delayed in last
4068          * second, in order to have larger depth for async operations.
4069          */
4070         cfqd->last_delayed_sync = jiffies - HZ;
4071         return cfqd;
4072 }
4073
4074 static void cfq_slab_kill(void)
4075 {
4076         /*
4077          * Caller already ensured that pending RCU callbacks are completed,
4078          * so we should have no busy allocations at this point.
4079          */
4080         if (cfq_pool)
4081                 kmem_cache_destroy(cfq_pool);
4082         if (cfq_ioc_pool)
4083                 kmem_cache_destroy(cfq_ioc_pool);
4084 }
4085
4086 static int __init cfq_slab_setup(void)
4087 {
4088         cfq_pool = KMEM_CACHE(cfq_queue, 0);
4089         if (!cfq_pool)
4090                 goto fail;
4091
4092         cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
4093         if (!cfq_ioc_pool)
4094                 goto fail;
4095
4096         return 0;
4097 fail:
4098         cfq_slab_kill();
4099         return -ENOMEM;
4100 }
4101
4102 /*
4103  * sysfs parts below -->
4104  */
4105 static ssize_t
4106 cfq_var_show(unsigned int var, char *page)
4107 {
4108         return sprintf(page, "%d\n", var);
4109 }
4110
4111 static ssize_t
4112 cfq_var_store(unsigned int *var, const char *page, size_t count)
4113 {
4114         char *p = (char *) page;
4115
4116         *var = simple_strtoul(p, &p, 10);
4117         return count;
4118 }
4119
4120 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
4121 static ssize_t __FUNC(struct elevator_queue *e, char *page)             \
4122 {                                                                       \
4123         struct cfq_data *cfqd = e->elevator_data;                       \
4124         unsigned int __data = __VAR;                                    \
4125         if (__CONV)                                                     \
4126                 __data = jiffies_to_msecs(__data);                      \
4127         return cfq_var_show(__data, (page));                            \
4128 }
4129 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4130 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4131 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4132 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4133 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4134 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4135 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4136 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4137 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4138 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4139 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4140 #undef SHOW_FUNCTION
4141
4142 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
4143 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4144 {                                                                       \
4145         struct cfq_data *cfqd = e->elevator_data;                       \
4146         unsigned int __data;                                            \
4147         int ret = cfq_var_store(&__data, (page), count);                \
4148         if (__data < (MIN))                                             \
4149                 __data = (MIN);                                         \
4150         else if (__data > (MAX))                                        \
4151                 __data = (MAX);                                         \
4152         if (__CONV)                                                     \
4153                 *(__PTR) = msecs_to_jiffies(__data);                    \
4154         else                                                            \
4155                 *(__PTR) = __data;                                      \
4156         return ret;                                                     \
4157 }
4158 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4159 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4160                 UINT_MAX, 1);
4161 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4162                 UINT_MAX, 1);
4163 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4164 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4165                 UINT_MAX, 0);
4166 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4167 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4168 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4169 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4170 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4171                 UINT_MAX, 0);
4172 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4173 #undef STORE_FUNCTION
4174
4175 #define CFQ_ATTR(name) \
4176         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4177
4178 static struct elv_fs_entry cfq_attrs[] = {
4179         CFQ_ATTR(quantum),
4180         CFQ_ATTR(fifo_expire_sync),
4181         CFQ_ATTR(fifo_expire_async),
4182         CFQ_ATTR(back_seek_max),
4183         CFQ_ATTR(back_seek_penalty),
4184         CFQ_ATTR(slice_sync),
4185         CFQ_ATTR(slice_async),
4186         CFQ_ATTR(slice_async_rq),
4187         CFQ_ATTR(slice_idle),
4188         CFQ_ATTR(group_idle),
4189         CFQ_ATTR(low_latency),
4190         __ATTR_NULL
4191 };
4192
4193 static struct elevator_type iosched_cfq = {
4194         .ops = {
4195                 .elevator_merge_fn =            cfq_merge,
4196                 .elevator_merged_fn =           cfq_merged_request,
4197                 .elevator_merge_req_fn =        cfq_merged_requests,
4198                 .elevator_allow_merge_fn =      cfq_allow_merge,
4199                 .elevator_bio_merged_fn =       cfq_bio_merged,
4200                 .elevator_dispatch_fn =         cfq_dispatch_requests,
4201                 .elevator_add_req_fn =          cfq_insert_request,
4202                 .elevator_activate_req_fn =     cfq_activate_request,
4203                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
4204                 .elevator_completed_req_fn =    cfq_completed_request,
4205                 .elevator_former_req_fn =       elv_rb_former_request,
4206                 .elevator_latter_req_fn =       elv_rb_latter_request,
4207                 .elevator_set_req_fn =          cfq_set_request,
4208                 .elevator_put_req_fn =          cfq_put_request,
4209                 .elevator_may_queue_fn =        cfq_may_queue,
4210                 .elevator_init_fn =             cfq_init_queue,
4211                 .elevator_exit_fn =             cfq_exit_queue,
4212                 .trim =                         cfq_free_io_context,
4213         },
4214         .elevator_attrs =       cfq_attrs,
4215         .elevator_name =        "cfq",
4216         .elevator_owner =       THIS_MODULE,
4217 };
4218
4219 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4220 static struct blkio_policy_type blkio_policy_cfq = {
4221         .ops = {
4222                 .blkio_unlink_group_fn =        cfq_unlink_blkio_group,
4223                 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
4224         },
4225         .plid = BLKIO_POLICY_PROP,
4226 };
4227 #else
4228 static struct blkio_policy_type blkio_policy_cfq;
4229 #endif
4230
4231 static int __init cfq_init(void)
4232 {
4233         /*
4234          * could be 0 on HZ < 1000 setups
4235          */
4236         if (!cfq_slice_async)
4237                 cfq_slice_async = 1;
4238         if (!cfq_slice_idle)
4239                 cfq_slice_idle = 1;
4240
4241 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4242         if (!cfq_group_idle)
4243                 cfq_group_idle = 1;
4244 #else
4245                 cfq_group_idle = 0;
4246 #endif
4247         if (cfq_slab_setup())
4248                 return -ENOMEM;
4249
4250         elv_register(&iosched_cfq);
4251         blkio_policy_register(&blkio_policy_cfq);
4252
4253         return 0;
4254 }
4255
4256 static void __exit cfq_exit(void)
4257 {
4258         DECLARE_COMPLETION_ONSTACK(all_gone);
4259         blkio_policy_unregister(&blkio_policy_cfq);
4260         elv_unregister(&iosched_cfq);
4261         ioc_gone = &all_gone;
4262         /* ioc_gone's update must be visible before reading ioc_count */
4263         smp_wmb();
4264
4265         /*
4266          * this also protects us from entering cfq_slab_kill() with
4267          * pending RCU callbacks
4268          */
4269         if (elv_ioc_count_read(cfq_ioc_count))
4270                 wait_for_completion(&all_gone);
4271         ida_destroy(&cic_index_ida);
4272         cfq_slab_kill();
4273 }
4274
4275 module_init(cfq_init);
4276 module_exit(cfq_exit);
4277
4278 MODULE_AUTHOR("Jens Axboe");
4279 MODULE_LICENSE("GPL");
4280 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");