blk-throttle: Use helper function to add root throtl group to lists
[platform/adaptation/renesas_rcar/renesas_kernel.git] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include "cfq.h"
18
19 /*
20  * tunables
21  */
22 /* max queue in one round of service */
23 static const int cfq_quantum = 8;
24 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
25 /* maximum backwards seek, in KiB */
26 static const int cfq_back_max = 16 * 1024;
27 /* penalty of a backwards seek */
28 static const int cfq_back_penalty = 2;
29 static const int cfq_slice_sync = HZ / 10;
30 static int cfq_slice_async = HZ / 25;
31 static const int cfq_slice_async_rq = 2;
32 static int cfq_slice_idle = HZ / 125;
33 static int cfq_group_idle = HZ / 125;
34 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
35 static const int cfq_hist_divisor = 4;
36
37 /*
38  * offset from end of service tree
39  */
40 #define CFQ_IDLE_DELAY          (HZ / 5)
41
42 /*
43  * below this threshold, we consider thinktime immediate
44  */
45 #define CFQ_MIN_TT              (2)
46
47 #define CFQ_SLICE_SCALE         (5)
48 #define CFQ_HW_QUEUE_MIN        (5)
49 #define CFQ_SERVICE_SHIFT       12
50
51 #define CFQQ_SEEK_THR           (sector_t)(8 * 100)
52 #define CFQQ_CLOSE_THR          (sector_t)(8 * 1024)
53 #define CFQQ_SECT_THR_NONROT    (sector_t)(2 * 32)
54 #define CFQQ_SEEKY(cfqq)        (hweight32(cfqq->seek_history) > 32/8)
55
56 #define RQ_CIC(rq)              \
57         ((struct cfq_io_context *) (rq)->elevator_private[0])
58 #define RQ_CFQQ(rq)             (struct cfq_queue *) ((rq)->elevator_private[1])
59 #define RQ_CFQG(rq)             (struct cfq_group *) ((rq)->elevator_private[2])
60
61 static struct kmem_cache *cfq_pool;
62 static struct kmem_cache *cfq_ioc_pool;
63
64 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
65 static struct completion *ioc_gone;
66 static DEFINE_SPINLOCK(ioc_gone_lock);
67
68 static DEFINE_SPINLOCK(cic_index_lock);
69 static DEFINE_IDA(cic_index_ida);
70
71 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
72 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
73 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
74
75 #define sample_valid(samples)   ((samples) > 80)
76 #define rb_entry_cfqg(node)     rb_entry((node), struct cfq_group, rb_node)
77
78 /*
79  * Most of our rbtree usage is for sorting with min extraction, so
80  * if we cache the leftmost node we don't have to walk down the tree
81  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82  * move this into the elevator for the rq sorting as well.
83  */
84 struct cfq_rb_root {
85         struct rb_root rb;
86         struct rb_node *left;
87         unsigned count;
88         unsigned total_weight;
89         u64 min_vdisktime;
90 };
91 #define CFQ_RB_ROOT     (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
92                         .count = 0, .min_vdisktime = 0, }
93
94 /*
95  * Per process-grouping structure
96  */
97 struct cfq_queue {
98         /* reference count */
99         int ref;
100         /* various state flags, see below */
101         unsigned int flags;
102         /* parent cfq_data */
103         struct cfq_data *cfqd;
104         /* service_tree member */
105         struct rb_node rb_node;
106         /* service_tree key */
107         unsigned long rb_key;
108         /* prio tree member */
109         struct rb_node p_node;
110         /* prio tree root we belong to, if any */
111         struct rb_root *p_root;
112         /* sorted list of pending requests */
113         struct rb_root sort_list;
114         /* if fifo isn't expired, next request to serve */
115         struct request *next_rq;
116         /* requests queued in sort_list */
117         int queued[2];
118         /* currently allocated requests */
119         int allocated[2];
120         /* fifo list of requests in sort_list */
121         struct list_head fifo;
122
123         /* time when queue got scheduled in to dispatch first request. */
124         unsigned long dispatch_start;
125         unsigned int allocated_slice;
126         unsigned int slice_dispatch;
127         /* time when first request from queue completed and slice started. */
128         unsigned long slice_start;
129         unsigned long slice_end;
130         long slice_resid;
131
132         /* pending metadata requests */
133         int meta_pending;
134         /* number of requests that are on the dispatch list or inside driver */
135         int dispatched;
136
137         /* io prio of this group */
138         unsigned short ioprio, org_ioprio;
139         unsigned short ioprio_class, org_ioprio_class;
140
141         pid_t pid;
142
143         u32 seek_history;
144         sector_t last_request_pos;
145
146         struct cfq_rb_root *service_tree;
147         struct cfq_queue *new_cfqq;
148         struct cfq_group *cfqg;
149         /* Number of sectors dispatched from queue in single dispatch round */
150         unsigned long nr_sectors;
151 };
152
153 /*
154  * First index in the service_trees.
155  * IDLE is handled separately, so it has negative index
156  */
157 enum wl_prio_t {
158         BE_WORKLOAD = 0,
159         RT_WORKLOAD = 1,
160         IDLE_WORKLOAD = 2,
161         CFQ_PRIO_NR,
162 };
163
164 /*
165  * Second index in the service_trees.
166  */
167 enum wl_type_t {
168         ASYNC_WORKLOAD = 0,
169         SYNC_NOIDLE_WORKLOAD = 1,
170         SYNC_WORKLOAD = 2
171 };
172
173 /* This is per cgroup per device grouping structure */
174 struct cfq_group {
175         /* group service_tree member */
176         struct rb_node rb_node;
177
178         /* group service_tree key */
179         u64 vdisktime;
180         unsigned int weight;
181         unsigned int new_weight;
182         bool needs_update;
183
184         /* number of cfqq currently on this group */
185         int nr_cfqq;
186
187         /*
188          * Per group busy queus average. Useful for workload slice calc. We
189          * create the array for each prio class but at run time it is used
190          * only for RT and BE class and slot for IDLE class remains unused.
191          * This is primarily done to avoid confusion and a gcc warning.
192          */
193         unsigned int busy_queues_avg[CFQ_PRIO_NR];
194         /*
195          * rr lists of queues with requests. We maintain service trees for
196          * RT and BE classes. These trees are subdivided in subclasses
197          * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
198          * class there is no subclassification and all the cfq queues go on
199          * a single tree service_tree_idle.
200          * Counts are embedded in the cfq_rb_root
201          */
202         struct cfq_rb_root service_trees[2][3];
203         struct cfq_rb_root service_tree_idle;
204
205         unsigned long saved_workload_slice;
206         enum wl_type_t saved_workload;
207         enum wl_prio_t saved_serving_prio;
208         struct blkio_group blkg;
209 #ifdef CONFIG_CFQ_GROUP_IOSCHED
210         struct hlist_node cfqd_node;
211         int ref;
212 #endif
213         /* number of requests that are on the dispatch list or inside driver */
214         int dispatched;
215 };
216
217 /*
218  * Per block device queue structure
219  */
220 struct cfq_data {
221         struct request_queue *queue;
222         /* Root service tree for cfq_groups */
223         struct cfq_rb_root grp_service_tree;
224         struct cfq_group root_group;
225
226         /*
227          * The priority currently being served
228          */
229         enum wl_prio_t serving_prio;
230         enum wl_type_t serving_type;
231         unsigned long workload_expires;
232         struct cfq_group *serving_group;
233
234         /*
235          * Each priority tree is sorted by next_request position.  These
236          * trees are used when determining if two or more queues are
237          * interleaving requests (see cfq_close_cooperator).
238          */
239         struct rb_root prio_trees[CFQ_PRIO_LISTS];
240
241         unsigned int busy_queues;
242         unsigned int busy_sync_queues;
243
244         int rq_in_driver;
245         int rq_in_flight[2];
246
247         /*
248          * queue-depth detection
249          */
250         int rq_queued;
251         int hw_tag;
252         /*
253          * hw_tag can be
254          * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
255          *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
256          *  0 => no NCQ
257          */
258         int hw_tag_est_depth;
259         unsigned int hw_tag_samples;
260
261         /*
262          * idle window management
263          */
264         struct timer_list idle_slice_timer;
265         struct work_struct unplug_work;
266
267         struct cfq_queue *active_queue;
268         struct cfq_io_context *active_cic;
269
270         /*
271          * async queue for each priority case
272          */
273         struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
274         struct cfq_queue *async_idle_cfqq;
275
276         sector_t last_position;
277
278         /*
279          * tunables, see top of file
280          */
281         unsigned int cfq_quantum;
282         unsigned int cfq_fifo_expire[2];
283         unsigned int cfq_back_penalty;
284         unsigned int cfq_back_max;
285         unsigned int cfq_slice[2];
286         unsigned int cfq_slice_async_rq;
287         unsigned int cfq_slice_idle;
288         unsigned int cfq_group_idle;
289         unsigned int cfq_latency;
290
291         unsigned int cic_index;
292         struct list_head cic_list;
293
294         /*
295          * Fallback dummy cfqq for extreme OOM conditions
296          */
297         struct cfq_queue oom_cfqq;
298
299         unsigned long last_delayed_sync;
300
301         /* List of cfq groups being managed on this device*/
302         struct hlist_head cfqg_list;
303
304         /* Number of groups which are on blkcg->blkg_list */
305         unsigned int nr_blkcg_linked_grps;
306 };
307
308 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
309
310 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
311                                             enum wl_prio_t prio,
312                                             enum wl_type_t type)
313 {
314         if (!cfqg)
315                 return NULL;
316
317         if (prio == IDLE_WORKLOAD)
318                 return &cfqg->service_tree_idle;
319
320         return &cfqg->service_trees[prio][type];
321 }
322
323 enum cfqq_state_flags {
324         CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
325         CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
326         CFQ_CFQQ_FLAG_must_dispatch,    /* must be allowed a dispatch */
327         CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
328         CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
329         CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
330         CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
331         CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
332         CFQ_CFQQ_FLAG_sync,             /* synchronous queue */
333         CFQ_CFQQ_FLAG_coop,             /* cfqq is shared */
334         CFQ_CFQQ_FLAG_split_coop,       /* shared cfqq will be splitted */
335         CFQ_CFQQ_FLAG_deep,             /* sync cfqq experienced large depth */
336         CFQ_CFQQ_FLAG_wait_busy,        /* Waiting for next request */
337 };
338
339 #define CFQ_CFQQ_FNS(name)                                              \
340 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
341 {                                                                       \
342         (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);                   \
343 }                                                                       \
344 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
345 {                                                                       \
346         (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                  \
347 }                                                                       \
348 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
349 {                                                                       \
350         return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;      \
351 }
352
353 CFQ_CFQQ_FNS(on_rr);
354 CFQ_CFQQ_FNS(wait_request);
355 CFQ_CFQQ_FNS(must_dispatch);
356 CFQ_CFQQ_FNS(must_alloc_slice);
357 CFQ_CFQQ_FNS(fifo_expire);
358 CFQ_CFQQ_FNS(idle_window);
359 CFQ_CFQQ_FNS(prio_changed);
360 CFQ_CFQQ_FNS(slice_new);
361 CFQ_CFQQ_FNS(sync);
362 CFQ_CFQQ_FNS(coop);
363 CFQ_CFQQ_FNS(split_coop);
364 CFQ_CFQQ_FNS(deep);
365 CFQ_CFQQ_FNS(wait_busy);
366 #undef CFQ_CFQQ_FNS
367
368 #ifdef CONFIG_CFQ_GROUP_IOSCHED
369 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
370         blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
371                         cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
372                         blkg_path(&(cfqq)->cfqg->blkg), ##args);
373
374 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)                          \
375         blk_add_trace_msg((cfqd)->queue, "%s " fmt,                     \
376                                 blkg_path(&(cfqg)->blkg), ##args);      \
377
378 #else
379 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
380         blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
381 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)          do {} while (0);
382 #endif
383 #define cfq_log(cfqd, fmt, args...)     \
384         blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
385
386 /* Traverses through cfq group service trees */
387 #define for_each_cfqg_st(cfqg, i, j, st) \
388         for (i = 0; i <= IDLE_WORKLOAD; i++) \
389                 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
390                         : &cfqg->service_tree_idle; \
391                         (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
392                         (i == IDLE_WORKLOAD && j == 0); \
393                         j++, st = i < IDLE_WORKLOAD ? \
394                         &cfqg->service_trees[i][j]: NULL) \
395
396
397 static inline bool iops_mode(struct cfq_data *cfqd)
398 {
399         /*
400          * If we are not idling on queues and it is a NCQ drive, parallel
401          * execution of requests is on and measuring time is not possible
402          * in most of the cases until and unless we drive shallower queue
403          * depths and that becomes a performance bottleneck. In such cases
404          * switch to start providing fairness in terms of number of IOs.
405          */
406         if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
407                 return true;
408         else
409                 return false;
410 }
411
412 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
413 {
414         if (cfq_class_idle(cfqq))
415                 return IDLE_WORKLOAD;
416         if (cfq_class_rt(cfqq))
417                 return RT_WORKLOAD;
418         return BE_WORKLOAD;
419 }
420
421
422 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
423 {
424         if (!cfq_cfqq_sync(cfqq))
425                 return ASYNC_WORKLOAD;
426         if (!cfq_cfqq_idle_window(cfqq))
427                 return SYNC_NOIDLE_WORKLOAD;
428         return SYNC_WORKLOAD;
429 }
430
431 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
432                                         struct cfq_data *cfqd,
433                                         struct cfq_group *cfqg)
434 {
435         if (wl == IDLE_WORKLOAD)
436                 return cfqg->service_tree_idle.count;
437
438         return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
439                 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
440                 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
441 }
442
443 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
444                                         struct cfq_group *cfqg)
445 {
446         return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
447                 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
448 }
449
450 static void cfq_dispatch_insert(struct request_queue *, struct request *);
451 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
452                                        struct io_context *, gfp_t);
453 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
454                                                 struct io_context *);
455
456 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
457                                             bool is_sync)
458 {
459         return cic->cfqq[is_sync];
460 }
461
462 static inline void cic_set_cfqq(struct cfq_io_context *cic,
463                                 struct cfq_queue *cfqq, bool is_sync)
464 {
465         cic->cfqq[is_sync] = cfqq;
466 }
467
468 #define CIC_DEAD_KEY    1ul
469 #define CIC_DEAD_INDEX_SHIFT    1
470
471 static inline void *cfqd_dead_key(struct cfq_data *cfqd)
472 {
473         return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
474 }
475
476 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
477 {
478         struct cfq_data *cfqd = cic->key;
479
480         if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
481                 return NULL;
482
483         return cfqd;
484 }
485
486 /*
487  * We regard a request as SYNC, if it's either a read or has the SYNC bit
488  * set (in which case it could also be direct WRITE).
489  */
490 static inline bool cfq_bio_sync(struct bio *bio)
491 {
492         return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
493 }
494
495 /*
496  * scheduler run of queue, if there are requests pending and no one in the
497  * driver that will restart queueing
498  */
499 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
500 {
501         if (cfqd->busy_queues) {
502                 cfq_log(cfqd, "schedule dispatch");
503                 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
504         }
505 }
506
507 /*
508  * Scale schedule slice based on io priority. Use the sync time slice only
509  * if a queue is marked sync and has sync io queued. A sync queue with async
510  * io only, should not get full sync slice length.
511  */
512 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
513                                  unsigned short prio)
514 {
515         const int base_slice = cfqd->cfq_slice[sync];
516
517         WARN_ON(prio >= IOPRIO_BE_NR);
518
519         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
520 }
521
522 static inline int
523 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
524 {
525         return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
526 }
527
528 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
529 {
530         u64 d = delta << CFQ_SERVICE_SHIFT;
531
532         d = d * BLKIO_WEIGHT_DEFAULT;
533         do_div(d, cfqg->weight);
534         return d;
535 }
536
537 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
538 {
539         s64 delta = (s64)(vdisktime - min_vdisktime);
540         if (delta > 0)
541                 min_vdisktime = vdisktime;
542
543         return min_vdisktime;
544 }
545
546 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
547 {
548         s64 delta = (s64)(vdisktime - min_vdisktime);
549         if (delta < 0)
550                 min_vdisktime = vdisktime;
551
552         return min_vdisktime;
553 }
554
555 static void update_min_vdisktime(struct cfq_rb_root *st)
556 {
557         struct cfq_group *cfqg;
558
559         if (st->left) {
560                 cfqg = rb_entry_cfqg(st->left);
561                 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
562                                                   cfqg->vdisktime);
563         }
564 }
565
566 /*
567  * get averaged number of queues of RT/BE priority.
568  * average is updated, with a formula that gives more weight to higher numbers,
569  * to quickly follows sudden increases and decrease slowly
570  */
571
572 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
573                                         struct cfq_group *cfqg, bool rt)
574 {
575         unsigned min_q, max_q;
576         unsigned mult  = cfq_hist_divisor - 1;
577         unsigned round = cfq_hist_divisor / 2;
578         unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
579
580         min_q = min(cfqg->busy_queues_avg[rt], busy);
581         max_q = max(cfqg->busy_queues_avg[rt], busy);
582         cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
583                 cfq_hist_divisor;
584         return cfqg->busy_queues_avg[rt];
585 }
586
587 static inline unsigned
588 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
589 {
590         struct cfq_rb_root *st = &cfqd->grp_service_tree;
591
592         return cfq_target_latency * cfqg->weight / st->total_weight;
593 }
594
595 static inline unsigned
596 cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
597 {
598         unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
599         if (cfqd->cfq_latency) {
600                 /*
601                  * interested queues (we consider only the ones with the same
602                  * priority class in the cfq group)
603                  */
604                 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
605                                                 cfq_class_rt(cfqq));
606                 unsigned sync_slice = cfqd->cfq_slice[1];
607                 unsigned expect_latency = sync_slice * iq;
608                 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
609
610                 if (expect_latency > group_slice) {
611                         unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
612                         /* scale low_slice according to IO priority
613                          * and sync vs async */
614                         unsigned low_slice =
615                                 min(slice, base_low_slice * slice / sync_slice);
616                         /* the adapted slice value is scaled to fit all iqs
617                          * into the target latency */
618                         slice = max(slice * group_slice / expect_latency,
619                                     low_slice);
620                 }
621         }
622         return slice;
623 }
624
625 static inline void
626 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
627 {
628         unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
629
630         cfqq->slice_start = jiffies;
631         cfqq->slice_end = jiffies + slice;
632         cfqq->allocated_slice = slice;
633         cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
634 }
635
636 /*
637  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
638  * isn't valid until the first request from the dispatch is activated
639  * and the slice time set.
640  */
641 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
642 {
643         if (cfq_cfqq_slice_new(cfqq))
644                 return false;
645         if (time_before(jiffies, cfqq->slice_end))
646                 return false;
647
648         return true;
649 }
650
651 /*
652  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
653  * We choose the request that is closest to the head right now. Distance
654  * behind the head is penalized and only allowed to a certain extent.
655  */
656 static struct request *
657 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
658 {
659         sector_t s1, s2, d1 = 0, d2 = 0;
660         unsigned long back_max;
661 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
662 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
663         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
664
665         if (rq1 == NULL || rq1 == rq2)
666                 return rq2;
667         if (rq2 == NULL)
668                 return rq1;
669
670         if (rq_is_sync(rq1) && !rq_is_sync(rq2))
671                 return rq1;
672         else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
673                 return rq2;
674         if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
675                 return rq1;
676         else if ((rq2->cmd_flags & REQ_META) &&
677                  !(rq1->cmd_flags & REQ_META))
678                 return rq2;
679
680         s1 = blk_rq_pos(rq1);
681         s2 = blk_rq_pos(rq2);
682
683         /*
684          * by definition, 1KiB is 2 sectors
685          */
686         back_max = cfqd->cfq_back_max * 2;
687
688         /*
689          * Strict one way elevator _except_ in the case where we allow
690          * short backward seeks which are biased as twice the cost of a
691          * similar forward seek.
692          */
693         if (s1 >= last)
694                 d1 = s1 - last;
695         else if (s1 + back_max >= last)
696                 d1 = (last - s1) * cfqd->cfq_back_penalty;
697         else
698                 wrap |= CFQ_RQ1_WRAP;
699
700         if (s2 >= last)
701                 d2 = s2 - last;
702         else if (s2 + back_max >= last)
703                 d2 = (last - s2) * cfqd->cfq_back_penalty;
704         else
705                 wrap |= CFQ_RQ2_WRAP;
706
707         /* Found required data */
708
709         /*
710          * By doing switch() on the bit mask "wrap" we avoid having to
711          * check two variables for all permutations: --> faster!
712          */
713         switch (wrap) {
714         case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
715                 if (d1 < d2)
716                         return rq1;
717                 else if (d2 < d1)
718                         return rq2;
719                 else {
720                         if (s1 >= s2)
721                                 return rq1;
722                         else
723                                 return rq2;
724                 }
725
726         case CFQ_RQ2_WRAP:
727                 return rq1;
728         case CFQ_RQ1_WRAP:
729                 return rq2;
730         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
731         default:
732                 /*
733                  * Since both rqs are wrapped,
734                  * start with the one that's further behind head
735                  * (--> only *one* back seek required),
736                  * since back seek takes more time than forward.
737                  */
738                 if (s1 <= s2)
739                         return rq1;
740                 else
741                         return rq2;
742         }
743 }
744
745 /*
746  * The below is leftmost cache rbtree addon
747  */
748 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
749 {
750         /* Service tree is empty */
751         if (!root->count)
752                 return NULL;
753
754         if (!root->left)
755                 root->left = rb_first(&root->rb);
756
757         if (root->left)
758                 return rb_entry(root->left, struct cfq_queue, rb_node);
759
760         return NULL;
761 }
762
763 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
764 {
765         if (!root->left)
766                 root->left = rb_first(&root->rb);
767
768         if (root->left)
769                 return rb_entry_cfqg(root->left);
770
771         return NULL;
772 }
773
774 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
775 {
776         rb_erase(n, root);
777         RB_CLEAR_NODE(n);
778 }
779
780 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
781 {
782         if (root->left == n)
783                 root->left = NULL;
784         rb_erase_init(n, &root->rb);
785         --root->count;
786 }
787
788 /*
789  * would be nice to take fifo expire time into account as well
790  */
791 static struct request *
792 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
793                   struct request *last)
794 {
795         struct rb_node *rbnext = rb_next(&last->rb_node);
796         struct rb_node *rbprev = rb_prev(&last->rb_node);
797         struct request *next = NULL, *prev = NULL;
798
799         BUG_ON(RB_EMPTY_NODE(&last->rb_node));
800
801         if (rbprev)
802                 prev = rb_entry_rq(rbprev);
803
804         if (rbnext)
805                 next = rb_entry_rq(rbnext);
806         else {
807                 rbnext = rb_first(&cfqq->sort_list);
808                 if (rbnext && rbnext != &last->rb_node)
809                         next = rb_entry_rq(rbnext);
810         }
811
812         return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
813 }
814
815 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
816                                       struct cfq_queue *cfqq)
817 {
818         /*
819          * just an approximation, should be ok.
820          */
821         return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
822                        cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
823 }
824
825 static inline s64
826 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
827 {
828         return cfqg->vdisktime - st->min_vdisktime;
829 }
830
831 static void
832 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
833 {
834         struct rb_node **node = &st->rb.rb_node;
835         struct rb_node *parent = NULL;
836         struct cfq_group *__cfqg;
837         s64 key = cfqg_key(st, cfqg);
838         int left = 1;
839
840         while (*node != NULL) {
841                 parent = *node;
842                 __cfqg = rb_entry_cfqg(parent);
843
844                 if (key < cfqg_key(st, __cfqg))
845                         node = &parent->rb_left;
846                 else {
847                         node = &parent->rb_right;
848                         left = 0;
849                 }
850         }
851
852         if (left)
853                 st->left = &cfqg->rb_node;
854
855         rb_link_node(&cfqg->rb_node, parent, node);
856         rb_insert_color(&cfqg->rb_node, &st->rb);
857 }
858
859 static void
860 cfq_update_group_weight(struct cfq_group *cfqg)
861 {
862         BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
863         if (cfqg->needs_update) {
864                 cfqg->weight = cfqg->new_weight;
865                 cfqg->needs_update = false;
866         }
867 }
868
869 static void
870 cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
871 {
872         BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
873
874         cfq_update_group_weight(cfqg);
875         __cfq_group_service_tree_add(st, cfqg);
876         st->total_weight += cfqg->weight;
877 }
878
879 static void
880 cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
881 {
882         struct cfq_rb_root *st = &cfqd->grp_service_tree;
883         struct cfq_group *__cfqg;
884         struct rb_node *n;
885
886         cfqg->nr_cfqq++;
887         if (!RB_EMPTY_NODE(&cfqg->rb_node))
888                 return;
889
890         /*
891          * Currently put the group at the end. Later implement something
892          * so that groups get lesser vtime based on their weights, so that
893          * if group does not loose all if it was not continuously backlogged.
894          */
895         n = rb_last(&st->rb);
896         if (n) {
897                 __cfqg = rb_entry_cfqg(n);
898                 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
899         } else
900                 cfqg->vdisktime = st->min_vdisktime;
901         cfq_group_service_tree_add(st, cfqg);
902 }
903
904 static void
905 cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
906 {
907         st->total_weight -= cfqg->weight;
908         if (!RB_EMPTY_NODE(&cfqg->rb_node))
909                 cfq_rb_erase(&cfqg->rb_node, st);
910 }
911
912 static void
913 cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
914 {
915         struct cfq_rb_root *st = &cfqd->grp_service_tree;
916
917         BUG_ON(cfqg->nr_cfqq < 1);
918         cfqg->nr_cfqq--;
919
920         /* If there are other cfq queues under this group, don't delete it */
921         if (cfqg->nr_cfqq)
922                 return;
923
924         cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
925         cfq_group_service_tree_del(st, cfqg);
926         cfqg->saved_workload_slice = 0;
927         cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
928 }
929
930 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
931                                                 unsigned int *unaccounted_time)
932 {
933         unsigned int slice_used;
934
935         /*
936          * Queue got expired before even a single request completed or
937          * got expired immediately after first request completion.
938          */
939         if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
940                 /*
941                  * Also charge the seek time incurred to the group, otherwise
942                  * if there are mutiple queues in the group, each can dispatch
943                  * a single request on seeky media and cause lots of seek time
944                  * and group will never know it.
945                  */
946                 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
947                                         1);
948         } else {
949                 slice_used = jiffies - cfqq->slice_start;
950                 if (slice_used > cfqq->allocated_slice) {
951                         *unaccounted_time = slice_used - cfqq->allocated_slice;
952                         slice_used = cfqq->allocated_slice;
953                 }
954                 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
955                         *unaccounted_time += cfqq->slice_start -
956                                         cfqq->dispatch_start;
957         }
958
959         return slice_used;
960 }
961
962 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
963                                 struct cfq_queue *cfqq)
964 {
965         struct cfq_rb_root *st = &cfqd->grp_service_tree;
966         unsigned int used_sl, charge, unaccounted_sl = 0;
967         int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
968                         - cfqg->service_tree_idle.count;
969
970         BUG_ON(nr_sync < 0);
971         used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
972
973         if (iops_mode(cfqd))
974                 charge = cfqq->slice_dispatch;
975         else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
976                 charge = cfqq->allocated_slice;
977
978         /* Can't update vdisktime while group is on service tree */
979         cfq_group_service_tree_del(st, cfqg);
980         cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
981         /* If a new weight was requested, update now, off tree */
982         cfq_group_service_tree_add(st, cfqg);
983
984         /* This group is being expired. Save the context */
985         if (time_after(cfqd->workload_expires, jiffies)) {
986                 cfqg->saved_workload_slice = cfqd->workload_expires
987                                                 - jiffies;
988                 cfqg->saved_workload = cfqd->serving_type;
989                 cfqg->saved_serving_prio = cfqd->serving_prio;
990         } else
991                 cfqg->saved_workload_slice = 0;
992
993         cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
994                                         st->min_vdisktime);
995         cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u disp=%u charge=%u iops=%u"
996                         " sect=%u", used_sl, cfqq->slice_dispatch, charge,
997                         iops_mode(cfqd), cfqq->nr_sectors);
998         cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl,
999                                           unaccounted_sl);
1000         cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
1001 }
1002
1003 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1004 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
1005 {
1006         if (blkg)
1007                 return container_of(blkg, struct cfq_group, blkg);
1008         return NULL;
1009 }
1010
1011 void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
1012                                         unsigned int weight)
1013 {
1014         struct cfq_group *cfqg = cfqg_of_blkg(blkg);
1015         cfqg->new_weight = weight;
1016         cfqg->needs_update = true;
1017 }
1018
1019 static void cfq_init_add_cfqg_lists(struct cfq_data *cfqd,
1020                         struct cfq_group *cfqg, struct blkio_cgroup *blkcg)
1021 {
1022         struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1023         unsigned int major, minor;
1024
1025         /*
1026          * Add group onto cgroup list. It might happen that bdi->dev is
1027          * not initialized yet. Initialize this new group without major
1028          * and minor info and this info will be filled in once a new thread
1029          * comes for IO.
1030          */
1031         if (bdi->dev) {
1032                 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1033                 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1034                                         (void *)cfqd, MKDEV(major, minor));
1035         } else
1036                 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1037                                         (void *)cfqd, 0);
1038
1039         cfqd->nr_blkcg_linked_grps++;
1040         cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
1041
1042         /* Add group on cfqd list */
1043         hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1044 }
1045
1046 /*
1047  * Should be called from sleepable context. No request queue lock as per
1048  * cpu stats are allocated dynamically and alloc_percpu needs to be called
1049  * from sleepable context.
1050  */
1051 static struct cfq_group * cfq_alloc_cfqg(struct cfq_data *cfqd)
1052 {
1053         struct cfq_group *cfqg = NULL;
1054         int i, j;
1055         struct cfq_rb_root *st;
1056
1057         cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
1058         if (!cfqg)
1059                 return NULL;
1060
1061         for_each_cfqg_st(cfqg, i, j, st)
1062                 *st = CFQ_RB_ROOT;
1063         RB_CLEAR_NODE(&cfqg->rb_node);
1064
1065         /*
1066          * Take the initial reference that will be released on destroy
1067          * This can be thought of a joint reference by cgroup and
1068          * elevator which will be dropped by either elevator exit
1069          * or cgroup deletion path depending on who is exiting first.
1070          */
1071         cfqg->ref = 1;
1072         return cfqg;
1073 }
1074
1075 static struct cfq_group *
1076 cfq_find_cfqg(struct cfq_data *cfqd, struct blkio_cgroup *blkcg)
1077 {
1078         struct cfq_group *cfqg = NULL;
1079         void *key = cfqd;
1080         struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1081         unsigned int major, minor;
1082
1083         /*
1084          * This is the common case when there are no blkio cgroups.
1085          * Avoid lookup in this case
1086          */
1087         if (blkcg == &blkio_root_cgroup)
1088                 cfqg = &cfqd->root_group;
1089         else
1090                 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
1091
1092         if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
1093                 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1094                 cfqg->blkg.dev = MKDEV(major, minor);
1095         }
1096
1097         return cfqg;
1098 }
1099
1100 /*
1101  * Search for the cfq group current task belongs to. request_queue lock must
1102  * be held.
1103  */
1104 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
1105 {
1106         struct blkio_cgroup *blkcg;
1107         struct cfq_group *cfqg = NULL, *__cfqg = NULL;
1108         struct request_queue *q = cfqd->queue;
1109
1110         rcu_read_lock();
1111         blkcg = task_blkio_cgroup(current);
1112         cfqg = cfq_find_cfqg(cfqd, blkcg);
1113         if (cfqg) {
1114                 rcu_read_unlock();
1115                 return cfqg;
1116         }
1117
1118         /*
1119          * Need to allocate a group. Allocation of group also needs allocation
1120          * of per cpu stats which in-turn takes a mutex() and can block. Hence
1121          * we need to drop rcu lock and queue_lock before we call alloc.
1122          *
1123          * Not taking any queue reference here and assuming that queue is
1124          * around by the time we return. CFQ queue allocation code does
1125          * the same. It might be racy though.
1126          */
1127
1128         rcu_read_unlock();
1129         spin_unlock_irq(q->queue_lock);
1130
1131         cfqg = cfq_alloc_cfqg(cfqd);
1132
1133         spin_lock_irq(q->queue_lock);
1134
1135         rcu_read_lock();
1136         blkcg = task_blkio_cgroup(current);
1137
1138         /*
1139          * If some other thread already allocated the group while we were
1140          * not holding queue lock, free up the group
1141          */
1142         __cfqg = cfq_find_cfqg(cfqd, blkcg);
1143
1144         if (__cfqg) {
1145                 kfree(cfqg);
1146                 rcu_read_unlock();
1147                 return __cfqg;
1148         }
1149
1150         if (!cfqg)
1151                 cfqg = &cfqd->root_group;
1152
1153         cfq_init_add_cfqg_lists(cfqd, cfqg, blkcg);
1154         rcu_read_unlock();
1155         return cfqg;
1156 }
1157
1158 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1159 {
1160         cfqg->ref++;
1161         return cfqg;
1162 }
1163
1164 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1165 {
1166         /* Currently, all async queues are mapped to root group */
1167         if (!cfq_cfqq_sync(cfqq))
1168                 cfqg = &cfqq->cfqd->root_group;
1169
1170         cfqq->cfqg = cfqg;
1171         /* cfqq reference on cfqg */
1172         cfqq->cfqg->ref++;
1173 }
1174
1175 static void cfq_put_cfqg(struct cfq_group *cfqg)
1176 {
1177         struct cfq_rb_root *st;
1178         int i, j;
1179
1180         BUG_ON(cfqg->ref <= 0);
1181         cfqg->ref--;
1182         if (cfqg->ref)
1183                 return;
1184         for_each_cfqg_st(cfqg, i, j, st)
1185                 BUG_ON(!RB_EMPTY_ROOT(&st->rb));
1186         kfree(cfqg);
1187 }
1188
1189 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1190 {
1191         /* Something wrong if we are trying to remove same group twice */
1192         BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1193
1194         hlist_del_init(&cfqg->cfqd_node);
1195
1196         /*
1197          * Put the reference taken at the time of creation so that when all
1198          * queues are gone, group can be destroyed.
1199          */
1200         cfq_put_cfqg(cfqg);
1201 }
1202
1203 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1204 {
1205         struct hlist_node *pos, *n;
1206         struct cfq_group *cfqg;
1207
1208         hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1209                 /*
1210                  * If cgroup removal path got to blk_group first and removed
1211                  * it from cgroup list, then it will take care of destroying
1212                  * cfqg also.
1213                  */
1214                 if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
1215                         cfq_destroy_cfqg(cfqd, cfqg);
1216         }
1217 }
1218
1219 /*
1220  * Blk cgroup controller notification saying that blkio_group object is being
1221  * delinked as associated cgroup object is going away. That also means that
1222  * no new IO will come in this group. So get rid of this group as soon as
1223  * any pending IO in the group is finished.
1224  *
1225  * This function is called under rcu_read_lock(). key is the rcu protected
1226  * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1227  * read lock.
1228  *
1229  * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1230  * it should not be NULL as even if elevator was exiting, cgroup deltion
1231  * path got to it first.
1232  */
1233 void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1234 {
1235         unsigned long  flags;
1236         struct cfq_data *cfqd = key;
1237
1238         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1239         cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1240         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1241 }
1242
1243 #else /* GROUP_IOSCHED */
1244 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
1245 {
1246         return &cfqd->root_group;
1247 }
1248
1249 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1250 {
1251         return cfqg;
1252 }
1253
1254 static inline void
1255 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1256         cfqq->cfqg = cfqg;
1257 }
1258
1259 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1260 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1261
1262 #endif /* GROUP_IOSCHED */
1263
1264 /*
1265  * The cfqd->service_trees holds all pending cfq_queue's that have
1266  * requests waiting to be processed. It is sorted in the order that
1267  * we will service the queues.
1268  */
1269 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1270                                  bool add_front)
1271 {
1272         struct rb_node **p, *parent;
1273         struct cfq_queue *__cfqq;
1274         unsigned long rb_key;
1275         struct cfq_rb_root *service_tree;
1276         int left;
1277         int new_cfqq = 1;
1278         int group_changed = 0;
1279
1280         service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1281                                                 cfqq_type(cfqq));
1282         if (cfq_class_idle(cfqq)) {
1283                 rb_key = CFQ_IDLE_DELAY;
1284                 parent = rb_last(&service_tree->rb);
1285                 if (parent && parent != &cfqq->rb_node) {
1286                         __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1287                         rb_key += __cfqq->rb_key;
1288                 } else
1289                         rb_key += jiffies;
1290         } else if (!add_front) {
1291                 /*
1292                  * Get our rb key offset. Subtract any residual slice
1293                  * value carried from last service. A negative resid
1294                  * count indicates slice overrun, and this should position
1295                  * the next service time further away in the tree.
1296                  */
1297                 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1298                 rb_key -= cfqq->slice_resid;
1299                 cfqq->slice_resid = 0;
1300         } else {
1301                 rb_key = -HZ;
1302                 __cfqq = cfq_rb_first(service_tree);
1303                 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1304         }
1305
1306         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1307                 new_cfqq = 0;
1308                 /*
1309                  * same position, nothing more to do
1310                  */
1311                 if (rb_key == cfqq->rb_key &&
1312                     cfqq->service_tree == service_tree)
1313                         return;
1314
1315                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1316                 cfqq->service_tree = NULL;
1317         }
1318
1319         left = 1;
1320         parent = NULL;
1321         cfqq->service_tree = service_tree;
1322         p = &service_tree->rb.rb_node;
1323         while (*p) {
1324                 struct rb_node **n;
1325
1326                 parent = *p;
1327                 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1328
1329                 /*
1330                  * sort by key, that represents service time.
1331                  */
1332                 if (time_before(rb_key, __cfqq->rb_key))
1333                         n = &(*p)->rb_left;
1334                 else {
1335                         n = &(*p)->rb_right;
1336                         left = 0;
1337                 }
1338
1339                 p = n;
1340         }
1341
1342         if (left)
1343                 service_tree->left = &cfqq->rb_node;
1344
1345         cfqq->rb_key = rb_key;
1346         rb_link_node(&cfqq->rb_node, parent, p);
1347         rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1348         service_tree->count++;
1349         if ((add_front || !new_cfqq) && !group_changed)
1350                 return;
1351         cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
1352 }
1353
1354 static struct cfq_queue *
1355 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1356                      sector_t sector, struct rb_node **ret_parent,
1357                      struct rb_node ***rb_link)
1358 {
1359         struct rb_node **p, *parent;
1360         struct cfq_queue *cfqq = NULL;
1361
1362         parent = NULL;
1363         p = &root->rb_node;
1364         while (*p) {
1365                 struct rb_node **n;
1366
1367                 parent = *p;
1368                 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1369
1370                 /*
1371                  * Sort strictly based on sector.  Smallest to the left,
1372                  * largest to the right.
1373                  */
1374                 if (sector > blk_rq_pos(cfqq->next_rq))
1375                         n = &(*p)->rb_right;
1376                 else if (sector < blk_rq_pos(cfqq->next_rq))
1377                         n = &(*p)->rb_left;
1378                 else
1379                         break;
1380                 p = n;
1381                 cfqq = NULL;
1382         }
1383
1384         *ret_parent = parent;
1385         if (rb_link)
1386                 *rb_link = p;
1387         return cfqq;
1388 }
1389
1390 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1391 {
1392         struct rb_node **p, *parent;
1393         struct cfq_queue *__cfqq;
1394
1395         if (cfqq->p_root) {
1396                 rb_erase(&cfqq->p_node, cfqq->p_root);
1397                 cfqq->p_root = NULL;
1398         }
1399
1400         if (cfq_class_idle(cfqq))
1401                 return;
1402         if (!cfqq->next_rq)
1403                 return;
1404
1405         cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1406         __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1407                                       blk_rq_pos(cfqq->next_rq), &parent, &p);
1408         if (!__cfqq) {
1409                 rb_link_node(&cfqq->p_node, parent, p);
1410                 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1411         } else
1412                 cfqq->p_root = NULL;
1413 }
1414
1415 /*
1416  * Update cfqq's position in the service tree.
1417  */
1418 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1419 {
1420         /*
1421          * Resorting requires the cfqq to be on the RR list already.
1422          */
1423         if (cfq_cfqq_on_rr(cfqq)) {
1424                 cfq_service_tree_add(cfqd, cfqq, 0);
1425                 cfq_prio_tree_add(cfqd, cfqq);
1426         }
1427 }
1428
1429 /*
1430  * add to busy list of queues for service, trying to be fair in ordering
1431  * the pending list according to last request service
1432  */
1433 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1434 {
1435         cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1436         BUG_ON(cfq_cfqq_on_rr(cfqq));
1437         cfq_mark_cfqq_on_rr(cfqq);
1438         cfqd->busy_queues++;
1439         if (cfq_cfqq_sync(cfqq))
1440                 cfqd->busy_sync_queues++;
1441
1442         cfq_resort_rr_list(cfqd, cfqq);
1443 }
1444
1445 /*
1446  * Called when the cfqq no longer has requests pending, remove it from
1447  * the service tree.
1448  */
1449 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1450 {
1451         cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1452         BUG_ON(!cfq_cfqq_on_rr(cfqq));
1453         cfq_clear_cfqq_on_rr(cfqq);
1454
1455         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1456                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1457                 cfqq->service_tree = NULL;
1458         }
1459         if (cfqq->p_root) {
1460                 rb_erase(&cfqq->p_node, cfqq->p_root);
1461                 cfqq->p_root = NULL;
1462         }
1463
1464         cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
1465         BUG_ON(!cfqd->busy_queues);
1466         cfqd->busy_queues--;
1467         if (cfq_cfqq_sync(cfqq))
1468                 cfqd->busy_sync_queues--;
1469 }
1470
1471 /*
1472  * rb tree support functions
1473  */
1474 static void cfq_del_rq_rb(struct request *rq)
1475 {
1476         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1477         const int sync = rq_is_sync(rq);
1478
1479         BUG_ON(!cfqq->queued[sync]);
1480         cfqq->queued[sync]--;
1481
1482         elv_rb_del(&cfqq->sort_list, rq);
1483
1484         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1485                 /*
1486                  * Queue will be deleted from service tree when we actually
1487                  * expire it later. Right now just remove it from prio tree
1488                  * as it is empty.
1489                  */
1490                 if (cfqq->p_root) {
1491                         rb_erase(&cfqq->p_node, cfqq->p_root);
1492                         cfqq->p_root = NULL;
1493                 }
1494         }
1495 }
1496
1497 static void cfq_add_rq_rb(struct request *rq)
1498 {
1499         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1500         struct cfq_data *cfqd = cfqq->cfqd;
1501         struct request *__alias, *prev;
1502
1503         cfqq->queued[rq_is_sync(rq)]++;
1504
1505         /*
1506          * looks a little odd, but the first insert might return an alias.
1507          * if that happens, put the alias on the dispatch list
1508          */
1509         while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1510                 cfq_dispatch_insert(cfqd->queue, __alias);
1511
1512         if (!cfq_cfqq_on_rr(cfqq))
1513                 cfq_add_cfqq_rr(cfqd, cfqq);
1514
1515         /*
1516          * check if this request is a better next-serve candidate
1517          */
1518         prev = cfqq->next_rq;
1519         cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1520
1521         /*
1522          * adjust priority tree position, if ->next_rq changes
1523          */
1524         if (prev != cfqq->next_rq)
1525                 cfq_prio_tree_add(cfqd, cfqq);
1526
1527         BUG_ON(!cfqq->next_rq);
1528 }
1529
1530 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1531 {
1532         elv_rb_del(&cfqq->sort_list, rq);
1533         cfqq->queued[rq_is_sync(rq)]--;
1534         cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1535                                         rq_data_dir(rq), rq_is_sync(rq));
1536         cfq_add_rq_rb(rq);
1537         cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
1538                         &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1539                         rq_is_sync(rq));
1540 }
1541
1542 static struct request *
1543 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1544 {
1545         struct task_struct *tsk = current;
1546         struct cfq_io_context *cic;
1547         struct cfq_queue *cfqq;
1548
1549         cic = cfq_cic_lookup(cfqd, tsk->io_context);
1550         if (!cic)
1551                 return NULL;
1552
1553         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1554         if (cfqq) {
1555                 sector_t sector = bio->bi_sector + bio_sectors(bio);
1556
1557                 return elv_rb_find(&cfqq->sort_list, sector);
1558         }
1559
1560         return NULL;
1561 }
1562
1563 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1564 {
1565         struct cfq_data *cfqd = q->elevator->elevator_data;
1566
1567         cfqd->rq_in_driver++;
1568         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1569                                                 cfqd->rq_in_driver);
1570
1571         cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1572 }
1573
1574 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1575 {
1576         struct cfq_data *cfqd = q->elevator->elevator_data;
1577
1578         WARN_ON(!cfqd->rq_in_driver);
1579         cfqd->rq_in_driver--;
1580         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1581                                                 cfqd->rq_in_driver);
1582 }
1583
1584 static void cfq_remove_request(struct request *rq)
1585 {
1586         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1587
1588         if (cfqq->next_rq == rq)
1589                 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1590
1591         list_del_init(&rq->queuelist);
1592         cfq_del_rq_rb(rq);
1593
1594         cfqq->cfqd->rq_queued--;
1595         cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1596                                         rq_data_dir(rq), rq_is_sync(rq));
1597         if (rq->cmd_flags & REQ_META) {
1598                 WARN_ON(!cfqq->meta_pending);
1599                 cfqq->meta_pending--;
1600         }
1601 }
1602
1603 static int cfq_merge(struct request_queue *q, struct request **req,
1604                      struct bio *bio)
1605 {
1606         struct cfq_data *cfqd = q->elevator->elevator_data;
1607         struct request *__rq;
1608
1609         __rq = cfq_find_rq_fmerge(cfqd, bio);
1610         if (__rq && elv_rq_merge_ok(__rq, bio)) {
1611                 *req = __rq;
1612                 return ELEVATOR_FRONT_MERGE;
1613         }
1614
1615         return ELEVATOR_NO_MERGE;
1616 }
1617
1618 static void cfq_merged_request(struct request_queue *q, struct request *req,
1619                                int type)
1620 {
1621         if (type == ELEVATOR_FRONT_MERGE) {
1622                 struct cfq_queue *cfqq = RQ_CFQQ(req);
1623
1624                 cfq_reposition_rq_rb(cfqq, req);
1625         }
1626 }
1627
1628 static void cfq_bio_merged(struct request_queue *q, struct request *req,
1629                                 struct bio *bio)
1630 {
1631         cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1632                                         bio_data_dir(bio), cfq_bio_sync(bio));
1633 }
1634
1635 static void
1636 cfq_merged_requests(struct request_queue *q, struct request *rq,
1637                     struct request *next)
1638 {
1639         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1640         /*
1641          * reposition in fifo if next is older than rq
1642          */
1643         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1644             time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1645                 list_move(&rq->queuelist, &next->queuelist);
1646                 rq_set_fifo_time(rq, rq_fifo_time(next));
1647         }
1648
1649         if (cfqq->next_rq == next)
1650                 cfqq->next_rq = rq;
1651         cfq_remove_request(next);
1652         cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1653                                         rq_data_dir(next), rq_is_sync(next));
1654 }
1655
1656 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1657                            struct bio *bio)
1658 {
1659         struct cfq_data *cfqd = q->elevator->elevator_data;
1660         struct cfq_io_context *cic;
1661         struct cfq_queue *cfqq;
1662
1663         /*
1664          * Disallow merge of a sync bio into an async request.
1665          */
1666         if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1667                 return false;
1668
1669         /*
1670          * Lookup the cfqq that this bio will be queued with. Allow
1671          * merge only if rq is queued there.
1672          */
1673         cic = cfq_cic_lookup(cfqd, current->io_context);
1674         if (!cic)
1675                 return false;
1676
1677         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1678         return cfqq == RQ_CFQQ(rq);
1679 }
1680
1681 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1682 {
1683         del_timer(&cfqd->idle_slice_timer);
1684         cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
1685 }
1686
1687 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1688                                    struct cfq_queue *cfqq)
1689 {
1690         if (cfqq) {
1691                 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1692                                 cfqd->serving_prio, cfqd->serving_type);
1693                 cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1694                 cfqq->slice_start = 0;
1695                 cfqq->dispatch_start = jiffies;
1696                 cfqq->allocated_slice = 0;
1697                 cfqq->slice_end = 0;
1698                 cfqq->slice_dispatch = 0;
1699                 cfqq->nr_sectors = 0;
1700
1701                 cfq_clear_cfqq_wait_request(cfqq);
1702                 cfq_clear_cfqq_must_dispatch(cfqq);
1703                 cfq_clear_cfqq_must_alloc_slice(cfqq);
1704                 cfq_clear_cfqq_fifo_expire(cfqq);
1705                 cfq_mark_cfqq_slice_new(cfqq);
1706
1707                 cfq_del_timer(cfqd, cfqq);
1708         }
1709
1710         cfqd->active_queue = cfqq;
1711 }
1712
1713 /*
1714  * current cfqq expired its slice (or was too idle), select new one
1715  */
1716 static void
1717 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1718                     bool timed_out)
1719 {
1720         cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1721
1722         if (cfq_cfqq_wait_request(cfqq))
1723                 cfq_del_timer(cfqd, cfqq);
1724
1725         cfq_clear_cfqq_wait_request(cfqq);
1726         cfq_clear_cfqq_wait_busy(cfqq);
1727
1728         /*
1729          * If this cfqq is shared between multiple processes, check to
1730          * make sure that those processes are still issuing I/Os within
1731          * the mean seek distance.  If not, it may be time to break the
1732          * queues apart again.
1733          */
1734         if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1735                 cfq_mark_cfqq_split_coop(cfqq);
1736
1737         /*
1738          * store what was left of this slice, if the queue idled/timed out
1739          */
1740         if (timed_out) {
1741                 if (cfq_cfqq_slice_new(cfqq))
1742                         cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
1743                 else
1744                         cfqq->slice_resid = cfqq->slice_end - jiffies;
1745                 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1746         }
1747
1748         cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1749
1750         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1751                 cfq_del_cfqq_rr(cfqd, cfqq);
1752
1753         cfq_resort_rr_list(cfqd, cfqq);
1754
1755         if (cfqq == cfqd->active_queue)
1756                 cfqd->active_queue = NULL;
1757
1758         if (cfqd->active_cic) {
1759                 put_io_context(cfqd->active_cic->ioc);
1760                 cfqd->active_cic = NULL;
1761         }
1762 }
1763
1764 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1765 {
1766         struct cfq_queue *cfqq = cfqd->active_queue;
1767
1768         if (cfqq)
1769                 __cfq_slice_expired(cfqd, cfqq, timed_out);
1770 }
1771
1772 /*
1773  * Get next queue for service. Unless we have a queue preemption,
1774  * we'll simply select the first cfqq in the service tree.
1775  */
1776 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1777 {
1778         struct cfq_rb_root *service_tree =
1779                 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1780                                         cfqd->serving_type);
1781
1782         if (!cfqd->rq_queued)
1783                 return NULL;
1784
1785         /* There is nothing to dispatch */
1786         if (!service_tree)
1787                 return NULL;
1788         if (RB_EMPTY_ROOT(&service_tree->rb))
1789                 return NULL;
1790         return cfq_rb_first(service_tree);
1791 }
1792
1793 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1794 {
1795         struct cfq_group *cfqg;
1796         struct cfq_queue *cfqq;
1797         int i, j;
1798         struct cfq_rb_root *st;
1799
1800         if (!cfqd->rq_queued)
1801                 return NULL;
1802
1803         cfqg = cfq_get_next_cfqg(cfqd);
1804         if (!cfqg)
1805                 return NULL;
1806
1807         for_each_cfqg_st(cfqg, i, j, st)
1808                 if ((cfqq = cfq_rb_first(st)) != NULL)
1809                         return cfqq;
1810         return NULL;
1811 }
1812
1813 /*
1814  * Get and set a new active queue for service.
1815  */
1816 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1817                                               struct cfq_queue *cfqq)
1818 {
1819         if (!cfqq)
1820                 cfqq = cfq_get_next_queue(cfqd);
1821
1822         __cfq_set_active_queue(cfqd, cfqq);
1823         return cfqq;
1824 }
1825
1826 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1827                                           struct request *rq)
1828 {
1829         if (blk_rq_pos(rq) >= cfqd->last_position)
1830                 return blk_rq_pos(rq) - cfqd->last_position;
1831         else
1832                 return cfqd->last_position - blk_rq_pos(rq);
1833 }
1834
1835 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1836                                struct request *rq)
1837 {
1838         return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1839 }
1840
1841 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1842                                     struct cfq_queue *cur_cfqq)
1843 {
1844         struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1845         struct rb_node *parent, *node;
1846         struct cfq_queue *__cfqq;
1847         sector_t sector = cfqd->last_position;
1848
1849         if (RB_EMPTY_ROOT(root))
1850                 return NULL;
1851
1852         /*
1853          * First, if we find a request starting at the end of the last
1854          * request, choose it.
1855          */
1856         __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1857         if (__cfqq)
1858                 return __cfqq;
1859
1860         /*
1861          * If the exact sector wasn't found, the parent of the NULL leaf
1862          * will contain the closest sector.
1863          */
1864         __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1865         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1866                 return __cfqq;
1867
1868         if (blk_rq_pos(__cfqq->next_rq) < sector)
1869                 node = rb_next(&__cfqq->p_node);
1870         else
1871                 node = rb_prev(&__cfqq->p_node);
1872         if (!node)
1873                 return NULL;
1874
1875         __cfqq = rb_entry(node, struct cfq_queue, p_node);
1876         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1877                 return __cfqq;
1878
1879         return NULL;
1880 }
1881
1882 /*
1883  * cfqd - obvious
1884  * cur_cfqq - passed in so that we don't decide that the current queue is
1885  *            closely cooperating with itself.
1886  *
1887  * So, basically we're assuming that that cur_cfqq has dispatched at least
1888  * one request, and that cfqd->last_position reflects a position on the disk
1889  * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1890  * assumption.
1891  */
1892 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1893                                               struct cfq_queue *cur_cfqq)
1894 {
1895         struct cfq_queue *cfqq;
1896
1897         if (cfq_class_idle(cur_cfqq))
1898                 return NULL;
1899         if (!cfq_cfqq_sync(cur_cfqq))
1900                 return NULL;
1901         if (CFQQ_SEEKY(cur_cfqq))
1902                 return NULL;
1903
1904         /*
1905          * Don't search priority tree if it's the only queue in the group.
1906          */
1907         if (cur_cfqq->cfqg->nr_cfqq == 1)
1908                 return NULL;
1909
1910         /*
1911          * We should notice if some of the queues are cooperating, eg
1912          * working closely on the same area of the disk. In that case,
1913          * we can group them together and don't waste time idling.
1914          */
1915         cfqq = cfqq_close(cfqd, cur_cfqq);
1916         if (!cfqq)
1917                 return NULL;
1918
1919         /* If new queue belongs to different cfq_group, don't choose it */
1920         if (cur_cfqq->cfqg != cfqq->cfqg)
1921                 return NULL;
1922
1923         /*
1924          * It only makes sense to merge sync queues.
1925          */
1926         if (!cfq_cfqq_sync(cfqq))
1927                 return NULL;
1928         if (CFQQ_SEEKY(cfqq))
1929                 return NULL;
1930
1931         /*
1932          * Do not merge queues of different priority classes
1933          */
1934         if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1935                 return NULL;
1936
1937         return cfqq;
1938 }
1939
1940 /*
1941  * Determine whether we should enforce idle window for this queue.
1942  */
1943
1944 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1945 {
1946         enum wl_prio_t prio = cfqq_prio(cfqq);
1947         struct cfq_rb_root *service_tree = cfqq->service_tree;
1948
1949         BUG_ON(!service_tree);
1950         BUG_ON(!service_tree->count);
1951
1952         if (!cfqd->cfq_slice_idle)
1953                 return false;
1954
1955         /* We never do for idle class queues. */
1956         if (prio == IDLE_WORKLOAD)
1957                 return false;
1958
1959         /* We do for queues that were marked with idle window flag. */
1960         if (cfq_cfqq_idle_window(cfqq) &&
1961            !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1962                 return true;
1963
1964         /*
1965          * Otherwise, we do only if they are the last ones
1966          * in their service tree.
1967          */
1968         if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
1969                 return true;
1970         cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1971                         service_tree->count);
1972         return false;
1973 }
1974
1975 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1976 {
1977         struct cfq_queue *cfqq = cfqd->active_queue;
1978         struct cfq_io_context *cic;
1979         unsigned long sl, group_idle = 0;
1980
1981         /*
1982          * SSD device without seek penalty, disable idling. But only do so
1983          * for devices that support queuing, otherwise we still have a problem
1984          * with sync vs async workloads.
1985          */
1986         if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1987                 return;
1988
1989         WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1990         WARN_ON(cfq_cfqq_slice_new(cfqq));
1991
1992         /*
1993          * idle is disabled, either manually or by past process history
1994          */
1995         if (!cfq_should_idle(cfqd, cfqq)) {
1996                 /* no queue idling. Check for group idling */
1997                 if (cfqd->cfq_group_idle)
1998                         group_idle = cfqd->cfq_group_idle;
1999                 else
2000                         return;
2001         }
2002
2003         /*
2004          * still active requests from this queue, don't idle
2005          */
2006         if (cfqq->dispatched)
2007                 return;
2008
2009         /*
2010          * task has exited, don't wait
2011          */
2012         cic = cfqd->active_cic;
2013         if (!cic || !atomic_read(&cic->ioc->nr_tasks))
2014                 return;
2015
2016         /*
2017          * If our average think time is larger than the remaining time
2018          * slice, then don't idle. This avoids overrunning the allotted
2019          * time slice.
2020          */
2021         if (sample_valid(cic->ttime_samples) &&
2022             (cfqq->slice_end - jiffies < cic->ttime_mean)) {
2023                 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
2024                                 cic->ttime_mean);
2025                 return;
2026         }
2027
2028         /* There are other queues in the group, don't do group idle */
2029         if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2030                 return;
2031
2032         cfq_mark_cfqq_wait_request(cfqq);
2033
2034         if (group_idle)
2035                 sl = cfqd->cfq_group_idle;
2036         else
2037                 sl = cfqd->cfq_slice_idle;
2038
2039         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2040         cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
2041         cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2042                         group_idle ? 1 : 0);
2043 }
2044
2045 /*
2046  * Move request from internal lists to the request queue dispatch list.
2047  */
2048 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2049 {
2050         struct cfq_data *cfqd = q->elevator->elevator_data;
2051         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2052
2053         cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2054
2055         cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2056         cfq_remove_request(rq);
2057         cfqq->dispatched++;
2058         (RQ_CFQG(rq))->dispatched++;
2059         elv_dispatch_sort(q, rq);
2060
2061         cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2062         cfqq->nr_sectors += blk_rq_sectors(rq);
2063         cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
2064                                         rq_data_dir(rq), rq_is_sync(rq));
2065 }
2066
2067 /*
2068  * return expired entry, or NULL to just start from scratch in rbtree
2069  */
2070 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2071 {
2072         struct request *rq = NULL;
2073
2074         if (cfq_cfqq_fifo_expire(cfqq))
2075                 return NULL;
2076
2077         cfq_mark_cfqq_fifo_expire(cfqq);
2078
2079         if (list_empty(&cfqq->fifo))
2080                 return NULL;
2081
2082         rq = rq_entry_fifo(cfqq->fifo.next);
2083         if (time_before(jiffies, rq_fifo_time(rq)))
2084                 rq = NULL;
2085
2086         cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2087         return rq;
2088 }
2089
2090 static inline int
2091 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2092 {
2093         const int base_rq = cfqd->cfq_slice_async_rq;
2094
2095         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2096
2097         return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
2098 }
2099
2100 /*
2101  * Must be called with the queue_lock held.
2102  */
2103 static int cfqq_process_refs(struct cfq_queue *cfqq)
2104 {
2105         int process_refs, io_refs;
2106
2107         io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2108         process_refs = cfqq->ref - io_refs;
2109         BUG_ON(process_refs < 0);
2110         return process_refs;
2111 }
2112
2113 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2114 {
2115         int process_refs, new_process_refs;
2116         struct cfq_queue *__cfqq;
2117
2118         /*
2119          * If there are no process references on the new_cfqq, then it is
2120          * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2121          * chain may have dropped their last reference (not just their
2122          * last process reference).
2123          */
2124         if (!cfqq_process_refs(new_cfqq))
2125                 return;
2126
2127         /* Avoid a circular list and skip interim queue merges */
2128         while ((__cfqq = new_cfqq->new_cfqq)) {
2129                 if (__cfqq == cfqq)
2130                         return;
2131                 new_cfqq = __cfqq;
2132         }
2133
2134         process_refs = cfqq_process_refs(cfqq);
2135         new_process_refs = cfqq_process_refs(new_cfqq);
2136         /*
2137          * If the process for the cfqq has gone away, there is no
2138          * sense in merging the queues.
2139          */
2140         if (process_refs == 0 || new_process_refs == 0)
2141                 return;
2142
2143         /*
2144          * Merge in the direction of the lesser amount of work.
2145          */
2146         if (new_process_refs >= process_refs) {
2147                 cfqq->new_cfqq = new_cfqq;
2148                 new_cfqq->ref += process_refs;
2149         } else {
2150                 new_cfqq->new_cfqq = cfqq;
2151                 cfqq->ref += new_process_refs;
2152         }
2153 }
2154
2155 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
2156                                 struct cfq_group *cfqg, enum wl_prio_t prio)
2157 {
2158         struct cfq_queue *queue;
2159         int i;
2160         bool key_valid = false;
2161         unsigned long lowest_key = 0;
2162         enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2163
2164         for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2165                 /* select the one with lowest rb_key */
2166                 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2167                 if (queue &&
2168                     (!key_valid || time_before(queue->rb_key, lowest_key))) {
2169                         lowest_key = queue->rb_key;
2170                         cur_best = i;
2171                         key_valid = true;
2172                 }
2173         }
2174
2175         return cur_best;
2176 }
2177
2178 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2179 {
2180         unsigned slice;
2181         unsigned count;
2182         struct cfq_rb_root *st;
2183         unsigned group_slice;
2184         enum wl_prio_t original_prio = cfqd->serving_prio;
2185
2186         /* Choose next priority. RT > BE > IDLE */
2187         if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2188                 cfqd->serving_prio = RT_WORKLOAD;
2189         else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2190                 cfqd->serving_prio = BE_WORKLOAD;
2191         else {
2192                 cfqd->serving_prio = IDLE_WORKLOAD;
2193                 cfqd->workload_expires = jiffies + 1;
2194                 return;
2195         }
2196
2197         if (original_prio != cfqd->serving_prio)
2198                 goto new_workload;
2199
2200         /*
2201          * For RT and BE, we have to choose also the type
2202          * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2203          * expiration time
2204          */
2205         st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2206         count = st->count;
2207
2208         /*
2209          * check workload expiration, and that we still have other queues ready
2210          */
2211         if (count && !time_after(jiffies, cfqd->workload_expires))
2212                 return;
2213
2214 new_workload:
2215         /* otherwise select new workload type */
2216         cfqd->serving_type =
2217                 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2218         st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2219         count = st->count;
2220
2221         /*
2222          * the workload slice is computed as a fraction of target latency
2223          * proportional to the number of queues in that workload, over
2224          * all the queues in the same priority class
2225          */
2226         group_slice = cfq_group_slice(cfqd, cfqg);
2227
2228         slice = group_slice * count /
2229                 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2230                       cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2231
2232         if (cfqd->serving_type == ASYNC_WORKLOAD) {
2233                 unsigned int tmp;
2234
2235                 /*
2236                  * Async queues are currently system wide. Just taking
2237                  * proportion of queues with-in same group will lead to higher
2238                  * async ratio system wide as generally root group is going
2239                  * to have higher weight. A more accurate thing would be to
2240                  * calculate system wide asnc/sync ratio.
2241                  */
2242                 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2243                 tmp = tmp/cfqd->busy_queues;
2244                 slice = min_t(unsigned, slice, tmp);
2245
2246                 /* async workload slice is scaled down according to
2247                  * the sync/async slice ratio. */
2248                 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2249         } else
2250                 /* sync workload slice is at least 2 * cfq_slice_idle */
2251                 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2252
2253         slice = max_t(unsigned, slice, CFQ_MIN_TT);
2254         cfq_log(cfqd, "workload slice:%d", slice);
2255         cfqd->workload_expires = jiffies + slice;
2256 }
2257
2258 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2259 {
2260         struct cfq_rb_root *st = &cfqd->grp_service_tree;
2261         struct cfq_group *cfqg;
2262
2263         if (RB_EMPTY_ROOT(&st->rb))
2264                 return NULL;
2265         cfqg = cfq_rb_first_group(st);
2266         update_min_vdisktime(st);
2267         return cfqg;
2268 }
2269
2270 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2271 {
2272         struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2273
2274         cfqd->serving_group = cfqg;
2275
2276         /* Restore the workload type data */
2277         if (cfqg->saved_workload_slice) {
2278                 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2279                 cfqd->serving_type = cfqg->saved_workload;
2280                 cfqd->serving_prio = cfqg->saved_serving_prio;
2281         } else
2282                 cfqd->workload_expires = jiffies - 1;
2283
2284         choose_service_tree(cfqd, cfqg);
2285 }
2286
2287 /*
2288  * Select a queue for service. If we have a current active queue,
2289  * check whether to continue servicing it, or retrieve and set a new one.
2290  */
2291 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2292 {
2293         struct cfq_queue *cfqq, *new_cfqq = NULL;
2294
2295         cfqq = cfqd->active_queue;
2296         if (!cfqq)
2297                 goto new_queue;
2298
2299         if (!cfqd->rq_queued)
2300                 return NULL;
2301
2302         /*
2303          * We were waiting for group to get backlogged. Expire the queue
2304          */
2305         if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2306                 goto expire;
2307
2308         /*
2309          * The active queue has run out of time, expire it and select new.
2310          */
2311         if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2312                 /*
2313                  * If slice had not expired at the completion of last request
2314                  * we might not have turned on wait_busy flag. Don't expire
2315                  * the queue yet. Allow the group to get backlogged.
2316                  *
2317                  * The very fact that we have used the slice, that means we
2318                  * have been idling all along on this queue and it should be
2319                  * ok to wait for this request to complete.
2320                  */
2321                 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2322                     && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2323                         cfqq = NULL;
2324                         goto keep_queue;
2325                 } else
2326                         goto check_group_idle;
2327         }
2328
2329         /*
2330          * The active queue has requests and isn't expired, allow it to
2331          * dispatch.
2332          */
2333         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2334                 goto keep_queue;
2335
2336         /*
2337          * If another queue has a request waiting within our mean seek
2338          * distance, let it run.  The expire code will check for close
2339          * cooperators and put the close queue at the front of the service
2340          * tree.  If possible, merge the expiring queue with the new cfqq.
2341          */
2342         new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2343         if (new_cfqq) {
2344                 if (!cfqq->new_cfqq)
2345                         cfq_setup_merge(cfqq, new_cfqq);
2346                 goto expire;
2347         }
2348
2349         /*
2350          * No requests pending. If the active queue still has requests in
2351          * flight or is idling for a new request, allow either of these
2352          * conditions to happen (or time out) before selecting a new queue.
2353          */
2354         if (timer_pending(&cfqd->idle_slice_timer)) {
2355                 cfqq = NULL;
2356                 goto keep_queue;
2357         }
2358
2359         /*
2360          * This is a deep seek queue, but the device is much faster than
2361          * the queue can deliver, don't idle
2362          **/
2363         if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2364             (cfq_cfqq_slice_new(cfqq) ||
2365             (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2366                 cfq_clear_cfqq_deep(cfqq);
2367                 cfq_clear_cfqq_idle_window(cfqq);
2368         }
2369
2370         if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2371                 cfqq = NULL;
2372                 goto keep_queue;
2373         }
2374
2375         /*
2376          * If group idle is enabled and there are requests dispatched from
2377          * this group, wait for requests to complete.
2378          */
2379 check_group_idle:
2380         if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1
2381             && cfqq->cfqg->dispatched) {
2382                 cfqq = NULL;
2383                 goto keep_queue;
2384         }
2385
2386 expire:
2387         cfq_slice_expired(cfqd, 0);
2388 new_queue:
2389         /*
2390          * Current queue expired. Check if we have to switch to a new
2391          * service tree
2392          */
2393         if (!new_cfqq)
2394                 cfq_choose_cfqg(cfqd);
2395
2396         cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2397 keep_queue:
2398         return cfqq;
2399 }
2400
2401 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2402 {
2403         int dispatched = 0;
2404
2405         while (cfqq->next_rq) {
2406                 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2407                 dispatched++;
2408         }
2409
2410         BUG_ON(!list_empty(&cfqq->fifo));
2411
2412         /* By default cfqq is not expired if it is empty. Do it explicitly */
2413         __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2414         return dispatched;
2415 }
2416
2417 /*
2418  * Drain our current requests. Used for barriers and when switching
2419  * io schedulers on-the-fly.
2420  */
2421 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2422 {
2423         struct cfq_queue *cfqq;
2424         int dispatched = 0;
2425
2426         /* Expire the timeslice of the current active queue first */
2427         cfq_slice_expired(cfqd, 0);
2428         while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2429                 __cfq_set_active_queue(cfqd, cfqq);
2430                 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2431         }
2432
2433         BUG_ON(cfqd->busy_queues);
2434
2435         cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2436         return dispatched;
2437 }
2438
2439 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2440         struct cfq_queue *cfqq)
2441 {
2442         /* the queue hasn't finished any request, can't estimate */
2443         if (cfq_cfqq_slice_new(cfqq))
2444                 return true;
2445         if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2446                 cfqq->slice_end))
2447                 return true;
2448
2449         return false;
2450 }
2451
2452 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2453 {
2454         unsigned int max_dispatch;
2455
2456         /*
2457          * Drain async requests before we start sync IO
2458          */
2459         if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2460                 return false;
2461
2462         /*
2463          * If this is an async queue and we have sync IO in flight, let it wait
2464          */
2465         if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2466                 return false;
2467
2468         max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2469         if (cfq_class_idle(cfqq))
2470                 max_dispatch = 1;
2471
2472         /*
2473          * Does this cfqq already have too much IO in flight?
2474          */
2475         if (cfqq->dispatched >= max_dispatch) {
2476                 bool promote_sync = false;
2477                 /*
2478                  * idle queue must always only have a single IO in flight
2479                  */
2480                 if (cfq_class_idle(cfqq))
2481                         return false;
2482
2483                 /*
2484                  * If there is only one sync queue
2485                  * we can ignore async queue here and give the sync
2486                  * queue no dispatch limit. The reason is a sync queue can
2487                  * preempt async queue, limiting the sync queue doesn't make
2488                  * sense. This is useful for aiostress test.
2489                  */
2490                 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
2491                         promote_sync = true;
2492
2493                 /*
2494                  * We have other queues, don't allow more IO from this one
2495                  */
2496                 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
2497                                 !promote_sync)
2498                         return false;
2499
2500                 /*
2501                  * Sole queue user, no limit
2502                  */
2503                 if (cfqd->busy_queues == 1 || promote_sync)
2504                         max_dispatch = -1;
2505                 else
2506                         /*
2507                          * Normally we start throttling cfqq when cfq_quantum/2
2508                          * requests have been dispatched. But we can drive
2509                          * deeper queue depths at the beginning of slice
2510                          * subjected to upper limit of cfq_quantum.
2511                          * */
2512                         max_dispatch = cfqd->cfq_quantum;
2513         }
2514
2515         /*
2516          * Async queues must wait a bit before being allowed dispatch.
2517          * We also ramp up the dispatch depth gradually for async IO,
2518          * based on the last sync IO we serviced
2519          */
2520         if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2521                 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2522                 unsigned int depth;
2523
2524                 depth = last_sync / cfqd->cfq_slice[1];
2525                 if (!depth && !cfqq->dispatched)
2526                         depth = 1;
2527                 if (depth < max_dispatch)
2528                         max_dispatch = depth;
2529         }
2530
2531         /*
2532          * If we're below the current max, allow a dispatch
2533          */
2534         return cfqq->dispatched < max_dispatch;
2535 }
2536
2537 /*
2538  * Dispatch a request from cfqq, moving them to the request queue
2539  * dispatch list.
2540  */
2541 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2542 {
2543         struct request *rq;
2544
2545         BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2546
2547         if (!cfq_may_dispatch(cfqd, cfqq))
2548                 return false;
2549
2550         /*
2551          * follow expired path, else get first next available
2552          */
2553         rq = cfq_check_fifo(cfqq);
2554         if (!rq)
2555                 rq = cfqq->next_rq;
2556
2557         /*
2558          * insert request into driver dispatch list
2559          */
2560         cfq_dispatch_insert(cfqd->queue, rq);
2561
2562         if (!cfqd->active_cic) {
2563                 struct cfq_io_context *cic = RQ_CIC(rq);
2564
2565                 atomic_long_inc(&cic->ioc->refcount);
2566                 cfqd->active_cic = cic;
2567         }
2568
2569         return true;
2570 }
2571
2572 /*
2573  * Find the cfqq that we need to service and move a request from that to the
2574  * dispatch list
2575  */
2576 static int cfq_dispatch_requests(struct request_queue *q, int force)
2577 {
2578         struct cfq_data *cfqd = q->elevator->elevator_data;
2579         struct cfq_queue *cfqq;
2580
2581         if (!cfqd->busy_queues)
2582                 return 0;
2583
2584         if (unlikely(force))
2585                 return cfq_forced_dispatch(cfqd);
2586
2587         cfqq = cfq_select_queue(cfqd);
2588         if (!cfqq)
2589                 return 0;
2590
2591         /*
2592          * Dispatch a request from this cfqq, if it is allowed
2593          */
2594         if (!cfq_dispatch_request(cfqd, cfqq))
2595                 return 0;
2596
2597         cfqq->slice_dispatch++;
2598         cfq_clear_cfqq_must_dispatch(cfqq);
2599
2600         /*
2601          * expire an async queue immediately if it has used up its slice. idle
2602          * queue always expire after 1 dispatch round.
2603          */
2604         if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2605             cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2606             cfq_class_idle(cfqq))) {
2607                 cfqq->slice_end = jiffies + 1;
2608                 cfq_slice_expired(cfqd, 0);
2609         }
2610
2611         cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2612         return 1;
2613 }
2614
2615 /*
2616  * task holds one reference to the queue, dropped when task exits. each rq
2617  * in-flight on this queue also holds a reference, dropped when rq is freed.
2618  *
2619  * Each cfq queue took a reference on the parent group. Drop it now.
2620  * queue lock must be held here.
2621  */
2622 static void cfq_put_queue(struct cfq_queue *cfqq)
2623 {
2624         struct cfq_data *cfqd = cfqq->cfqd;
2625         struct cfq_group *cfqg;
2626
2627         BUG_ON(cfqq->ref <= 0);
2628
2629         cfqq->ref--;
2630         if (cfqq->ref)
2631                 return;
2632
2633         cfq_log_cfqq(cfqd, cfqq, "put_queue");
2634         BUG_ON(rb_first(&cfqq->sort_list));
2635         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2636         cfqg = cfqq->cfqg;
2637
2638         if (unlikely(cfqd->active_queue == cfqq)) {
2639                 __cfq_slice_expired(cfqd, cfqq, 0);
2640                 cfq_schedule_dispatch(cfqd);
2641         }
2642
2643         BUG_ON(cfq_cfqq_on_rr(cfqq));
2644         kmem_cache_free(cfq_pool, cfqq);
2645         cfq_put_cfqg(cfqg);
2646 }
2647
2648 /*
2649  * Call func for each cic attached to this ioc.
2650  */
2651 static void
2652 call_for_each_cic(struct io_context *ioc,
2653                   void (*func)(struct io_context *, struct cfq_io_context *))
2654 {
2655         struct cfq_io_context *cic;
2656         struct hlist_node *n;
2657
2658         rcu_read_lock();
2659
2660         hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2661                 func(ioc, cic);
2662
2663         rcu_read_unlock();
2664 }
2665
2666 static void cfq_cic_free_rcu(struct rcu_head *head)
2667 {
2668         struct cfq_io_context *cic;
2669
2670         cic = container_of(head, struct cfq_io_context, rcu_head);
2671
2672         kmem_cache_free(cfq_ioc_pool, cic);
2673         elv_ioc_count_dec(cfq_ioc_count);
2674
2675         if (ioc_gone) {
2676                 /*
2677                  * CFQ scheduler is exiting, grab exit lock and check
2678                  * the pending io context count. If it hits zero,
2679                  * complete ioc_gone and set it back to NULL
2680                  */
2681                 spin_lock(&ioc_gone_lock);
2682                 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2683                         complete(ioc_gone);
2684                         ioc_gone = NULL;
2685                 }
2686                 spin_unlock(&ioc_gone_lock);
2687         }
2688 }
2689
2690 static void cfq_cic_free(struct cfq_io_context *cic)
2691 {
2692         call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2693 }
2694
2695 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2696 {
2697         unsigned long flags;
2698         unsigned long dead_key = (unsigned long) cic->key;
2699
2700         BUG_ON(!(dead_key & CIC_DEAD_KEY));
2701
2702         spin_lock_irqsave(&ioc->lock, flags);
2703         radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
2704         hlist_del_rcu(&cic->cic_list);
2705         spin_unlock_irqrestore(&ioc->lock, flags);
2706
2707         cfq_cic_free(cic);
2708 }
2709
2710 /*
2711  * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2712  * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2713  * and ->trim() which is called with the task lock held
2714  */
2715 static void cfq_free_io_context(struct io_context *ioc)
2716 {
2717         /*
2718          * ioc->refcount is zero here, or we are called from elv_unregister(),
2719          * so no more cic's are allowed to be linked into this ioc.  So it
2720          * should be ok to iterate over the known list, we will see all cic's
2721          * since no new ones are added.
2722          */
2723         call_for_each_cic(ioc, cic_free_func);
2724 }
2725
2726 static void cfq_put_cooperator(struct cfq_queue *cfqq)
2727 {
2728         struct cfq_queue *__cfqq, *next;
2729
2730         /*
2731          * If this queue was scheduled to merge with another queue, be
2732          * sure to drop the reference taken on that queue (and others in
2733          * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
2734          */
2735         __cfqq = cfqq->new_cfqq;
2736         while (__cfqq) {
2737                 if (__cfqq == cfqq) {
2738                         WARN(1, "cfqq->new_cfqq loop detected\n");
2739                         break;
2740                 }
2741                 next = __cfqq->new_cfqq;
2742                 cfq_put_queue(__cfqq);
2743                 __cfqq = next;
2744         }
2745 }
2746
2747 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2748 {
2749         if (unlikely(cfqq == cfqd->active_queue)) {
2750                 __cfq_slice_expired(cfqd, cfqq, 0);
2751                 cfq_schedule_dispatch(cfqd);
2752         }
2753
2754         cfq_put_cooperator(cfqq);
2755
2756         cfq_put_queue(cfqq);
2757 }
2758
2759 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2760                                          struct cfq_io_context *cic)
2761 {
2762         struct io_context *ioc = cic->ioc;
2763
2764         list_del_init(&cic->queue_list);
2765
2766         /*
2767          * Make sure dead mark is seen for dead queues
2768          */
2769         smp_wmb();
2770         cic->key = cfqd_dead_key(cfqd);
2771
2772         if (ioc->ioc_data == cic)
2773                 rcu_assign_pointer(ioc->ioc_data, NULL);
2774
2775         if (cic->cfqq[BLK_RW_ASYNC]) {
2776                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2777                 cic->cfqq[BLK_RW_ASYNC] = NULL;
2778         }
2779
2780         if (cic->cfqq[BLK_RW_SYNC]) {
2781                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2782                 cic->cfqq[BLK_RW_SYNC] = NULL;
2783         }
2784 }
2785
2786 static void cfq_exit_single_io_context(struct io_context *ioc,
2787                                        struct cfq_io_context *cic)
2788 {
2789         struct cfq_data *cfqd = cic_to_cfqd(cic);
2790
2791         if (cfqd) {
2792                 struct request_queue *q = cfqd->queue;
2793                 unsigned long flags;
2794
2795                 spin_lock_irqsave(q->queue_lock, flags);
2796
2797                 /*
2798                  * Ensure we get a fresh copy of the ->key to prevent
2799                  * race between exiting task and queue
2800                  */
2801                 smp_read_barrier_depends();
2802                 if (cic->key == cfqd)
2803                         __cfq_exit_single_io_context(cfqd, cic);
2804
2805                 spin_unlock_irqrestore(q->queue_lock, flags);
2806         }
2807 }
2808
2809 /*
2810  * The process that ioc belongs to has exited, we need to clean up
2811  * and put the internal structures we have that belongs to that process.
2812  */
2813 static void cfq_exit_io_context(struct io_context *ioc)
2814 {
2815         call_for_each_cic(ioc, cfq_exit_single_io_context);
2816 }
2817
2818 static struct cfq_io_context *
2819 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2820 {
2821         struct cfq_io_context *cic;
2822
2823         cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2824                                                         cfqd->queue->node);
2825         if (cic) {
2826                 cic->last_end_request = jiffies;
2827                 INIT_LIST_HEAD(&cic->queue_list);
2828                 INIT_HLIST_NODE(&cic->cic_list);
2829                 cic->dtor = cfq_free_io_context;
2830                 cic->exit = cfq_exit_io_context;
2831                 elv_ioc_count_inc(cfq_ioc_count);
2832         }
2833
2834         return cic;
2835 }
2836
2837 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2838 {
2839         struct task_struct *tsk = current;
2840         int ioprio_class;
2841
2842         if (!cfq_cfqq_prio_changed(cfqq))
2843                 return;
2844
2845         ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2846         switch (ioprio_class) {
2847         default:
2848                 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2849         case IOPRIO_CLASS_NONE:
2850                 /*
2851                  * no prio set, inherit CPU scheduling settings
2852                  */
2853                 cfqq->ioprio = task_nice_ioprio(tsk);
2854                 cfqq->ioprio_class = task_nice_ioclass(tsk);
2855                 break;
2856         case IOPRIO_CLASS_RT:
2857                 cfqq->ioprio = task_ioprio(ioc);
2858                 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2859                 break;
2860         case IOPRIO_CLASS_BE:
2861                 cfqq->ioprio = task_ioprio(ioc);
2862                 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2863                 break;
2864         case IOPRIO_CLASS_IDLE:
2865                 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2866                 cfqq->ioprio = 7;
2867                 cfq_clear_cfqq_idle_window(cfqq);
2868                 break;
2869         }
2870
2871         /*
2872          * keep track of original prio settings in case we have to temporarily
2873          * elevate the priority of this queue
2874          */
2875         cfqq->org_ioprio = cfqq->ioprio;
2876         cfqq->org_ioprio_class = cfqq->ioprio_class;
2877         cfq_clear_cfqq_prio_changed(cfqq);
2878 }
2879
2880 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2881 {
2882         struct cfq_data *cfqd = cic_to_cfqd(cic);
2883         struct cfq_queue *cfqq;
2884         unsigned long flags;
2885
2886         if (unlikely(!cfqd))
2887                 return;
2888
2889         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2890
2891         cfqq = cic->cfqq[BLK_RW_ASYNC];
2892         if (cfqq) {
2893                 struct cfq_queue *new_cfqq;
2894                 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2895                                                 GFP_ATOMIC);
2896                 if (new_cfqq) {
2897                         cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2898                         cfq_put_queue(cfqq);
2899                 }
2900         }
2901
2902         cfqq = cic->cfqq[BLK_RW_SYNC];
2903         if (cfqq)
2904                 cfq_mark_cfqq_prio_changed(cfqq);
2905
2906         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2907 }
2908
2909 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2910 {
2911         call_for_each_cic(ioc, changed_ioprio);
2912         ioc->ioprio_changed = 0;
2913 }
2914
2915 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2916                           pid_t pid, bool is_sync)
2917 {
2918         RB_CLEAR_NODE(&cfqq->rb_node);
2919         RB_CLEAR_NODE(&cfqq->p_node);
2920         INIT_LIST_HEAD(&cfqq->fifo);
2921
2922         cfqq->ref = 0;
2923         cfqq->cfqd = cfqd;
2924
2925         cfq_mark_cfqq_prio_changed(cfqq);
2926
2927         if (is_sync) {
2928                 if (!cfq_class_idle(cfqq))
2929                         cfq_mark_cfqq_idle_window(cfqq);
2930                 cfq_mark_cfqq_sync(cfqq);
2931         }
2932         cfqq->pid = pid;
2933 }
2934
2935 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2936 static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2937 {
2938         struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2939         struct cfq_data *cfqd = cic_to_cfqd(cic);
2940         unsigned long flags;
2941         struct request_queue *q;
2942
2943         if (unlikely(!cfqd))
2944                 return;
2945
2946         q = cfqd->queue;
2947
2948         spin_lock_irqsave(q->queue_lock, flags);
2949
2950         if (sync_cfqq) {
2951                 /*
2952                  * Drop reference to sync queue. A new sync queue will be
2953                  * assigned in new group upon arrival of a fresh request.
2954                  */
2955                 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2956                 cic_set_cfqq(cic, NULL, 1);
2957                 cfq_put_queue(sync_cfqq);
2958         }
2959
2960         spin_unlock_irqrestore(q->queue_lock, flags);
2961 }
2962
2963 static void cfq_ioc_set_cgroup(struct io_context *ioc)
2964 {
2965         call_for_each_cic(ioc, changed_cgroup);
2966         ioc->cgroup_changed = 0;
2967 }
2968 #endif  /* CONFIG_CFQ_GROUP_IOSCHED */
2969
2970 static struct cfq_queue *
2971 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2972                      struct io_context *ioc, gfp_t gfp_mask)
2973 {
2974         struct cfq_queue *cfqq, *new_cfqq = NULL;
2975         struct cfq_io_context *cic;
2976         struct cfq_group *cfqg;
2977
2978 retry:
2979         cfqg = cfq_get_cfqg(cfqd);
2980         cic = cfq_cic_lookup(cfqd, ioc);
2981         /* cic always exists here */
2982         cfqq = cic_to_cfqq(cic, is_sync);
2983
2984         /*
2985          * Always try a new alloc if we fell back to the OOM cfqq
2986          * originally, since it should just be a temporary situation.
2987          */
2988         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2989                 cfqq = NULL;
2990                 if (new_cfqq) {
2991                         cfqq = new_cfqq;
2992                         new_cfqq = NULL;
2993                 } else if (gfp_mask & __GFP_WAIT) {
2994                         spin_unlock_irq(cfqd->queue->queue_lock);
2995                         new_cfqq = kmem_cache_alloc_node(cfq_pool,
2996                                         gfp_mask | __GFP_ZERO,
2997                                         cfqd->queue->node);
2998                         spin_lock_irq(cfqd->queue->queue_lock);
2999                         if (new_cfqq)
3000                                 goto retry;
3001                 } else {
3002                         cfqq = kmem_cache_alloc_node(cfq_pool,
3003                                         gfp_mask | __GFP_ZERO,
3004                                         cfqd->queue->node);
3005                 }
3006
3007                 if (cfqq) {
3008                         cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3009                         cfq_init_prio_data(cfqq, ioc);
3010                         cfq_link_cfqq_cfqg(cfqq, cfqg);
3011                         cfq_log_cfqq(cfqd, cfqq, "alloced");
3012                 } else
3013                         cfqq = &cfqd->oom_cfqq;
3014         }
3015
3016         if (new_cfqq)
3017                 kmem_cache_free(cfq_pool, new_cfqq);
3018
3019         return cfqq;
3020 }
3021
3022 static struct cfq_queue **
3023 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
3024 {
3025         switch (ioprio_class) {
3026         case IOPRIO_CLASS_RT:
3027                 return &cfqd->async_cfqq[0][ioprio];
3028         case IOPRIO_CLASS_BE:
3029                 return &cfqd->async_cfqq[1][ioprio];
3030         case IOPRIO_CLASS_IDLE:
3031                 return &cfqd->async_idle_cfqq;
3032         default:
3033                 BUG();
3034         }
3035 }
3036
3037 static struct cfq_queue *
3038 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
3039               gfp_t gfp_mask)
3040 {
3041         const int ioprio = task_ioprio(ioc);
3042         const int ioprio_class = task_ioprio_class(ioc);
3043         struct cfq_queue **async_cfqq = NULL;
3044         struct cfq_queue *cfqq = NULL;
3045
3046         if (!is_sync) {
3047                 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
3048                 cfqq = *async_cfqq;
3049         }
3050
3051         if (!cfqq)
3052                 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
3053
3054         /*
3055          * pin the queue now that it's allocated, scheduler exit will prune it
3056          */
3057         if (!is_sync && !(*async_cfqq)) {
3058                 cfqq->ref++;
3059                 *async_cfqq = cfqq;
3060         }
3061
3062         cfqq->ref++;
3063         return cfqq;
3064 }
3065
3066 /*
3067  * We drop cfq io contexts lazily, so we may find a dead one.
3068  */
3069 static void
3070 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
3071                   struct cfq_io_context *cic)
3072 {
3073         unsigned long flags;
3074
3075         WARN_ON(!list_empty(&cic->queue_list));
3076         BUG_ON(cic->key != cfqd_dead_key(cfqd));
3077
3078         spin_lock_irqsave(&ioc->lock, flags);
3079
3080         BUG_ON(ioc->ioc_data == cic);
3081
3082         radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
3083         hlist_del_rcu(&cic->cic_list);
3084         spin_unlock_irqrestore(&ioc->lock, flags);
3085
3086         cfq_cic_free(cic);
3087 }
3088
3089 static struct cfq_io_context *
3090 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
3091 {
3092         struct cfq_io_context *cic;
3093         unsigned long flags;
3094
3095         if (unlikely(!ioc))
3096                 return NULL;
3097
3098         rcu_read_lock();
3099
3100         /*
3101          * we maintain a last-hit cache, to avoid browsing over the tree
3102          */
3103         cic = rcu_dereference(ioc->ioc_data);
3104         if (cic && cic->key == cfqd) {
3105                 rcu_read_unlock();
3106                 return cic;
3107         }
3108
3109         do {
3110                 cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
3111                 rcu_read_unlock();
3112                 if (!cic)
3113                         break;
3114                 if (unlikely(cic->key != cfqd)) {
3115                         cfq_drop_dead_cic(cfqd, ioc, cic);
3116                         rcu_read_lock();
3117                         continue;
3118                 }
3119
3120                 spin_lock_irqsave(&ioc->lock, flags);
3121                 rcu_assign_pointer(ioc->ioc_data, cic);
3122                 spin_unlock_irqrestore(&ioc->lock, flags);
3123                 break;
3124         } while (1);
3125
3126         return cic;
3127 }
3128
3129 /*
3130  * Add cic into ioc, using cfqd as the search key. This enables us to lookup
3131  * the process specific cfq io context when entered from the block layer.
3132  * Also adds the cic to a per-cfqd list, used when this queue is removed.
3133  */
3134 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
3135                         struct cfq_io_context *cic, gfp_t gfp_mask)
3136 {
3137         unsigned long flags;
3138         int ret;
3139
3140         ret = radix_tree_preload(gfp_mask);
3141         if (!ret) {
3142                 cic->ioc = ioc;
3143                 cic->key = cfqd;
3144
3145                 spin_lock_irqsave(&ioc->lock, flags);
3146                 ret = radix_tree_insert(&ioc->radix_root,
3147                                                 cfqd->cic_index, cic);
3148                 if (!ret)
3149                         hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
3150                 spin_unlock_irqrestore(&ioc->lock, flags);
3151
3152                 radix_tree_preload_end();
3153
3154                 if (!ret) {
3155                         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3156                         list_add(&cic->queue_list, &cfqd->cic_list);
3157                         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3158                 }
3159         }
3160
3161         if (ret)
3162                 printk(KERN_ERR "cfq: cic link failed!\n");
3163
3164         return ret;
3165 }
3166
3167 /*
3168  * Setup general io context and cfq io context. There can be several cfq
3169  * io contexts per general io context, if this process is doing io to more
3170  * than one device managed by cfq.
3171  */
3172 static struct cfq_io_context *
3173 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
3174 {
3175         struct io_context *ioc = NULL;
3176         struct cfq_io_context *cic;
3177
3178         might_sleep_if(gfp_mask & __GFP_WAIT);
3179
3180         ioc = get_io_context(gfp_mask, cfqd->queue->node);
3181         if (!ioc)
3182                 return NULL;
3183
3184         cic = cfq_cic_lookup(cfqd, ioc);
3185         if (cic)
3186                 goto out;
3187
3188         cic = cfq_alloc_io_context(cfqd, gfp_mask);
3189         if (cic == NULL)
3190                 goto err;
3191
3192         if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
3193                 goto err_free;
3194
3195 out:
3196         smp_read_barrier_depends();
3197         if (unlikely(ioc->ioprio_changed))
3198                 cfq_ioc_set_ioprio(ioc);
3199
3200 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3201         if (unlikely(ioc->cgroup_changed))
3202                 cfq_ioc_set_cgroup(ioc);
3203 #endif
3204         return cic;
3205 err_free:
3206         cfq_cic_free(cic);
3207 err:
3208         put_io_context(ioc);
3209         return NULL;
3210 }
3211
3212 static void
3213 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
3214 {
3215         unsigned long elapsed = jiffies - cic->last_end_request;
3216         unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
3217
3218         cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
3219         cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
3220         cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
3221 }
3222
3223 static void
3224 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3225                        struct request *rq)
3226 {
3227         sector_t sdist = 0;
3228         sector_t n_sec = blk_rq_sectors(rq);
3229         if (cfqq->last_request_pos) {
3230                 if (cfqq->last_request_pos < blk_rq_pos(rq))
3231                         sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3232                 else
3233                         sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3234         }
3235
3236         cfqq->seek_history <<= 1;
3237         if (blk_queue_nonrot(cfqd->queue))
3238                 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3239         else
3240                 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3241 }
3242
3243 /*
3244  * Disable idle window if the process thinks too long or seeks so much that
3245  * it doesn't matter
3246  */
3247 static void
3248 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3249                        struct cfq_io_context *cic)
3250 {
3251         int old_idle, enable_idle;
3252
3253         /*
3254          * Don't idle for async or idle io prio class
3255          */
3256         if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3257                 return;
3258
3259         enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3260
3261         if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3262                 cfq_mark_cfqq_deep(cfqq);
3263
3264         if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3265                 enable_idle = 0;
3266         else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3267             (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3268                 enable_idle = 0;
3269         else if (sample_valid(cic->ttime_samples)) {
3270                 if (cic->ttime_mean > cfqd->cfq_slice_idle)
3271                         enable_idle = 0;
3272                 else
3273                         enable_idle = 1;
3274         }
3275
3276         if (old_idle != enable_idle) {
3277                 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3278                 if (enable_idle)
3279                         cfq_mark_cfqq_idle_window(cfqq);
3280                 else
3281                         cfq_clear_cfqq_idle_window(cfqq);
3282         }
3283 }
3284
3285 /*
3286  * Check if new_cfqq should preempt the currently active queue. Return 0 for
3287  * no or if we aren't sure, a 1 will cause a preempt.
3288  */
3289 static bool
3290 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3291                    struct request *rq)
3292 {
3293         struct cfq_queue *cfqq;
3294
3295         cfqq = cfqd->active_queue;
3296         if (!cfqq)
3297                 return false;
3298
3299         if (cfq_class_idle(new_cfqq))
3300                 return false;
3301
3302         if (cfq_class_idle(cfqq))
3303                 return true;
3304
3305         /*
3306          * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3307          */
3308         if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3309                 return false;
3310
3311         /*
3312          * if the new request is sync, but the currently running queue is
3313          * not, let the sync request have priority.
3314          */
3315         if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3316                 return true;
3317
3318         if (new_cfqq->cfqg != cfqq->cfqg)
3319                 return false;
3320
3321         if (cfq_slice_used(cfqq))
3322                 return true;
3323
3324         /* Allow preemption only if we are idling on sync-noidle tree */
3325         if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3326             cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3327             new_cfqq->service_tree->count == 2 &&
3328             RB_EMPTY_ROOT(&cfqq->sort_list))
3329                 return true;
3330
3331         /*
3332          * So both queues are sync. Let the new request get disk time if
3333          * it's a metadata request and the current queue is doing regular IO.
3334          */
3335         if ((rq->cmd_flags & REQ_META) && !cfqq->meta_pending)
3336                 return true;
3337
3338         /*
3339          * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3340          */
3341         if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3342                 return true;
3343
3344         /* An idle queue should not be idle now for some reason */
3345         if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3346                 return true;
3347
3348         if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3349                 return false;
3350
3351         /*
3352          * if this request is as-good as one we would expect from the
3353          * current cfqq, let it preempt
3354          */
3355         if (cfq_rq_close(cfqd, cfqq, rq))
3356                 return true;
3357
3358         return false;
3359 }
3360
3361 /*
3362  * cfqq preempts the active queue. if we allowed preempt with no slice left,
3363  * let it have half of its nominal slice.
3364  */
3365 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3366 {
3367         struct cfq_queue *old_cfqq = cfqd->active_queue;
3368
3369         cfq_log_cfqq(cfqd, cfqq, "preempt");
3370         cfq_slice_expired(cfqd, 1);
3371
3372         /*
3373          * workload type is changed, don't save slice, otherwise preempt
3374          * doesn't happen
3375          */
3376         if (cfqq_type(old_cfqq) != cfqq_type(cfqq))
3377                 cfqq->cfqg->saved_workload_slice = 0;
3378
3379         /*
3380          * Put the new queue at the front of the of the current list,
3381          * so we know that it will be selected next.
3382          */
3383         BUG_ON(!cfq_cfqq_on_rr(cfqq));
3384
3385         cfq_service_tree_add(cfqd, cfqq, 1);
3386
3387         cfqq->slice_end = 0;
3388         cfq_mark_cfqq_slice_new(cfqq);
3389 }
3390
3391 /*
3392  * Called when a new fs request (rq) is added (to cfqq). Check if there's
3393  * something we should do about it
3394  */
3395 static void
3396 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3397                 struct request *rq)
3398 {
3399         struct cfq_io_context *cic = RQ_CIC(rq);
3400
3401         cfqd->rq_queued++;
3402         if (rq->cmd_flags & REQ_META)
3403                 cfqq->meta_pending++;
3404
3405         cfq_update_io_thinktime(cfqd, cic);
3406         cfq_update_io_seektime(cfqd, cfqq, rq);
3407         cfq_update_idle_window(cfqd, cfqq, cic);
3408
3409         cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3410
3411         if (cfqq == cfqd->active_queue) {
3412                 /*
3413                  * Remember that we saw a request from this process, but
3414                  * don't start queuing just yet. Otherwise we risk seeing lots
3415                  * of tiny requests, because we disrupt the normal plugging
3416                  * and merging. If the request is already larger than a single
3417                  * page, let it rip immediately. For that case we assume that
3418                  * merging is already done. Ditto for a busy system that
3419                  * has other work pending, don't risk delaying until the
3420                  * idle timer unplug to continue working.
3421                  */
3422                 if (cfq_cfqq_wait_request(cfqq)) {
3423                         if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3424                             cfqd->busy_queues > 1) {
3425                                 cfq_del_timer(cfqd, cfqq);
3426                                 cfq_clear_cfqq_wait_request(cfqq);
3427                                 __blk_run_queue(cfqd->queue);
3428                         } else {
3429                                 cfq_blkiocg_update_idle_time_stats(
3430                                                 &cfqq->cfqg->blkg);
3431                                 cfq_mark_cfqq_must_dispatch(cfqq);
3432                         }
3433                 }
3434         } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3435                 /*
3436                  * not the active queue - expire current slice if it is
3437                  * idle and has expired it's mean thinktime or this new queue
3438                  * has some old slice time left and is of higher priority or
3439                  * this new queue is RT and the current one is BE
3440                  */
3441                 cfq_preempt_queue(cfqd, cfqq);
3442                 __blk_run_queue(cfqd->queue);
3443         }
3444 }
3445
3446 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3447 {
3448         struct cfq_data *cfqd = q->elevator->elevator_data;
3449         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3450
3451         cfq_log_cfqq(cfqd, cfqq, "insert_request");
3452         cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3453
3454         rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3455         list_add_tail(&rq->queuelist, &cfqq->fifo);
3456         cfq_add_rq_rb(rq);
3457         cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
3458                         &cfqd->serving_group->blkg, rq_data_dir(rq),
3459                         rq_is_sync(rq));
3460         cfq_rq_enqueued(cfqd, cfqq, rq);
3461 }
3462
3463 /*
3464  * Update hw_tag based on peak queue depth over 50 samples under
3465  * sufficient load.
3466  */
3467 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3468 {
3469         struct cfq_queue *cfqq = cfqd->active_queue;
3470
3471         if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3472                 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3473
3474         if (cfqd->hw_tag == 1)
3475                 return;
3476
3477         if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3478             cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3479                 return;
3480
3481         /*
3482          * If active queue hasn't enough requests and can idle, cfq might not
3483          * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3484          * case
3485          */
3486         if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3487             cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3488             CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3489                 return;
3490
3491         if (cfqd->hw_tag_samples++ < 50)
3492                 return;
3493
3494         if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3495                 cfqd->hw_tag = 1;
3496         else
3497                 cfqd->hw_tag = 0;
3498 }
3499
3500 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3501 {
3502         struct cfq_io_context *cic = cfqd->active_cic;
3503
3504         /* If the queue already has requests, don't wait */
3505         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3506                 return false;
3507
3508         /* If there are other queues in the group, don't wait */
3509         if (cfqq->cfqg->nr_cfqq > 1)
3510                 return false;
3511
3512         if (cfq_slice_used(cfqq))
3513                 return true;
3514
3515         /* if slice left is less than think time, wait busy */
3516         if (cic && sample_valid(cic->ttime_samples)
3517             && (cfqq->slice_end - jiffies < cic->ttime_mean))
3518                 return true;
3519
3520         /*
3521          * If think times is less than a jiffy than ttime_mean=0 and above
3522          * will not be true. It might happen that slice has not expired yet
3523          * but will expire soon (4-5 ns) during select_queue(). To cover the
3524          * case where think time is less than a jiffy, mark the queue wait
3525          * busy if only 1 jiffy is left in the slice.
3526          */
3527         if (cfqq->slice_end - jiffies == 1)
3528                 return true;
3529
3530         return false;
3531 }
3532
3533 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3534 {
3535         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3536         struct cfq_data *cfqd = cfqq->cfqd;
3537         const int sync = rq_is_sync(rq);
3538         unsigned long now;
3539
3540         now = jiffies;
3541         cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3542                      !!(rq->cmd_flags & REQ_NOIDLE));
3543
3544         cfq_update_hw_tag(cfqd);
3545
3546         WARN_ON(!cfqd->rq_in_driver);
3547         WARN_ON(!cfqq->dispatched);
3548         cfqd->rq_in_driver--;
3549         cfqq->dispatched--;
3550         (RQ_CFQG(rq))->dispatched--;
3551         cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3552                         rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3553                         rq_data_dir(rq), rq_is_sync(rq));
3554
3555         cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3556
3557         if (sync) {
3558                 RQ_CIC(rq)->last_end_request = now;
3559                 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3560                         cfqd->last_delayed_sync = now;
3561         }
3562
3563         /*
3564          * If this is the active queue, check if it needs to be expired,
3565          * or if we want to idle in case it has no pending requests.
3566          */
3567         if (cfqd->active_queue == cfqq) {
3568                 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3569
3570                 if (cfq_cfqq_slice_new(cfqq)) {
3571                         cfq_set_prio_slice(cfqd, cfqq);
3572                         cfq_clear_cfqq_slice_new(cfqq);
3573                 }
3574
3575                 /*
3576                  * Should we wait for next request to come in before we expire
3577                  * the queue.
3578                  */
3579                 if (cfq_should_wait_busy(cfqd, cfqq)) {
3580                         unsigned long extend_sl = cfqd->cfq_slice_idle;
3581                         if (!cfqd->cfq_slice_idle)
3582                                 extend_sl = cfqd->cfq_group_idle;
3583                         cfqq->slice_end = jiffies + extend_sl;
3584                         cfq_mark_cfqq_wait_busy(cfqq);
3585                         cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3586                 }
3587
3588                 /*
3589                  * Idling is not enabled on:
3590                  * - expired queues
3591                  * - idle-priority queues
3592                  * - async queues
3593                  * - queues with still some requests queued
3594                  * - when there is a close cooperator
3595                  */
3596                 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3597                         cfq_slice_expired(cfqd, 1);
3598                 else if (sync && cfqq_empty &&
3599                          !cfq_close_cooperator(cfqd, cfqq)) {
3600                         cfq_arm_slice_timer(cfqd);
3601                 }
3602         }
3603
3604         if (!cfqd->rq_in_driver)
3605                 cfq_schedule_dispatch(cfqd);
3606 }
3607
3608 /*
3609  * we temporarily boost lower priority queues if they are holding fs exclusive
3610  * resources. they are boosted to normal prio (CLASS_BE/4)
3611  */
3612 static void cfq_prio_boost(struct cfq_queue *cfqq)
3613 {
3614         if (has_fs_excl()) {
3615                 /*
3616                  * boost idle prio on transactions that would lock out other
3617                  * users of the filesystem
3618                  */
3619                 if (cfq_class_idle(cfqq))
3620                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
3621                 if (cfqq->ioprio > IOPRIO_NORM)
3622                         cfqq->ioprio = IOPRIO_NORM;
3623         } else {
3624                 /*
3625                  * unboost the queue (if needed)
3626                  */
3627                 cfqq->ioprio_class = cfqq->org_ioprio_class;
3628                 cfqq->ioprio = cfqq->org_ioprio;
3629         }
3630 }
3631
3632 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3633 {
3634         if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3635                 cfq_mark_cfqq_must_alloc_slice(cfqq);
3636                 return ELV_MQUEUE_MUST;
3637         }
3638
3639         return ELV_MQUEUE_MAY;
3640 }
3641
3642 static int cfq_may_queue(struct request_queue *q, int rw)
3643 {
3644         struct cfq_data *cfqd = q->elevator->elevator_data;
3645         struct task_struct *tsk = current;
3646         struct cfq_io_context *cic;
3647         struct cfq_queue *cfqq;
3648
3649         /*
3650          * don't force setup of a queue from here, as a call to may_queue
3651          * does not necessarily imply that a request actually will be queued.
3652          * so just lookup a possibly existing queue, or return 'may queue'
3653          * if that fails
3654          */
3655         cic = cfq_cic_lookup(cfqd, tsk->io_context);
3656         if (!cic)
3657                 return ELV_MQUEUE_MAY;
3658
3659         cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3660         if (cfqq) {
3661                 cfq_init_prio_data(cfqq, cic->ioc);
3662                 cfq_prio_boost(cfqq);
3663
3664                 return __cfq_may_queue(cfqq);
3665         }
3666
3667         return ELV_MQUEUE_MAY;
3668 }
3669
3670 /*
3671  * queue lock held here
3672  */
3673 static void cfq_put_request(struct request *rq)
3674 {
3675         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3676
3677         if (cfqq) {
3678                 const int rw = rq_data_dir(rq);
3679
3680                 BUG_ON(!cfqq->allocated[rw]);
3681                 cfqq->allocated[rw]--;
3682
3683                 put_io_context(RQ_CIC(rq)->ioc);
3684
3685                 rq->elevator_private[0] = NULL;
3686                 rq->elevator_private[1] = NULL;
3687
3688                 /* Put down rq reference on cfqg */
3689                 cfq_put_cfqg(RQ_CFQG(rq));
3690                 rq->elevator_private[2] = NULL;
3691
3692                 cfq_put_queue(cfqq);
3693         }
3694 }
3695
3696 static struct cfq_queue *
3697 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3698                 struct cfq_queue *cfqq)
3699 {
3700         cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3701         cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3702         cfq_mark_cfqq_coop(cfqq->new_cfqq);
3703         cfq_put_queue(cfqq);
3704         return cic_to_cfqq(cic, 1);
3705 }
3706
3707 /*
3708  * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3709  * was the last process referring to said cfqq.
3710  */
3711 static struct cfq_queue *
3712 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3713 {
3714         if (cfqq_process_refs(cfqq) == 1) {
3715                 cfqq->pid = current->pid;
3716                 cfq_clear_cfqq_coop(cfqq);
3717                 cfq_clear_cfqq_split_coop(cfqq);
3718                 return cfqq;
3719         }
3720
3721         cic_set_cfqq(cic, NULL, 1);
3722
3723         cfq_put_cooperator(cfqq);
3724
3725         cfq_put_queue(cfqq);
3726         return NULL;
3727 }
3728 /*
3729  * Allocate cfq data structures associated with this request.
3730  */
3731 static int
3732 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3733 {
3734         struct cfq_data *cfqd = q->elevator->elevator_data;
3735         struct cfq_io_context *cic;
3736         const int rw = rq_data_dir(rq);
3737         const bool is_sync = rq_is_sync(rq);
3738         struct cfq_queue *cfqq;
3739         unsigned long flags;
3740
3741         might_sleep_if(gfp_mask & __GFP_WAIT);
3742
3743         cic = cfq_get_io_context(cfqd, gfp_mask);
3744
3745         spin_lock_irqsave(q->queue_lock, flags);
3746
3747         if (!cic)
3748                 goto queue_fail;
3749
3750 new_queue:
3751         cfqq = cic_to_cfqq(cic, is_sync);
3752         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3753                 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3754                 cic_set_cfqq(cic, cfqq, is_sync);
3755         } else {
3756                 /*
3757                  * If the queue was seeky for too long, break it apart.
3758                  */
3759                 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3760                         cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3761                         cfqq = split_cfqq(cic, cfqq);
3762                         if (!cfqq)
3763                                 goto new_queue;
3764                 }
3765
3766                 /*
3767                  * Check to see if this queue is scheduled to merge with
3768                  * another, closely cooperating queue.  The merging of
3769                  * queues happens here as it must be done in process context.
3770                  * The reference on new_cfqq was taken in merge_cfqqs.
3771                  */
3772                 if (cfqq->new_cfqq)
3773                         cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3774         }
3775
3776         cfqq->allocated[rw]++;
3777
3778         cfqq->ref++;
3779         rq->elevator_private[0] = cic;
3780         rq->elevator_private[1] = cfqq;
3781         rq->elevator_private[2] = cfq_ref_get_cfqg(cfqq->cfqg);
3782         spin_unlock_irqrestore(q->queue_lock, flags);
3783         return 0;
3784
3785 queue_fail:
3786         if (cic)
3787                 put_io_context(cic->ioc);
3788
3789         cfq_schedule_dispatch(cfqd);
3790         spin_unlock_irqrestore(q->queue_lock, flags);
3791         cfq_log(cfqd, "set_request fail");
3792         return 1;
3793 }
3794
3795 static void cfq_kick_queue(struct work_struct *work)
3796 {
3797         struct cfq_data *cfqd =
3798                 container_of(work, struct cfq_data, unplug_work);
3799         struct request_queue *q = cfqd->queue;
3800
3801         spin_lock_irq(q->queue_lock);
3802         __blk_run_queue(cfqd->queue);
3803         spin_unlock_irq(q->queue_lock);
3804 }
3805
3806 /*
3807  * Timer running if the active_queue is currently idling inside its time slice
3808  */
3809 static void cfq_idle_slice_timer(unsigned long data)
3810 {
3811         struct cfq_data *cfqd = (struct cfq_data *) data;
3812         struct cfq_queue *cfqq;
3813         unsigned long flags;
3814         int timed_out = 1;
3815
3816         cfq_log(cfqd, "idle timer fired");
3817
3818         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3819
3820         cfqq = cfqd->active_queue;
3821         if (cfqq) {
3822                 timed_out = 0;
3823
3824                 /*
3825                  * We saw a request before the queue expired, let it through
3826                  */
3827                 if (cfq_cfqq_must_dispatch(cfqq))
3828                         goto out_kick;
3829
3830                 /*
3831                  * expired
3832                  */
3833                 if (cfq_slice_used(cfqq))
3834                         goto expire;
3835
3836                 /*
3837                  * only expire and reinvoke request handler, if there are
3838                  * other queues with pending requests
3839                  */
3840                 if (!cfqd->busy_queues)
3841                         goto out_cont;
3842
3843                 /*
3844                  * not expired and it has a request pending, let it dispatch
3845                  */
3846                 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3847                         goto out_kick;
3848
3849                 /*
3850                  * Queue depth flag is reset only when the idle didn't succeed
3851                  */
3852                 cfq_clear_cfqq_deep(cfqq);
3853         }
3854 expire:
3855         cfq_slice_expired(cfqd, timed_out);
3856 out_kick:
3857         cfq_schedule_dispatch(cfqd);
3858 out_cont:
3859         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3860 }
3861
3862 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3863 {
3864         del_timer_sync(&cfqd->idle_slice_timer);
3865         cancel_work_sync(&cfqd->unplug_work);
3866 }
3867
3868 static void cfq_put_async_queues(struct cfq_data *cfqd)
3869 {
3870         int i;
3871
3872         for (i = 0; i < IOPRIO_BE_NR; i++) {
3873                 if (cfqd->async_cfqq[0][i])
3874                         cfq_put_queue(cfqd->async_cfqq[0][i]);
3875                 if (cfqd->async_cfqq[1][i])
3876                         cfq_put_queue(cfqd->async_cfqq[1][i]);
3877         }
3878
3879         if (cfqd->async_idle_cfqq)
3880                 cfq_put_queue(cfqd->async_idle_cfqq);
3881 }
3882
3883 static void cfq_exit_queue(struct elevator_queue *e)
3884 {
3885         struct cfq_data *cfqd = e->elevator_data;
3886         struct request_queue *q = cfqd->queue;
3887         bool wait = false;
3888
3889         cfq_shutdown_timer_wq(cfqd);
3890
3891         spin_lock_irq(q->queue_lock);
3892
3893         if (cfqd->active_queue)
3894                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3895
3896         while (!list_empty(&cfqd->cic_list)) {
3897                 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3898                                                         struct cfq_io_context,
3899                                                         queue_list);
3900
3901                 __cfq_exit_single_io_context(cfqd, cic);
3902         }
3903
3904         cfq_put_async_queues(cfqd);
3905         cfq_release_cfq_groups(cfqd);
3906
3907         /*
3908          * If there are groups which we could not unlink from blkcg list,
3909          * wait for a rcu period for them to be freed.
3910          */
3911         if (cfqd->nr_blkcg_linked_grps)
3912                 wait = true;
3913
3914         spin_unlock_irq(q->queue_lock);
3915
3916         cfq_shutdown_timer_wq(cfqd);
3917
3918         spin_lock(&cic_index_lock);
3919         ida_remove(&cic_index_ida, cfqd->cic_index);
3920         spin_unlock(&cic_index_lock);
3921
3922         /*
3923          * Wait for cfqg->blkg->key accessors to exit their grace periods.
3924          * Do this wait only if there are other unlinked groups out
3925          * there. This can happen if cgroup deletion path claimed the
3926          * responsibility of cleaning up a group before queue cleanup code
3927          * get to the group.
3928          *
3929          * Do not call synchronize_rcu() unconditionally as there are drivers
3930          * which create/delete request queue hundreds of times during scan/boot
3931          * and synchronize_rcu() can take significant time and slow down boot.
3932          */
3933         if (wait)
3934                 synchronize_rcu();
3935         kfree(cfqd);
3936 }
3937
3938 static int cfq_alloc_cic_index(void)
3939 {
3940         int index, error;
3941
3942         do {
3943                 if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
3944                         return -ENOMEM;
3945
3946                 spin_lock(&cic_index_lock);
3947                 error = ida_get_new(&cic_index_ida, &index);
3948                 spin_unlock(&cic_index_lock);
3949                 if (error && error != -EAGAIN)
3950                         return error;
3951         } while (error);
3952
3953         return index;
3954 }
3955
3956 static void *cfq_init_queue(struct request_queue *q)
3957 {
3958         struct cfq_data *cfqd;
3959         int i, j;
3960         struct cfq_group *cfqg;
3961         struct cfq_rb_root *st;
3962
3963         i = cfq_alloc_cic_index();
3964         if (i < 0)
3965                 return NULL;
3966
3967         cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3968         if (!cfqd)
3969                 return NULL;
3970
3971         /*
3972          * Don't need take queue_lock in the routine, since we are
3973          * initializing the ioscheduler, and nobody is using cfqd
3974          */
3975         cfqd->cic_index = i;
3976
3977         /* Init root service tree */
3978         cfqd->grp_service_tree = CFQ_RB_ROOT;
3979
3980         /* Init root group */
3981         cfqg = &cfqd->root_group;
3982         for_each_cfqg_st(cfqg, i, j, st)
3983                 *st = CFQ_RB_ROOT;
3984         RB_CLEAR_NODE(&cfqg->rb_node);
3985
3986         /* Give preference to root group over other groups */
3987         cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3988
3989 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3990         /*
3991          * Set root group reference to 2. One reference will be dropped when
3992          * all groups on cfqd->cfqg_list are being deleted during queue exit.
3993          * Other reference will remain there as we don't want to delete this
3994          * group as it is statically allocated and gets destroyed when
3995          * throtl_data goes away.
3996          */
3997         cfqg->ref = 2;
3998         rcu_read_lock();
3999         cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
4000                                         (void *)cfqd, 0);
4001         rcu_read_unlock();
4002         cfqd->nr_blkcg_linked_grps++;
4003
4004         /* Add group on cfqd->cfqg_list */
4005         hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
4006 #endif
4007         /*
4008          * Not strictly needed (since RB_ROOT just clears the node and we
4009          * zeroed cfqd on alloc), but better be safe in case someone decides
4010          * to add magic to the rb code
4011          */
4012         for (i = 0; i < CFQ_PRIO_LISTS; i++)
4013                 cfqd->prio_trees[i] = RB_ROOT;
4014
4015         /*
4016          * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
4017          * Grab a permanent reference to it, so that the normal code flow
4018          * will not attempt to free it.
4019          */
4020         cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4021         cfqd->oom_cfqq.ref++;
4022         cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
4023
4024         INIT_LIST_HEAD(&cfqd->cic_list);
4025
4026         cfqd->queue = q;
4027
4028         init_timer(&cfqd->idle_slice_timer);
4029         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4030         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4031
4032         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4033
4034         cfqd->cfq_quantum = cfq_quantum;
4035         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4036         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4037         cfqd->cfq_back_max = cfq_back_max;
4038         cfqd->cfq_back_penalty = cfq_back_penalty;
4039         cfqd->cfq_slice[0] = cfq_slice_async;
4040         cfqd->cfq_slice[1] = cfq_slice_sync;
4041         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4042         cfqd->cfq_slice_idle = cfq_slice_idle;
4043         cfqd->cfq_group_idle = cfq_group_idle;
4044         cfqd->cfq_latency = 1;
4045         cfqd->hw_tag = -1;
4046         /*
4047          * we optimistically start assuming sync ops weren't delayed in last
4048          * second, in order to have larger depth for async operations.
4049          */
4050         cfqd->last_delayed_sync = jiffies - HZ;
4051         return cfqd;
4052 }
4053
4054 static void cfq_slab_kill(void)
4055 {
4056         /*
4057          * Caller already ensured that pending RCU callbacks are completed,
4058          * so we should have no busy allocations at this point.
4059          */
4060         if (cfq_pool)
4061                 kmem_cache_destroy(cfq_pool);
4062         if (cfq_ioc_pool)
4063                 kmem_cache_destroy(cfq_ioc_pool);
4064 }
4065
4066 static int __init cfq_slab_setup(void)
4067 {
4068         cfq_pool = KMEM_CACHE(cfq_queue, 0);
4069         if (!cfq_pool)
4070                 goto fail;
4071
4072         cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
4073         if (!cfq_ioc_pool)
4074                 goto fail;
4075
4076         return 0;
4077 fail:
4078         cfq_slab_kill();
4079         return -ENOMEM;
4080 }
4081
4082 /*
4083  * sysfs parts below -->
4084  */
4085 static ssize_t
4086 cfq_var_show(unsigned int var, char *page)
4087 {
4088         return sprintf(page, "%d\n", var);
4089 }
4090
4091 static ssize_t
4092 cfq_var_store(unsigned int *var, const char *page, size_t count)
4093 {
4094         char *p = (char *) page;
4095
4096         *var = simple_strtoul(p, &p, 10);
4097         return count;
4098 }
4099
4100 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
4101 static ssize_t __FUNC(struct elevator_queue *e, char *page)             \
4102 {                                                                       \
4103         struct cfq_data *cfqd = e->elevator_data;                       \
4104         unsigned int __data = __VAR;                                    \
4105         if (__CONV)                                                     \
4106                 __data = jiffies_to_msecs(__data);                      \
4107         return cfq_var_show(__data, (page));                            \
4108 }
4109 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4110 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4111 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4112 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4113 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4114 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4115 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4116 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4117 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4118 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4119 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4120 #undef SHOW_FUNCTION
4121
4122 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
4123 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4124 {                                                                       \
4125         struct cfq_data *cfqd = e->elevator_data;                       \
4126         unsigned int __data;                                            \
4127         int ret = cfq_var_store(&__data, (page), count);                \
4128         if (__data < (MIN))                                             \
4129                 __data = (MIN);                                         \
4130         else if (__data > (MAX))                                        \
4131                 __data = (MAX);                                         \
4132         if (__CONV)                                                     \
4133                 *(__PTR) = msecs_to_jiffies(__data);                    \
4134         else                                                            \
4135                 *(__PTR) = __data;                                      \
4136         return ret;                                                     \
4137 }
4138 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4139 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4140                 UINT_MAX, 1);
4141 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4142                 UINT_MAX, 1);
4143 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4144 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4145                 UINT_MAX, 0);
4146 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4147 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4148 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4149 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4150 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4151                 UINT_MAX, 0);
4152 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4153 #undef STORE_FUNCTION
4154
4155 #define CFQ_ATTR(name) \
4156         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4157
4158 static struct elv_fs_entry cfq_attrs[] = {
4159         CFQ_ATTR(quantum),
4160         CFQ_ATTR(fifo_expire_sync),
4161         CFQ_ATTR(fifo_expire_async),
4162         CFQ_ATTR(back_seek_max),
4163         CFQ_ATTR(back_seek_penalty),
4164         CFQ_ATTR(slice_sync),
4165         CFQ_ATTR(slice_async),
4166         CFQ_ATTR(slice_async_rq),
4167         CFQ_ATTR(slice_idle),
4168         CFQ_ATTR(group_idle),
4169         CFQ_ATTR(low_latency),
4170         __ATTR_NULL
4171 };
4172
4173 static struct elevator_type iosched_cfq = {
4174         .ops = {
4175                 .elevator_merge_fn =            cfq_merge,
4176                 .elevator_merged_fn =           cfq_merged_request,
4177                 .elevator_merge_req_fn =        cfq_merged_requests,
4178                 .elevator_allow_merge_fn =      cfq_allow_merge,
4179                 .elevator_bio_merged_fn =       cfq_bio_merged,
4180                 .elevator_dispatch_fn =         cfq_dispatch_requests,
4181                 .elevator_add_req_fn =          cfq_insert_request,
4182                 .elevator_activate_req_fn =     cfq_activate_request,
4183                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
4184                 .elevator_completed_req_fn =    cfq_completed_request,
4185                 .elevator_former_req_fn =       elv_rb_former_request,
4186                 .elevator_latter_req_fn =       elv_rb_latter_request,
4187                 .elevator_set_req_fn =          cfq_set_request,
4188                 .elevator_put_req_fn =          cfq_put_request,
4189                 .elevator_may_queue_fn =        cfq_may_queue,
4190                 .elevator_init_fn =             cfq_init_queue,
4191                 .elevator_exit_fn =             cfq_exit_queue,
4192                 .trim =                         cfq_free_io_context,
4193         },
4194         .elevator_attrs =       cfq_attrs,
4195         .elevator_name =        "cfq",
4196         .elevator_owner =       THIS_MODULE,
4197 };
4198
4199 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4200 static struct blkio_policy_type blkio_policy_cfq = {
4201         .ops = {
4202                 .blkio_unlink_group_fn =        cfq_unlink_blkio_group,
4203                 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
4204         },
4205         .plid = BLKIO_POLICY_PROP,
4206 };
4207 #else
4208 static struct blkio_policy_type blkio_policy_cfq;
4209 #endif
4210
4211 static int __init cfq_init(void)
4212 {
4213         /*
4214          * could be 0 on HZ < 1000 setups
4215          */
4216         if (!cfq_slice_async)
4217                 cfq_slice_async = 1;
4218         if (!cfq_slice_idle)
4219                 cfq_slice_idle = 1;
4220
4221 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4222         if (!cfq_group_idle)
4223                 cfq_group_idle = 1;
4224 #else
4225                 cfq_group_idle = 0;
4226 #endif
4227         if (cfq_slab_setup())
4228                 return -ENOMEM;
4229
4230         elv_register(&iosched_cfq);
4231         blkio_policy_register(&blkio_policy_cfq);
4232
4233         return 0;
4234 }
4235
4236 static void __exit cfq_exit(void)
4237 {
4238         DECLARE_COMPLETION_ONSTACK(all_gone);
4239         blkio_policy_unregister(&blkio_policy_cfq);
4240         elv_unregister(&iosched_cfq);
4241         ioc_gone = &all_gone;
4242         /* ioc_gone's update must be visible before reading ioc_count */
4243         smp_wmb();
4244
4245         /*
4246          * this also protects us from entering cfq_slab_kill() with
4247          * pending RCU callbacks
4248          */
4249         if (elv_ioc_count_read(cfq_ioc_count))
4250                 wait_for_completion(&all_gone);
4251         ida_destroy(&cic_index_ida);
4252         cfq_slab_kill();
4253 }
4254
4255 module_init(cfq_init);
4256 module_exit(cfq_exit);
4257
4258 MODULE_AUTHOR("Jens Axboe");
4259 MODULE_LICENSE("GPL");
4260 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");