blk-throttle: Move the list operation after list validation
[platform/kernel/linux-rpi.git] / block / blk-throttle.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Interface for controlling IO bandwidth on a request queue
4  *
5  * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
6  */
7
8 #include <linux/module.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/bio.h>
12 #include <linux/blktrace_api.h>
13 #include <linux/blk-cgroup.h>
14 #include "blk.h"
15 #include "blk-cgroup-rwstat.h"
16
17 /* Max dispatch from a group in 1 round */
18 #define THROTL_GRP_QUANTUM 8
19
20 /* Total max dispatch from all groups in one round */
21 #define THROTL_QUANTUM 32
22
23 /* Throttling is performed over a slice and after that slice is renewed */
24 #define DFL_THROTL_SLICE_HD (HZ / 10)
25 #define DFL_THROTL_SLICE_SSD (HZ / 50)
26 #define MAX_THROTL_SLICE (HZ)
27 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
28 #define MIN_THROTL_BPS (320 * 1024)
29 #define MIN_THROTL_IOPS (10)
30 #define DFL_LATENCY_TARGET (-1L)
31 #define DFL_IDLE_THRESHOLD (0)
32 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
33 #define LATENCY_FILTERED_SSD (0)
34 /*
35  * For HD, very small latency comes from sequential IO. Such IO is helpless to
36  * help determine if its IO is impacted by others, hence we ignore the IO
37  */
38 #define LATENCY_FILTERED_HD (1000L) /* 1ms */
39
40 static struct blkcg_policy blkcg_policy_throtl;
41
42 /* A workqueue to queue throttle related work */
43 static struct workqueue_struct *kthrotld_workqueue;
44
45 /*
46  * To implement hierarchical throttling, throtl_grps form a tree and bios
47  * are dispatched upwards level by level until they reach the top and get
48  * issued.  When dispatching bios from the children and local group at each
49  * level, if the bios are dispatched into a single bio_list, there's a risk
50  * of a local or child group which can queue many bios at once filling up
51  * the list starving others.
52  *
53  * To avoid such starvation, dispatched bios are queued separately
54  * according to where they came from.  When they are again dispatched to
55  * the parent, they're popped in round-robin order so that no single source
56  * hogs the dispatch window.
57  *
58  * throtl_qnode is used to keep the queued bios separated by their sources.
59  * Bios are queued to throtl_qnode which in turn is queued to
60  * throtl_service_queue and then dispatched in round-robin order.
61  *
62  * It's also used to track the reference counts on blkg's.  A qnode always
63  * belongs to a throtl_grp and gets queued on itself or the parent, so
64  * incrementing the reference of the associated throtl_grp when a qnode is
65  * queued and decrementing when dequeued is enough to keep the whole blkg
66  * tree pinned while bios are in flight.
67  */
68 struct throtl_qnode {
69         struct list_head        node;           /* service_queue->queued[] */
70         struct bio_list         bios;           /* queued bios */
71         struct throtl_grp       *tg;            /* tg this qnode belongs to */
72 };
73
74 struct throtl_service_queue {
75         struct throtl_service_queue *parent_sq; /* the parent service_queue */
76
77         /*
78          * Bios queued directly to this service_queue or dispatched from
79          * children throtl_grp's.
80          */
81         struct list_head        queued[2];      /* throtl_qnode [READ/WRITE] */
82         unsigned int            nr_queued[2];   /* number of queued bios */
83
84         /*
85          * RB tree of active children throtl_grp's, which are sorted by
86          * their ->disptime.
87          */
88         struct rb_root_cached   pending_tree;   /* RB tree of active tgs */
89         unsigned int            nr_pending;     /* # queued in the tree */
90         unsigned long           first_pending_disptime; /* disptime of the first tg */
91         struct timer_list       pending_timer;  /* fires on first_pending_disptime */
92 };
93
94 enum tg_state_flags {
95         THROTL_TG_PENDING       = 1 << 0,       /* on parent's pending tree */
96         THROTL_TG_WAS_EMPTY     = 1 << 1,       /* bio_lists[] became non-empty */
97 };
98
99 #define rb_entry_tg(node)       rb_entry((node), struct throtl_grp, rb_node)
100
101 enum {
102         LIMIT_LOW,
103         LIMIT_MAX,
104         LIMIT_CNT,
105 };
106
107 struct throtl_grp {
108         /* must be the first member */
109         struct blkg_policy_data pd;
110
111         /* active throtl group service_queue member */
112         struct rb_node rb_node;
113
114         /* throtl_data this group belongs to */
115         struct throtl_data *td;
116
117         /* this group's service queue */
118         struct throtl_service_queue service_queue;
119
120         /*
121          * qnode_on_self is used when bios are directly queued to this
122          * throtl_grp so that local bios compete fairly with bios
123          * dispatched from children.  qnode_on_parent is used when bios are
124          * dispatched from this throtl_grp into its parent and will compete
125          * with the sibling qnode_on_parents and the parent's
126          * qnode_on_self.
127          */
128         struct throtl_qnode qnode_on_self[2];
129         struct throtl_qnode qnode_on_parent[2];
130
131         /*
132          * Dispatch time in jiffies. This is the estimated time when group
133          * will unthrottle and is ready to dispatch more bio. It is used as
134          * key to sort active groups in service tree.
135          */
136         unsigned long disptime;
137
138         unsigned int flags;
139
140         /* are there any throtl rules between this group and td? */
141         bool has_rules[2];
142
143         /* internally used bytes per second rate limits */
144         uint64_t bps[2][LIMIT_CNT];
145         /* user configured bps limits */
146         uint64_t bps_conf[2][LIMIT_CNT];
147
148         /* internally used IOPS limits */
149         unsigned int iops[2][LIMIT_CNT];
150         /* user configured IOPS limits */
151         unsigned int iops_conf[2][LIMIT_CNT];
152
153         /* Number of bytes dispatched in current slice */
154         uint64_t bytes_disp[2];
155         /* Number of bio's dispatched in current slice */
156         unsigned int io_disp[2];
157
158         unsigned long last_low_overflow_time[2];
159
160         uint64_t last_bytes_disp[2];
161         unsigned int last_io_disp[2];
162
163         unsigned long last_check_time;
164
165         unsigned long latency_target; /* us */
166         unsigned long latency_target_conf; /* us */
167         /* When did we start a new slice */
168         unsigned long slice_start[2];
169         unsigned long slice_end[2];
170
171         unsigned long last_finish_time; /* ns / 1024 */
172         unsigned long checked_last_finish_time; /* ns / 1024 */
173         unsigned long avg_idletime; /* ns / 1024 */
174         unsigned long idletime_threshold; /* us */
175         unsigned long idletime_threshold_conf; /* us */
176
177         unsigned int bio_cnt; /* total bios */
178         unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
179         unsigned long bio_cnt_reset_time;
180
181         struct blkg_rwstat stat_bytes;
182         struct blkg_rwstat stat_ios;
183 };
184
185 /* We measure latency for request size from <= 4k to >= 1M */
186 #define LATENCY_BUCKET_SIZE 9
187
188 struct latency_bucket {
189         unsigned long total_latency; /* ns / 1024 */
190         int samples;
191 };
192
193 struct avg_latency_bucket {
194         unsigned long latency; /* ns / 1024 */
195         bool valid;
196 };
197
198 struct throtl_data
199 {
200         /* service tree for active throtl groups */
201         struct throtl_service_queue service_queue;
202
203         struct request_queue *queue;
204
205         /* Total Number of queued bios on READ and WRITE lists */
206         unsigned int nr_queued[2];
207
208         unsigned int throtl_slice;
209
210         /* Work for dispatching throttled bios */
211         struct work_struct dispatch_work;
212         unsigned int limit_index;
213         bool limit_valid[LIMIT_CNT];
214
215         unsigned long low_upgrade_time;
216         unsigned long low_downgrade_time;
217
218         unsigned int scale;
219
220         struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
221         struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
222         struct latency_bucket __percpu *latency_buckets[2];
223         unsigned long last_calculate_time;
224         unsigned long filtered_latency;
225
226         bool track_bio_latency;
227 };
228
229 static void throtl_pending_timer_fn(struct timer_list *t);
230
231 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
232 {
233         return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
234 }
235
236 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
237 {
238         return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
239 }
240
241 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
242 {
243         return pd_to_blkg(&tg->pd);
244 }
245
246 /**
247  * sq_to_tg - return the throl_grp the specified service queue belongs to
248  * @sq: the throtl_service_queue of interest
249  *
250  * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
251  * embedded in throtl_data, %NULL is returned.
252  */
253 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
254 {
255         if (sq && sq->parent_sq)
256                 return container_of(sq, struct throtl_grp, service_queue);
257         else
258                 return NULL;
259 }
260
261 /**
262  * sq_to_td - return throtl_data the specified service queue belongs to
263  * @sq: the throtl_service_queue of interest
264  *
265  * A service_queue can be embedded in either a throtl_grp or throtl_data.
266  * Determine the associated throtl_data accordingly and return it.
267  */
268 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
269 {
270         struct throtl_grp *tg = sq_to_tg(sq);
271
272         if (tg)
273                 return tg->td;
274         else
275                 return container_of(sq, struct throtl_data, service_queue);
276 }
277
278 /*
279  * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
280  * make the IO dispatch more smooth.
281  * Scale up: linearly scale up according to lapsed time since upgrade. For
282  *           every throtl_slice, the limit scales up 1/2 .low limit till the
283  *           limit hits .max limit
284  * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
285  */
286 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
287 {
288         /* arbitrary value to avoid too big scale */
289         if (td->scale < 4096 && time_after_eq(jiffies,
290             td->low_upgrade_time + td->scale * td->throtl_slice))
291                 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
292
293         return low + (low >> 1) * td->scale;
294 }
295
296 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
297 {
298         struct blkcg_gq *blkg = tg_to_blkg(tg);
299         struct throtl_data *td;
300         uint64_t ret;
301
302         if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
303                 return U64_MAX;
304
305         td = tg->td;
306         ret = tg->bps[rw][td->limit_index];
307         if (ret == 0 && td->limit_index == LIMIT_LOW) {
308                 /* intermediate node or iops isn't 0 */
309                 if (!list_empty(&blkg->blkcg->css.children) ||
310                     tg->iops[rw][td->limit_index])
311                         return U64_MAX;
312                 else
313                         return MIN_THROTL_BPS;
314         }
315
316         if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
317             tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
318                 uint64_t adjusted;
319
320                 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
321                 ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
322         }
323         return ret;
324 }
325
326 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
327 {
328         struct blkcg_gq *blkg = tg_to_blkg(tg);
329         struct throtl_data *td;
330         unsigned int ret;
331
332         if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
333                 return UINT_MAX;
334
335         td = tg->td;
336         ret = tg->iops[rw][td->limit_index];
337         if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
338                 /* intermediate node or bps isn't 0 */
339                 if (!list_empty(&blkg->blkcg->css.children) ||
340                     tg->bps[rw][td->limit_index])
341                         return UINT_MAX;
342                 else
343                         return MIN_THROTL_IOPS;
344         }
345
346         if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
347             tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
348                 uint64_t adjusted;
349
350                 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
351                 if (adjusted > UINT_MAX)
352                         adjusted = UINT_MAX;
353                 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
354         }
355         return ret;
356 }
357
358 #define request_bucket_index(sectors) \
359         clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
360
361 /**
362  * throtl_log - log debug message via blktrace
363  * @sq: the service_queue being reported
364  * @fmt: printf format string
365  * @args: printf args
366  *
367  * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
368  * throtl_grp; otherwise, just "throtl".
369  */
370 #define throtl_log(sq, fmt, args...)    do {                            \
371         struct throtl_grp *__tg = sq_to_tg((sq));                       \
372         struct throtl_data *__td = sq_to_td((sq));                      \
373                                                                         \
374         (void)__td;                                                     \
375         if (likely(!blk_trace_note_message_enabled(__td->queue)))       \
376                 break;                                                  \
377         if ((__tg)) {                                                   \
378                 blk_add_cgroup_trace_msg(__td->queue,                   \
379                         tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\
380         } else {                                                        \
381                 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);  \
382         }                                                               \
383 } while (0)
384
385 static inline unsigned int throtl_bio_data_size(struct bio *bio)
386 {
387         /* assume it's one sector */
388         if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
389                 return 512;
390         return bio->bi_iter.bi_size;
391 }
392
393 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
394 {
395         INIT_LIST_HEAD(&qn->node);
396         bio_list_init(&qn->bios);
397         qn->tg = tg;
398 }
399
400 /**
401  * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
402  * @bio: bio being added
403  * @qn: qnode to add bio to
404  * @queued: the service_queue->queued[] list @qn belongs to
405  *
406  * Add @bio to @qn and put @qn on @queued if it's not already on.
407  * @qn->tg's reference count is bumped when @qn is activated.  See the
408  * comment on top of throtl_qnode definition for details.
409  */
410 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
411                                  struct list_head *queued)
412 {
413         bio_list_add(&qn->bios, bio);
414         if (list_empty(&qn->node)) {
415                 list_add_tail(&qn->node, queued);
416                 blkg_get(tg_to_blkg(qn->tg));
417         }
418 }
419
420 /**
421  * throtl_peek_queued - peek the first bio on a qnode list
422  * @queued: the qnode list to peek
423  */
424 static struct bio *throtl_peek_queued(struct list_head *queued)
425 {
426         struct throtl_qnode *qn;
427         struct bio *bio;
428
429         if (list_empty(queued))
430                 return NULL;
431
432         qn = list_first_entry(queued, struct throtl_qnode, node);
433         bio = bio_list_peek(&qn->bios);
434         WARN_ON_ONCE(!bio);
435         return bio;
436 }
437
438 /**
439  * throtl_pop_queued - pop the first bio form a qnode list
440  * @queued: the qnode list to pop a bio from
441  * @tg_to_put: optional out argument for throtl_grp to put
442  *
443  * Pop the first bio from the qnode list @queued.  After popping, the first
444  * qnode is removed from @queued if empty or moved to the end of @queued so
445  * that the popping order is round-robin.
446  *
447  * When the first qnode is removed, its associated throtl_grp should be put
448  * too.  If @tg_to_put is NULL, this function automatically puts it;
449  * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
450  * responsible for putting it.
451  */
452 static struct bio *throtl_pop_queued(struct list_head *queued,
453                                      struct throtl_grp **tg_to_put)
454 {
455         struct throtl_qnode *qn;
456         struct bio *bio;
457
458         if (list_empty(queued))
459                 return NULL;
460
461         qn = list_first_entry(queued, struct throtl_qnode, node);
462         bio = bio_list_pop(&qn->bios);
463         WARN_ON_ONCE(!bio);
464
465         if (bio_list_empty(&qn->bios)) {
466                 list_del_init(&qn->node);
467                 if (tg_to_put)
468                         *tg_to_put = qn->tg;
469                 else
470                         blkg_put(tg_to_blkg(qn->tg));
471         } else {
472                 list_move_tail(&qn->node, queued);
473         }
474
475         return bio;
476 }
477
478 /* init a service_queue, assumes the caller zeroed it */
479 static void throtl_service_queue_init(struct throtl_service_queue *sq)
480 {
481         INIT_LIST_HEAD(&sq->queued[0]);
482         INIT_LIST_HEAD(&sq->queued[1]);
483         sq->pending_tree = RB_ROOT_CACHED;
484         timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
485 }
486
487 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp,
488                                                 struct request_queue *q,
489                                                 struct blkcg *blkcg)
490 {
491         struct throtl_grp *tg;
492         int rw;
493
494         tg = kzalloc_node(sizeof(*tg), gfp, q->node);
495         if (!tg)
496                 return NULL;
497
498         if (blkg_rwstat_init(&tg->stat_bytes, gfp))
499                 goto err_free_tg;
500
501         if (blkg_rwstat_init(&tg->stat_ios, gfp))
502                 goto err_exit_stat_bytes;
503
504         throtl_service_queue_init(&tg->service_queue);
505
506         for (rw = READ; rw <= WRITE; rw++) {
507                 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
508                 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
509         }
510
511         RB_CLEAR_NODE(&tg->rb_node);
512         tg->bps[READ][LIMIT_MAX] = U64_MAX;
513         tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
514         tg->iops[READ][LIMIT_MAX] = UINT_MAX;
515         tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
516         tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
517         tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
518         tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
519         tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
520         /* LIMIT_LOW will have default value 0 */
521
522         tg->latency_target = DFL_LATENCY_TARGET;
523         tg->latency_target_conf = DFL_LATENCY_TARGET;
524         tg->idletime_threshold = DFL_IDLE_THRESHOLD;
525         tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
526
527         return &tg->pd;
528
529 err_exit_stat_bytes:
530         blkg_rwstat_exit(&tg->stat_bytes);
531 err_free_tg:
532         kfree(tg);
533         return NULL;
534 }
535
536 static void throtl_pd_init(struct blkg_policy_data *pd)
537 {
538         struct throtl_grp *tg = pd_to_tg(pd);
539         struct blkcg_gq *blkg = tg_to_blkg(tg);
540         struct throtl_data *td = blkg->q->td;
541         struct throtl_service_queue *sq = &tg->service_queue;
542
543         /*
544          * If on the default hierarchy, we switch to properly hierarchical
545          * behavior where limits on a given throtl_grp are applied to the
546          * whole subtree rather than just the group itself.  e.g. If 16M
547          * read_bps limit is set on the root group, the whole system can't
548          * exceed 16M for the device.
549          *
550          * If not on the default hierarchy, the broken flat hierarchy
551          * behavior is retained where all throtl_grps are treated as if
552          * they're all separate root groups right below throtl_data.
553          * Limits of a group don't interact with limits of other groups
554          * regardless of the position of the group in the hierarchy.
555          */
556         sq->parent_sq = &td->service_queue;
557         if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
558                 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
559         tg->td = td;
560 }
561
562 /*
563  * Set has_rules[] if @tg or any of its parents have limits configured.
564  * This doesn't require walking up to the top of the hierarchy as the
565  * parent's has_rules[] is guaranteed to be correct.
566  */
567 static void tg_update_has_rules(struct throtl_grp *tg)
568 {
569         struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
570         struct throtl_data *td = tg->td;
571         int rw;
572
573         for (rw = READ; rw <= WRITE; rw++)
574                 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
575                         (td->limit_valid[td->limit_index] &&
576                          (tg_bps_limit(tg, rw) != U64_MAX ||
577                           tg_iops_limit(tg, rw) != UINT_MAX));
578 }
579
580 static void throtl_pd_online(struct blkg_policy_data *pd)
581 {
582         struct throtl_grp *tg = pd_to_tg(pd);
583         /*
584          * We don't want new groups to escape the limits of its ancestors.
585          * Update has_rules[] after a new group is brought online.
586          */
587         tg_update_has_rules(tg);
588 }
589
590 static void blk_throtl_update_limit_valid(struct throtl_data *td)
591 {
592         struct cgroup_subsys_state *pos_css;
593         struct blkcg_gq *blkg;
594         bool low_valid = false;
595
596         rcu_read_lock();
597         blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
598                 struct throtl_grp *tg = blkg_to_tg(blkg);
599
600                 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
601                     tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
602                         low_valid = true;
603                         break;
604                 }
605         }
606         rcu_read_unlock();
607
608         td->limit_valid[LIMIT_LOW] = low_valid;
609 }
610
611 static void throtl_upgrade_state(struct throtl_data *td);
612 static void throtl_pd_offline(struct blkg_policy_data *pd)
613 {
614         struct throtl_grp *tg = pd_to_tg(pd);
615
616         tg->bps[READ][LIMIT_LOW] = 0;
617         tg->bps[WRITE][LIMIT_LOW] = 0;
618         tg->iops[READ][LIMIT_LOW] = 0;
619         tg->iops[WRITE][LIMIT_LOW] = 0;
620
621         blk_throtl_update_limit_valid(tg->td);
622
623         if (!tg->td->limit_valid[tg->td->limit_index])
624                 throtl_upgrade_state(tg->td);
625 }
626
627 static void throtl_pd_free(struct blkg_policy_data *pd)
628 {
629         struct throtl_grp *tg = pd_to_tg(pd);
630
631         del_timer_sync(&tg->service_queue.pending_timer);
632         blkg_rwstat_exit(&tg->stat_bytes);
633         blkg_rwstat_exit(&tg->stat_ios);
634         kfree(tg);
635 }
636
637 static struct throtl_grp *
638 throtl_rb_first(struct throtl_service_queue *parent_sq)
639 {
640         struct rb_node *n;
641         /* Service tree is empty */
642         if (!parent_sq->nr_pending)
643                 return NULL;
644
645         n = rb_first_cached(&parent_sq->pending_tree);
646         WARN_ON_ONCE(!n);
647         if (!n)
648                 return NULL;
649         return rb_entry_tg(n);
650 }
651
652 static void throtl_rb_erase(struct rb_node *n,
653                             struct throtl_service_queue *parent_sq)
654 {
655         rb_erase_cached(n, &parent_sq->pending_tree);
656         RB_CLEAR_NODE(n);
657         --parent_sq->nr_pending;
658 }
659
660 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
661 {
662         struct throtl_grp *tg;
663
664         tg = throtl_rb_first(parent_sq);
665         if (!tg)
666                 return;
667
668         parent_sq->first_pending_disptime = tg->disptime;
669 }
670
671 static void tg_service_queue_add(struct throtl_grp *tg)
672 {
673         struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
674         struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node;
675         struct rb_node *parent = NULL;
676         struct throtl_grp *__tg;
677         unsigned long key = tg->disptime;
678         bool leftmost = true;
679
680         while (*node != NULL) {
681                 parent = *node;
682                 __tg = rb_entry_tg(parent);
683
684                 if (time_before(key, __tg->disptime))
685                         node = &parent->rb_left;
686                 else {
687                         node = &parent->rb_right;
688                         leftmost = false;
689                 }
690         }
691
692         rb_link_node(&tg->rb_node, parent, node);
693         rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree,
694                                leftmost);
695 }
696
697 static void __throtl_enqueue_tg(struct throtl_grp *tg)
698 {
699         tg_service_queue_add(tg);
700         tg->flags |= THROTL_TG_PENDING;
701         tg->service_queue.parent_sq->nr_pending++;
702 }
703
704 static void throtl_enqueue_tg(struct throtl_grp *tg)
705 {
706         if (!(tg->flags & THROTL_TG_PENDING))
707                 __throtl_enqueue_tg(tg);
708 }
709
710 static void __throtl_dequeue_tg(struct throtl_grp *tg)
711 {
712         throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
713         tg->flags &= ~THROTL_TG_PENDING;
714 }
715
716 static void throtl_dequeue_tg(struct throtl_grp *tg)
717 {
718         if (tg->flags & THROTL_TG_PENDING)
719                 __throtl_dequeue_tg(tg);
720 }
721
722 /* Call with queue lock held */
723 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
724                                           unsigned long expires)
725 {
726         unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
727
728         /*
729          * Since we are adjusting the throttle limit dynamically, the sleep
730          * time calculated according to previous limit might be invalid. It's
731          * possible the cgroup sleep time is very long and no other cgroups
732          * have IO running so notify the limit changes. Make sure the cgroup
733          * doesn't sleep too long to avoid the missed notification.
734          */
735         if (time_after(expires, max_expire))
736                 expires = max_expire;
737         mod_timer(&sq->pending_timer, expires);
738         throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
739                    expires - jiffies, jiffies);
740 }
741
742 /**
743  * throtl_schedule_next_dispatch - schedule the next dispatch cycle
744  * @sq: the service_queue to schedule dispatch for
745  * @force: force scheduling
746  *
747  * Arm @sq->pending_timer so that the next dispatch cycle starts on the
748  * dispatch time of the first pending child.  Returns %true if either timer
749  * is armed or there's no pending child left.  %false if the current
750  * dispatch window is still open and the caller should continue
751  * dispatching.
752  *
753  * If @force is %true, the dispatch timer is always scheduled and this
754  * function is guaranteed to return %true.  This is to be used when the
755  * caller can't dispatch itself and needs to invoke pending_timer
756  * unconditionally.  Note that forced scheduling is likely to induce short
757  * delay before dispatch starts even if @sq->first_pending_disptime is not
758  * in the future and thus shouldn't be used in hot paths.
759  */
760 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
761                                           bool force)
762 {
763         /* any pending children left? */
764         if (!sq->nr_pending)
765                 return true;
766
767         update_min_dispatch_time(sq);
768
769         /* is the next dispatch time in the future? */
770         if (force || time_after(sq->first_pending_disptime, jiffies)) {
771                 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
772                 return true;
773         }
774
775         /* tell the caller to continue dispatching */
776         return false;
777 }
778
779 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
780                 bool rw, unsigned long start)
781 {
782         tg->bytes_disp[rw] = 0;
783         tg->io_disp[rw] = 0;
784
785         /*
786          * Previous slice has expired. We must have trimmed it after last
787          * bio dispatch. That means since start of last slice, we never used
788          * that bandwidth. Do try to make use of that bandwidth while giving
789          * credit.
790          */
791         if (time_after_eq(start, tg->slice_start[rw]))
792                 tg->slice_start[rw] = start;
793
794         tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
795         throtl_log(&tg->service_queue,
796                    "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
797                    rw == READ ? 'R' : 'W', tg->slice_start[rw],
798                    tg->slice_end[rw], jiffies);
799 }
800
801 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
802 {
803         tg->bytes_disp[rw] = 0;
804         tg->io_disp[rw] = 0;
805         tg->slice_start[rw] = jiffies;
806         tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
807         throtl_log(&tg->service_queue,
808                    "[%c] new slice start=%lu end=%lu jiffies=%lu",
809                    rw == READ ? 'R' : 'W', tg->slice_start[rw],
810                    tg->slice_end[rw], jiffies);
811 }
812
813 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
814                                         unsigned long jiffy_end)
815 {
816         tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
817 }
818
819 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
820                                        unsigned long jiffy_end)
821 {
822         tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
823         throtl_log(&tg->service_queue,
824                    "[%c] extend slice start=%lu end=%lu jiffies=%lu",
825                    rw == READ ? 'R' : 'W', tg->slice_start[rw],
826                    tg->slice_end[rw], jiffies);
827 }
828
829 /* Determine if previously allocated or extended slice is complete or not */
830 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
831 {
832         if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
833                 return false;
834
835         return true;
836 }
837
838 /* Trim the used slices and adjust slice start accordingly */
839 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
840 {
841         unsigned long nr_slices, time_elapsed, io_trim;
842         u64 bytes_trim, tmp;
843
844         BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
845
846         /*
847          * If bps are unlimited (-1), then time slice don't get
848          * renewed. Don't try to trim the slice if slice is used. A new
849          * slice will start when appropriate.
850          */
851         if (throtl_slice_used(tg, rw))
852                 return;
853
854         /*
855          * A bio has been dispatched. Also adjust slice_end. It might happen
856          * that initially cgroup limit was very low resulting in high
857          * slice_end, but later limit was bumped up and bio was dispatched
858          * sooner, then we need to reduce slice_end. A high bogus slice_end
859          * is bad because it does not allow new slice to start.
860          */
861
862         throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
863
864         time_elapsed = jiffies - tg->slice_start[rw];
865
866         nr_slices = time_elapsed / tg->td->throtl_slice;
867
868         if (!nr_slices)
869                 return;
870         tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
871         do_div(tmp, HZ);
872         bytes_trim = tmp;
873
874         io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
875                 HZ;
876
877         if (!bytes_trim && !io_trim)
878                 return;
879
880         if (tg->bytes_disp[rw] >= bytes_trim)
881                 tg->bytes_disp[rw] -= bytes_trim;
882         else
883                 tg->bytes_disp[rw] = 0;
884
885         if (tg->io_disp[rw] >= io_trim)
886                 tg->io_disp[rw] -= io_trim;
887         else
888                 tg->io_disp[rw] = 0;
889
890         tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
891
892         throtl_log(&tg->service_queue,
893                    "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
894                    rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
895                    tg->slice_start[rw], tg->slice_end[rw], jiffies);
896 }
897
898 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
899                                   u32 iops_limit, unsigned long *wait)
900 {
901         bool rw = bio_data_dir(bio);
902         unsigned int io_allowed;
903         unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
904         u64 tmp;
905
906         if (iops_limit == UINT_MAX) {
907                 if (wait)
908                         *wait = 0;
909                 return true;
910         }
911
912         jiffy_elapsed = jiffies - tg->slice_start[rw];
913
914         /* Round up to the next throttle slice, wait time must be nonzero */
915         jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
916
917         /*
918          * jiffy_elapsed_rnd should not be a big value as minimum iops can be
919          * 1 then at max jiffy elapsed should be equivalent of 1 second as we
920          * will allow dispatch after 1 second and after that slice should
921          * have been trimmed.
922          */
923
924         tmp = (u64)iops_limit * jiffy_elapsed_rnd;
925         do_div(tmp, HZ);
926
927         if (tmp > UINT_MAX)
928                 io_allowed = UINT_MAX;
929         else
930                 io_allowed = tmp;
931
932         if (tg->io_disp[rw] + 1 <= io_allowed) {
933                 if (wait)
934                         *wait = 0;
935                 return true;
936         }
937
938         /* Calc approx time to dispatch */
939         jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
940
941         if (wait)
942                 *wait = jiffy_wait;
943         return false;
944 }
945
946 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
947                                  u64 bps_limit, unsigned long *wait)
948 {
949         bool rw = bio_data_dir(bio);
950         u64 bytes_allowed, extra_bytes, tmp;
951         unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
952         unsigned int bio_size = throtl_bio_data_size(bio);
953
954         if (bps_limit == U64_MAX) {
955                 if (wait)
956                         *wait = 0;
957                 return true;
958         }
959
960         jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
961
962         /* Slice has just started. Consider one slice interval */
963         if (!jiffy_elapsed)
964                 jiffy_elapsed_rnd = tg->td->throtl_slice;
965
966         jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
967
968         tmp = bps_limit * jiffy_elapsed_rnd;
969         do_div(tmp, HZ);
970         bytes_allowed = tmp;
971
972         if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
973                 if (wait)
974                         *wait = 0;
975                 return true;
976         }
977
978         /* Calc approx time to dispatch */
979         extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
980         jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit);
981
982         if (!jiffy_wait)
983                 jiffy_wait = 1;
984
985         /*
986          * This wait time is without taking into consideration the rounding
987          * up we did. Add that time also.
988          */
989         jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
990         if (wait)
991                 *wait = jiffy_wait;
992         return false;
993 }
994
995 /*
996  * Returns whether one can dispatch a bio or not. Also returns approx number
997  * of jiffies to wait before this bio is with-in IO rate and can be dispatched
998  */
999 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
1000                             unsigned long *wait)
1001 {
1002         bool rw = bio_data_dir(bio);
1003         unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
1004         u64 bps_limit = tg_bps_limit(tg, rw);
1005         u32 iops_limit = tg_iops_limit(tg, rw);
1006
1007         /*
1008          * Currently whole state machine of group depends on first bio
1009          * queued in the group bio list. So one should not be calling
1010          * this function with a different bio if there are other bios
1011          * queued.
1012          */
1013         BUG_ON(tg->service_queue.nr_queued[rw] &&
1014                bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
1015
1016         /* If tg->bps = -1, then BW is unlimited */
1017         if (bps_limit == U64_MAX && iops_limit == UINT_MAX) {
1018                 if (wait)
1019                         *wait = 0;
1020                 return true;
1021         }
1022
1023         /*
1024          * If previous slice expired, start a new one otherwise renew/extend
1025          * existing slice to make sure it is at least throtl_slice interval
1026          * long since now. New slice is started only for empty throttle group.
1027          * If there is queued bio, that means there should be an active
1028          * slice and it should be extended instead.
1029          */
1030         if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
1031                 throtl_start_new_slice(tg, rw);
1032         else {
1033                 if (time_before(tg->slice_end[rw],
1034                     jiffies + tg->td->throtl_slice))
1035                         throtl_extend_slice(tg, rw,
1036                                 jiffies + tg->td->throtl_slice);
1037         }
1038
1039         if (tg_with_in_bps_limit(tg, bio, bps_limit, &bps_wait) &&
1040             tg_with_in_iops_limit(tg, bio, iops_limit, &iops_wait)) {
1041                 if (wait)
1042                         *wait = 0;
1043                 return true;
1044         }
1045
1046         max_wait = max(bps_wait, iops_wait);
1047
1048         if (wait)
1049                 *wait = max_wait;
1050
1051         if (time_before(tg->slice_end[rw], jiffies + max_wait))
1052                 throtl_extend_slice(tg, rw, jiffies + max_wait);
1053
1054         return false;
1055 }
1056
1057 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
1058 {
1059         bool rw = bio_data_dir(bio);
1060         unsigned int bio_size = throtl_bio_data_size(bio);
1061
1062         /* Charge the bio to the group */
1063         tg->bytes_disp[rw] += bio_size;
1064         tg->io_disp[rw]++;
1065         tg->last_bytes_disp[rw] += bio_size;
1066         tg->last_io_disp[rw]++;
1067
1068         /*
1069          * BIO_THROTTLED is used to prevent the same bio to be throttled
1070          * more than once as a throttled bio will go through blk-throtl the
1071          * second time when it eventually gets issued.  Set it when a bio
1072          * is being charged to a tg.
1073          */
1074         if (!bio_flagged(bio, BIO_THROTTLED))
1075                 bio_set_flag(bio, BIO_THROTTLED);
1076 }
1077
1078 /**
1079  * throtl_add_bio_tg - add a bio to the specified throtl_grp
1080  * @bio: bio to add
1081  * @qn: qnode to use
1082  * @tg: the target throtl_grp
1083  *
1084  * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
1085  * tg->qnode_on_self[] is used.
1086  */
1087 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
1088                               struct throtl_grp *tg)
1089 {
1090         struct throtl_service_queue *sq = &tg->service_queue;
1091         bool rw = bio_data_dir(bio);
1092
1093         if (!qn)
1094                 qn = &tg->qnode_on_self[rw];
1095
1096         /*
1097          * If @tg doesn't currently have any bios queued in the same
1098          * direction, queueing @bio can change when @tg should be
1099          * dispatched.  Mark that @tg was empty.  This is automatically
1100          * cleared on the next tg_update_disptime().
1101          */
1102         if (!sq->nr_queued[rw])
1103                 tg->flags |= THROTL_TG_WAS_EMPTY;
1104
1105         throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1106
1107         sq->nr_queued[rw]++;
1108         throtl_enqueue_tg(tg);
1109 }
1110
1111 static void tg_update_disptime(struct throtl_grp *tg)
1112 {
1113         struct throtl_service_queue *sq = &tg->service_queue;
1114         unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1115         struct bio *bio;
1116
1117         bio = throtl_peek_queued(&sq->queued[READ]);
1118         if (bio)
1119                 tg_may_dispatch(tg, bio, &read_wait);
1120
1121         bio = throtl_peek_queued(&sq->queued[WRITE]);
1122         if (bio)
1123                 tg_may_dispatch(tg, bio, &write_wait);
1124
1125         min_wait = min(read_wait, write_wait);
1126         disptime = jiffies + min_wait;
1127
1128         /* Update dispatch time */
1129         throtl_dequeue_tg(tg);
1130         tg->disptime = disptime;
1131         throtl_enqueue_tg(tg);
1132
1133         /* see throtl_add_bio_tg() */
1134         tg->flags &= ~THROTL_TG_WAS_EMPTY;
1135 }
1136
1137 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1138                                         struct throtl_grp *parent_tg, bool rw)
1139 {
1140         if (throtl_slice_used(parent_tg, rw)) {
1141                 throtl_start_new_slice_with_credit(parent_tg, rw,
1142                                 child_tg->slice_start[rw]);
1143         }
1144
1145 }
1146
1147 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1148 {
1149         struct throtl_service_queue *sq = &tg->service_queue;
1150         struct throtl_service_queue *parent_sq = sq->parent_sq;
1151         struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1152         struct throtl_grp *tg_to_put = NULL;
1153         struct bio *bio;
1154
1155         /*
1156          * @bio is being transferred from @tg to @parent_sq.  Popping a bio
1157          * from @tg may put its reference and @parent_sq might end up
1158          * getting released prematurely.  Remember the tg to put and put it
1159          * after @bio is transferred to @parent_sq.
1160          */
1161         bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1162         sq->nr_queued[rw]--;
1163
1164         throtl_charge_bio(tg, bio);
1165
1166         /*
1167          * If our parent is another tg, we just need to transfer @bio to
1168          * the parent using throtl_add_bio_tg().  If our parent is
1169          * @td->service_queue, @bio is ready to be issued.  Put it on its
1170          * bio_lists[] and decrease total number queued.  The caller is
1171          * responsible for issuing these bios.
1172          */
1173         if (parent_tg) {
1174                 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1175                 start_parent_slice_with_credit(tg, parent_tg, rw);
1176         } else {
1177                 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1178                                      &parent_sq->queued[rw]);
1179                 BUG_ON(tg->td->nr_queued[rw] <= 0);
1180                 tg->td->nr_queued[rw]--;
1181         }
1182
1183         throtl_trim_slice(tg, rw);
1184
1185         if (tg_to_put)
1186                 blkg_put(tg_to_blkg(tg_to_put));
1187 }
1188
1189 static int throtl_dispatch_tg(struct throtl_grp *tg)
1190 {
1191         struct throtl_service_queue *sq = &tg->service_queue;
1192         unsigned int nr_reads = 0, nr_writes = 0;
1193         unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4;
1194         unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads;
1195         struct bio *bio;
1196
1197         /* Try to dispatch 75% READS and 25% WRITES */
1198
1199         while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1200                tg_may_dispatch(tg, bio, NULL)) {
1201
1202                 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1203                 nr_reads++;
1204
1205                 if (nr_reads >= max_nr_reads)
1206                         break;
1207         }
1208
1209         while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1210                tg_may_dispatch(tg, bio, NULL)) {
1211
1212                 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1213                 nr_writes++;
1214
1215                 if (nr_writes >= max_nr_writes)
1216                         break;
1217         }
1218
1219         return nr_reads + nr_writes;
1220 }
1221
1222 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1223 {
1224         unsigned int nr_disp = 0;
1225
1226         while (1) {
1227                 struct throtl_grp *tg = throtl_rb_first(parent_sq);
1228                 struct throtl_service_queue *sq;
1229
1230                 if (!tg)
1231                         break;
1232
1233                 if (time_before(jiffies, tg->disptime))
1234                         break;
1235
1236                 throtl_dequeue_tg(tg);
1237
1238                 nr_disp += throtl_dispatch_tg(tg);
1239
1240                 sq = &tg->service_queue;
1241                 if (sq->nr_queued[0] || sq->nr_queued[1])
1242                         tg_update_disptime(tg);
1243
1244                 if (nr_disp >= THROTL_QUANTUM)
1245                         break;
1246         }
1247
1248         return nr_disp;
1249 }
1250
1251 static bool throtl_can_upgrade(struct throtl_data *td,
1252         struct throtl_grp *this_tg);
1253 /**
1254  * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1255  * @t: the pending_timer member of the throtl_service_queue being serviced
1256  *
1257  * This timer is armed when a child throtl_grp with active bio's become
1258  * pending and queued on the service_queue's pending_tree and expires when
1259  * the first child throtl_grp should be dispatched.  This function
1260  * dispatches bio's from the children throtl_grps to the parent
1261  * service_queue.
1262  *
1263  * If the parent's parent is another throtl_grp, dispatching is propagated
1264  * by either arming its pending_timer or repeating dispatch directly.  If
1265  * the top-level service_tree is reached, throtl_data->dispatch_work is
1266  * kicked so that the ready bio's are issued.
1267  */
1268 static void throtl_pending_timer_fn(struct timer_list *t)
1269 {
1270         struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1271         struct throtl_grp *tg = sq_to_tg(sq);
1272         struct throtl_data *td = sq_to_td(sq);
1273         struct request_queue *q = td->queue;
1274         struct throtl_service_queue *parent_sq;
1275         bool dispatched;
1276         int ret;
1277
1278         spin_lock_irq(&q->queue_lock);
1279         if (throtl_can_upgrade(td, NULL))
1280                 throtl_upgrade_state(td);
1281
1282 again:
1283         parent_sq = sq->parent_sq;
1284         dispatched = false;
1285
1286         while (true) {
1287                 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1288                            sq->nr_queued[READ] + sq->nr_queued[WRITE],
1289                            sq->nr_queued[READ], sq->nr_queued[WRITE]);
1290
1291                 ret = throtl_select_dispatch(sq);
1292                 if (ret) {
1293                         throtl_log(sq, "bios disp=%u", ret);
1294                         dispatched = true;
1295                 }
1296
1297                 if (throtl_schedule_next_dispatch(sq, false))
1298                         break;
1299
1300                 /* this dispatch windows is still open, relax and repeat */
1301                 spin_unlock_irq(&q->queue_lock);
1302                 cpu_relax();
1303                 spin_lock_irq(&q->queue_lock);
1304         }
1305
1306         if (!dispatched)
1307                 goto out_unlock;
1308
1309         if (parent_sq) {
1310                 /* @parent_sq is another throl_grp, propagate dispatch */
1311                 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1312                         tg_update_disptime(tg);
1313                         if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1314                                 /* window is already open, repeat dispatching */
1315                                 sq = parent_sq;
1316                                 tg = sq_to_tg(sq);
1317                                 goto again;
1318                         }
1319                 }
1320         } else {
1321                 /* reached the top-level, queue issuing */
1322                 queue_work(kthrotld_workqueue, &td->dispatch_work);
1323         }
1324 out_unlock:
1325         spin_unlock_irq(&q->queue_lock);
1326 }
1327
1328 /**
1329  * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1330  * @work: work item being executed
1331  *
1332  * This function is queued for execution when bios reach the bio_lists[]
1333  * of throtl_data->service_queue.  Those bios are ready and issued by this
1334  * function.
1335  */
1336 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1337 {
1338         struct throtl_data *td = container_of(work, struct throtl_data,
1339                                               dispatch_work);
1340         struct throtl_service_queue *td_sq = &td->service_queue;
1341         struct request_queue *q = td->queue;
1342         struct bio_list bio_list_on_stack;
1343         struct bio *bio;
1344         struct blk_plug plug;
1345         int rw;
1346
1347         bio_list_init(&bio_list_on_stack);
1348
1349         spin_lock_irq(&q->queue_lock);
1350         for (rw = READ; rw <= WRITE; rw++)
1351                 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1352                         bio_list_add(&bio_list_on_stack, bio);
1353         spin_unlock_irq(&q->queue_lock);
1354
1355         if (!bio_list_empty(&bio_list_on_stack)) {
1356                 blk_start_plug(&plug);
1357                 while ((bio = bio_list_pop(&bio_list_on_stack)))
1358                         submit_bio_noacct(bio);
1359                 blk_finish_plug(&plug);
1360         }
1361 }
1362
1363 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1364                               int off)
1365 {
1366         struct throtl_grp *tg = pd_to_tg(pd);
1367         u64 v = *(u64 *)((void *)tg + off);
1368
1369         if (v == U64_MAX)
1370                 return 0;
1371         return __blkg_prfill_u64(sf, pd, v);
1372 }
1373
1374 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1375                                int off)
1376 {
1377         struct throtl_grp *tg = pd_to_tg(pd);
1378         unsigned int v = *(unsigned int *)((void *)tg + off);
1379
1380         if (v == UINT_MAX)
1381                 return 0;
1382         return __blkg_prfill_u64(sf, pd, v);
1383 }
1384
1385 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1386 {
1387         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1388                           &blkcg_policy_throtl, seq_cft(sf)->private, false);
1389         return 0;
1390 }
1391
1392 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1393 {
1394         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1395                           &blkcg_policy_throtl, seq_cft(sf)->private, false);
1396         return 0;
1397 }
1398
1399 static void tg_conf_updated(struct throtl_grp *tg, bool global)
1400 {
1401         struct throtl_service_queue *sq = &tg->service_queue;
1402         struct cgroup_subsys_state *pos_css;
1403         struct blkcg_gq *blkg;
1404
1405         throtl_log(&tg->service_queue,
1406                    "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1407                    tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1408                    tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1409
1410         /*
1411          * Update has_rules[] flags for the updated tg's subtree.  A tg is
1412          * considered to have rules if either the tg itself or any of its
1413          * ancestors has rules.  This identifies groups without any
1414          * restrictions in the whole hierarchy and allows them to bypass
1415          * blk-throttle.
1416          */
1417         blkg_for_each_descendant_pre(blkg, pos_css,
1418                         global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1419                 struct throtl_grp *this_tg = blkg_to_tg(blkg);
1420                 struct throtl_grp *parent_tg;
1421
1422                 tg_update_has_rules(this_tg);
1423                 /* ignore root/second level */
1424                 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1425                     !blkg->parent->parent)
1426                         continue;
1427                 parent_tg = blkg_to_tg(blkg->parent);
1428                 /*
1429                  * make sure all children has lower idle time threshold and
1430                  * higher latency target
1431                  */
1432                 this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1433                                 parent_tg->idletime_threshold);
1434                 this_tg->latency_target = max(this_tg->latency_target,
1435                                 parent_tg->latency_target);
1436         }
1437
1438         /*
1439          * We're already holding queue_lock and know @tg is valid.  Let's
1440          * apply the new config directly.
1441          *
1442          * Restart the slices for both READ and WRITES. It might happen
1443          * that a group's limit are dropped suddenly and we don't want to
1444          * account recently dispatched IO with new low rate.
1445          */
1446         throtl_start_new_slice(tg, READ);
1447         throtl_start_new_slice(tg, WRITE);
1448
1449         if (tg->flags & THROTL_TG_PENDING) {
1450                 tg_update_disptime(tg);
1451                 throtl_schedule_next_dispatch(sq->parent_sq, true);
1452         }
1453 }
1454
1455 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1456                            char *buf, size_t nbytes, loff_t off, bool is_u64)
1457 {
1458         struct blkcg *blkcg = css_to_blkcg(of_css(of));
1459         struct blkg_conf_ctx ctx;
1460         struct throtl_grp *tg;
1461         int ret;
1462         u64 v;
1463
1464         ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1465         if (ret)
1466                 return ret;
1467
1468         ret = -EINVAL;
1469         if (sscanf(ctx.body, "%llu", &v) != 1)
1470                 goto out_finish;
1471         if (!v)
1472                 v = U64_MAX;
1473
1474         tg = blkg_to_tg(ctx.blkg);
1475
1476         if (is_u64)
1477                 *(u64 *)((void *)tg + of_cft(of)->private) = v;
1478         else
1479                 *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1480
1481         tg_conf_updated(tg, false);
1482         ret = 0;
1483 out_finish:
1484         blkg_conf_finish(&ctx);
1485         return ret ?: nbytes;
1486 }
1487
1488 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1489                                char *buf, size_t nbytes, loff_t off)
1490 {
1491         return tg_set_conf(of, buf, nbytes, off, true);
1492 }
1493
1494 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1495                                 char *buf, size_t nbytes, loff_t off)
1496 {
1497         return tg_set_conf(of, buf, nbytes, off, false);
1498 }
1499
1500 static int tg_print_rwstat(struct seq_file *sf, void *v)
1501 {
1502         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1503                           blkg_prfill_rwstat, &blkcg_policy_throtl,
1504                           seq_cft(sf)->private, true);
1505         return 0;
1506 }
1507
1508 static u64 tg_prfill_rwstat_recursive(struct seq_file *sf,
1509                                       struct blkg_policy_data *pd, int off)
1510 {
1511         struct blkg_rwstat_sample sum;
1512
1513         blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off,
1514                                   &sum);
1515         return __blkg_prfill_rwstat(sf, pd, &sum);
1516 }
1517
1518 static int tg_print_rwstat_recursive(struct seq_file *sf, void *v)
1519 {
1520         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1521                           tg_prfill_rwstat_recursive, &blkcg_policy_throtl,
1522                           seq_cft(sf)->private, true);
1523         return 0;
1524 }
1525
1526 static struct cftype throtl_legacy_files[] = {
1527         {
1528                 .name = "throttle.read_bps_device",
1529                 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1530                 .seq_show = tg_print_conf_u64,
1531                 .write = tg_set_conf_u64,
1532         },
1533         {
1534                 .name = "throttle.write_bps_device",
1535                 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1536                 .seq_show = tg_print_conf_u64,
1537                 .write = tg_set_conf_u64,
1538         },
1539         {
1540                 .name = "throttle.read_iops_device",
1541                 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1542                 .seq_show = tg_print_conf_uint,
1543                 .write = tg_set_conf_uint,
1544         },
1545         {
1546                 .name = "throttle.write_iops_device",
1547                 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1548                 .seq_show = tg_print_conf_uint,
1549                 .write = tg_set_conf_uint,
1550         },
1551         {
1552                 .name = "throttle.io_service_bytes",
1553                 .private = offsetof(struct throtl_grp, stat_bytes),
1554                 .seq_show = tg_print_rwstat,
1555         },
1556         {
1557                 .name = "throttle.io_service_bytes_recursive",
1558                 .private = offsetof(struct throtl_grp, stat_bytes),
1559                 .seq_show = tg_print_rwstat_recursive,
1560         },
1561         {
1562                 .name = "throttle.io_serviced",
1563                 .private = offsetof(struct throtl_grp, stat_ios),
1564                 .seq_show = tg_print_rwstat,
1565         },
1566         {
1567                 .name = "throttle.io_serviced_recursive",
1568                 .private = offsetof(struct throtl_grp, stat_ios),
1569                 .seq_show = tg_print_rwstat_recursive,
1570         },
1571         { }     /* terminate */
1572 };
1573
1574 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1575                          int off)
1576 {
1577         struct throtl_grp *tg = pd_to_tg(pd);
1578         const char *dname = blkg_dev_name(pd->blkg);
1579         char bufs[4][21] = { "max", "max", "max", "max" };
1580         u64 bps_dft;
1581         unsigned int iops_dft;
1582         char idle_time[26] = "";
1583         char latency_time[26] = "";
1584
1585         if (!dname)
1586                 return 0;
1587
1588         if (off == LIMIT_LOW) {
1589                 bps_dft = 0;
1590                 iops_dft = 0;
1591         } else {
1592                 bps_dft = U64_MAX;
1593                 iops_dft = UINT_MAX;
1594         }
1595
1596         if (tg->bps_conf[READ][off] == bps_dft &&
1597             tg->bps_conf[WRITE][off] == bps_dft &&
1598             tg->iops_conf[READ][off] == iops_dft &&
1599             tg->iops_conf[WRITE][off] == iops_dft &&
1600             (off != LIMIT_LOW ||
1601              (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1602               tg->latency_target_conf == DFL_LATENCY_TARGET)))
1603                 return 0;
1604
1605         if (tg->bps_conf[READ][off] != U64_MAX)
1606                 snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1607                         tg->bps_conf[READ][off]);
1608         if (tg->bps_conf[WRITE][off] != U64_MAX)
1609                 snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1610                         tg->bps_conf[WRITE][off]);
1611         if (tg->iops_conf[READ][off] != UINT_MAX)
1612                 snprintf(bufs[2], sizeof(bufs[2]), "%u",
1613                         tg->iops_conf[READ][off]);
1614         if (tg->iops_conf[WRITE][off] != UINT_MAX)
1615                 snprintf(bufs[3], sizeof(bufs[3]), "%u",
1616                         tg->iops_conf[WRITE][off]);
1617         if (off == LIMIT_LOW) {
1618                 if (tg->idletime_threshold_conf == ULONG_MAX)
1619                         strcpy(idle_time, " idle=max");
1620                 else
1621                         snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1622                                 tg->idletime_threshold_conf);
1623
1624                 if (tg->latency_target_conf == ULONG_MAX)
1625                         strcpy(latency_time, " latency=max");
1626                 else
1627                         snprintf(latency_time, sizeof(latency_time),
1628                                 " latency=%lu", tg->latency_target_conf);
1629         }
1630
1631         seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1632                    dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1633                    latency_time);
1634         return 0;
1635 }
1636
1637 static int tg_print_limit(struct seq_file *sf, void *v)
1638 {
1639         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1640                           &blkcg_policy_throtl, seq_cft(sf)->private, false);
1641         return 0;
1642 }
1643
1644 static ssize_t tg_set_limit(struct kernfs_open_file *of,
1645                           char *buf, size_t nbytes, loff_t off)
1646 {
1647         struct blkcg *blkcg = css_to_blkcg(of_css(of));
1648         struct blkg_conf_ctx ctx;
1649         struct throtl_grp *tg;
1650         u64 v[4];
1651         unsigned long idle_time;
1652         unsigned long latency_time;
1653         int ret;
1654         int index = of_cft(of)->private;
1655
1656         ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1657         if (ret)
1658                 return ret;
1659
1660         tg = blkg_to_tg(ctx.blkg);
1661
1662         v[0] = tg->bps_conf[READ][index];
1663         v[1] = tg->bps_conf[WRITE][index];
1664         v[2] = tg->iops_conf[READ][index];
1665         v[3] = tg->iops_conf[WRITE][index];
1666
1667         idle_time = tg->idletime_threshold_conf;
1668         latency_time = tg->latency_target_conf;
1669         while (true) {
1670                 char tok[27];   /* wiops=18446744073709551616 */
1671                 char *p;
1672                 u64 val = U64_MAX;
1673                 int len;
1674
1675                 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1676                         break;
1677                 if (tok[0] == '\0')
1678                         break;
1679                 ctx.body += len;
1680
1681                 ret = -EINVAL;
1682                 p = tok;
1683                 strsep(&p, "=");
1684                 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1685                         goto out_finish;
1686
1687                 ret = -ERANGE;
1688                 if (!val)
1689                         goto out_finish;
1690
1691                 ret = -EINVAL;
1692                 if (!strcmp(tok, "rbps") && val > 1)
1693                         v[0] = val;
1694                 else if (!strcmp(tok, "wbps") && val > 1)
1695                         v[1] = val;
1696                 else if (!strcmp(tok, "riops") && val > 1)
1697                         v[2] = min_t(u64, val, UINT_MAX);
1698                 else if (!strcmp(tok, "wiops") && val > 1)
1699                         v[3] = min_t(u64, val, UINT_MAX);
1700                 else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1701                         idle_time = val;
1702                 else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1703                         latency_time = val;
1704                 else
1705                         goto out_finish;
1706         }
1707
1708         tg->bps_conf[READ][index] = v[0];
1709         tg->bps_conf[WRITE][index] = v[1];
1710         tg->iops_conf[READ][index] = v[2];
1711         tg->iops_conf[WRITE][index] = v[3];
1712
1713         if (index == LIMIT_MAX) {
1714                 tg->bps[READ][index] = v[0];
1715                 tg->bps[WRITE][index] = v[1];
1716                 tg->iops[READ][index] = v[2];
1717                 tg->iops[WRITE][index] = v[3];
1718         }
1719         tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1720                 tg->bps_conf[READ][LIMIT_MAX]);
1721         tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1722                 tg->bps_conf[WRITE][LIMIT_MAX]);
1723         tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1724                 tg->iops_conf[READ][LIMIT_MAX]);
1725         tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1726                 tg->iops_conf[WRITE][LIMIT_MAX]);
1727         tg->idletime_threshold_conf = idle_time;
1728         tg->latency_target_conf = latency_time;
1729
1730         /* force user to configure all settings for low limit  */
1731         if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1732               tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1733             tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1734             tg->latency_target_conf == DFL_LATENCY_TARGET) {
1735                 tg->bps[READ][LIMIT_LOW] = 0;
1736                 tg->bps[WRITE][LIMIT_LOW] = 0;
1737                 tg->iops[READ][LIMIT_LOW] = 0;
1738                 tg->iops[WRITE][LIMIT_LOW] = 0;
1739                 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1740                 tg->latency_target = DFL_LATENCY_TARGET;
1741         } else if (index == LIMIT_LOW) {
1742                 tg->idletime_threshold = tg->idletime_threshold_conf;
1743                 tg->latency_target = tg->latency_target_conf;
1744         }
1745
1746         blk_throtl_update_limit_valid(tg->td);
1747         if (tg->td->limit_valid[LIMIT_LOW]) {
1748                 if (index == LIMIT_LOW)
1749                         tg->td->limit_index = LIMIT_LOW;
1750         } else
1751                 tg->td->limit_index = LIMIT_MAX;
1752         tg_conf_updated(tg, index == LIMIT_LOW &&
1753                 tg->td->limit_valid[LIMIT_LOW]);
1754         ret = 0;
1755 out_finish:
1756         blkg_conf_finish(&ctx);
1757         return ret ?: nbytes;
1758 }
1759
1760 static struct cftype throtl_files[] = {
1761 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1762         {
1763                 .name = "low",
1764                 .flags = CFTYPE_NOT_ON_ROOT,
1765                 .seq_show = tg_print_limit,
1766                 .write = tg_set_limit,
1767                 .private = LIMIT_LOW,
1768         },
1769 #endif
1770         {
1771                 .name = "max",
1772                 .flags = CFTYPE_NOT_ON_ROOT,
1773                 .seq_show = tg_print_limit,
1774                 .write = tg_set_limit,
1775                 .private = LIMIT_MAX,
1776         },
1777         { }     /* terminate */
1778 };
1779
1780 static void throtl_shutdown_wq(struct request_queue *q)
1781 {
1782         struct throtl_data *td = q->td;
1783
1784         cancel_work_sync(&td->dispatch_work);
1785 }
1786
1787 static struct blkcg_policy blkcg_policy_throtl = {
1788         .dfl_cftypes            = throtl_files,
1789         .legacy_cftypes         = throtl_legacy_files,
1790
1791         .pd_alloc_fn            = throtl_pd_alloc,
1792         .pd_init_fn             = throtl_pd_init,
1793         .pd_online_fn           = throtl_pd_online,
1794         .pd_offline_fn          = throtl_pd_offline,
1795         .pd_free_fn             = throtl_pd_free,
1796 };
1797
1798 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1799 {
1800         unsigned long rtime = jiffies, wtime = jiffies;
1801
1802         if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1803                 rtime = tg->last_low_overflow_time[READ];
1804         if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1805                 wtime = tg->last_low_overflow_time[WRITE];
1806         return min(rtime, wtime);
1807 }
1808
1809 /* tg should not be an intermediate node */
1810 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1811 {
1812         struct throtl_service_queue *parent_sq;
1813         struct throtl_grp *parent = tg;
1814         unsigned long ret = __tg_last_low_overflow_time(tg);
1815
1816         while (true) {
1817                 parent_sq = parent->service_queue.parent_sq;
1818                 parent = sq_to_tg(parent_sq);
1819                 if (!parent)
1820                         break;
1821
1822                 /*
1823                  * The parent doesn't have low limit, it always reaches low
1824                  * limit. Its overflow time is useless for children
1825                  */
1826                 if (!parent->bps[READ][LIMIT_LOW] &&
1827                     !parent->iops[READ][LIMIT_LOW] &&
1828                     !parent->bps[WRITE][LIMIT_LOW] &&
1829                     !parent->iops[WRITE][LIMIT_LOW])
1830                         continue;
1831                 if (time_after(__tg_last_low_overflow_time(parent), ret))
1832                         ret = __tg_last_low_overflow_time(parent);
1833         }
1834         return ret;
1835 }
1836
1837 static bool throtl_tg_is_idle(struct throtl_grp *tg)
1838 {
1839         /*
1840          * cgroup is idle if:
1841          * - single idle is too long, longer than a fixed value (in case user
1842          *   configure a too big threshold) or 4 times of idletime threshold
1843          * - average think time is more than threshold
1844          * - IO latency is largely below threshold
1845          */
1846         unsigned long time;
1847         bool ret;
1848
1849         time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1850         ret = tg->latency_target == DFL_LATENCY_TARGET ||
1851               tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1852               (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1853               tg->avg_idletime > tg->idletime_threshold ||
1854               (tg->latency_target && tg->bio_cnt &&
1855                 tg->bad_bio_cnt * 5 < tg->bio_cnt);
1856         throtl_log(&tg->service_queue,
1857                 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1858                 tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1859                 tg->bio_cnt, ret, tg->td->scale);
1860         return ret;
1861 }
1862
1863 static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1864 {
1865         struct throtl_service_queue *sq = &tg->service_queue;
1866         bool read_limit, write_limit;
1867
1868         /*
1869          * if cgroup reaches low limit (if low limit is 0, the cgroup always
1870          * reaches), it's ok to upgrade to next limit
1871          */
1872         read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1873         write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1874         if (!read_limit && !write_limit)
1875                 return true;
1876         if (read_limit && sq->nr_queued[READ] &&
1877             (!write_limit || sq->nr_queued[WRITE]))
1878                 return true;
1879         if (write_limit && sq->nr_queued[WRITE] &&
1880             (!read_limit || sq->nr_queued[READ]))
1881                 return true;
1882
1883         if (time_after_eq(jiffies,
1884                 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1885             throtl_tg_is_idle(tg))
1886                 return true;
1887         return false;
1888 }
1889
1890 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1891 {
1892         while (true) {
1893                 if (throtl_tg_can_upgrade(tg))
1894                         return true;
1895                 tg = sq_to_tg(tg->service_queue.parent_sq);
1896                 if (!tg || !tg_to_blkg(tg)->parent)
1897                         return false;
1898         }
1899         return false;
1900 }
1901
1902 static bool throtl_can_upgrade(struct throtl_data *td,
1903         struct throtl_grp *this_tg)
1904 {
1905         struct cgroup_subsys_state *pos_css;
1906         struct blkcg_gq *blkg;
1907
1908         if (td->limit_index != LIMIT_LOW)
1909                 return false;
1910
1911         if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1912                 return false;
1913
1914         rcu_read_lock();
1915         blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1916                 struct throtl_grp *tg = blkg_to_tg(blkg);
1917
1918                 if (tg == this_tg)
1919                         continue;
1920                 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1921                         continue;
1922                 if (!throtl_hierarchy_can_upgrade(tg)) {
1923                         rcu_read_unlock();
1924                         return false;
1925                 }
1926         }
1927         rcu_read_unlock();
1928         return true;
1929 }
1930
1931 static void throtl_upgrade_check(struct throtl_grp *tg)
1932 {
1933         unsigned long now = jiffies;
1934
1935         if (tg->td->limit_index != LIMIT_LOW)
1936                 return;
1937
1938         if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1939                 return;
1940
1941         tg->last_check_time = now;
1942
1943         if (!time_after_eq(now,
1944              __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1945                 return;
1946
1947         if (throtl_can_upgrade(tg->td, NULL))
1948                 throtl_upgrade_state(tg->td);
1949 }
1950
1951 static void throtl_upgrade_state(struct throtl_data *td)
1952 {
1953         struct cgroup_subsys_state *pos_css;
1954         struct blkcg_gq *blkg;
1955
1956         throtl_log(&td->service_queue, "upgrade to max");
1957         td->limit_index = LIMIT_MAX;
1958         td->low_upgrade_time = jiffies;
1959         td->scale = 0;
1960         rcu_read_lock();
1961         blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1962                 struct throtl_grp *tg = blkg_to_tg(blkg);
1963                 struct throtl_service_queue *sq = &tg->service_queue;
1964
1965                 tg->disptime = jiffies - 1;
1966                 throtl_select_dispatch(sq);
1967                 throtl_schedule_next_dispatch(sq, true);
1968         }
1969         rcu_read_unlock();
1970         throtl_select_dispatch(&td->service_queue);
1971         throtl_schedule_next_dispatch(&td->service_queue, true);
1972         queue_work(kthrotld_workqueue, &td->dispatch_work);
1973 }
1974
1975 static void throtl_downgrade_state(struct throtl_data *td)
1976 {
1977         td->scale /= 2;
1978
1979         throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1980         if (td->scale) {
1981                 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1982                 return;
1983         }
1984
1985         td->limit_index = LIMIT_LOW;
1986         td->low_downgrade_time = jiffies;
1987 }
1988
1989 static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1990 {
1991         struct throtl_data *td = tg->td;
1992         unsigned long now = jiffies;
1993
1994         /*
1995          * If cgroup is below low limit, consider downgrade and throttle other
1996          * cgroups
1997          */
1998         if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
1999             time_after_eq(now, tg_last_low_overflow_time(tg) +
2000                                         td->throtl_slice) &&
2001             (!throtl_tg_is_idle(tg) ||
2002              !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
2003                 return true;
2004         return false;
2005 }
2006
2007 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
2008 {
2009         while (true) {
2010                 if (!throtl_tg_can_downgrade(tg))
2011                         return false;
2012                 tg = sq_to_tg(tg->service_queue.parent_sq);
2013                 if (!tg || !tg_to_blkg(tg)->parent)
2014                         break;
2015         }
2016         return true;
2017 }
2018
2019 static void throtl_downgrade_check(struct throtl_grp *tg)
2020 {
2021         uint64_t bps;
2022         unsigned int iops;
2023         unsigned long elapsed_time;
2024         unsigned long now = jiffies;
2025
2026         if (tg->td->limit_index != LIMIT_MAX ||
2027             !tg->td->limit_valid[LIMIT_LOW])
2028                 return;
2029         if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
2030                 return;
2031         if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
2032                 return;
2033
2034         elapsed_time = now - tg->last_check_time;
2035         tg->last_check_time = now;
2036
2037         if (time_before(now, tg_last_low_overflow_time(tg) +
2038                         tg->td->throtl_slice))
2039                 return;
2040
2041         if (tg->bps[READ][LIMIT_LOW]) {
2042                 bps = tg->last_bytes_disp[READ] * HZ;
2043                 do_div(bps, elapsed_time);
2044                 if (bps >= tg->bps[READ][LIMIT_LOW])
2045                         tg->last_low_overflow_time[READ] = now;
2046         }
2047
2048         if (tg->bps[WRITE][LIMIT_LOW]) {
2049                 bps = tg->last_bytes_disp[WRITE] * HZ;
2050                 do_div(bps, elapsed_time);
2051                 if (bps >= tg->bps[WRITE][LIMIT_LOW])
2052                         tg->last_low_overflow_time[WRITE] = now;
2053         }
2054
2055         if (tg->iops[READ][LIMIT_LOW]) {
2056                 iops = tg->last_io_disp[READ] * HZ / elapsed_time;
2057                 if (iops >= tg->iops[READ][LIMIT_LOW])
2058                         tg->last_low_overflow_time[READ] = now;
2059         }
2060
2061         if (tg->iops[WRITE][LIMIT_LOW]) {
2062                 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
2063                 if (iops >= tg->iops[WRITE][LIMIT_LOW])
2064                         tg->last_low_overflow_time[WRITE] = now;
2065         }
2066
2067         /*
2068          * If cgroup is below low limit, consider downgrade and throttle other
2069          * cgroups
2070          */
2071         if (throtl_hierarchy_can_downgrade(tg))
2072                 throtl_downgrade_state(tg->td);
2073
2074         tg->last_bytes_disp[READ] = 0;
2075         tg->last_bytes_disp[WRITE] = 0;
2076         tg->last_io_disp[READ] = 0;
2077         tg->last_io_disp[WRITE] = 0;
2078 }
2079
2080 static void blk_throtl_update_idletime(struct throtl_grp *tg)
2081 {
2082         unsigned long now;
2083         unsigned long last_finish_time = tg->last_finish_time;
2084
2085         if (last_finish_time == 0)
2086                 return;
2087
2088         now = ktime_get_ns() >> 10;
2089         if (now <= last_finish_time ||
2090             last_finish_time == tg->checked_last_finish_time)
2091                 return;
2092
2093         tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2094         tg->checked_last_finish_time = last_finish_time;
2095 }
2096
2097 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2098 static void throtl_update_latency_buckets(struct throtl_data *td)
2099 {
2100         struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
2101         int i, cpu, rw;
2102         unsigned long last_latency[2] = { 0 };
2103         unsigned long latency[2];
2104
2105         if (!blk_queue_nonrot(td->queue) || !td->limit_valid[LIMIT_LOW])
2106                 return;
2107         if (time_before(jiffies, td->last_calculate_time + HZ))
2108                 return;
2109         td->last_calculate_time = jiffies;
2110
2111         memset(avg_latency, 0, sizeof(avg_latency));
2112         for (rw = READ; rw <= WRITE; rw++) {
2113                 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2114                         struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
2115
2116                         for_each_possible_cpu(cpu) {
2117                                 struct latency_bucket *bucket;
2118
2119                                 /* this isn't race free, but ok in practice */
2120                                 bucket = per_cpu_ptr(td->latency_buckets[rw],
2121                                         cpu);
2122                                 tmp->total_latency += bucket[i].total_latency;
2123                                 tmp->samples += bucket[i].samples;
2124                                 bucket[i].total_latency = 0;
2125                                 bucket[i].samples = 0;
2126                         }
2127
2128                         if (tmp->samples >= 32) {
2129                                 int samples = tmp->samples;
2130
2131                                 latency[rw] = tmp->total_latency;
2132
2133                                 tmp->total_latency = 0;
2134                                 tmp->samples = 0;
2135                                 latency[rw] /= samples;
2136                                 if (latency[rw] == 0)
2137                                         continue;
2138                                 avg_latency[rw][i].latency = latency[rw];
2139                         }
2140                 }
2141         }
2142
2143         for (rw = READ; rw <= WRITE; rw++) {
2144                 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2145                         if (!avg_latency[rw][i].latency) {
2146                                 if (td->avg_buckets[rw][i].latency < last_latency[rw])
2147                                         td->avg_buckets[rw][i].latency =
2148                                                 last_latency[rw];
2149                                 continue;
2150                         }
2151
2152                         if (!td->avg_buckets[rw][i].valid)
2153                                 latency[rw] = avg_latency[rw][i].latency;
2154                         else
2155                                 latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2156                                         avg_latency[rw][i].latency) >> 3;
2157
2158                         td->avg_buckets[rw][i].latency = max(latency[rw],
2159                                 last_latency[rw]);
2160                         td->avg_buckets[rw][i].valid = true;
2161                         last_latency[rw] = td->avg_buckets[rw][i].latency;
2162                 }
2163         }
2164
2165         for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2166                 throtl_log(&td->service_queue,
2167                         "Latency bucket %d: read latency=%ld, read valid=%d, "
2168                         "write latency=%ld, write valid=%d", i,
2169                         td->avg_buckets[READ][i].latency,
2170                         td->avg_buckets[READ][i].valid,
2171                         td->avg_buckets[WRITE][i].latency,
2172                         td->avg_buckets[WRITE][i].valid);
2173 }
2174 #else
2175 static inline void throtl_update_latency_buckets(struct throtl_data *td)
2176 {
2177 }
2178 #endif
2179
2180 bool blk_throtl_bio(struct bio *bio)
2181 {
2182         struct request_queue *q = bio->bi_disk->queue;
2183         struct blkcg_gq *blkg = bio->bi_blkg;
2184         struct throtl_qnode *qn = NULL;
2185         struct throtl_grp *tg = blkg_to_tg(blkg);
2186         struct throtl_service_queue *sq;
2187         bool rw = bio_data_dir(bio);
2188         bool throttled = false;
2189         struct throtl_data *td = tg->td;
2190
2191         rcu_read_lock();
2192
2193         /* see throtl_charge_bio() */
2194         if (bio_flagged(bio, BIO_THROTTLED))
2195                 goto out;
2196
2197         if (!cgroup_subsys_on_dfl(io_cgrp_subsys)) {
2198                 blkg_rwstat_add(&tg->stat_bytes, bio->bi_opf,
2199                                 bio->bi_iter.bi_size);
2200                 blkg_rwstat_add(&tg->stat_ios, bio->bi_opf, 1);
2201         }
2202
2203         if (!tg->has_rules[rw])
2204                 goto out;
2205
2206         spin_lock_irq(&q->queue_lock);
2207
2208         throtl_update_latency_buckets(td);
2209
2210         blk_throtl_update_idletime(tg);
2211
2212         sq = &tg->service_queue;
2213
2214 again:
2215         while (true) {
2216                 if (tg->last_low_overflow_time[rw] == 0)
2217                         tg->last_low_overflow_time[rw] = jiffies;
2218                 throtl_downgrade_check(tg);
2219                 throtl_upgrade_check(tg);
2220                 /* throtl is FIFO - if bios are already queued, should queue */
2221                 if (sq->nr_queued[rw])
2222                         break;
2223
2224                 /* if above limits, break to queue */
2225                 if (!tg_may_dispatch(tg, bio, NULL)) {
2226                         tg->last_low_overflow_time[rw] = jiffies;
2227                         if (throtl_can_upgrade(td, tg)) {
2228                                 throtl_upgrade_state(td);
2229                                 goto again;
2230                         }
2231                         break;
2232                 }
2233
2234                 /* within limits, let's charge and dispatch directly */
2235                 throtl_charge_bio(tg, bio);
2236
2237                 /*
2238                  * We need to trim slice even when bios are not being queued
2239                  * otherwise it might happen that a bio is not queued for
2240                  * a long time and slice keeps on extending and trim is not
2241                  * called for a long time. Now if limits are reduced suddenly
2242                  * we take into account all the IO dispatched so far at new
2243                  * low rate and * newly queued IO gets a really long dispatch
2244                  * time.
2245                  *
2246                  * So keep on trimming slice even if bio is not queued.
2247                  */
2248                 throtl_trim_slice(tg, rw);
2249
2250                 /*
2251                  * @bio passed through this layer without being throttled.
2252                  * Climb up the ladder.  If we're already at the top, it
2253                  * can be executed directly.
2254                  */
2255                 qn = &tg->qnode_on_parent[rw];
2256                 sq = sq->parent_sq;
2257                 tg = sq_to_tg(sq);
2258                 if (!tg)
2259                         goto out_unlock;
2260         }
2261
2262         /* out-of-limit, queue to @tg */
2263         throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2264                    rw == READ ? 'R' : 'W',
2265                    tg->bytes_disp[rw], bio->bi_iter.bi_size,
2266                    tg_bps_limit(tg, rw),
2267                    tg->io_disp[rw], tg_iops_limit(tg, rw),
2268                    sq->nr_queued[READ], sq->nr_queued[WRITE]);
2269
2270         tg->last_low_overflow_time[rw] = jiffies;
2271
2272         td->nr_queued[rw]++;
2273         throtl_add_bio_tg(bio, qn, tg);
2274         throttled = true;
2275
2276         /*
2277          * Update @tg's dispatch time and force schedule dispatch if @tg
2278          * was empty before @bio.  The forced scheduling isn't likely to
2279          * cause undue delay as @bio is likely to be dispatched directly if
2280          * its @tg's disptime is not in the future.
2281          */
2282         if (tg->flags & THROTL_TG_WAS_EMPTY) {
2283                 tg_update_disptime(tg);
2284                 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2285         }
2286
2287 out_unlock:
2288         spin_unlock_irq(&q->queue_lock);
2289 out:
2290         bio_set_flag(bio, BIO_THROTTLED);
2291
2292 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2293         if (throttled || !td->track_bio_latency)
2294                 bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
2295 #endif
2296         rcu_read_unlock();
2297         return throttled;
2298 }
2299
2300 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2301 static void throtl_track_latency(struct throtl_data *td, sector_t size,
2302         int op, unsigned long time)
2303 {
2304         struct latency_bucket *latency;
2305         int index;
2306
2307         if (!td || td->limit_index != LIMIT_LOW ||
2308             !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
2309             !blk_queue_nonrot(td->queue))
2310                 return;
2311
2312         index = request_bucket_index(size);
2313
2314         latency = get_cpu_ptr(td->latency_buckets[op]);
2315         latency[index].total_latency += time;
2316         latency[index].samples++;
2317         put_cpu_ptr(td->latency_buckets[op]);
2318 }
2319
2320 void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2321 {
2322         struct request_queue *q = rq->q;
2323         struct throtl_data *td = q->td;
2324
2325         throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq),
2326                              time_ns >> 10);
2327 }
2328
2329 void blk_throtl_bio_endio(struct bio *bio)
2330 {
2331         struct blkcg_gq *blkg;
2332         struct throtl_grp *tg;
2333         u64 finish_time_ns;
2334         unsigned long finish_time;
2335         unsigned long start_time;
2336         unsigned long lat;
2337         int rw = bio_data_dir(bio);
2338
2339         blkg = bio->bi_blkg;
2340         if (!blkg)
2341                 return;
2342         tg = blkg_to_tg(blkg);
2343         if (!tg->td->limit_valid[LIMIT_LOW])
2344                 return;
2345
2346         finish_time_ns = ktime_get_ns();
2347         tg->last_finish_time = finish_time_ns >> 10;
2348
2349         start_time = bio_issue_time(&bio->bi_issue) >> 10;
2350         finish_time = __bio_issue_time(finish_time_ns) >> 10;
2351         if (!start_time || finish_time <= start_time)
2352                 return;
2353
2354         lat = finish_time - start_time;
2355         /* this is only for bio based driver */
2356         if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
2357                 throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
2358                                      bio_op(bio), lat);
2359
2360         if (tg->latency_target && lat >= tg->td->filtered_latency) {
2361                 int bucket;
2362                 unsigned int threshold;
2363
2364                 bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
2365                 threshold = tg->td->avg_buckets[rw][bucket].latency +
2366                         tg->latency_target;
2367                 if (lat > threshold)
2368                         tg->bad_bio_cnt++;
2369                 /*
2370                  * Not race free, could get wrong count, which means cgroups
2371                  * will be throttled
2372                  */
2373                 tg->bio_cnt++;
2374         }
2375
2376         if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2377                 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2378                 tg->bio_cnt /= 2;
2379                 tg->bad_bio_cnt /= 2;
2380         }
2381 }
2382 #endif
2383
2384 int blk_throtl_init(struct request_queue *q)
2385 {
2386         struct throtl_data *td;
2387         int ret;
2388
2389         td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2390         if (!td)
2391                 return -ENOMEM;
2392         td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
2393                 LATENCY_BUCKET_SIZE, __alignof__(u64));
2394         if (!td->latency_buckets[READ]) {
2395                 kfree(td);
2396                 return -ENOMEM;
2397         }
2398         td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
2399                 LATENCY_BUCKET_SIZE, __alignof__(u64));
2400         if (!td->latency_buckets[WRITE]) {
2401                 free_percpu(td->latency_buckets[READ]);
2402                 kfree(td);
2403                 return -ENOMEM;
2404         }
2405
2406         INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2407         throtl_service_queue_init(&td->service_queue);
2408
2409         q->td = td;
2410         td->queue = q;
2411
2412         td->limit_valid[LIMIT_MAX] = true;
2413         td->limit_index = LIMIT_MAX;
2414         td->low_upgrade_time = jiffies;
2415         td->low_downgrade_time = jiffies;
2416
2417         /* activate policy */
2418         ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2419         if (ret) {
2420                 free_percpu(td->latency_buckets[READ]);
2421                 free_percpu(td->latency_buckets[WRITE]);
2422                 kfree(td);
2423         }
2424         return ret;
2425 }
2426
2427 void blk_throtl_exit(struct request_queue *q)
2428 {
2429         BUG_ON(!q->td);
2430         throtl_shutdown_wq(q);
2431         blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2432         free_percpu(q->td->latency_buckets[READ]);
2433         free_percpu(q->td->latency_buckets[WRITE]);
2434         kfree(q->td);
2435 }
2436
2437 void blk_throtl_register_queue(struct request_queue *q)
2438 {
2439         struct throtl_data *td;
2440         int i;
2441
2442         td = q->td;
2443         BUG_ON(!td);
2444
2445         if (blk_queue_nonrot(q)) {
2446                 td->throtl_slice = DFL_THROTL_SLICE_SSD;
2447                 td->filtered_latency = LATENCY_FILTERED_SSD;
2448         } else {
2449                 td->throtl_slice = DFL_THROTL_SLICE_HD;
2450                 td->filtered_latency = LATENCY_FILTERED_HD;
2451                 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2452                         td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2453                         td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2454                 }
2455         }
2456 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2457         /* if no low limit, use previous default */
2458         td->throtl_slice = DFL_THROTL_SLICE_HD;
2459 #endif
2460
2461         td->track_bio_latency = !queue_is_mq(q);
2462         if (!td->track_bio_latency)
2463                 blk_stat_enable_accounting(q);
2464 }
2465
2466 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2467 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2468 {
2469         if (!q->td)
2470                 return -EINVAL;
2471         return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2472 }
2473
2474 ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2475         const char *page, size_t count)
2476 {
2477         unsigned long v;
2478         unsigned long t;
2479
2480         if (!q->td)
2481                 return -EINVAL;
2482         if (kstrtoul(page, 10, &v))
2483                 return -EINVAL;
2484         t = msecs_to_jiffies(v);
2485         if (t == 0 || t > MAX_THROTL_SLICE)
2486                 return -EINVAL;
2487         q->td->throtl_slice = t;
2488         return count;
2489 }
2490 #endif
2491
2492 static int __init throtl_init(void)
2493 {
2494         kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2495         if (!kthrotld_workqueue)
2496                 panic("Failed to create kthrotld\n");
2497
2498         return blkcg_policy_register(&blkcg_policy_throtl);
2499 }
2500
2501 module_init(throtl_init);