blkcg: remove unused @pol and @plid parameters
[platform/adaptation/renesas_rcar/renesas_kernel.git] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include "blk.h"
18 #include "cfq.h"
19
20 static struct blkio_policy_type blkio_policy_cfq;
21
22 /*
23  * tunables
24  */
25 /* max queue in one round of service */
26 static const int cfq_quantum = 8;
27 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
28 /* maximum backwards seek, in KiB */
29 static const int cfq_back_max = 16 * 1024;
30 /* penalty of a backwards seek */
31 static const int cfq_back_penalty = 2;
32 static const int cfq_slice_sync = HZ / 10;
33 static int cfq_slice_async = HZ / 25;
34 static const int cfq_slice_async_rq = 2;
35 static int cfq_slice_idle = HZ / 125;
36 static int cfq_group_idle = HZ / 125;
37 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
38 static const int cfq_hist_divisor = 4;
39
40 /*
41  * offset from end of service tree
42  */
43 #define CFQ_IDLE_DELAY          (HZ / 5)
44
45 /*
46  * below this threshold, we consider thinktime immediate
47  */
48 #define CFQ_MIN_TT              (2)
49
50 #define CFQ_SLICE_SCALE         (5)
51 #define CFQ_HW_QUEUE_MIN        (5)
52 #define CFQ_SERVICE_SHIFT       12
53
54 #define CFQQ_SEEK_THR           (sector_t)(8 * 100)
55 #define CFQQ_CLOSE_THR          (sector_t)(8 * 1024)
56 #define CFQQ_SECT_THR_NONROT    (sector_t)(2 * 32)
57 #define CFQQ_SEEKY(cfqq)        (hweight32(cfqq->seek_history) > 32/8)
58
59 #define RQ_CIC(rq)              icq_to_cic((rq)->elv.icq)
60 #define RQ_CFQQ(rq)             (struct cfq_queue *) ((rq)->elv.priv[0])
61 #define RQ_CFQG(rq)             (struct cfq_group *) ((rq)->elv.priv[1])
62
63 static struct kmem_cache *cfq_pool;
64
65 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
66 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
67 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
68
69 #define sample_valid(samples)   ((samples) > 80)
70 #define rb_entry_cfqg(node)     rb_entry((node), struct cfq_group, rb_node)
71
72 struct cfq_ttime {
73         unsigned long last_end_request;
74
75         unsigned long ttime_total;
76         unsigned long ttime_samples;
77         unsigned long ttime_mean;
78 };
79
80 /*
81  * Most of our rbtree usage is for sorting with min extraction, so
82  * if we cache the leftmost node we don't have to walk down the tree
83  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
84  * move this into the elevator for the rq sorting as well.
85  */
86 struct cfq_rb_root {
87         struct rb_root rb;
88         struct rb_node *left;
89         unsigned count;
90         unsigned total_weight;
91         u64 min_vdisktime;
92         struct cfq_ttime ttime;
93 };
94 #define CFQ_RB_ROOT     (struct cfq_rb_root) { .rb = RB_ROOT, \
95                         .ttime = {.last_end_request = jiffies,},}
96
97 /*
98  * Per process-grouping structure
99  */
100 struct cfq_queue {
101         /* reference count */
102         int ref;
103         /* various state flags, see below */
104         unsigned int flags;
105         /* parent cfq_data */
106         struct cfq_data *cfqd;
107         /* service_tree member */
108         struct rb_node rb_node;
109         /* service_tree key */
110         unsigned long rb_key;
111         /* prio tree member */
112         struct rb_node p_node;
113         /* prio tree root we belong to, if any */
114         struct rb_root *p_root;
115         /* sorted list of pending requests */
116         struct rb_root sort_list;
117         /* if fifo isn't expired, next request to serve */
118         struct request *next_rq;
119         /* requests queued in sort_list */
120         int queued[2];
121         /* currently allocated requests */
122         int allocated[2];
123         /* fifo list of requests in sort_list */
124         struct list_head fifo;
125
126         /* time when queue got scheduled in to dispatch first request. */
127         unsigned long dispatch_start;
128         unsigned int allocated_slice;
129         unsigned int slice_dispatch;
130         /* time when first request from queue completed and slice started. */
131         unsigned long slice_start;
132         unsigned long slice_end;
133         long slice_resid;
134
135         /* pending priority requests */
136         int prio_pending;
137         /* number of requests that are on the dispatch list or inside driver */
138         int dispatched;
139
140         /* io prio of this group */
141         unsigned short ioprio, org_ioprio;
142         unsigned short ioprio_class;
143
144         pid_t pid;
145
146         u32 seek_history;
147         sector_t last_request_pos;
148
149         struct cfq_rb_root *service_tree;
150         struct cfq_queue *new_cfqq;
151         struct cfq_group *cfqg;
152         /* Number of sectors dispatched from queue in single dispatch round */
153         unsigned long nr_sectors;
154 };
155
156 /*
157  * First index in the service_trees.
158  * IDLE is handled separately, so it has negative index
159  */
160 enum wl_prio_t {
161         BE_WORKLOAD = 0,
162         RT_WORKLOAD = 1,
163         IDLE_WORKLOAD = 2,
164         CFQ_PRIO_NR,
165 };
166
167 /*
168  * Second index in the service_trees.
169  */
170 enum wl_type_t {
171         ASYNC_WORKLOAD = 0,
172         SYNC_NOIDLE_WORKLOAD = 1,
173         SYNC_WORKLOAD = 2
174 };
175
176 /* This is per cgroup per device grouping structure */
177 struct cfq_group {
178         /* group service_tree member */
179         struct rb_node rb_node;
180
181         /* group service_tree key */
182         u64 vdisktime;
183         unsigned int weight;
184         unsigned int new_weight;
185         bool needs_update;
186
187         /* number of cfqq currently on this group */
188         int nr_cfqq;
189
190         /*
191          * Per group busy queues average. Useful for workload slice calc. We
192          * create the array for each prio class but at run time it is used
193          * only for RT and BE class and slot for IDLE class remains unused.
194          * This is primarily done to avoid confusion and a gcc warning.
195          */
196         unsigned int busy_queues_avg[CFQ_PRIO_NR];
197         /*
198          * rr lists of queues with requests. We maintain service trees for
199          * RT and BE classes. These trees are subdivided in subclasses
200          * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
201          * class there is no subclassification and all the cfq queues go on
202          * a single tree service_tree_idle.
203          * Counts are embedded in the cfq_rb_root
204          */
205         struct cfq_rb_root service_trees[2][3];
206         struct cfq_rb_root service_tree_idle;
207
208         unsigned long saved_workload_slice;
209         enum wl_type_t saved_workload;
210         enum wl_prio_t saved_serving_prio;
211
212         /* number of requests that are on the dispatch list or inside driver */
213         int dispatched;
214         struct cfq_ttime ttime;
215 };
216
217 struct cfq_io_cq {
218         struct io_cq            icq;            /* must be the first member */
219         struct cfq_queue        *cfqq[2];
220         struct cfq_ttime        ttime;
221         int                     ioprio;         /* the current ioprio */
222 #ifdef CONFIG_CFQ_GROUP_IOSCHED
223         uint64_t                blkcg_id;       /* the current blkcg ID */
224 #endif
225 };
226
227 /*
228  * Per block device queue structure
229  */
230 struct cfq_data {
231         struct request_queue *queue;
232         /* Root service tree for cfq_groups */
233         struct cfq_rb_root grp_service_tree;
234         struct cfq_group *root_group;
235
236         /*
237          * The priority currently being served
238          */
239         enum wl_prio_t serving_prio;
240         enum wl_type_t serving_type;
241         unsigned long workload_expires;
242         struct cfq_group *serving_group;
243
244         /*
245          * Each priority tree is sorted by next_request position.  These
246          * trees are used when determining if two or more queues are
247          * interleaving requests (see cfq_close_cooperator).
248          */
249         struct rb_root prio_trees[CFQ_PRIO_LISTS];
250
251         unsigned int busy_queues;
252         unsigned int busy_sync_queues;
253
254         int rq_in_driver;
255         int rq_in_flight[2];
256
257         /*
258          * queue-depth detection
259          */
260         int rq_queued;
261         int hw_tag;
262         /*
263          * hw_tag can be
264          * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
265          *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
266          *  0 => no NCQ
267          */
268         int hw_tag_est_depth;
269         unsigned int hw_tag_samples;
270
271         /*
272          * idle window management
273          */
274         struct timer_list idle_slice_timer;
275         struct work_struct unplug_work;
276
277         struct cfq_queue *active_queue;
278         struct cfq_io_cq *active_cic;
279
280         /*
281          * async queue for each priority case
282          */
283         struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
284         struct cfq_queue *async_idle_cfqq;
285
286         sector_t last_position;
287
288         /*
289          * tunables, see top of file
290          */
291         unsigned int cfq_quantum;
292         unsigned int cfq_fifo_expire[2];
293         unsigned int cfq_back_penalty;
294         unsigned int cfq_back_max;
295         unsigned int cfq_slice[2];
296         unsigned int cfq_slice_async_rq;
297         unsigned int cfq_slice_idle;
298         unsigned int cfq_group_idle;
299         unsigned int cfq_latency;
300
301         /*
302          * Fallback dummy cfqq for extreme OOM conditions
303          */
304         struct cfq_queue oom_cfqq;
305
306         unsigned long last_delayed_sync;
307 };
308
309 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
310
311 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
312                                             enum wl_prio_t prio,
313                                             enum wl_type_t type)
314 {
315         if (!cfqg)
316                 return NULL;
317
318         if (prio == IDLE_WORKLOAD)
319                 return &cfqg->service_tree_idle;
320
321         return &cfqg->service_trees[prio][type];
322 }
323
324 enum cfqq_state_flags {
325         CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
326         CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
327         CFQ_CFQQ_FLAG_must_dispatch,    /* must be allowed a dispatch */
328         CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
329         CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
330         CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
331         CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
332         CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
333         CFQ_CFQQ_FLAG_sync,             /* synchronous queue */
334         CFQ_CFQQ_FLAG_coop,             /* cfqq is shared */
335         CFQ_CFQQ_FLAG_split_coop,       /* shared cfqq will be splitted */
336         CFQ_CFQQ_FLAG_deep,             /* sync cfqq experienced large depth */
337         CFQ_CFQQ_FLAG_wait_busy,        /* Waiting for next request */
338 };
339
340 #define CFQ_CFQQ_FNS(name)                                              \
341 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
342 {                                                                       \
343         (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);                   \
344 }                                                                       \
345 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
346 {                                                                       \
347         (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                  \
348 }                                                                       \
349 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
350 {                                                                       \
351         return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;      \
352 }
353
354 CFQ_CFQQ_FNS(on_rr);
355 CFQ_CFQQ_FNS(wait_request);
356 CFQ_CFQQ_FNS(must_dispatch);
357 CFQ_CFQQ_FNS(must_alloc_slice);
358 CFQ_CFQQ_FNS(fifo_expire);
359 CFQ_CFQQ_FNS(idle_window);
360 CFQ_CFQQ_FNS(prio_changed);
361 CFQ_CFQQ_FNS(slice_new);
362 CFQ_CFQQ_FNS(sync);
363 CFQ_CFQQ_FNS(coop);
364 CFQ_CFQQ_FNS(split_coop);
365 CFQ_CFQQ_FNS(deep);
366 CFQ_CFQQ_FNS(wait_busy);
367 #undef CFQ_CFQQ_FNS
368
369 #ifdef CONFIG_CFQ_GROUP_IOSCHED
370 static inline struct cfq_group *blkg_to_cfqg(struct blkio_group *blkg)
371 {
372         return blkg_to_pdata(blkg, &blkio_policy_cfq);
373 }
374
375 static inline struct blkio_group *cfqg_to_blkg(struct cfq_group *cfqg)
376 {
377         return pdata_to_blkg(cfqg);
378 }
379
380 static inline void cfqg_get(struct cfq_group *cfqg)
381 {
382         return blkg_get(cfqg_to_blkg(cfqg));
383 }
384
385 static inline void cfqg_put(struct cfq_group *cfqg)
386 {
387         return blkg_put(cfqg_to_blkg(cfqg));
388 }
389
390 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
391         blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
392                         cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
393                         blkg_path(cfqg_to_blkg((cfqq)->cfqg)), ##args)
394
395 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)                          \
396         blk_add_trace_msg((cfqd)->queue, "%s " fmt,                     \
397                         blkg_path(cfqg_to_blkg((cfqg))), ##args)        \
398
399 #else   /* CONFIG_CFQ_GROUP_IOSCHED */
400
401 static inline struct cfq_group *blkg_to_cfqg(struct blkio_group *blkg) { return NULL; }
402 static inline struct blkio_group *cfqg_to_blkg(struct cfq_group *cfqg) { return NULL; }
403 static inline void cfqg_get(struct cfq_group *cfqg) { }
404 static inline void cfqg_put(struct cfq_group *cfqg) { }
405
406 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
407         blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
408 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)          do {} while (0)
409
410 #endif  /* CONFIG_CFQ_GROUP_IOSCHED */
411
412 #define cfq_log(cfqd, fmt, args...)     \
413         blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
414
415 /* Traverses through cfq group service trees */
416 #define for_each_cfqg_st(cfqg, i, j, st) \
417         for (i = 0; i <= IDLE_WORKLOAD; i++) \
418                 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
419                         : &cfqg->service_tree_idle; \
420                         (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
421                         (i == IDLE_WORKLOAD && j == 0); \
422                         j++, st = i < IDLE_WORKLOAD ? \
423                         &cfqg->service_trees[i][j]: NULL) \
424
425 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
426         struct cfq_ttime *ttime, bool group_idle)
427 {
428         unsigned long slice;
429         if (!sample_valid(ttime->ttime_samples))
430                 return false;
431         if (group_idle)
432                 slice = cfqd->cfq_group_idle;
433         else
434                 slice = cfqd->cfq_slice_idle;
435         return ttime->ttime_mean > slice;
436 }
437
438 static inline bool iops_mode(struct cfq_data *cfqd)
439 {
440         /*
441          * If we are not idling on queues and it is a NCQ drive, parallel
442          * execution of requests is on and measuring time is not possible
443          * in most of the cases until and unless we drive shallower queue
444          * depths and that becomes a performance bottleneck. In such cases
445          * switch to start providing fairness in terms of number of IOs.
446          */
447         if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
448                 return true;
449         else
450                 return false;
451 }
452
453 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
454 {
455         if (cfq_class_idle(cfqq))
456                 return IDLE_WORKLOAD;
457         if (cfq_class_rt(cfqq))
458                 return RT_WORKLOAD;
459         return BE_WORKLOAD;
460 }
461
462
463 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
464 {
465         if (!cfq_cfqq_sync(cfqq))
466                 return ASYNC_WORKLOAD;
467         if (!cfq_cfqq_idle_window(cfqq))
468                 return SYNC_NOIDLE_WORKLOAD;
469         return SYNC_WORKLOAD;
470 }
471
472 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
473                                         struct cfq_data *cfqd,
474                                         struct cfq_group *cfqg)
475 {
476         if (wl == IDLE_WORKLOAD)
477                 return cfqg->service_tree_idle.count;
478
479         return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
480                 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
481                 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
482 }
483
484 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
485                                         struct cfq_group *cfqg)
486 {
487         return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
488                 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
489 }
490
491 static void cfq_dispatch_insert(struct request_queue *, struct request *);
492 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
493                                        struct cfq_io_cq *cic, struct bio *bio,
494                                        gfp_t gfp_mask);
495
496 static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
497 {
498         /* cic->icq is the first member, %NULL will convert to %NULL */
499         return container_of(icq, struct cfq_io_cq, icq);
500 }
501
502 static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
503                                                struct io_context *ioc)
504 {
505         if (ioc)
506                 return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
507         return NULL;
508 }
509
510 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
511 {
512         return cic->cfqq[is_sync];
513 }
514
515 static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
516                                 bool is_sync)
517 {
518         cic->cfqq[is_sync] = cfqq;
519 }
520
521 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
522 {
523         return cic->icq.q->elevator->elevator_data;
524 }
525
526 /*
527  * We regard a request as SYNC, if it's either a read or has the SYNC bit
528  * set (in which case it could also be direct WRITE).
529  */
530 static inline bool cfq_bio_sync(struct bio *bio)
531 {
532         return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
533 }
534
535 /*
536  * scheduler run of queue, if there are requests pending and no one in the
537  * driver that will restart queueing
538  */
539 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
540 {
541         if (cfqd->busy_queues) {
542                 cfq_log(cfqd, "schedule dispatch");
543                 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
544         }
545 }
546
547 /*
548  * Scale schedule slice based on io priority. Use the sync time slice only
549  * if a queue is marked sync and has sync io queued. A sync queue with async
550  * io only, should not get full sync slice length.
551  */
552 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
553                                  unsigned short prio)
554 {
555         const int base_slice = cfqd->cfq_slice[sync];
556
557         WARN_ON(prio >= IOPRIO_BE_NR);
558
559         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
560 }
561
562 static inline int
563 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
564 {
565         return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
566 }
567
568 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
569 {
570         u64 d = delta << CFQ_SERVICE_SHIFT;
571
572         d = d * BLKIO_WEIGHT_DEFAULT;
573         do_div(d, cfqg->weight);
574         return d;
575 }
576
577 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
578 {
579         s64 delta = (s64)(vdisktime - min_vdisktime);
580         if (delta > 0)
581                 min_vdisktime = vdisktime;
582
583         return min_vdisktime;
584 }
585
586 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
587 {
588         s64 delta = (s64)(vdisktime - min_vdisktime);
589         if (delta < 0)
590                 min_vdisktime = vdisktime;
591
592         return min_vdisktime;
593 }
594
595 static void update_min_vdisktime(struct cfq_rb_root *st)
596 {
597         struct cfq_group *cfqg;
598
599         if (st->left) {
600                 cfqg = rb_entry_cfqg(st->left);
601                 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
602                                                   cfqg->vdisktime);
603         }
604 }
605
606 /*
607  * get averaged number of queues of RT/BE priority.
608  * average is updated, with a formula that gives more weight to higher numbers,
609  * to quickly follows sudden increases and decrease slowly
610  */
611
612 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
613                                         struct cfq_group *cfqg, bool rt)
614 {
615         unsigned min_q, max_q;
616         unsigned mult  = cfq_hist_divisor - 1;
617         unsigned round = cfq_hist_divisor / 2;
618         unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
619
620         min_q = min(cfqg->busy_queues_avg[rt], busy);
621         max_q = max(cfqg->busy_queues_avg[rt], busy);
622         cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
623                 cfq_hist_divisor;
624         return cfqg->busy_queues_avg[rt];
625 }
626
627 static inline unsigned
628 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
629 {
630         struct cfq_rb_root *st = &cfqd->grp_service_tree;
631
632         return cfq_target_latency * cfqg->weight / st->total_weight;
633 }
634
635 static inline unsigned
636 cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
637 {
638         unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
639         if (cfqd->cfq_latency) {
640                 /*
641                  * interested queues (we consider only the ones with the same
642                  * priority class in the cfq group)
643                  */
644                 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
645                                                 cfq_class_rt(cfqq));
646                 unsigned sync_slice = cfqd->cfq_slice[1];
647                 unsigned expect_latency = sync_slice * iq;
648                 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
649
650                 if (expect_latency > group_slice) {
651                         unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
652                         /* scale low_slice according to IO priority
653                          * and sync vs async */
654                         unsigned low_slice =
655                                 min(slice, base_low_slice * slice / sync_slice);
656                         /* the adapted slice value is scaled to fit all iqs
657                          * into the target latency */
658                         slice = max(slice * group_slice / expect_latency,
659                                     low_slice);
660                 }
661         }
662         return slice;
663 }
664
665 static inline void
666 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
667 {
668         unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
669
670         cfqq->slice_start = jiffies;
671         cfqq->slice_end = jiffies + slice;
672         cfqq->allocated_slice = slice;
673         cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
674 }
675
676 /*
677  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
678  * isn't valid until the first request from the dispatch is activated
679  * and the slice time set.
680  */
681 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
682 {
683         if (cfq_cfqq_slice_new(cfqq))
684                 return false;
685         if (time_before(jiffies, cfqq->slice_end))
686                 return false;
687
688         return true;
689 }
690
691 /*
692  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
693  * We choose the request that is closest to the head right now. Distance
694  * behind the head is penalized and only allowed to a certain extent.
695  */
696 static struct request *
697 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
698 {
699         sector_t s1, s2, d1 = 0, d2 = 0;
700         unsigned long back_max;
701 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
702 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
703         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
704
705         if (rq1 == NULL || rq1 == rq2)
706                 return rq2;
707         if (rq2 == NULL)
708                 return rq1;
709
710         if (rq_is_sync(rq1) != rq_is_sync(rq2))
711                 return rq_is_sync(rq1) ? rq1 : rq2;
712
713         if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
714                 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
715
716         s1 = blk_rq_pos(rq1);
717         s2 = blk_rq_pos(rq2);
718
719         /*
720          * by definition, 1KiB is 2 sectors
721          */
722         back_max = cfqd->cfq_back_max * 2;
723
724         /*
725          * Strict one way elevator _except_ in the case where we allow
726          * short backward seeks which are biased as twice the cost of a
727          * similar forward seek.
728          */
729         if (s1 >= last)
730                 d1 = s1 - last;
731         else if (s1 + back_max >= last)
732                 d1 = (last - s1) * cfqd->cfq_back_penalty;
733         else
734                 wrap |= CFQ_RQ1_WRAP;
735
736         if (s2 >= last)
737                 d2 = s2 - last;
738         else if (s2 + back_max >= last)
739                 d2 = (last - s2) * cfqd->cfq_back_penalty;
740         else
741                 wrap |= CFQ_RQ2_WRAP;
742
743         /* Found required data */
744
745         /*
746          * By doing switch() on the bit mask "wrap" we avoid having to
747          * check two variables for all permutations: --> faster!
748          */
749         switch (wrap) {
750         case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
751                 if (d1 < d2)
752                         return rq1;
753                 else if (d2 < d1)
754                         return rq2;
755                 else {
756                         if (s1 >= s2)
757                                 return rq1;
758                         else
759                                 return rq2;
760                 }
761
762         case CFQ_RQ2_WRAP:
763                 return rq1;
764         case CFQ_RQ1_WRAP:
765                 return rq2;
766         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
767         default:
768                 /*
769                  * Since both rqs are wrapped,
770                  * start with the one that's further behind head
771                  * (--> only *one* back seek required),
772                  * since back seek takes more time than forward.
773                  */
774                 if (s1 <= s2)
775                         return rq1;
776                 else
777                         return rq2;
778         }
779 }
780
781 /*
782  * The below is leftmost cache rbtree addon
783  */
784 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
785 {
786         /* Service tree is empty */
787         if (!root->count)
788                 return NULL;
789
790         if (!root->left)
791                 root->left = rb_first(&root->rb);
792
793         if (root->left)
794                 return rb_entry(root->left, struct cfq_queue, rb_node);
795
796         return NULL;
797 }
798
799 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
800 {
801         if (!root->left)
802                 root->left = rb_first(&root->rb);
803
804         if (root->left)
805                 return rb_entry_cfqg(root->left);
806
807         return NULL;
808 }
809
810 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
811 {
812         rb_erase(n, root);
813         RB_CLEAR_NODE(n);
814 }
815
816 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
817 {
818         if (root->left == n)
819                 root->left = NULL;
820         rb_erase_init(n, &root->rb);
821         --root->count;
822 }
823
824 /*
825  * would be nice to take fifo expire time into account as well
826  */
827 static struct request *
828 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
829                   struct request *last)
830 {
831         struct rb_node *rbnext = rb_next(&last->rb_node);
832         struct rb_node *rbprev = rb_prev(&last->rb_node);
833         struct request *next = NULL, *prev = NULL;
834
835         BUG_ON(RB_EMPTY_NODE(&last->rb_node));
836
837         if (rbprev)
838                 prev = rb_entry_rq(rbprev);
839
840         if (rbnext)
841                 next = rb_entry_rq(rbnext);
842         else {
843                 rbnext = rb_first(&cfqq->sort_list);
844                 if (rbnext && rbnext != &last->rb_node)
845                         next = rb_entry_rq(rbnext);
846         }
847
848         return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
849 }
850
851 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
852                                       struct cfq_queue *cfqq)
853 {
854         /*
855          * just an approximation, should be ok.
856          */
857         return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
858                        cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
859 }
860
861 static inline s64
862 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
863 {
864         return cfqg->vdisktime - st->min_vdisktime;
865 }
866
867 static void
868 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
869 {
870         struct rb_node **node = &st->rb.rb_node;
871         struct rb_node *parent = NULL;
872         struct cfq_group *__cfqg;
873         s64 key = cfqg_key(st, cfqg);
874         int left = 1;
875
876         while (*node != NULL) {
877                 parent = *node;
878                 __cfqg = rb_entry_cfqg(parent);
879
880                 if (key < cfqg_key(st, __cfqg))
881                         node = &parent->rb_left;
882                 else {
883                         node = &parent->rb_right;
884                         left = 0;
885                 }
886         }
887
888         if (left)
889                 st->left = &cfqg->rb_node;
890
891         rb_link_node(&cfqg->rb_node, parent, node);
892         rb_insert_color(&cfqg->rb_node, &st->rb);
893 }
894
895 static void
896 cfq_update_group_weight(struct cfq_group *cfqg)
897 {
898         BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
899         if (cfqg->needs_update) {
900                 cfqg->weight = cfqg->new_weight;
901                 cfqg->needs_update = false;
902         }
903 }
904
905 static void
906 cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
907 {
908         BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
909
910         cfq_update_group_weight(cfqg);
911         __cfq_group_service_tree_add(st, cfqg);
912         st->total_weight += cfqg->weight;
913 }
914
915 static void
916 cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
917 {
918         struct cfq_rb_root *st = &cfqd->grp_service_tree;
919         struct cfq_group *__cfqg;
920         struct rb_node *n;
921
922         cfqg->nr_cfqq++;
923         if (!RB_EMPTY_NODE(&cfqg->rb_node))
924                 return;
925
926         /*
927          * Currently put the group at the end. Later implement something
928          * so that groups get lesser vtime based on their weights, so that
929          * if group does not loose all if it was not continuously backlogged.
930          */
931         n = rb_last(&st->rb);
932         if (n) {
933                 __cfqg = rb_entry_cfqg(n);
934                 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
935         } else
936                 cfqg->vdisktime = st->min_vdisktime;
937         cfq_group_service_tree_add(st, cfqg);
938 }
939
940 static void
941 cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
942 {
943         st->total_weight -= cfqg->weight;
944         if (!RB_EMPTY_NODE(&cfqg->rb_node))
945                 cfq_rb_erase(&cfqg->rb_node, st);
946 }
947
948 static void
949 cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
950 {
951         struct cfq_rb_root *st = &cfqd->grp_service_tree;
952
953         BUG_ON(cfqg->nr_cfqq < 1);
954         cfqg->nr_cfqq--;
955
956         /* If there are other cfq queues under this group, don't delete it */
957         if (cfqg->nr_cfqq)
958                 return;
959
960         cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
961         cfq_group_service_tree_del(st, cfqg);
962         cfqg->saved_workload_slice = 0;
963         cfq_blkiocg_update_dequeue_stats(cfqg_to_blkg(cfqg),
964                                          &blkio_policy_cfq, 1);
965 }
966
967 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
968                                                 unsigned int *unaccounted_time)
969 {
970         unsigned int slice_used;
971
972         /*
973          * Queue got expired before even a single request completed or
974          * got expired immediately after first request completion.
975          */
976         if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
977                 /*
978                  * Also charge the seek time incurred to the group, otherwise
979                  * if there are mutiple queues in the group, each can dispatch
980                  * a single request on seeky media and cause lots of seek time
981                  * and group will never know it.
982                  */
983                 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
984                                         1);
985         } else {
986                 slice_used = jiffies - cfqq->slice_start;
987                 if (slice_used > cfqq->allocated_slice) {
988                         *unaccounted_time = slice_used - cfqq->allocated_slice;
989                         slice_used = cfqq->allocated_slice;
990                 }
991                 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
992                         *unaccounted_time += cfqq->slice_start -
993                                         cfqq->dispatch_start;
994         }
995
996         return slice_used;
997 }
998
999 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
1000                                 struct cfq_queue *cfqq)
1001 {
1002         struct cfq_rb_root *st = &cfqd->grp_service_tree;
1003         unsigned int used_sl, charge, unaccounted_sl = 0;
1004         int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
1005                         - cfqg->service_tree_idle.count;
1006
1007         BUG_ON(nr_sync < 0);
1008         used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
1009
1010         if (iops_mode(cfqd))
1011                 charge = cfqq->slice_dispatch;
1012         else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
1013                 charge = cfqq->allocated_slice;
1014
1015         /* Can't update vdisktime while group is on service tree */
1016         cfq_group_service_tree_del(st, cfqg);
1017         cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
1018         /* If a new weight was requested, update now, off tree */
1019         cfq_group_service_tree_add(st, cfqg);
1020
1021         /* This group is being expired. Save the context */
1022         if (time_after(cfqd->workload_expires, jiffies)) {
1023                 cfqg->saved_workload_slice = cfqd->workload_expires
1024                                                 - jiffies;
1025                 cfqg->saved_workload = cfqd->serving_type;
1026                 cfqg->saved_serving_prio = cfqd->serving_prio;
1027         } else
1028                 cfqg->saved_workload_slice = 0;
1029
1030         cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1031                                         st->min_vdisktime);
1032         cfq_log_cfqq(cfqq->cfqd, cfqq,
1033                      "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1034                      used_sl, cfqq->slice_dispatch, charge,
1035                      iops_mode(cfqd), cfqq->nr_sectors);
1036         cfq_blkiocg_update_timeslice_used(cfqg_to_blkg(cfqg), &blkio_policy_cfq,
1037                                           used_sl, unaccounted_sl);
1038         cfq_blkiocg_set_start_empty_time(cfqg_to_blkg(cfqg), &blkio_policy_cfq);
1039 }
1040
1041 /**
1042  * cfq_init_cfqg_base - initialize base part of a cfq_group
1043  * @cfqg: cfq_group to initialize
1044  *
1045  * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1046  * is enabled or not.
1047  */
1048 static void cfq_init_cfqg_base(struct cfq_group *cfqg)
1049 {
1050         struct cfq_rb_root *st;
1051         int i, j;
1052
1053         for_each_cfqg_st(cfqg, i, j, st)
1054                 *st = CFQ_RB_ROOT;
1055         RB_CLEAR_NODE(&cfqg->rb_node);
1056
1057         cfqg->ttime.last_end_request = jiffies;
1058 }
1059
1060 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1061 static void cfq_update_blkio_group_weight(struct request_queue *q,
1062                                           struct blkio_group *blkg,
1063                                           unsigned int weight)
1064 {
1065         struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1066
1067         cfqg->new_weight = weight;
1068         cfqg->needs_update = true;
1069 }
1070
1071 static void cfq_init_blkio_group(struct blkio_group *blkg)
1072 {
1073         struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1074
1075         cfq_init_cfqg_base(cfqg);
1076         cfqg->weight = blkg->blkcg->weight;
1077 }
1078
1079 /*
1080  * Search for the cfq group current task belongs to. request_queue lock must
1081  * be held.
1082  */
1083 static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
1084                                                 struct blkio_cgroup *blkcg)
1085 {
1086         struct request_queue *q = cfqd->queue;
1087         struct cfq_group *cfqg = NULL;
1088
1089         /* avoid lookup for the common case where there's no blkio cgroup */
1090         if (blkcg == &blkio_root_cgroup) {
1091                 cfqg = cfqd->root_group;
1092         } else {
1093                 struct blkio_group *blkg;
1094
1095                 blkg = blkg_lookup_create(blkcg, q, false);
1096                 if (!IS_ERR(blkg))
1097                         cfqg = blkg_to_cfqg(blkg);
1098         }
1099
1100         return cfqg;
1101 }
1102
1103 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1104 {
1105         /* Currently, all async queues are mapped to root group */
1106         if (!cfq_cfqq_sync(cfqq))
1107                 cfqg = cfqq->cfqd->root_group;
1108
1109         cfqq->cfqg = cfqg;
1110         /* cfqq reference on cfqg */
1111         cfqg_get(cfqg);
1112 }
1113
1114 #else /* GROUP_IOSCHED */
1115 static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
1116                                                 struct blkio_cgroup *blkcg)
1117 {
1118         return cfqd->root_group;
1119 }
1120
1121 static inline void
1122 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1123         cfqq->cfqg = cfqg;
1124 }
1125
1126 #endif /* GROUP_IOSCHED */
1127
1128 /*
1129  * The cfqd->service_trees holds all pending cfq_queue's that have
1130  * requests waiting to be processed. It is sorted in the order that
1131  * we will service the queues.
1132  */
1133 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1134                                  bool add_front)
1135 {
1136         struct rb_node **p, *parent;
1137         struct cfq_queue *__cfqq;
1138         unsigned long rb_key;
1139         struct cfq_rb_root *service_tree;
1140         int left;
1141         int new_cfqq = 1;
1142
1143         service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1144                                                 cfqq_type(cfqq));
1145         if (cfq_class_idle(cfqq)) {
1146                 rb_key = CFQ_IDLE_DELAY;
1147                 parent = rb_last(&service_tree->rb);
1148                 if (parent && parent != &cfqq->rb_node) {
1149                         __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1150                         rb_key += __cfqq->rb_key;
1151                 } else
1152                         rb_key += jiffies;
1153         } else if (!add_front) {
1154                 /*
1155                  * Get our rb key offset. Subtract any residual slice
1156                  * value carried from last service. A negative resid
1157                  * count indicates slice overrun, and this should position
1158                  * the next service time further away in the tree.
1159                  */
1160                 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1161                 rb_key -= cfqq->slice_resid;
1162                 cfqq->slice_resid = 0;
1163         } else {
1164                 rb_key = -HZ;
1165                 __cfqq = cfq_rb_first(service_tree);
1166                 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1167         }
1168
1169         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1170                 new_cfqq = 0;
1171                 /*
1172                  * same position, nothing more to do
1173                  */
1174                 if (rb_key == cfqq->rb_key &&
1175                     cfqq->service_tree == service_tree)
1176                         return;
1177
1178                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1179                 cfqq->service_tree = NULL;
1180         }
1181
1182         left = 1;
1183         parent = NULL;
1184         cfqq->service_tree = service_tree;
1185         p = &service_tree->rb.rb_node;
1186         while (*p) {
1187                 struct rb_node **n;
1188
1189                 parent = *p;
1190                 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1191
1192                 /*
1193                  * sort by key, that represents service time.
1194                  */
1195                 if (time_before(rb_key, __cfqq->rb_key))
1196                         n = &(*p)->rb_left;
1197                 else {
1198                         n = &(*p)->rb_right;
1199                         left = 0;
1200                 }
1201
1202                 p = n;
1203         }
1204
1205         if (left)
1206                 service_tree->left = &cfqq->rb_node;
1207
1208         cfqq->rb_key = rb_key;
1209         rb_link_node(&cfqq->rb_node, parent, p);
1210         rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1211         service_tree->count++;
1212         if (add_front || !new_cfqq)
1213                 return;
1214         cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
1215 }
1216
1217 static struct cfq_queue *
1218 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1219                      sector_t sector, struct rb_node **ret_parent,
1220                      struct rb_node ***rb_link)
1221 {
1222         struct rb_node **p, *parent;
1223         struct cfq_queue *cfqq = NULL;
1224
1225         parent = NULL;
1226         p = &root->rb_node;
1227         while (*p) {
1228                 struct rb_node **n;
1229
1230                 parent = *p;
1231                 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1232
1233                 /*
1234                  * Sort strictly based on sector.  Smallest to the left,
1235                  * largest to the right.
1236                  */
1237                 if (sector > blk_rq_pos(cfqq->next_rq))
1238                         n = &(*p)->rb_right;
1239                 else if (sector < blk_rq_pos(cfqq->next_rq))
1240                         n = &(*p)->rb_left;
1241                 else
1242                         break;
1243                 p = n;
1244                 cfqq = NULL;
1245         }
1246
1247         *ret_parent = parent;
1248         if (rb_link)
1249                 *rb_link = p;
1250         return cfqq;
1251 }
1252
1253 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1254 {
1255         struct rb_node **p, *parent;
1256         struct cfq_queue *__cfqq;
1257
1258         if (cfqq->p_root) {
1259                 rb_erase(&cfqq->p_node, cfqq->p_root);
1260                 cfqq->p_root = NULL;
1261         }
1262
1263         if (cfq_class_idle(cfqq))
1264                 return;
1265         if (!cfqq->next_rq)
1266                 return;
1267
1268         cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1269         __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1270                                       blk_rq_pos(cfqq->next_rq), &parent, &p);
1271         if (!__cfqq) {
1272                 rb_link_node(&cfqq->p_node, parent, p);
1273                 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1274         } else
1275                 cfqq->p_root = NULL;
1276 }
1277
1278 /*
1279  * Update cfqq's position in the service tree.
1280  */
1281 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1282 {
1283         /*
1284          * Resorting requires the cfqq to be on the RR list already.
1285          */
1286         if (cfq_cfqq_on_rr(cfqq)) {
1287                 cfq_service_tree_add(cfqd, cfqq, 0);
1288                 cfq_prio_tree_add(cfqd, cfqq);
1289         }
1290 }
1291
1292 /*
1293  * add to busy list of queues for service, trying to be fair in ordering
1294  * the pending list according to last request service
1295  */
1296 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1297 {
1298         cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1299         BUG_ON(cfq_cfqq_on_rr(cfqq));
1300         cfq_mark_cfqq_on_rr(cfqq);
1301         cfqd->busy_queues++;
1302         if (cfq_cfqq_sync(cfqq))
1303                 cfqd->busy_sync_queues++;
1304
1305         cfq_resort_rr_list(cfqd, cfqq);
1306 }
1307
1308 /*
1309  * Called when the cfqq no longer has requests pending, remove it from
1310  * the service tree.
1311  */
1312 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1313 {
1314         cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1315         BUG_ON(!cfq_cfqq_on_rr(cfqq));
1316         cfq_clear_cfqq_on_rr(cfqq);
1317
1318         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1319                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1320                 cfqq->service_tree = NULL;
1321         }
1322         if (cfqq->p_root) {
1323                 rb_erase(&cfqq->p_node, cfqq->p_root);
1324                 cfqq->p_root = NULL;
1325         }
1326
1327         cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
1328         BUG_ON(!cfqd->busy_queues);
1329         cfqd->busy_queues--;
1330         if (cfq_cfqq_sync(cfqq))
1331                 cfqd->busy_sync_queues--;
1332 }
1333
1334 /*
1335  * rb tree support functions
1336  */
1337 static void cfq_del_rq_rb(struct request *rq)
1338 {
1339         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1340         const int sync = rq_is_sync(rq);
1341
1342         BUG_ON(!cfqq->queued[sync]);
1343         cfqq->queued[sync]--;
1344
1345         elv_rb_del(&cfqq->sort_list, rq);
1346
1347         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1348                 /*
1349                  * Queue will be deleted from service tree when we actually
1350                  * expire it later. Right now just remove it from prio tree
1351                  * as it is empty.
1352                  */
1353                 if (cfqq->p_root) {
1354                         rb_erase(&cfqq->p_node, cfqq->p_root);
1355                         cfqq->p_root = NULL;
1356                 }
1357         }
1358 }
1359
1360 static void cfq_add_rq_rb(struct request *rq)
1361 {
1362         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1363         struct cfq_data *cfqd = cfqq->cfqd;
1364         struct request *prev;
1365
1366         cfqq->queued[rq_is_sync(rq)]++;
1367
1368         elv_rb_add(&cfqq->sort_list, rq);
1369
1370         if (!cfq_cfqq_on_rr(cfqq))
1371                 cfq_add_cfqq_rr(cfqd, cfqq);
1372
1373         /*
1374          * check if this request is a better next-serve candidate
1375          */
1376         prev = cfqq->next_rq;
1377         cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1378
1379         /*
1380          * adjust priority tree position, if ->next_rq changes
1381          */
1382         if (prev != cfqq->next_rq)
1383                 cfq_prio_tree_add(cfqd, cfqq);
1384
1385         BUG_ON(!cfqq->next_rq);
1386 }
1387
1388 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1389 {
1390         elv_rb_del(&cfqq->sort_list, rq);
1391         cfqq->queued[rq_is_sync(rq)]--;
1392         cfq_blkiocg_update_io_remove_stats(cfqg_to_blkg(RQ_CFQG(rq)),
1393                                            &blkio_policy_cfq, rq_data_dir(rq),
1394                                            rq_is_sync(rq));
1395         cfq_add_rq_rb(rq);
1396         cfq_blkiocg_update_io_add_stats(cfqg_to_blkg(RQ_CFQG(rq)),
1397                                         &blkio_policy_cfq,
1398                                         cfqg_to_blkg(cfqq->cfqd->serving_group),
1399                                         rq_data_dir(rq), rq_is_sync(rq));
1400 }
1401
1402 static struct request *
1403 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1404 {
1405         struct task_struct *tsk = current;
1406         struct cfq_io_cq *cic;
1407         struct cfq_queue *cfqq;
1408
1409         cic = cfq_cic_lookup(cfqd, tsk->io_context);
1410         if (!cic)
1411                 return NULL;
1412
1413         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1414         if (cfqq) {
1415                 sector_t sector = bio->bi_sector + bio_sectors(bio);
1416
1417                 return elv_rb_find(&cfqq->sort_list, sector);
1418         }
1419
1420         return NULL;
1421 }
1422
1423 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1424 {
1425         struct cfq_data *cfqd = q->elevator->elevator_data;
1426
1427         cfqd->rq_in_driver++;
1428         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1429                                                 cfqd->rq_in_driver);
1430
1431         cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1432 }
1433
1434 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1435 {
1436         struct cfq_data *cfqd = q->elevator->elevator_data;
1437
1438         WARN_ON(!cfqd->rq_in_driver);
1439         cfqd->rq_in_driver--;
1440         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1441                                                 cfqd->rq_in_driver);
1442 }
1443
1444 static void cfq_remove_request(struct request *rq)
1445 {
1446         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1447
1448         if (cfqq->next_rq == rq)
1449                 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1450
1451         list_del_init(&rq->queuelist);
1452         cfq_del_rq_rb(rq);
1453
1454         cfqq->cfqd->rq_queued--;
1455         cfq_blkiocg_update_io_remove_stats(cfqg_to_blkg(RQ_CFQG(rq)),
1456                                            &blkio_policy_cfq, rq_data_dir(rq),
1457                                            rq_is_sync(rq));
1458         if (rq->cmd_flags & REQ_PRIO) {
1459                 WARN_ON(!cfqq->prio_pending);
1460                 cfqq->prio_pending--;
1461         }
1462 }
1463
1464 static int cfq_merge(struct request_queue *q, struct request **req,
1465                      struct bio *bio)
1466 {
1467         struct cfq_data *cfqd = q->elevator->elevator_data;
1468         struct request *__rq;
1469
1470         __rq = cfq_find_rq_fmerge(cfqd, bio);
1471         if (__rq && elv_rq_merge_ok(__rq, bio)) {
1472                 *req = __rq;
1473                 return ELEVATOR_FRONT_MERGE;
1474         }
1475
1476         return ELEVATOR_NO_MERGE;
1477 }
1478
1479 static void cfq_merged_request(struct request_queue *q, struct request *req,
1480                                int type)
1481 {
1482         if (type == ELEVATOR_FRONT_MERGE) {
1483                 struct cfq_queue *cfqq = RQ_CFQQ(req);
1484
1485                 cfq_reposition_rq_rb(cfqq, req);
1486         }
1487 }
1488
1489 static void cfq_bio_merged(struct request_queue *q, struct request *req,
1490                                 struct bio *bio)
1491 {
1492         cfq_blkiocg_update_io_merged_stats(cfqg_to_blkg(RQ_CFQG(req)),
1493                                            &blkio_policy_cfq, bio_data_dir(bio),
1494                                            cfq_bio_sync(bio));
1495 }
1496
1497 static void
1498 cfq_merged_requests(struct request_queue *q, struct request *rq,
1499                     struct request *next)
1500 {
1501         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1502         struct cfq_data *cfqd = q->elevator->elevator_data;
1503
1504         /*
1505          * reposition in fifo if next is older than rq
1506          */
1507         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1508             time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1509                 list_move(&rq->queuelist, &next->queuelist);
1510                 rq_set_fifo_time(rq, rq_fifo_time(next));
1511         }
1512
1513         if (cfqq->next_rq == next)
1514                 cfqq->next_rq = rq;
1515         cfq_remove_request(next);
1516         cfq_blkiocg_update_io_merged_stats(cfqg_to_blkg(RQ_CFQG(rq)),
1517                                            &blkio_policy_cfq, rq_data_dir(next),
1518                                            rq_is_sync(next));
1519
1520         cfqq = RQ_CFQQ(next);
1521         /*
1522          * all requests of this queue are merged to other queues, delete it
1523          * from the service tree. If it's the active_queue,
1524          * cfq_dispatch_requests() will choose to expire it or do idle
1525          */
1526         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
1527             cfqq != cfqd->active_queue)
1528                 cfq_del_cfqq_rr(cfqd, cfqq);
1529 }
1530
1531 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1532                            struct bio *bio)
1533 {
1534         struct cfq_data *cfqd = q->elevator->elevator_data;
1535         struct cfq_io_cq *cic;
1536         struct cfq_queue *cfqq;
1537
1538         /*
1539          * Disallow merge of a sync bio into an async request.
1540          */
1541         if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1542                 return false;
1543
1544         /*
1545          * Lookup the cfqq that this bio will be queued with and allow
1546          * merge only if rq is queued there.
1547          */
1548         cic = cfq_cic_lookup(cfqd, current->io_context);
1549         if (!cic)
1550                 return false;
1551
1552         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1553         return cfqq == RQ_CFQQ(rq);
1554 }
1555
1556 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1557 {
1558         del_timer(&cfqd->idle_slice_timer);
1559         cfq_blkiocg_update_idle_time_stats(cfqg_to_blkg(cfqq->cfqg),
1560                                            &blkio_policy_cfq);
1561 }
1562
1563 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1564                                    struct cfq_queue *cfqq)
1565 {
1566         if (cfqq) {
1567                 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1568                                 cfqd->serving_prio, cfqd->serving_type);
1569                 cfq_blkiocg_update_avg_queue_size_stats(cfqg_to_blkg(cfqq->cfqg),
1570                                                         &blkio_policy_cfq);
1571                 cfqq->slice_start = 0;
1572                 cfqq->dispatch_start = jiffies;
1573                 cfqq->allocated_slice = 0;
1574                 cfqq->slice_end = 0;
1575                 cfqq->slice_dispatch = 0;
1576                 cfqq->nr_sectors = 0;
1577
1578                 cfq_clear_cfqq_wait_request(cfqq);
1579                 cfq_clear_cfqq_must_dispatch(cfqq);
1580                 cfq_clear_cfqq_must_alloc_slice(cfqq);
1581                 cfq_clear_cfqq_fifo_expire(cfqq);
1582                 cfq_mark_cfqq_slice_new(cfqq);
1583
1584                 cfq_del_timer(cfqd, cfqq);
1585         }
1586
1587         cfqd->active_queue = cfqq;
1588 }
1589
1590 /*
1591  * current cfqq expired its slice (or was too idle), select new one
1592  */
1593 static void
1594 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1595                     bool timed_out)
1596 {
1597         cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1598
1599         if (cfq_cfqq_wait_request(cfqq))
1600                 cfq_del_timer(cfqd, cfqq);
1601
1602         cfq_clear_cfqq_wait_request(cfqq);
1603         cfq_clear_cfqq_wait_busy(cfqq);
1604
1605         /*
1606          * If this cfqq is shared between multiple processes, check to
1607          * make sure that those processes are still issuing I/Os within
1608          * the mean seek distance.  If not, it may be time to break the
1609          * queues apart again.
1610          */
1611         if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1612                 cfq_mark_cfqq_split_coop(cfqq);
1613
1614         /*
1615          * store what was left of this slice, if the queue idled/timed out
1616          */
1617         if (timed_out) {
1618                 if (cfq_cfqq_slice_new(cfqq))
1619                         cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
1620                 else
1621                         cfqq->slice_resid = cfqq->slice_end - jiffies;
1622                 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1623         }
1624
1625         cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1626
1627         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1628                 cfq_del_cfqq_rr(cfqd, cfqq);
1629
1630         cfq_resort_rr_list(cfqd, cfqq);
1631
1632         if (cfqq == cfqd->active_queue)
1633                 cfqd->active_queue = NULL;
1634
1635         if (cfqd->active_cic) {
1636                 put_io_context(cfqd->active_cic->icq.ioc);
1637                 cfqd->active_cic = NULL;
1638         }
1639 }
1640
1641 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1642 {
1643         struct cfq_queue *cfqq = cfqd->active_queue;
1644
1645         if (cfqq)
1646                 __cfq_slice_expired(cfqd, cfqq, timed_out);
1647 }
1648
1649 /*
1650  * Get next queue for service. Unless we have a queue preemption,
1651  * we'll simply select the first cfqq in the service tree.
1652  */
1653 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1654 {
1655         struct cfq_rb_root *service_tree =
1656                 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1657                                         cfqd->serving_type);
1658
1659         if (!cfqd->rq_queued)
1660                 return NULL;
1661
1662         /* There is nothing to dispatch */
1663         if (!service_tree)
1664                 return NULL;
1665         if (RB_EMPTY_ROOT(&service_tree->rb))
1666                 return NULL;
1667         return cfq_rb_first(service_tree);
1668 }
1669
1670 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1671 {
1672         struct cfq_group *cfqg;
1673         struct cfq_queue *cfqq;
1674         int i, j;
1675         struct cfq_rb_root *st;
1676
1677         if (!cfqd->rq_queued)
1678                 return NULL;
1679
1680         cfqg = cfq_get_next_cfqg(cfqd);
1681         if (!cfqg)
1682                 return NULL;
1683
1684         for_each_cfqg_st(cfqg, i, j, st)
1685                 if ((cfqq = cfq_rb_first(st)) != NULL)
1686                         return cfqq;
1687         return NULL;
1688 }
1689
1690 /*
1691  * Get and set a new active queue for service.
1692  */
1693 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1694                                               struct cfq_queue *cfqq)
1695 {
1696         if (!cfqq)
1697                 cfqq = cfq_get_next_queue(cfqd);
1698
1699         __cfq_set_active_queue(cfqd, cfqq);
1700         return cfqq;
1701 }
1702
1703 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1704                                           struct request *rq)
1705 {
1706         if (blk_rq_pos(rq) >= cfqd->last_position)
1707                 return blk_rq_pos(rq) - cfqd->last_position;
1708         else
1709                 return cfqd->last_position - blk_rq_pos(rq);
1710 }
1711
1712 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1713                                struct request *rq)
1714 {
1715         return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1716 }
1717
1718 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1719                                     struct cfq_queue *cur_cfqq)
1720 {
1721         struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1722         struct rb_node *parent, *node;
1723         struct cfq_queue *__cfqq;
1724         sector_t sector = cfqd->last_position;
1725
1726         if (RB_EMPTY_ROOT(root))
1727                 return NULL;
1728
1729         /*
1730          * First, if we find a request starting at the end of the last
1731          * request, choose it.
1732          */
1733         __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1734         if (__cfqq)
1735                 return __cfqq;
1736
1737         /*
1738          * If the exact sector wasn't found, the parent of the NULL leaf
1739          * will contain the closest sector.
1740          */
1741         __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1742         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1743                 return __cfqq;
1744
1745         if (blk_rq_pos(__cfqq->next_rq) < sector)
1746                 node = rb_next(&__cfqq->p_node);
1747         else
1748                 node = rb_prev(&__cfqq->p_node);
1749         if (!node)
1750                 return NULL;
1751
1752         __cfqq = rb_entry(node, struct cfq_queue, p_node);
1753         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1754                 return __cfqq;
1755
1756         return NULL;
1757 }
1758
1759 /*
1760  * cfqd - obvious
1761  * cur_cfqq - passed in so that we don't decide that the current queue is
1762  *            closely cooperating with itself.
1763  *
1764  * So, basically we're assuming that that cur_cfqq has dispatched at least
1765  * one request, and that cfqd->last_position reflects a position on the disk
1766  * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1767  * assumption.
1768  */
1769 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1770                                               struct cfq_queue *cur_cfqq)
1771 {
1772         struct cfq_queue *cfqq;
1773
1774         if (cfq_class_idle(cur_cfqq))
1775                 return NULL;
1776         if (!cfq_cfqq_sync(cur_cfqq))
1777                 return NULL;
1778         if (CFQQ_SEEKY(cur_cfqq))
1779                 return NULL;
1780
1781         /*
1782          * Don't search priority tree if it's the only queue in the group.
1783          */
1784         if (cur_cfqq->cfqg->nr_cfqq == 1)
1785                 return NULL;
1786
1787         /*
1788          * We should notice if some of the queues are cooperating, eg
1789          * working closely on the same area of the disk. In that case,
1790          * we can group them together and don't waste time idling.
1791          */
1792         cfqq = cfqq_close(cfqd, cur_cfqq);
1793         if (!cfqq)
1794                 return NULL;
1795
1796         /* If new queue belongs to different cfq_group, don't choose it */
1797         if (cur_cfqq->cfqg != cfqq->cfqg)
1798                 return NULL;
1799
1800         /*
1801          * It only makes sense to merge sync queues.
1802          */
1803         if (!cfq_cfqq_sync(cfqq))
1804                 return NULL;
1805         if (CFQQ_SEEKY(cfqq))
1806                 return NULL;
1807
1808         /*
1809          * Do not merge queues of different priority classes
1810          */
1811         if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1812                 return NULL;
1813
1814         return cfqq;
1815 }
1816
1817 /*
1818  * Determine whether we should enforce idle window for this queue.
1819  */
1820
1821 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1822 {
1823         enum wl_prio_t prio = cfqq_prio(cfqq);
1824         struct cfq_rb_root *service_tree = cfqq->service_tree;
1825
1826         BUG_ON(!service_tree);
1827         BUG_ON(!service_tree->count);
1828
1829         if (!cfqd->cfq_slice_idle)
1830                 return false;
1831
1832         /* We never do for idle class queues. */
1833         if (prio == IDLE_WORKLOAD)
1834                 return false;
1835
1836         /* We do for queues that were marked with idle window flag. */
1837         if (cfq_cfqq_idle_window(cfqq) &&
1838            !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1839                 return true;
1840
1841         /*
1842          * Otherwise, we do only if they are the last ones
1843          * in their service tree.
1844          */
1845         if (service_tree->count == 1 && cfq_cfqq_sync(cfqq) &&
1846            !cfq_io_thinktime_big(cfqd, &service_tree->ttime, false))
1847                 return true;
1848         cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1849                         service_tree->count);
1850         return false;
1851 }
1852
1853 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1854 {
1855         struct cfq_queue *cfqq = cfqd->active_queue;
1856         struct cfq_io_cq *cic;
1857         unsigned long sl, group_idle = 0;
1858
1859         /*
1860          * SSD device without seek penalty, disable idling. But only do so
1861          * for devices that support queuing, otherwise we still have a problem
1862          * with sync vs async workloads.
1863          */
1864         if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1865                 return;
1866
1867         WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1868         WARN_ON(cfq_cfqq_slice_new(cfqq));
1869
1870         /*
1871          * idle is disabled, either manually or by past process history
1872          */
1873         if (!cfq_should_idle(cfqd, cfqq)) {
1874                 /* no queue idling. Check for group idling */
1875                 if (cfqd->cfq_group_idle)
1876                         group_idle = cfqd->cfq_group_idle;
1877                 else
1878                         return;
1879         }
1880
1881         /*
1882          * still active requests from this queue, don't idle
1883          */
1884         if (cfqq->dispatched)
1885                 return;
1886
1887         /*
1888          * task has exited, don't wait
1889          */
1890         cic = cfqd->active_cic;
1891         if (!cic || !atomic_read(&cic->icq.ioc->active_ref))
1892                 return;
1893
1894         /*
1895          * If our average think time is larger than the remaining time
1896          * slice, then don't idle. This avoids overrunning the allotted
1897          * time slice.
1898          */
1899         if (sample_valid(cic->ttime.ttime_samples) &&
1900             (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
1901                 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
1902                              cic->ttime.ttime_mean);
1903                 return;
1904         }
1905
1906         /* There are other queues in the group, don't do group idle */
1907         if (group_idle && cfqq->cfqg->nr_cfqq > 1)
1908                 return;
1909
1910         cfq_mark_cfqq_wait_request(cfqq);
1911
1912         if (group_idle)
1913                 sl = cfqd->cfq_group_idle;
1914         else
1915                 sl = cfqd->cfq_slice_idle;
1916
1917         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1918         cfq_blkiocg_update_set_idle_time_stats(cfqg_to_blkg(cfqq->cfqg),
1919                                                &blkio_policy_cfq);
1920         cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
1921                         group_idle ? 1 : 0);
1922 }
1923
1924 /*
1925  * Move request from internal lists to the request queue dispatch list.
1926  */
1927 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1928 {
1929         struct cfq_data *cfqd = q->elevator->elevator_data;
1930         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1931
1932         cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1933
1934         cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1935         cfq_remove_request(rq);
1936         cfqq->dispatched++;
1937         (RQ_CFQG(rq))->dispatched++;
1938         elv_dispatch_sort(q, rq);
1939
1940         cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
1941         cfqq->nr_sectors += blk_rq_sectors(rq);
1942         cfq_blkiocg_update_dispatch_stats(cfqg_to_blkg(cfqq->cfqg),
1943                                           &blkio_policy_cfq, blk_rq_bytes(rq),
1944                                           rq_data_dir(rq), rq_is_sync(rq));
1945 }
1946
1947 /*
1948  * return expired entry, or NULL to just start from scratch in rbtree
1949  */
1950 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1951 {
1952         struct request *rq = NULL;
1953
1954         if (cfq_cfqq_fifo_expire(cfqq))
1955                 return NULL;
1956
1957         cfq_mark_cfqq_fifo_expire(cfqq);
1958
1959         if (list_empty(&cfqq->fifo))
1960                 return NULL;
1961
1962         rq = rq_entry_fifo(cfqq->fifo.next);
1963         if (time_before(jiffies, rq_fifo_time(rq)))
1964                 rq = NULL;
1965
1966         cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1967         return rq;
1968 }
1969
1970 static inline int
1971 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1972 {
1973         const int base_rq = cfqd->cfq_slice_async_rq;
1974
1975         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1976
1977         return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
1978 }
1979
1980 /*
1981  * Must be called with the queue_lock held.
1982  */
1983 static int cfqq_process_refs(struct cfq_queue *cfqq)
1984 {
1985         int process_refs, io_refs;
1986
1987         io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1988         process_refs = cfqq->ref - io_refs;
1989         BUG_ON(process_refs < 0);
1990         return process_refs;
1991 }
1992
1993 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1994 {
1995         int process_refs, new_process_refs;
1996         struct cfq_queue *__cfqq;
1997
1998         /*
1999          * If there are no process references on the new_cfqq, then it is
2000          * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2001          * chain may have dropped their last reference (not just their
2002          * last process reference).
2003          */
2004         if (!cfqq_process_refs(new_cfqq))
2005                 return;
2006
2007         /* Avoid a circular list and skip interim queue merges */
2008         while ((__cfqq = new_cfqq->new_cfqq)) {
2009                 if (__cfqq == cfqq)
2010                         return;
2011                 new_cfqq = __cfqq;
2012         }
2013
2014         process_refs = cfqq_process_refs(cfqq);
2015         new_process_refs = cfqq_process_refs(new_cfqq);
2016         /*
2017          * If the process for the cfqq has gone away, there is no
2018          * sense in merging the queues.
2019          */
2020         if (process_refs == 0 || new_process_refs == 0)
2021                 return;
2022
2023         /*
2024          * Merge in the direction of the lesser amount of work.
2025          */
2026         if (new_process_refs >= process_refs) {
2027                 cfqq->new_cfqq = new_cfqq;
2028                 new_cfqq->ref += process_refs;
2029         } else {
2030                 new_cfqq->new_cfqq = cfqq;
2031                 cfqq->ref += new_process_refs;
2032         }
2033 }
2034
2035 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
2036                                 struct cfq_group *cfqg, enum wl_prio_t prio)
2037 {
2038         struct cfq_queue *queue;
2039         int i;
2040         bool key_valid = false;
2041         unsigned long lowest_key = 0;
2042         enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2043
2044         for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2045                 /* select the one with lowest rb_key */
2046                 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2047                 if (queue &&
2048                     (!key_valid || time_before(queue->rb_key, lowest_key))) {
2049                         lowest_key = queue->rb_key;
2050                         cur_best = i;
2051                         key_valid = true;
2052                 }
2053         }
2054
2055         return cur_best;
2056 }
2057
2058 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2059 {
2060         unsigned slice;
2061         unsigned count;
2062         struct cfq_rb_root *st;
2063         unsigned group_slice;
2064         enum wl_prio_t original_prio = cfqd->serving_prio;
2065
2066         /* Choose next priority. RT > BE > IDLE */
2067         if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2068                 cfqd->serving_prio = RT_WORKLOAD;
2069         else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2070                 cfqd->serving_prio = BE_WORKLOAD;
2071         else {
2072                 cfqd->serving_prio = IDLE_WORKLOAD;
2073                 cfqd->workload_expires = jiffies + 1;
2074                 return;
2075         }
2076
2077         if (original_prio != cfqd->serving_prio)
2078                 goto new_workload;
2079
2080         /*
2081          * For RT and BE, we have to choose also the type
2082          * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2083          * expiration time
2084          */
2085         st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2086         count = st->count;
2087
2088         /*
2089          * check workload expiration, and that we still have other queues ready
2090          */
2091         if (count && !time_after(jiffies, cfqd->workload_expires))
2092                 return;
2093
2094 new_workload:
2095         /* otherwise select new workload type */
2096         cfqd->serving_type =
2097                 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2098         st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2099         count = st->count;
2100
2101         /*
2102          * the workload slice is computed as a fraction of target latency
2103          * proportional to the number of queues in that workload, over
2104          * all the queues in the same priority class
2105          */
2106         group_slice = cfq_group_slice(cfqd, cfqg);
2107
2108         slice = group_slice * count /
2109                 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2110                       cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2111
2112         if (cfqd->serving_type == ASYNC_WORKLOAD) {
2113                 unsigned int tmp;
2114
2115                 /*
2116                  * Async queues are currently system wide. Just taking
2117                  * proportion of queues with-in same group will lead to higher
2118                  * async ratio system wide as generally root group is going
2119                  * to have higher weight. A more accurate thing would be to
2120                  * calculate system wide asnc/sync ratio.
2121                  */
2122                 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2123                 tmp = tmp/cfqd->busy_queues;
2124                 slice = min_t(unsigned, slice, tmp);
2125
2126                 /* async workload slice is scaled down according to
2127                  * the sync/async slice ratio. */
2128                 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2129         } else
2130                 /* sync workload slice is at least 2 * cfq_slice_idle */
2131                 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2132
2133         slice = max_t(unsigned, slice, CFQ_MIN_TT);
2134         cfq_log(cfqd, "workload slice:%d", slice);
2135         cfqd->workload_expires = jiffies + slice;
2136 }
2137
2138 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2139 {
2140         struct cfq_rb_root *st = &cfqd->grp_service_tree;
2141         struct cfq_group *cfqg;
2142
2143         if (RB_EMPTY_ROOT(&st->rb))
2144                 return NULL;
2145         cfqg = cfq_rb_first_group(st);
2146         update_min_vdisktime(st);
2147         return cfqg;
2148 }
2149
2150 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2151 {
2152         struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2153
2154         cfqd->serving_group = cfqg;
2155
2156         /* Restore the workload type data */
2157         if (cfqg->saved_workload_slice) {
2158                 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2159                 cfqd->serving_type = cfqg->saved_workload;
2160                 cfqd->serving_prio = cfqg->saved_serving_prio;
2161         } else
2162                 cfqd->workload_expires = jiffies - 1;
2163
2164         choose_service_tree(cfqd, cfqg);
2165 }
2166
2167 /*
2168  * Select a queue for service. If we have a current active queue,
2169  * check whether to continue servicing it, or retrieve and set a new one.
2170  */
2171 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2172 {
2173         struct cfq_queue *cfqq, *new_cfqq = NULL;
2174
2175         cfqq = cfqd->active_queue;
2176         if (!cfqq)
2177                 goto new_queue;
2178
2179         if (!cfqd->rq_queued)
2180                 return NULL;
2181
2182         /*
2183          * We were waiting for group to get backlogged. Expire the queue
2184          */
2185         if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2186                 goto expire;
2187
2188         /*
2189          * The active queue has run out of time, expire it and select new.
2190          */
2191         if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2192                 /*
2193                  * If slice had not expired at the completion of last request
2194                  * we might not have turned on wait_busy flag. Don't expire
2195                  * the queue yet. Allow the group to get backlogged.
2196                  *
2197                  * The very fact that we have used the slice, that means we
2198                  * have been idling all along on this queue and it should be
2199                  * ok to wait for this request to complete.
2200                  */
2201                 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2202                     && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2203                         cfqq = NULL;
2204                         goto keep_queue;
2205                 } else
2206                         goto check_group_idle;
2207         }
2208
2209         /*
2210          * The active queue has requests and isn't expired, allow it to
2211          * dispatch.
2212          */
2213         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2214                 goto keep_queue;
2215
2216         /*
2217          * If another queue has a request waiting within our mean seek
2218          * distance, let it run.  The expire code will check for close
2219          * cooperators and put the close queue at the front of the service
2220          * tree.  If possible, merge the expiring queue with the new cfqq.
2221          */
2222         new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2223         if (new_cfqq) {
2224                 if (!cfqq->new_cfqq)
2225                         cfq_setup_merge(cfqq, new_cfqq);
2226                 goto expire;
2227         }
2228
2229         /*
2230          * No requests pending. If the active queue still has requests in
2231          * flight or is idling for a new request, allow either of these
2232          * conditions to happen (or time out) before selecting a new queue.
2233          */
2234         if (timer_pending(&cfqd->idle_slice_timer)) {
2235                 cfqq = NULL;
2236                 goto keep_queue;
2237         }
2238
2239         /*
2240          * This is a deep seek queue, but the device is much faster than
2241          * the queue can deliver, don't idle
2242          **/
2243         if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2244             (cfq_cfqq_slice_new(cfqq) ||
2245             (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2246                 cfq_clear_cfqq_deep(cfqq);
2247                 cfq_clear_cfqq_idle_window(cfqq);
2248         }
2249
2250         if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2251                 cfqq = NULL;
2252                 goto keep_queue;
2253         }
2254
2255         /*
2256          * If group idle is enabled and there are requests dispatched from
2257          * this group, wait for requests to complete.
2258          */
2259 check_group_idle:
2260         if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
2261             cfqq->cfqg->dispatched &&
2262             !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
2263                 cfqq = NULL;
2264                 goto keep_queue;
2265         }
2266
2267 expire:
2268         cfq_slice_expired(cfqd, 0);
2269 new_queue:
2270         /*
2271          * Current queue expired. Check if we have to switch to a new
2272          * service tree
2273          */
2274         if (!new_cfqq)
2275                 cfq_choose_cfqg(cfqd);
2276
2277         cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2278 keep_queue:
2279         return cfqq;
2280 }
2281
2282 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2283 {
2284         int dispatched = 0;
2285
2286         while (cfqq->next_rq) {
2287                 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2288                 dispatched++;
2289         }
2290
2291         BUG_ON(!list_empty(&cfqq->fifo));
2292
2293         /* By default cfqq is not expired if it is empty. Do it explicitly */
2294         __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2295         return dispatched;
2296 }
2297
2298 /*
2299  * Drain our current requests. Used for barriers and when switching
2300  * io schedulers on-the-fly.
2301  */
2302 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2303 {
2304         struct cfq_queue *cfqq;
2305         int dispatched = 0;
2306
2307         /* Expire the timeslice of the current active queue first */
2308         cfq_slice_expired(cfqd, 0);
2309         while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2310                 __cfq_set_active_queue(cfqd, cfqq);
2311                 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2312         }
2313
2314         BUG_ON(cfqd->busy_queues);
2315
2316         cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2317         return dispatched;
2318 }
2319
2320 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2321         struct cfq_queue *cfqq)
2322 {
2323         /* the queue hasn't finished any request, can't estimate */
2324         if (cfq_cfqq_slice_new(cfqq))
2325                 return true;
2326         if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2327                 cfqq->slice_end))
2328                 return true;
2329
2330         return false;
2331 }
2332
2333 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2334 {
2335         unsigned int max_dispatch;
2336
2337         /*
2338          * Drain async requests before we start sync IO
2339          */
2340         if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2341                 return false;
2342
2343         /*
2344          * If this is an async queue and we have sync IO in flight, let it wait
2345          */
2346         if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2347                 return false;
2348
2349         max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2350         if (cfq_class_idle(cfqq))
2351                 max_dispatch = 1;
2352
2353         /*
2354          * Does this cfqq already have too much IO in flight?
2355          */
2356         if (cfqq->dispatched >= max_dispatch) {
2357                 bool promote_sync = false;
2358                 /*
2359                  * idle queue must always only have a single IO in flight
2360                  */
2361                 if (cfq_class_idle(cfqq))
2362                         return false;
2363
2364                 /*
2365                  * If there is only one sync queue
2366                  * we can ignore async queue here and give the sync
2367                  * queue no dispatch limit. The reason is a sync queue can
2368                  * preempt async queue, limiting the sync queue doesn't make
2369                  * sense. This is useful for aiostress test.
2370                  */
2371                 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
2372                         promote_sync = true;
2373
2374                 /*
2375                  * We have other queues, don't allow more IO from this one
2376                  */
2377                 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
2378                                 !promote_sync)
2379                         return false;
2380
2381                 /*
2382                  * Sole queue user, no limit
2383                  */
2384                 if (cfqd->busy_queues == 1 || promote_sync)
2385                         max_dispatch = -1;
2386                 else
2387                         /*
2388                          * Normally we start throttling cfqq when cfq_quantum/2
2389                          * requests have been dispatched. But we can drive
2390                          * deeper queue depths at the beginning of slice
2391                          * subjected to upper limit of cfq_quantum.
2392                          * */
2393                         max_dispatch = cfqd->cfq_quantum;
2394         }
2395
2396         /*
2397          * Async queues must wait a bit before being allowed dispatch.
2398          * We also ramp up the dispatch depth gradually for async IO,
2399          * based on the last sync IO we serviced
2400          */
2401         if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2402                 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2403                 unsigned int depth;
2404
2405                 depth = last_sync / cfqd->cfq_slice[1];
2406                 if (!depth && !cfqq->dispatched)
2407                         depth = 1;
2408                 if (depth < max_dispatch)
2409                         max_dispatch = depth;
2410         }
2411
2412         /*
2413          * If we're below the current max, allow a dispatch
2414          */
2415         return cfqq->dispatched < max_dispatch;
2416 }
2417
2418 /*
2419  * Dispatch a request from cfqq, moving them to the request queue
2420  * dispatch list.
2421  */
2422 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2423 {
2424         struct request *rq;
2425
2426         BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2427
2428         if (!cfq_may_dispatch(cfqd, cfqq))
2429                 return false;
2430
2431         /*
2432          * follow expired path, else get first next available
2433          */
2434         rq = cfq_check_fifo(cfqq);
2435         if (!rq)
2436                 rq = cfqq->next_rq;
2437
2438         /*
2439          * insert request into driver dispatch list
2440          */
2441         cfq_dispatch_insert(cfqd->queue, rq);
2442
2443         if (!cfqd->active_cic) {
2444                 struct cfq_io_cq *cic = RQ_CIC(rq);
2445
2446                 atomic_long_inc(&cic->icq.ioc->refcount);
2447                 cfqd->active_cic = cic;
2448         }
2449
2450         return true;
2451 }
2452
2453 /*
2454  * Find the cfqq that we need to service and move a request from that to the
2455  * dispatch list
2456  */
2457 static int cfq_dispatch_requests(struct request_queue *q, int force)
2458 {
2459         struct cfq_data *cfqd = q->elevator->elevator_data;
2460         struct cfq_queue *cfqq;
2461
2462         if (!cfqd->busy_queues)
2463                 return 0;
2464
2465         if (unlikely(force))
2466                 return cfq_forced_dispatch(cfqd);
2467
2468         cfqq = cfq_select_queue(cfqd);
2469         if (!cfqq)
2470                 return 0;
2471
2472         /*
2473          * Dispatch a request from this cfqq, if it is allowed
2474          */
2475         if (!cfq_dispatch_request(cfqd, cfqq))
2476                 return 0;
2477
2478         cfqq->slice_dispatch++;
2479         cfq_clear_cfqq_must_dispatch(cfqq);
2480
2481         /*
2482          * expire an async queue immediately if it has used up its slice. idle
2483          * queue always expire after 1 dispatch round.
2484          */
2485         if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2486             cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2487             cfq_class_idle(cfqq))) {
2488                 cfqq->slice_end = jiffies + 1;
2489                 cfq_slice_expired(cfqd, 0);
2490         }
2491
2492         cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2493         return 1;
2494 }
2495
2496 /*
2497  * task holds one reference to the queue, dropped when task exits. each rq
2498  * in-flight on this queue also holds a reference, dropped when rq is freed.
2499  *
2500  * Each cfq queue took a reference on the parent group. Drop it now.
2501  * queue lock must be held here.
2502  */
2503 static void cfq_put_queue(struct cfq_queue *cfqq)
2504 {
2505         struct cfq_data *cfqd = cfqq->cfqd;
2506         struct cfq_group *cfqg;
2507
2508         BUG_ON(cfqq->ref <= 0);
2509
2510         cfqq->ref--;
2511         if (cfqq->ref)
2512                 return;
2513
2514         cfq_log_cfqq(cfqd, cfqq, "put_queue");
2515         BUG_ON(rb_first(&cfqq->sort_list));
2516         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2517         cfqg = cfqq->cfqg;
2518
2519         if (unlikely(cfqd->active_queue == cfqq)) {
2520                 __cfq_slice_expired(cfqd, cfqq, 0);
2521                 cfq_schedule_dispatch(cfqd);
2522         }
2523
2524         BUG_ON(cfq_cfqq_on_rr(cfqq));
2525         kmem_cache_free(cfq_pool, cfqq);
2526         cfqg_put(cfqg);
2527 }
2528
2529 static void cfq_put_cooperator(struct cfq_queue *cfqq)
2530 {
2531         struct cfq_queue *__cfqq, *next;
2532
2533         /*
2534          * If this queue was scheduled to merge with another queue, be
2535          * sure to drop the reference taken on that queue (and others in
2536          * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
2537          */
2538         __cfqq = cfqq->new_cfqq;
2539         while (__cfqq) {
2540                 if (__cfqq == cfqq) {
2541                         WARN(1, "cfqq->new_cfqq loop detected\n");
2542                         break;
2543                 }
2544                 next = __cfqq->new_cfqq;
2545                 cfq_put_queue(__cfqq);
2546                 __cfqq = next;
2547         }
2548 }
2549
2550 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2551 {
2552         if (unlikely(cfqq == cfqd->active_queue)) {
2553                 __cfq_slice_expired(cfqd, cfqq, 0);
2554                 cfq_schedule_dispatch(cfqd);
2555         }
2556
2557         cfq_put_cooperator(cfqq);
2558
2559         cfq_put_queue(cfqq);
2560 }
2561
2562 static void cfq_init_icq(struct io_cq *icq)
2563 {
2564         struct cfq_io_cq *cic = icq_to_cic(icq);
2565
2566         cic->ttime.last_end_request = jiffies;
2567 }
2568
2569 static void cfq_exit_icq(struct io_cq *icq)
2570 {
2571         struct cfq_io_cq *cic = icq_to_cic(icq);
2572         struct cfq_data *cfqd = cic_to_cfqd(cic);
2573
2574         if (cic->cfqq[BLK_RW_ASYNC]) {
2575                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2576                 cic->cfqq[BLK_RW_ASYNC] = NULL;
2577         }
2578
2579         if (cic->cfqq[BLK_RW_SYNC]) {
2580                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2581                 cic->cfqq[BLK_RW_SYNC] = NULL;
2582         }
2583 }
2584
2585 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic)
2586 {
2587         struct task_struct *tsk = current;
2588         int ioprio_class;
2589
2590         if (!cfq_cfqq_prio_changed(cfqq))
2591                 return;
2592
2593         ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
2594         switch (ioprio_class) {
2595         default:
2596                 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2597         case IOPRIO_CLASS_NONE:
2598                 /*
2599                  * no prio set, inherit CPU scheduling settings
2600                  */
2601                 cfqq->ioprio = task_nice_ioprio(tsk);
2602                 cfqq->ioprio_class = task_nice_ioclass(tsk);
2603                 break;
2604         case IOPRIO_CLASS_RT:
2605                 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
2606                 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2607                 break;
2608         case IOPRIO_CLASS_BE:
2609                 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
2610                 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2611                 break;
2612         case IOPRIO_CLASS_IDLE:
2613                 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2614                 cfqq->ioprio = 7;
2615                 cfq_clear_cfqq_idle_window(cfqq);
2616                 break;
2617         }
2618
2619         /*
2620          * keep track of original prio settings in case we have to temporarily
2621          * elevate the priority of this queue
2622          */
2623         cfqq->org_ioprio = cfqq->ioprio;
2624         cfq_clear_cfqq_prio_changed(cfqq);
2625 }
2626
2627 static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio)
2628 {
2629         int ioprio = cic->icq.ioc->ioprio;
2630         struct cfq_data *cfqd = cic_to_cfqd(cic);
2631         struct cfq_queue *cfqq;
2632
2633         /*
2634          * Check whether ioprio has changed.  The condition may trigger
2635          * spuriously on a newly created cic but there's no harm.
2636          */
2637         if (unlikely(!cfqd) || likely(cic->ioprio == ioprio))
2638                 return;
2639
2640         cfqq = cic->cfqq[BLK_RW_ASYNC];
2641         if (cfqq) {
2642                 struct cfq_queue *new_cfqq;
2643                 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio,
2644                                          GFP_ATOMIC);
2645                 if (new_cfqq) {
2646                         cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2647                         cfq_put_queue(cfqq);
2648                 }
2649         }
2650
2651         cfqq = cic->cfqq[BLK_RW_SYNC];
2652         if (cfqq)
2653                 cfq_mark_cfqq_prio_changed(cfqq);
2654
2655         cic->ioprio = ioprio;
2656 }
2657
2658 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2659                           pid_t pid, bool is_sync)
2660 {
2661         RB_CLEAR_NODE(&cfqq->rb_node);
2662         RB_CLEAR_NODE(&cfqq->p_node);
2663         INIT_LIST_HEAD(&cfqq->fifo);
2664
2665         cfqq->ref = 0;
2666         cfqq->cfqd = cfqd;
2667
2668         cfq_mark_cfqq_prio_changed(cfqq);
2669
2670         if (is_sync) {
2671                 if (!cfq_class_idle(cfqq))
2672                         cfq_mark_cfqq_idle_window(cfqq);
2673                 cfq_mark_cfqq_sync(cfqq);
2674         }
2675         cfqq->pid = pid;
2676 }
2677
2678 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2679 static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
2680 {
2681         struct cfq_data *cfqd = cic_to_cfqd(cic);
2682         struct cfq_queue *sync_cfqq;
2683         uint64_t id;
2684
2685         rcu_read_lock();
2686         id = bio_blkio_cgroup(bio)->id;
2687         rcu_read_unlock();
2688
2689         /*
2690          * Check whether blkcg has changed.  The condition may trigger
2691          * spuriously on a newly created cic but there's no harm.
2692          */
2693         if (unlikely(!cfqd) || likely(cic->blkcg_id == id))
2694                 return;
2695
2696         sync_cfqq = cic_to_cfqq(cic, 1);
2697         if (sync_cfqq) {
2698                 /*
2699                  * Drop reference to sync queue. A new sync queue will be
2700                  * assigned in new group upon arrival of a fresh request.
2701                  */
2702                 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2703                 cic_set_cfqq(cic, NULL, 1);
2704                 cfq_put_queue(sync_cfqq);
2705         }
2706
2707         cic->blkcg_id = id;
2708 }
2709 #else
2710 static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) { }
2711 #endif  /* CONFIG_CFQ_GROUP_IOSCHED */
2712
2713 static struct cfq_queue *
2714 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
2715                      struct bio *bio, gfp_t gfp_mask)
2716 {
2717         struct blkio_cgroup *blkcg;
2718         struct cfq_queue *cfqq, *new_cfqq = NULL;
2719         struct cfq_group *cfqg;
2720
2721 retry:
2722         rcu_read_lock();
2723
2724         blkcg = bio_blkio_cgroup(bio);
2725         cfqg = cfq_lookup_create_cfqg(cfqd, blkcg);
2726         cfqq = cic_to_cfqq(cic, is_sync);
2727
2728         /*
2729          * Always try a new alloc if we fell back to the OOM cfqq
2730          * originally, since it should just be a temporary situation.
2731          */
2732         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2733                 cfqq = NULL;
2734                 if (new_cfqq) {
2735                         cfqq = new_cfqq;
2736                         new_cfqq = NULL;
2737                 } else if (gfp_mask & __GFP_WAIT) {
2738                         rcu_read_unlock();
2739                         spin_unlock_irq(cfqd->queue->queue_lock);
2740                         new_cfqq = kmem_cache_alloc_node(cfq_pool,
2741                                         gfp_mask | __GFP_ZERO,
2742                                         cfqd->queue->node);
2743                         spin_lock_irq(cfqd->queue->queue_lock);
2744                         if (new_cfqq)
2745                                 goto retry;
2746                 } else {
2747                         cfqq = kmem_cache_alloc_node(cfq_pool,
2748                                         gfp_mask | __GFP_ZERO,
2749                                         cfqd->queue->node);
2750                 }
2751
2752                 if (cfqq) {
2753                         cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2754                         cfq_init_prio_data(cfqq, cic);
2755                         cfq_link_cfqq_cfqg(cfqq, cfqg);
2756                         cfq_log_cfqq(cfqd, cfqq, "alloced");
2757                 } else
2758                         cfqq = &cfqd->oom_cfqq;
2759         }
2760
2761         if (new_cfqq)
2762                 kmem_cache_free(cfq_pool, new_cfqq);
2763
2764         rcu_read_unlock();
2765         return cfqq;
2766 }
2767
2768 static struct cfq_queue **
2769 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2770 {
2771         switch (ioprio_class) {
2772         case IOPRIO_CLASS_RT:
2773                 return &cfqd->async_cfqq[0][ioprio];
2774         case IOPRIO_CLASS_NONE:
2775                 ioprio = IOPRIO_NORM;
2776                 /* fall through */
2777         case IOPRIO_CLASS_BE:
2778                 return &cfqd->async_cfqq[1][ioprio];
2779         case IOPRIO_CLASS_IDLE:
2780                 return &cfqd->async_idle_cfqq;
2781         default:
2782                 BUG();
2783         }
2784 }
2785
2786 static struct cfq_queue *
2787 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
2788               struct bio *bio, gfp_t gfp_mask)
2789 {
2790         const int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
2791         const int ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
2792         struct cfq_queue **async_cfqq = NULL;
2793         struct cfq_queue *cfqq = NULL;
2794
2795         if (!is_sync) {
2796                 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2797                 cfqq = *async_cfqq;
2798         }
2799
2800         if (!cfqq)
2801                 cfqq = cfq_find_alloc_queue(cfqd, is_sync, cic, bio, gfp_mask);
2802
2803         /*
2804          * pin the queue now that it's allocated, scheduler exit will prune it
2805          */
2806         if (!is_sync && !(*async_cfqq)) {
2807                 cfqq->ref++;
2808                 *async_cfqq = cfqq;
2809         }
2810
2811         cfqq->ref++;
2812         return cfqq;
2813 }
2814
2815 static void
2816 __cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
2817 {
2818         unsigned long elapsed = jiffies - ttime->last_end_request;
2819         elapsed = min(elapsed, 2UL * slice_idle);
2820
2821         ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
2822         ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
2823         ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
2824 }
2825
2826 static void
2827 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2828                         struct cfq_io_cq *cic)
2829 {
2830         if (cfq_cfqq_sync(cfqq)) {
2831                 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
2832                 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
2833                         cfqd->cfq_slice_idle);
2834         }
2835 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2836         __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
2837 #endif
2838 }
2839
2840 static void
2841 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2842                        struct request *rq)
2843 {
2844         sector_t sdist = 0;
2845         sector_t n_sec = blk_rq_sectors(rq);
2846         if (cfqq->last_request_pos) {
2847                 if (cfqq->last_request_pos < blk_rq_pos(rq))
2848                         sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2849                 else
2850                         sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2851         }
2852
2853         cfqq->seek_history <<= 1;
2854         if (blk_queue_nonrot(cfqd->queue))
2855                 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
2856         else
2857                 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
2858 }
2859
2860 /*
2861  * Disable idle window if the process thinks too long or seeks so much that
2862  * it doesn't matter
2863  */
2864 static void
2865 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2866                        struct cfq_io_cq *cic)
2867 {
2868         int old_idle, enable_idle;
2869
2870         /*
2871          * Don't idle for async or idle io prio class
2872          */
2873         if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
2874                 return;
2875
2876         enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
2877
2878         if (cfqq->queued[0] + cfqq->queued[1] >= 4)
2879                 cfq_mark_cfqq_deep(cfqq);
2880
2881         if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
2882                 enable_idle = 0;
2883         else if (!atomic_read(&cic->icq.ioc->active_ref) ||
2884                  !cfqd->cfq_slice_idle ||
2885                  (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
2886                 enable_idle = 0;
2887         else if (sample_valid(cic->ttime.ttime_samples)) {
2888                 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
2889                         enable_idle = 0;
2890                 else
2891                         enable_idle = 1;
2892         }
2893
2894         if (old_idle != enable_idle) {
2895                 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
2896                 if (enable_idle)
2897                         cfq_mark_cfqq_idle_window(cfqq);
2898                 else
2899                         cfq_clear_cfqq_idle_window(cfqq);
2900         }
2901 }
2902
2903 /*
2904  * Check if new_cfqq should preempt the currently active queue. Return 0 for
2905  * no or if we aren't sure, a 1 will cause a preempt.
2906  */
2907 static bool
2908 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
2909                    struct request *rq)
2910 {
2911         struct cfq_queue *cfqq;
2912
2913         cfqq = cfqd->active_queue;
2914         if (!cfqq)
2915                 return false;
2916
2917         if (cfq_class_idle(new_cfqq))
2918                 return false;
2919
2920         if (cfq_class_idle(cfqq))
2921                 return true;
2922
2923         /*
2924          * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
2925          */
2926         if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
2927                 return false;
2928
2929         /*
2930          * if the new request is sync, but the currently running queue is
2931          * not, let the sync request have priority.
2932          */
2933         if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
2934                 return true;
2935
2936         if (new_cfqq->cfqg != cfqq->cfqg)
2937                 return false;
2938
2939         if (cfq_slice_used(cfqq))
2940                 return true;
2941
2942         /* Allow preemption only if we are idling on sync-noidle tree */
2943         if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
2944             cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
2945             new_cfqq->service_tree->count == 2 &&
2946             RB_EMPTY_ROOT(&cfqq->sort_list))
2947                 return true;
2948
2949         /*
2950          * So both queues are sync. Let the new request get disk time if
2951          * it's a metadata request and the current queue is doing regular IO.
2952          */
2953         if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
2954                 return true;
2955
2956         /*
2957          * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2958          */
2959         if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2960                 return true;
2961
2962         /* An idle queue should not be idle now for some reason */
2963         if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
2964                 return true;
2965
2966         if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2967                 return false;
2968
2969         /*
2970          * if this request is as-good as one we would expect from the
2971          * current cfqq, let it preempt
2972          */
2973         if (cfq_rq_close(cfqd, cfqq, rq))
2974                 return true;
2975
2976         return false;
2977 }
2978
2979 /*
2980  * cfqq preempts the active queue. if we allowed preempt with no slice left,
2981  * let it have half of its nominal slice.
2982  */
2983 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2984 {
2985         enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
2986
2987         cfq_log_cfqq(cfqd, cfqq, "preempt");
2988         cfq_slice_expired(cfqd, 1);
2989
2990         /*
2991          * workload type is changed, don't save slice, otherwise preempt
2992          * doesn't happen
2993          */
2994         if (old_type != cfqq_type(cfqq))
2995                 cfqq->cfqg->saved_workload_slice = 0;
2996
2997         /*
2998          * Put the new queue at the front of the of the current list,
2999          * so we know that it will be selected next.
3000          */
3001         BUG_ON(!cfq_cfqq_on_rr(cfqq));
3002
3003         cfq_service_tree_add(cfqd, cfqq, 1);
3004
3005         cfqq->slice_end = 0;
3006         cfq_mark_cfqq_slice_new(cfqq);
3007 }
3008
3009 /*
3010  * Called when a new fs request (rq) is added (to cfqq). Check if there's
3011  * something we should do about it
3012  */
3013 static void
3014 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3015                 struct request *rq)
3016 {
3017         struct cfq_io_cq *cic = RQ_CIC(rq);
3018
3019         cfqd->rq_queued++;
3020         if (rq->cmd_flags & REQ_PRIO)
3021                 cfqq->prio_pending++;
3022
3023         cfq_update_io_thinktime(cfqd, cfqq, cic);
3024         cfq_update_io_seektime(cfqd, cfqq, rq);
3025         cfq_update_idle_window(cfqd, cfqq, cic);
3026
3027         cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3028
3029         if (cfqq == cfqd->active_queue) {
3030                 /*
3031                  * Remember that we saw a request from this process, but
3032                  * don't start queuing just yet. Otherwise we risk seeing lots
3033                  * of tiny requests, because we disrupt the normal plugging
3034                  * and merging. If the request is already larger than a single
3035                  * page, let it rip immediately. For that case we assume that
3036                  * merging is already done. Ditto for a busy system that
3037                  * has other work pending, don't risk delaying until the
3038                  * idle timer unplug to continue working.
3039                  */
3040                 if (cfq_cfqq_wait_request(cfqq)) {
3041                         if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3042                             cfqd->busy_queues > 1) {
3043                                 cfq_del_timer(cfqd, cfqq);
3044                                 cfq_clear_cfqq_wait_request(cfqq);
3045                                 __blk_run_queue(cfqd->queue);
3046                         } else {
3047                                 cfq_blkiocg_update_idle_time_stats(
3048                                                 cfqg_to_blkg(cfqq->cfqg),
3049                                                 &blkio_policy_cfq);
3050                                 cfq_mark_cfqq_must_dispatch(cfqq);
3051                         }
3052                 }
3053         } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3054                 /*
3055                  * not the active queue - expire current slice if it is
3056                  * idle and has expired it's mean thinktime or this new queue
3057                  * has some old slice time left and is of higher priority or
3058                  * this new queue is RT and the current one is BE
3059                  */
3060                 cfq_preempt_queue(cfqd, cfqq);
3061                 __blk_run_queue(cfqd->queue);
3062         }
3063 }
3064
3065 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3066 {
3067         struct cfq_data *cfqd = q->elevator->elevator_data;
3068         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3069
3070         cfq_log_cfqq(cfqd, cfqq, "insert_request");
3071         cfq_init_prio_data(cfqq, RQ_CIC(rq));
3072
3073         rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3074         list_add_tail(&rq->queuelist, &cfqq->fifo);
3075         cfq_add_rq_rb(rq);
3076         cfq_blkiocg_update_io_add_stats(cfqg_to_blkg(RQ_CFQG(rq)),
3077                                         &blkio_policy_cfq,
3078                                         cfqg_to_blkg(cfqd->serving_group),
3079                                         rq_data_dir(rq), rq_is_sync(rq));
3080         cfq_rq_enqueued(cfqd, cfqq, rq);
3081 }
3082
3083 /*
3084  * Update hw_tag based on peak queue depth over 50 samples under
3085  * sufficient load.
3086  */
3087 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3088 {
3089         struct cfq_queue *cfqq = cfqd->active_queue;
3090
3091         if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3092                 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3093
3094         if (cfqd->hw_tag == 1)
3095                 return;
3096
3097         if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3098             cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3099                 return;
3100
3101         /*
3102          * If active queue hasn't enough requests and can idle, cfq might not
3103          * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3104          * case
3105          */
3106         if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3107             cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3108             CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3109                 return;
3110
3111         if (cfqd->hw_tag_samples++ < 50)
3112                 return;
3113
3114         if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3115                 cfqd->hw_tag = 1;
3116         else
3117                 cfqd->hw_tag = 0;
3118 }
3119
3120 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3121 {
3122         struct cfq_io_cq *cic = cfqd->active_cic;
3123
3124         /* If the queue already has requests, don't wait */
3125         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3126                 return false;
3127
3128         /* If there are other queues in the group, don't wait */
3129         if (cfqq->cfqg->nr_cfqq > 1)
3130                 return false;
3131
3132         /* the only queue in the group, but think time is big */
3133         if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
3134                 return false;
3135
3136         if (cfq_slice_used(cfqq))
3137                 return true;
3138
3139         /* if slice left is less than think time, wait busy */
3140         if (cic && sample_valid(cic->ttime.ttime_samples)
3141             && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
3142                 return true;
3143
3144         /*
3145          * If think times is less than a jiffy than ttime_mean=0 and above
3146          * will not be true. It might happen that slice has not expired yet
3147          * but will expire soon (4-5 ns) during select_queue(). To cover the
3148          * case where think time is less than a jiffy, mark the queue wait
3149          * busy if only 1 jiffy is left in the slice.
3150          */
3151         if (cfqq->slice_end - jiffies == 1)
3152                 return true;
3153
3154         return false;
3155 }
3156
3157 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3158 {
3159         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3160         struct cfq_data *cfqd = cfqq->cfqd;
3161         const int sync = rq_is_sync(rq);
3162         unsigned long now;
3163
3164         now = jiffies;
3165         cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3166                      !!(rq->cmd_flags & REQ_NOIDLE));
3167
3168         cfq_update_hw_tag(cfqd);
3169
3170         WARN_ON(!cfqd->rq_in_driver);
3171         WARN_ON(!cfqq->dispatched);
3172         cfqd->rq_in_driver--;
3173         cfqq->dispatched--;
3174         (RQ_CFQG(rq))->dispatched--;
3175         cfq_blkiocg_update_completion_stats(cfqg_to_blkg(cfqq->cfqg),
3176                         &blkio_policy_cfq, rq_start_time_ns(rq),
3177                         rq_io_start_time_ns(rq), rq_data_dir(rq),
3178                         rq_is_sync(rq));
3179
3180         cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3181
3182         if (sync) {
3183                 struct cfq_rb_root *service_tree;
3184
3185                 RQ_CIC(rq)->ttime.last_end_request = now;
3186
3187                 if (cfq_cfqq_on_rr(cfqq))
3188                         service_tree = cfqq->service_tree;
3189                 else
3190                         service_tree = service_tree_for(cfqq->cfqg,
3191                                 cfqq_prio(cfqq), cfqq_type(cfqq));
3192                 service_tree->ttime.last_end_request = now;
3193                 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3194                         cfqd->last_delayed_sync = now;
3195         }
3196
3197 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3198         cfqq->cfqg->ttime.last_end_request = now;
3199 #endif
3200
3201         /*
3202          * If this is the active queue, check if it needs to be expired,
3203          * or if we want to idle in case it has no pending requests.
3204          */
3205         if (cfqd->active_queue == cfqq) {
3206                 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3207
3208                 if (cfq_cfqq_slice_new(cfqq)) {
3209                         cfq_set_prio_slice(cfqd, cfqq);
3210                         cfq_clear_cfqq_slice_new(cfqq);
3211                 }
3212
3213                 /*
3214                  * Should we wait for next request to come in before we expire
3215                  * the queue.
3216                  */
3217                 if (cfq_should_wait_busy(cfqd, cfqq)) {
3218                         unsigned long extend_sl = cfqd->cfq_slice_idle;
3219                         if (!cfqd->cfq_slice_idle)
3220                                 extend_sl = cfqd->cfq_group_idle;
3221                         cfqq->slice_end = jiffies + extend_sl;
3222                         cfq_mark_cfqq_wait_busy(cfqq);
3223                         cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3224                 }
3225
3226                 /*
3227                  * Idling is not enabled on:
3228                  * - expired queues
3229                  * - idle-priority queues
3230                  * - async queues
3231                  * - queues with still some requests queued
3232                  * - when there is a close cooperator
3233                  */
3234                 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3235                         cfq_slice_expired(cfqd, 1);
3236                 else if (sync && cfqq_empty &&
3237                          !cfq_close_cooperator(cfqd, cfqq)) {
3238                         cfq_arm_slice_timer(cfqd);
3239                 }
3240         }
3241
3242         if (!cfqd->rq_in_driver)
3243                 cfq_schedule_dispatch(cfqd);
3244 }
3245
3246 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3247 {
3248         if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3249                 cfq_mark_cfqq_must_alloc_slice(cfqq);
3250                 return ELV_MQUEUE_MUST;
3251         }
3252
3253         return ELV_MQUEUE_MAY;
3254 }
3255
3256 static int cfq_may_queue(struct request_queue *q, int rw)
3257 {
3258         struct cfq_data *cfqd = q->elevator->elevator_data;
3259         struct task_struct *tsk = current;
3260         struct cfq_io_cq *cic;
3261         struct cfq_queue *cfqq;
3262
3263         /*
3264          * don't force setup of a queue from here, as a call to may_queue
3265          * does not necessarily imply that a request actually will be queued.
3266          * so just lookup a possibly existing queue, or return 'may queue'
3267          * if that fails
3268          */
3269         cic = cfq_cic_lookup(cfqd, tsk->io_context);
3270         if (!cic)
3271                 return ELV_MQUEUE_MAY;
3272
3273         cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3274         if (cfqq) {
3275                 cfq_init_prio_data(cfqq, cic);
3276
3277                 return __cfq_may_queue(cfqq);
3278         }
3279
3280         return ELV_MQUEUE_MAY;
3281 }
3282
3283 /*
3284  * queue lock held here
3285  */
3286 static void cfq_put_request(struct request *rq)
3287 {
3288         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3289
3290         if (cfqq) {
3291                 const int rw = rq_data_dir(rq);
3292
3293                 BUG_ON(!cfqq->allocated[rw]);
3294                 cfqq->allocated[rw]--;
3295
3296                 /* Put down rq reference on cfqg */
3297                 cfqg_put(RQ_CFQG(rq));
3298                 rq->elv.priv[0] = NULL;
3299                 rq->elv.priv[1] = NULL;
3300
3301                 cfq_put_queue(cfqq);
3302         }
3303 }
3304
3305 static struct cfq_queue *
3306 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
3307                 struct cfq_queue *cfqq)
3308 {
3309         cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3310         cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3311         cfq_mark_cfqq_coop(cfqq->new_cfqq);
3312         cfq_put_queue(cfqq);
3313         return cic_to_cfqq(cic, 1);
3314 }
3315
3316 /*
3317  * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3318  * was the last process referring to said cfqq.
3319  */
3320 static struct cfq_queue *
3321 split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
3322 {
3323         if (cfqq_process_refs(cfqq) == 1) {
3324                 cfqq->pid = current->pid;
3325                 cfq_clear_cfqq_coop(cfqq);
3326                 cfq_clear_cfqq_split_coop(cfqq);
3327                 return cfqq;
3328         }
3329
3330         cic_set_cfqq(cic, NULL, 1);
3331
3332         cfq_put_cooperator(cfqq);
3333
3334         cfq_put_queue(cfqq);
3335         return NULL;
3336 }
3337 /*
3338  * Allocate cfq data structures associated with this request.
3339  */
3340 static int
3341 cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio,
3342                 gfp_t gfp_mask)
3343 {
3344         struct cfq_data *cfqd = q->elevator->elevator_data;
3345         struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
3346         const int rw = rq_data_dir(rq);
3347         const bool is_sync = rq_is_sync(rq);
3348         struct cfq_queue *cfqq;
3349
3350         might_sleep_if(gfp_mask & __GFP_WAIT);
3351
3352         spin_lock_irq(q->queue_lock);
3353
3354         check_ioprio_changed(cic, bio);
3355         check_blkcg_changed(cic, bio);
3356 new_queue:
3357         cfqq = cic_to_cfqq(cic, is_sync);
3358         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3359                 cfqq = cfq_get_queue(cfqd, is_sync, cic, bio, gfp_mask);
3360                 cic_set_cfqq(cic, cfqq, is_sync);
3361         } else {
3362                 /*
3363                  * If the queue was seeky for too long, break it apart.
3364                  */
3365                 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3366                         cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3367                         cfqq = split_cfqq(cic, cfqq);
3368                         if (!cfqq)
3369                                 goto new_queue;
3370                 }
3371
3372                 /*
3373                  * Check to see if this queue is scheduled to merge with
3374                  * another, closely cooperating queue.  The merging of
3375                  * queues happens here as it must be done in process context.
3376                  * The reference on new_cfqq was taken in merge_cfqqs.
3377                  */
3378                 if (cfqq->new_cfqq)
3379                         cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3380         }
3381
3382         cfqq->allocated[rw]++;
3383
3384         cfqq->ref++;
3385         cfqg_get(cfqq->cfqg);
3386         rq->elv.priv[0] = cfqq;
3387         rq->elv.priv[1] = cfqq->cfqg;
3388         spin_unlock_irq(q->queue_lock);
3389         return 0;
3390 }
3391
3392 static void cfq_kick_queue(struct work_struct *work)
3393 {
3394         struct cfq_data *cfqd =
3395                 container_of(work, struct cfq_data, unplug_work);
3396         struct request_queue *q = cfqd->queue;
3397
3398         spin_lock_irq(q->queue_lock);
3399         __blk_run_queue(cfqd->queue);
3400         spin_unlock_irq(q->queue_lock);
3401 }
3402
3403 /*
3404  * Timer running if the active_queue is currently idling inside its time slice
3405  */
3406 static void cfq_idle_slice_timer(unsigned long data)
3407 {
3408         struct cfq_data *cfqd = (struct cfq_data *) data;
3409         struct cfq_queue *cfqq;
3410         unsigned long flags;
3411         int timed_out = 1;
3412
3413         cfq_log(cfqd, "idle timer fired");
3414
3415         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3416
3417         cfqq = cfqd->active_queue;
3418         if (cfqq) {
3419                 timed_out = 0;
3420
3421                 /*
3422                  * We saw a request before the queue expired, let it through
3423                  */
3424                 if (cfq_cfqq_must_dispatch(cfqq))
3425                         goto out_kick;
3426
3427                 /*
3428                  * expired
3429                  */
3430                 if (cfq_slice_used(cfqq))
3431                         goto expire;
3432
3433                 /*
3434                  * only expire and reinvoke request handler, if there are
3435                  * other queues with pending requests
3436                  */
3437                 if (!cfqd->busy_queues)
3438                         goto out_cont;
3439
3440                 /*
3441                  * not expired and it has a request pending, let it dispatch
3442                  */
3443                 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3444                         goto out_kick;
3445
3446                 /*
3447                  * Queue depth flag is reset only when the idle didn't succeed
3448                  */
3449                 cfq_clear_cfqq_deep(cfqq);
3450         }
3451 expire:
3452         cfq_slice_expired(cfqd, timed_out);
3453 out_kick:
3454         cfq_schedule_dispatch(cfqd);
3455 out_cont:
3456         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3457 }
3458
3459 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3460 {
3461         del_timer_sync(&cfqd->idle_slice_timer);
3462         cancel_work_sync(&cfqd->unplug_work);
3463 }
3464
3465 static void cfq_put_async_queues(struct cfq_data *cfqd)
3466 {
3467         int i;
3468
3469         for (i = 0; i < IOPRIO_BE_NR; i++) {
3470                 if (cfqd->async_cfqq[0][i])
3471                         cfq_put_queue(cfqd->async_cfqq[0][i]);
3472                 if (cfqd->async_cfqq[1][i])
3473                         cfq_put_queue(cfqd->async_cfqq[1][i]);
3474         }
3475
3476         if (cfqd->async_idle_cfqq)
3477                 cfq_put_queue(cfqd->async_idle_cfqq);
3478 }
3479
3480 static void cfq_exit_queue(struct elevator_queue *e)
3481 {
3482         struct cfq_data *cfqd = e->elevator_data;
3483         struct request_queue *q = cfqd->queue;
3484
3485         cfq_shutdown_timer_wq(cfqd);
3486
3487         spin_lock_irq(q->queue_lock);
3488
3489         if (cfqd->active_queue)
3490                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3491
3492         cfq_put_async_queues(cfqd);
3493
3494         spin_unlock_irq(q->queue_lock);
3495
3496         cfq_shutdown_timer_wq(cfqd);
3497
3498 #ifndef CONFIG_CFQ_GROUP_IOSCHED
3499         kfree(cfqd->root_group);
3500 #endif
3501         update_root_blkg_pd(q, BLKIO_POLICY_PROP);
3502         kfree(cfqd);
3503 }
3504
3505 static int cfq_init_queue(struct request_queue *q)
3506 {
3507         struct cfq_data *cfqd;
3508         struct blkio_group *blkg __maybe_unused;
3509         int i;
3510
3511         cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3512         if (!cfqd)
3513                 return -ENOMEM;
3514
3515         cfqd->queue = q;
3516         q->elevator->elevator_data = cfqd;
3517
3518         /* Init root service tree */
3519         cfqd->grp_service_tree = CFQ_RB_ROOT;
3520
3521         /* Init root group and prefer root group over other groups by default */
3522 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3523         rcu_read_lock();
3524         spin_lock_irq(q->queue_lock);
3525
3526         blkg = blkg_lookup_create(&blkio_root_cgroup, q, true);
3527         if (!IS_ERR(blkg))
3528                 cfqd->root_group = blkg_to_cfqg(blkg);
3529
3530         spin_unlock_irq(q->queue_lock);
3531         rcu_read_unlock();
3532 #else
3533         cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
3534                                         GFP_KERNEL, cfqd->queue->node);
3535         if (cfqd->root_group)
3536                 cfq_init_cfqg_base(cfqd->root_group);
3537 #endif
3538         if (!cfqd->root_group) {
3539                 kfree(cfqd);
3540                 return -ENOMEM;
3541         }
3542
3543         cfqd->root_group->weight = 2*BLKIO_WEIGHT_DEFAULT;
3544
3545         /*
3546          * Not strictly needed (since RB_ROOT just clears the node and we
3547          * zeroed cfqd on alloc), but better be safe in case someone decides
3548          * to add magic to the rb code
3549          */
3550         for (i = 0; i < CFQ_PRIO_LISTS; i++)
3551                 cfqd->prio_trees[i] = RB_ROOT;
3552
3553         /*
3554          * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3555          * Grab a permanent reference to it, so that the normal code flow
3556          * will not attempt to free it.  oom_cfqq is linked to root_group
3557          * but shouldn't hold a reference as it'll never be unlinked.  Lose
3558          * the reference from linking right away.
3559          */
3560         cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3561         cfqd->oom_cfqq.ref++;
3562
3563         spin_lock_irq(q->queue_lock);
3564         cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
3565         cfqg_put(cfqd->root_group);
3566         spin_unlock_irq(q->queue_lock);
3567
3568         init_timer(&cfqd->idle_slice_timer);
3569         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3570         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3571
3572         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3573
3574         cfqd->cfq_quantum = cfq_quantum;
3575         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3576         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3577         cfqd->cfq_back_max = cfq_back_max;
3578         cfqd->cfq_back_penalty = cfq_back_penalty;
3579         cfqd->cfq_slice[0] = cfq_slice_async;
3580         cfqd->cfq_slice[1] = cfq_slice_sync;
3581         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3582         cfqd->cfq_slice_idle = cfq_slice_idle;
3583         cfqd->cfq_group_idle = cfq_group_idle;
3584         cfqd->cfq_latency = 1;
3585         cfqd->hw_tag = -1;
3586         /*
3587          * we optimistically start assuming sync ops weren't delayed in last
3588          * second, in order to have larger depth for async operations.
3589          */
3590         cfqd->last_delayed_sync = jiffies - HZ;
3591         return 0;
3592 }
3593
3594 /*
3595  * sysfs parts below -->
3596  */
3597 static ssize_t
3598 cfq_var_show(unsigned int var, char *page)
3599 {
3600         return sprintf(page, "%d\n", var);
3601 }
3602
3603 static ssize_t
3604 cfq_var_store(unsigned int *var, const char *page, size_t count)
3605 {
3606         char *p = (char *) page;
3607
3608         *var = simple_strtoul(p, &p, 10);
3609         return count;
3610 }
3611
3612 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
3613 static ssize_t __FUNC(struct elevator_queue *e, char *page)             \
3614 {                                                                       \
3615         struct cfq_data *cfqd = e->elevator_data;                       \
3616         unsigned int __data = __VAR;                                    \
3617         if (__CONV)                                                     \
3618                 __data = jiffies_to_msecs(__data);                      \
3619         return cfq_var_show(__data, (page));                            \
3620 }
3621 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3622 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3623 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3624 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3625 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3626 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3627 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
3628 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3629 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3630 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3631 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3632 #undef SHOW_FUNCTION
3633
3634 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
3635 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3636 {                                                                       \
3637         struct cfq_data *cfqd = e->elevator_data;                       \
3638         unsigned int __data;                                            \
3639         int ret = cfq_var_store(&__data, (page), count);                \
3640         if (__data < (MIN))                                             \
3641                 __data = (MIN);                                         \
3642         else if (__data > (MAX))                                        \
3643                 __data = (MAX);                                         \
3644         if (__CONV)                                                     \
3645                 *(__PTR) = msecs_to_jiffies(__data);                    \
3646         else                                                            \
3647                 *(__PTR) = __data;                                      \
3648         return ret;                                                     \
3649 }
3650 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3651 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3652                 UINT_MAX, 1);
3653 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3654                 UINT_MAX, 1);
3655 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3656 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3657                 UINT_MAX, 0);
3658 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3659 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
3660 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3661 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3662 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3663                 UINT_MAX, 0);
3664 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3665 #undef STORE_FUNCTION
3666
3667 #define CFQ_ATTR(name) \
3668         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3669
3670 static struct elv_fs_entry cfq_attrs[] = {
3671         CFQ_ATTR(quantum),
3672         CFQ_ATTR(fifo_expire_sync),
3673         CFQ_ATTR(fifo_expire_async),
3674         CFQ_ATTR(back_seek_max),
3675         CFQ_ATTR(back_seek_penalty),
3676         CFQ_ATTR(slice_sync),
3677         CFQ_ATTR(slice_async),
3678         CFQ_ATTR(slice_async_rq),
3679         CFQ_ATTR(slice_idle),
3680         CFQ_ATTR(group_idle),
3681         CFQ_ATTR(low_latency),
3682         __ATTR_NULL
3683 };
3684
3685 static struct elevator_type iosched_cfq = {
3686         .ops = {
3687                 .elevator_merge_fn =            cfq_merge,
3688                 .elevator_merged_fn =           cfq_merged_request,
3689                 .elevator_merge_req_fn =        cfq_merged_requests,
3690                 .elevator_allow_merge_fn =      cfq_allow_merge,
3691                 .elevator_bio_merged_fn =       cfq_bio_merged,
3692                 .elevator_dispatch_fn =         cfq_dispatch_requests,
3693                 .elevator_add_req_fn =          cfq_insert_request,
3694                 .elevator_activate_req_fn =     cfq_activate_request,
3695                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
3696                 .elevator_completed_req_fn =    cfq_completed_request,
3697                 .elevator_former_req_fn =       elv_rb_former_request,
3698                 .elevator_latter_req_fn =       elv_rb_latter_request,
3699                 .elevator_init_icq_fn =         cfq_init_icq,
3700                 .elevator_exit_icq_fn =         cfq_exit_icq,
3701                 .elevator_set_req_fn =          cfq_set_request,
3702                 .elevator_put_req_fn =          cfq_put_request,
3703                 .elevator_may_queue_fn =        cfq_may_queue,
3704                 .elevator_init_fn =             cfq_init_queue,
3705                 .elevator_exit_fn =             cfq_exit_queue,
3706         },
3707         .icq_size       =       sizeof(struct cfq_io_cq),
3708         .icq_align      =       __alignof__(struct cfq_io_cq),
3709         .elevator_attrs =       cfq_attrs,
3710         .elevator_name  =       "cfq",
3711         .elevator_owner =       THIS_MODULE,
3712 };
3713
3714 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3715 static struct blkio_policy_type blkio_policy_cfq = {
3716         .ops = {
3717                 .blkio_init_group_fn =          cfq_init_blkio_group,
3718                 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
3719         },
3720         .plid = BLKIO_POLICY_PROP,
3721         .pdata_size = sizeof(struct cfq_group),
3722 };
3723 #endif
3724
3725 static int __init cfq_init(void)
3726 {
3727         int ret;
3728
3729         /*
3730          * could be 0 on HZ < 1000 setups
3731          */
3732         if (!cfq_slice_async)
3733                 cfq_slice_async = 1;
3734         if (!cfq_slice_idle)
3735                 cfq_slice_idle = 1;
3736
3737 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3738         if (!cfq_group_idle)
3739                 cfq_group_idle = 1;
3740 #else
3741                 cfq_group_idle = 0;
3742 #endif
3743         cfq_pool = KMEM_CACHE(cfq_queue, 0);
3744         if (!cfq_pool)
3745                 return -ENOMEM;
3746
3747         ret = elv_register(&iosched_cfq);
3748         if (ret) {
3749                 kmem_cache_destroy(cfq_pool);
3750                 return ret;
3751         }
3752
3753 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3754         blkio_policy_register(&blkio_policy_cfq);
3755 #endif
3756         return 0;
3757 }
3758
3759 static void __exit cfq_exit(void)
3760 {
3761 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3762         blkio_policy_unregister(&blkio_policy_cfq);
3763 #endif
3764         elv_unregister(&iosched_cfq);
3765         kmem_cache_destroy(cfq_pool);
3766 }
3767
3768 module_init(cfq_init);
3769 module_exit(cfq_exit);
3770
3771 MODULE_AUTHOR("Jens Axboe");
3772 MODULE_LICENSE("GPL");
3773 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");