1 // SPDX-License-Identifier: GPL-2.0
3 * Interface for controlling IO bandwidth on a request queue
5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
8 #include <linux/module.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/bio.h>
12 #include <linux/blktrace_api.h>
14 #include "blk-cgroup-rwstat.h"
16 #include "blk-throttle.h"
18 /* Max dispatch from a group in 1 round */
19 #define THROTL_GRP_QUANTUM 8
21 /* Total max dispatch from all groups in one round */
22 #define THROTL_QUANTUM 32
24 /* Throttling is performed over a slice and after that slice is renewed */
25 #define DFL_THROTL_SLICE_HD (HZ / 10)
26 #define DFL_THROTL_SLICE_SSD (HZ / 50)
27 #define MAX_THROTL_SLICE (HZ)
28 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
29 #define MIN_THROTL_BPS (320 * 1024)
30 #define MIN_THROTL_IOPS (10)
31 #define DFL_LATENCY_TARGET (-1L)
32 #define DFL_IDLE_THRESHOLD (0)
33 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
34 #define LATENCY_FILTERED_SSD (0)
36 * For HD, very small latency comes from sequential IO. Such IO is helpless to
37 * help determine if its IO is impacted by others, hence we ignore the IO
39 #define LATENCY_FILTERED_HD (1000L) /* 1ms */
41 /* A workqueue to queue throttle related work */
42 static struct workqueue_struct *kthrotld_workqueue;
44 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
46 /* We measure latency for request size from <= 4k to >= 1M */
47 #define LATENCY_BUCKET_SIZE 9
49 struct latency_bucket {
50 unsigned long total_latency; /* ns / 1024 */
54 struct avg_latency_bucket {
55 unsigned long latency; /* ns / 1024 */
61 /* service tree for active throtl groups */
62 struct throtl_service_queue service_queue;
64 struct request_queue *queue;
66 /* Total Number of queued bios on READ and WRITE lists */
67 unsigned int nr_queued[2];
69 unsigned int throtl_slice;
71 /* Work for dispatching throttled bios */
72 struct work_struct dispatch_work;
73 unsigned int limit_index;
74 bool limit_valid[LIMIT_CNT];
76 unsigned long low_upgrade_time;
77 unsigned long low_downgrade_time;
81 struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
82 struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
83 struct latency_bucket __percpu *latency_buckets[2];
84 unsigned long last_calculate_time;
85 unsigned long filtered_latency;
87 bool track_bio_latency;
90 static void throtl_pending_timer_fn(struct timer_list *t);
92 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
94 return pd_to_blkg(&tg->pd);
98 * sq_to_tg - return the throl_grp the specified service queue belongs to
99 * @sq: the throtl_service_queue of interest
101 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
102 * embedded in throtl_data, %NULL is returned.
104 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
106 if (sq && sq->parent_sq)
107 return container_of(sq, struct throtl_grp, service_queue);
113 * sq_to_td - return throtl_data the specified service queue belongs to
114 * @sq: the throtl_service_queue of interest
116 * A service_queue can be embedded in either a throtl_grp or throtl_data.
117 * Determine the associated throtl_data accordingly and return it.
119 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
121 struct throtl_grp *tg = sq_to_tg(sq);
126 return container_of(sq, struct throtl_data, service_queue);
130 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
131 * make the IO dispatch more smooth.
132 * Scale up: linearly scale up according to elapsed time since upgrade. For
133 * every throtl_slice, the limit scales up 1/2 .low limit till the
134 * limit hits .max limit
135 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
137 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
139 /* arbitrary value to avoid too big scale */
140 if (td->scale < 4096 && time_after_eq(jiffies,
141 td->low_upgrade_time + td->scale * td->throtl_slice))
142 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
144 return low + (low >> 1) * td->scale;
147 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
149 struct blkcg_gq *blkg = tg_to_blkg(tg);
150 struct throtl_data *td;
153 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
157 ret = tg->bps[rw][td->limit_index];
158 if (ret == 0 && td->limit_index == LIMIT_LOW) {
159 /* intermediate node or iops isn't 0 */
160 if (!list_empty(&blkg->blkcg->css.children) ||
161 tg->iops[rw][td->limit_index])
164 return MIN_THROTL_BPS;
167 if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
168 tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
171 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
172 ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
177 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
179 struct blkcg_gq *blkg = tg_to_blkg(tg);
180 struct throtl_data *td;
183 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
187 ret = tg->iops[rw][td->limit_index];
188 if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
189 /* intermediate node or bps isn't 0 */
190 if (!list_empty(&blkg->blkcg->css.children) ||
191 tg->bps[rw][td->limit_index])
194 return MIN_THROTL_IOPS;
197 if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
198 tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
201 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
202 if (adjusted > UINT_MAX)
204 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
209 #define request_bucket_index(sectors) \
210 clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
213 * throtl_log - log debug message via blktrace
214 * @sq: the service_queue being reported
215 * @fmt: printf format string
218 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
219 * throtl_grp; otherwise, just "throtl".
221 #define throtl_log(sq, fmt, args...) do { \
222 struct throtl_grp *__tg = sq_to_tg((sq)); \
223 struct throtl_data *__td = sq_to_td((sq)); \
226 if (likely(!blk_trace_note_message_enabled(__td->queue))) \
229 blk_add_cgroup_trace_msg(__td->queue, \
230 &tg_to_blkg(__tg)->blkcg->css, "throtl " fmt, ##args);\
232 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
236 static inline unsigned int throtl_bio_data_size(struct bio *bio)
238 /* assume it's one sector */
239 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
241 return bio->bi_iter.bi_size;
244 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
246 INIT_LIST_HEAD(&qn->node);
247 bio_list_init(&qn->bios);
252 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
253 * @bio: bio being added
254 * @qn: qnode to add bio to
255 * @queued: the service_queue->queued[] list @qn belongs to
257 * Add @bio to @qn and put @qn on @queued if it's not already on.
258 * @qn->tg's reference count is bumped when @qn is activated. See the
259 * comment on top of throtl_qnode definition for details.
261 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
262 struct list_head *queued)
264 bio_list_add(&qn->bios, bio);
265 if (list_empty(&qn->node)) {
266 list_add_tail(&qn->node, queued);
267 blkg_get(tg_to_blkg(qn->tg));
272 * throtl_peek_queued - peek the first bio on a qnode list
273 * @queued: the qnode list to peek
275 static struct bio *throtl_peek_queued(struct list_head *queued)
277 struct throtl_qnode *qn;
280 if (list_empty(queued))
283 qn = list_first_entry(queued, struct throtl_qnode, node);
284 bio = bio_list_peek(&qn->bios);
290 * throtl_pop_queued - pop the first bio form a qnode list
291 * @queued: the qnode list to pop a bio from
292 * @tg_to_put: optional out argument for throtl_grp to put
294 * Pop the first bio from the qnode list @queued. After popping, the first
295 * qnode is removed from @queued if empty or moved to the end of @queued so
296 * that the popping order is round-robin.
298 * When the first qnode is removed, its associated throtl_grp should be put
299 * too. If @tg_to_put is NULL, this function automatically puts it;
300 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
301 * responsible for putting it.
303 static struct bio *throtl_pop_queued(struct list_head *queued,
304 struct throtl_grp **tg_to_put)
306 struct throtl_qnode *qn;
309 if (list_empty(queued))
312 qn = list_first_entry(queued, struct throtl_qnode, node);
313 bio = bio_list_pop(&qn->bios);
316 if (bio_list_empty(&qn->bios)) {
317 list_del_init(&qn->node);
321 blkg_put(tg_to_blkg(qn->tg));
323 list_move_tail(&qn->node, queued);
329 /* init a service_queue, assumes the caller zeroed it */
330 static void throtl_service_queue_init(struct throtl_service_queue *sq)
332 INIT_LIST_HEAD(&sq->queued[READ]);
333 INIT_LIST_HEAD(&sq->queued[WRITE]);
334 sq->pending_tree = RB_ROOT_CACHED;
335 timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
338 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp,
339 struct request_queue *q,
342 struct throtl_grp *tg;
345 tg = kzalloc_node(sizeof(*tg), gfp, q->node);
349 if (blkg_rwstat_init(&tg->stat_bytes, gfp))
352 if (blkg_rwstat_init(&tg->stat_ios, gfp))
353 goto err_exit_stat_bytes;
355 throtl_service_queue_init(&tg->service_queue);
357 for (rw = READ; rw <= WRITE; rw++) {
358 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
359 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
362 RB_CLEAR_NODE(&tg->rb_node);
363 tg->bps[READ][LIMIT_MAX] = U64_MAX;
364 tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
365 tg->iops[READ][LIMIT_MAX] = UINT_MAX;
366 tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
367 tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
368 tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
369 tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
370 tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
371 /* LIMIT_LOW will have default value 0 */
373 tg->latency_target = DFL_LATENCY_TARGET;
374 tg->latency_target_conf = DFL_LATENCY_TARGET;
375 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
376 tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
381 blkg_rwstat_exit(&tg->stat_bytes);
387 static void throtl_pd_init(struct blkg_policy_data *pd)
389 struct throtl_grp *tg = pd_to_tg(pd);
390 struct blkcg_gq *blkg = tg_to_blkg(tg);
391 struct throtl_data *td = blkg->q->td;
392 struct throtl_service_queue *sq = &tg->service_queue;
395 * If on the default hierarchy, we switch to properly hierarchical
396 * behavior where limits on a given throtl_grp are applied to the
397 * whole subtree rather than just the group itself. e.g. If 16M
398 * read_bps limit is set on a parent group, summary bps of
399 * parent group and its subtree groups can't exceed 16M for the
402 * If not on the default hierarchy, the broken flat hierarchy
403 * behavior is retained where all throtl_grps are treated as if
404 * they're all separate root groups right below throtl_data.
405 * Limits of a group don't interact with limits of other groups
406 * regardless of the position of the group in the hierarchy.
408 sq->parent_sq = &td->service_queue;
409 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
410 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
415 * Set has_rules[] if @tg or any of its parents have limits configured.
416 * This doesn't require walking up to the top of the hierarchy as the
417 * parent's has_rules[] is guaranteed to be correct.
419 static void tg_update_has_rules(struct throtl_grp *tg)
421 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
422 struct throtl_data *td = tg->td;
425 for (rw = READ; rw <= WRITE; rw++) {
426 tg->has_rules_iops[rw] =
427 (parent_tg && parent_tg->has_rules_iops[rw]) ||
428 (td->limit_valid[td->limit_index] &&
429 tg_iops_limit(tg, rw) != UINT_MAX);
430 tg->has_rules_bps[rw] =
431 (parent_tg && parent_tg->has_rules_bps[rw]) ||
432 (td->limit_valid[td->limit_index] &&
433 (tg_bps_limit(tg, rw) != U64_MAX));
437 static void throtl_pd_online(struct blkg_policy_data *pd)
439 struct throtl_grp *tg = pd_to_tg(pd);
441 * We don't want new groups to escape the limits of its ancestors.
442 * Update has_rules[] after a new group is brought online.
444 tg_update_has_rules(tg);
447 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
448 static void blk_throtl_update_limit_valid(struct throtl_data *td)
450 struct cgroup_subsys_state *pos_css;
451 struct blkcg_gq *blkg;
452 bool low_valid = false;
455 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
456 struct throtl_grp *tg = blkg_to_tg(blkg);
458 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
459 tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
466 td->limit_valid[LIMIT_LOW] = low_valid;
469 static inline void blk_throtl_update_limit_valid(struct throtl_data *td)
474 static void throtl_upgrade_state(struct throtl_data *td);
475 static void throtl_pd_offline(struct blkg_policy_data *pd)
477 struct throtl_grp *tg = pd_to_tg(pd);
479 tg->bps[READ][LIMIT_LOW] = 0;
480 tg->bps[WRITE][LIMIT_LOW] = 0;
481 tg->iops[READ][LIMIT_LOW] = 0;
482 tg->iops[WRITE][LIMIT_LOW] = 0;
484 blk_throtl_update_limit_valid(tg->td);
486 if (!tg->td->limit_valid[tg->td->limit_index])
487 throtl_upgrade_state(tg->td);
490 static void throtl_pd_free(struct blkg_policy_data *pd)
492 struct throtl_grp *tg = pd_to_tg(pd);
494 del_timer_sync(&tg->service_queue.pending_timer);
495 blkg_rwstat_exit(&tg->stat_bytes);
496 blkg_rwstat_exit(&tg->stat_ios);
500 static struct throtl_grp *
501 throtl_rb_first(struct throtl_service_queue *parent_sq)
505 n = rb_first_cached(&parent_sq->pending_tree);
509 return rb_entry_tg(n);
512 static void throtl_rb_erase(struct rb_node *n,
513 struct throtl_service_queue *parent_sq)
515 rb_erase_cached(n, &parent_sq->pending_tree);
519 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
521 struct throtl_grp *tg;
523 tg = throtl_rb_first(parent_sq);
527 parent_sq->first_pending_disptime = tg->disptime;
530 static void tg_service_queue_add(struct throtl_grp *tg)
532 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
533 struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node;
534 struct rb_node *parent = NULL;
535 struct throtl_grp *__tg;
536 unsigned long key = tg->disptime;
537 bool leftmost = true;
539 while (*node != NULL) {
541 __tg = rb_entry_tg(parent);
543 if (time_before(key, __tg->disptime))
544 node = &parent->rb_left;
546 node = &parent->rb_right;
551 rb_link_node(&tg->rb_node, parent, node);
552 rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree,
556 static void throtl_enqueue_tg(struct throtl_grp *tg)
558 if (!(tg->flags & THROTL_TG_PENDING)) {
559 tg_service_queue_add(tg);
560 tg->flags |= THROTL_TG_PENDING;
561 tg->service_queue.parent_sq->nr_pending++;
565 static void throtl_dequeue_tg(struct throtl_grp *tg)
567 if (tg->flags & THROTL_TG_PENDING) {
568 struct throtl_service_queue *parent_sq =
569 tg->service_queue.parent_sq;
571 throtl_rb_erase(&tg->rb_node, parent_sq);
572 --parent_sq->nr_pending;
573 tg->flags &= ~THROTL_TG_PENDING;
577 /* Call with queue lock held */
578 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
579 unsigned long expires)
581 unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
584 * Since we are adjusting the throttle limit dynamically, the sleep
585 * time calculated according to previous limit might be invalid. It's
586 * possible the cgroup sleep time is very long and no other cgroups
587 * have IO running so notify the limit changes. Make sure the cgroup
588 * doesn't sleep too long to avoid the missed notification.
590 if (time_after(expires, max_expire))
591 expires = max_expire;
592 mod_timer(&sq->pending_timer, expires);
593 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
594 expires - jiffies, jiffies);
598 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
599 * @sq: the service_queue to schedule dispatch for
600 * @force: force scheduling
602 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
603 * dispatch time of the first pending child. Returns %true if either timer
604 * is armed or there's no pending child left. %false if the current
605 * dispatch window is still open and the caller should continue
608 * If @force is %true, the dispatch timer is always scheduled and this
609 * function is guaranteed to return %true. This is to be used when the
610 * caller can't dispatch itself and needs to invoke pending_timer
611 * unconditionally. Note that forced scheduling is likely to induce short
612 * delay before dispatch starts even if @sq->first_pending_disptime is not
613 * in the future and thus shouldn't be used in hot paths.
615 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
618 /* any pending children left? */
622 update_min_dispatch_time(sq);
624 /* is the next dispatch time in the future? */
625 if (force || time_after(sq->first_pending_disptime, jiffies)) {
626 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
630 /* tell the caller to continue dispatching */
634 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
635 bool rw, unsigned long start)
637 tg->bytes_disp[rw] = 0;
639 tg->carryover_bytes[rw] = 0;
640 tg->carryover_ios[rw] = 0;
643 * Previous slice has expired. We must have trimmed it after last
644 * bio dispatch. That means since start of last slice, we never used
645 * that bandwidth. Do try to make use of that bandwidth while giving
648 if (time_after(start, tg->slice_start[rw]))
649 tg->slice_start[rw] = start;
651 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
652 throtl_log(&tg->service_queue,
653 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
654 rw == READ ? 'R' : 'W', tg->slice_start[rw],
655 tg->slice_end[rw], jiffies);
658 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw,
659 bool clear_carryover)
661 tg->bytes_disp[rw] = 0;
663 tg->slice_start[rw] = jiffies;
664 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
665 if (clear_carryover) {
666 tg->carryover_bytes[rw] = 0;
667 tg->carryover_ios[rw] = 0;
670 throtl_log(&tg->service_queue,
671 "[%c] new slice start=%lu end=%lu jiffies=%lu",
672 rw == READ ? 'R' : 'W', tg->slice_start[rw],
673 tg->slice_end[rw], jiffies);
676 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
677 unsigned long jiffy_end)
679 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
682 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
683 unsigned long jiffy_end)
685 throtl_set_slice_end(tg, rw, jiffy_end);
686 throtl_log(&tg->service_queue,
687 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
688 rw == READ ? 'R' : 'W', tg->slice_start[rw],
689 tg->slice_end[rw], jiffies);
692 /* Determine if previously allocated or extended slice is complete or not */
693 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
695 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
701 /* Trim the used slices and adjust slice start accordingly */
702 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
704 unsigned long nr_slices, time_elapsed, io_trim;
707 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
710 * If bps are unlimited (-1), then time slice don't get
711 * renewed. Don't try to trim the slice if slice is used. A new
712 * slice will start when appropriate.
714 if (throtl_slice_used(tg, rw))
718 * A bio has been dispatched. Also adjust slice_end. It might happen
719 * that initially cgroup limit was very low resulting in high
720 * slice_end, but later limit was bumped up and bio was dispatched
721 * sooner, then we need to reduce slice_end. A high bogus slice_end
722 * is bad because it does not allow new slice to start.
725 throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
727 time_elapsed = jiffies - tg->slice_start[rw];
729 nr_slices = time_elapsed / tg->td->throtl_slice;
733 tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
737 io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
740 if (!bytes_trim && !io_trim)
743 if (tg->bytes_disp[rw] >= bytes_trim)
744 tg->bytes_disp[rw] -= bytes_trim;
746 tg->bytes_disp[rw] = 0;
748 if (tg->io_disp[rw] >= io_trim)
749 tg->io_disp[rw] -= io_trim;
753 tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
755 throtl_log(&tg->service_queue,
756 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
757 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
758 tg->slice_start[rw], tg->slice_end[rw], jiffies);
761 static unsigned int calculate_io_allowed(u32 iops_limit,
762 unsigned long jiffy_elapsed)
764 unsigned int io_allowed;
768 * jiffy_elapsed should not be a big value as minimum iops can be
769 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
770 * will allow dispatch after 1 second and after that slice should
774 tmp = (u64)iops_limit * jiffy_elapsed;
778 io_allowed = UINT_MAX;
785 static u64 calculate_bytes_allowed(u64 bps_limit, unsigned long jiffy_elapsed)
787 return mul_u64_u64_div_u64(bps_limit, (u64)jiffy_elapsed, (u64)HZ);
790 static void __tg_update_carryover(struct throtl_grp *tg, bool rw)
792 unsigned long jiffy_elapsed = jiffies - tg->slice_start[rw];
793 u64 bps_limit = tg_bps_limit(tg, rw);
794 u32 iops_limit = tg_iops_limit(tg, rw);
797 * If config is updated while bios are still throttled, calculate and
798 * accumulate how many bytes/ios are waited across changes. And
799 * carryover_bytes/ios will be used to calculate new wait time under new
802 if (bps_limit != U64_MAX)
803 tg->carryover_bytes[rw] +=
804 calculate_bytes_allowed(bps_limit, jiffy_elapsed) -
806 if (iops_limit != UINT_MAX)
807 tg->carryover_ios[rw] +=
808 calculate_io_allowed(iops_limit, jiffy_elapsed) -
812 static void tg_update_carryover(struct throtl_grp *tg)
814 if (tg->service_queue.nr_queued[READ])
815 __tg_update_carryover(tg, READ);
816 if (tg->service_queue.nr_queued[WRITE])
817 __tg_update_carryover(tg, WRITE);
819 /* see comments in struct throtl_grp for meaning of these fields. */
820 throtl_log(&tg->service_queue, "%s: %llu %llu %u %u\n", __func__,
821 tg->carryover_bytes[READ], tg->carryover_bytes[WRITE],
822 tg->carryover_ios[READ], tg->carryover_ios[WRITE]);
825 static unsigned long tg_within_iops_limit(struct throtl_grp *tg, struct bio *bio,
828 bool rw = bio_data_dir(bio);
829 unsigned int io_allowed;
830 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
832 if (iops_limit == UINT_MAX) {
836 jiffy_elapsed = jiffies - tg->slice_start[rw];
838 /* Round up to the next throttle slice, wait time must be nonzero */
839 jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
840 io_allowed = calculate_io_allowed(iops_limit, jiffy_elapsed_rnd) +
841 tg->carryover_ios[rw];
842 if (tg->io_disp[rw] + 1 <= io_allowed) {
846 /* Calc approx time to dispatch */
847 jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
851 static unsigned long tg_within_bps_limit(struct throtl_grp *tg, struct bio *bio,
854 bool rw = bio_data_dir(bio);
855 u64 bytes_allowed, extra_bytes;
856 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
857 unsigned int bio_size = throtl_bio_data_size(bio);
859 /* no need to throttle if this bio's bytes have been accounted */
860 if (bps_limit == U64_MAX || bio_flagged(bio, BIO_BPS_THROTTLED)) {
864 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
866 /* Slice has just started. Consider one slice interval */
868 jiffy_elapsed_rnd = tg->td->throtl_slice;
870 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
871 bytes_allowed = calculate_bytes_allowed(bps_limit, jiffy_elapsed_rnd) +
872 tg->carryover_bytes[rw];
873 if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
877 /* Calc approx time to dispatch */
878 extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
879 jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit);
885 * This wait time is without taking into consideration the rounding
886 * up we did. Add that time also.
888 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
893 * Returns whether one can dispatch a bio or not. Also returns approx number
894 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
896 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
899 bool rw = bio_data_dir(bio);
900 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
901 u64 bps_limit = tg_bps_limit(tg, rw);
902 u32 iops_limit = tg_iops_limit(tg, rw);
905 * Currently whole state machine of group depends on first bio
906 * queued in the group bio list. So one should not be calling
907 * this function with a different bio if there are other bios
910 BUG_ON(tg->service_queue.nr_queued[rw] &&
911 bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
913 /* If tg->bps = -1, then BW is unlimited */
914 if ((bps_limit == U64_MAX && iops_limit == UINT_MAX) ||
915 tg->flags & THROTL_TG_CANCELING) {
922 * If previous slice expired, start a new one otherwise renew/extend
923 * existing slice to make sure it is at least throtl_slice interval
924 * long since now. New slice is started only for empty throttle group.
925 * If there is queued bio, that means there should be an active
926 * slice and it should be extended instead.
928 if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
929 throtl_start_new_slice(tg, rw, true);
931 if (time_before(tg->slice_end[rw],
932 jiffies + tg->td->throtl_slice))
933 throtl_extend_slice(tg, rw,
934 jiffies + tg->td->throtl_slice);
937 bps_wait = tg_within_bps_limit(tg, bio, bps_limit);
938 iops_wait = tg_within_iops_limit(tg, bio, iops_limit);
939 if (bps_wait + iops_wait == 0) {
945 max_wait = max(bps_wait, iops_wait);
950 if (time_before(tg->slice_end[rw], jiffies + max_wait))
951 throtl_extend_slice(tg, rw, jiffies + max_wait);
956 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
958 bool rw = bio_data_dir(bio);
959 unsigned int bio_size = throtl_bio_data_size(bio);
961 /* Charge the bio to the group */
962 if (!bio_flagged(bio, BIO_BPS_THROTTLED)) {
963 tg->bytes_disp[rw] += bio_size;
964 tg->last_bytes_disp[rw] += bio_size;
968 tg->last_io_disp[rw]++;
972 * throtl_add_bio_tg - add a bio to the specified throtl_grp
975 * @tg: the target throtl_grp
977 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
978 * tg->qnode_on_self[] is used.
980 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
981 struct throtl_grp *tg)
983 struct throtl_service_queue *sq = &tg->service_queue;
984 bool rw = bio_data_dir(bio);
987 qn = &tg->qnode_on_self[rw];
990 * If @tg doesn't currently have any bios queued in the same
991 * direction, queueing @bio can change when @tg should be
992 * dispatched. Mark that @tg was empty. This is automatically
993 * cleared on the next tg_update_disptime().
995 if (!sq->nr_queued[rw])
996 tg->flags |= THROTL_TG_WAS_EMPTY;
998 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1000 sq->nr_queued[rw]++;
1001 throtl_enqueue_tg(tg);
1004 static void tg_update_disptime(struct throtl_grp *tg)
1006 struct throtl_service_queue *sq = &tg->service_queue;
1007 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1010 bio = throtl_peek_queued(&sq->queued[READ]);
1012 tg_may_dispatch(tg, bio, &read_wait);
1014 bio = throtl_peek_queued(&sq->queued[WRITE]);
1016 tg_may_dispatch(tg, bio, &write_wait);
1018 min_wait = min(read_wait, write_wait);
1019 disptime = jiffies + min_wait;
1021 /* Update dispatch time */
1022 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
1023 tg->disptime = disptime;
1024 tg_service_queue_add(tg);
1026 /* see throtl_add_bio_tg() */
1027 tg->flags &= ~THROTL_TG_WAS_EMPTY;
1030 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1031 struct throtl_grp *parent_tg, bool rw)
1033 if (throtl_slice_used(parent_tg, rw)) {
1034 throtl_start_new_slice_with_credit(parent_tg, rw,
1035 child_tg->slice_start[rw]);
1040 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1042 struct throtl_service_queue *sq = &tg->service_queue;
1043 struct throtl_service_queue *parent_sq = sq->parent_sq;
1044 struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1045 struct throtl_grp *tg_to_put = NULL;
1049 * @bio is being transferred from @tg to @parent_sq. Popping a bio
1050 * from @tg may put its reference and @parent_sq might end up
1051 * getting released prematurely. Remember the tg to put and put it
1052 * after @bio is transferred to @parent_sq.
1054 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1055 sq->nr_queued[rw]--;
1057 throtl_charge_bio(tg, bio);
1060 * If our parent is another tg, we just need to transfer @bio to
1061 * the parent using throtl_add_bio_tg(). If our parent is
1062 * @td->service_queue, @bio is ready to be issued. Put it on its
1063 * bio_lists[] and decrease total number queued. The caller is
1064 * responsible for issuing these bios.
1067 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1068 start_parent_slice_with_credit(tg, parent_tg, rw);
1070 bio_set_flag(bio, BIO_BPS_THROTTLED);
1071 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1072 &parent_sq->queued[rw]);
1073 BUG_ON(tg->td->nr_queued[rw] <= 0);
1074 tg->td->nr_queued[rw]--;
1077 throtl_trim_slice(tg, rw);
1080 blkg_put(tg_to_blkg(tg_to_put));
1083 static int throtl_dispatch_tg(struct throtl_grp *tg)
1085 struct throtl_service_queue *sq = &tg->service_queue;
1086 unsigned int nr_reads = 0, nr_writes = 0;
1087 unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4;
1088 unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads;
1091 /* Try to dispatch 75% READS and 25% WRITES */
1093 while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1094 tg_may_dispatch(tg, bio, NULL)) {
1096 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1099 if (nr_reads >= max_nr_reads)
1103 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1104 tg_may_dispatch(tg, bio, NULL)) {
1106 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1109 if (nr_writes >= max_nr_writes)
1113 return nr_reads + nr_writes;
1116 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1118 unsigned int nr_disp = 0;
1121 struct throtl_grp *tg;
1122 struct throtl_service_queue *sq;
1124 if (!parent_sq->nr_pending)
1127 tg = throtl_rb_first(parent_sq);
1131 if (time_before(jiffies, tg->disptime))
1134 nr_disp += throtl_dispatch_tg(tg);
1136 sq = &tg->service_queue;
1137 if (sq->nr_queued[READ] || sq->nr_queued[WRITE])
1138 tg_update_disptime(tg);
1140 throtl_dequeue_tg(tg);
1142 if (nr_disp >= THROTL_QUANTUM)
1149 static bool throtl_can_upgrade(struct throtl_data *td,
1150 struct throtl_grp *this_tg);
1152 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1153 * @t: the pending_timer member of the throtl_service_queue being serviced
1155 * This timer is armed when a child throtl_grp with active bio's become
1156 * pending and queued on the service_queue's pending_tree and expires when
1157 * the first child throtl_grp should be dispatched. This function
1158 * dispatches bio's from the children throtl_grps to the parent
1161 * If the parent's parent is another throtl_grp, dispatching is propagated
1162 * by either arming its pending_timer or repeating dispatch directly. If
1163 * the top-level service_tree is reached, throtl_data->dispatch_work is
1164 * kicked so that the ready bio's are issued.
1166 static void throtl_pending_timer_fn(struct timer_list *t)
1168 struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1169 struct throtl_grp *tg = sq_to_tg(sq);
1170 struct throtl_data *td = sq_to_td(sq);
1171 struct throtl_service_queue *parent_sq;
1172 struct request_queue *q;
1176 /* throtl_data may be gone, so figure out request queue by blkg */
1182 spin_lock_irq(&q->queue_lock);
1187 if (throtl_can_upgrade(td, NULL))
1188 throtl_upgrade_state(td);
1191 parent_sq = sq->parent_sq;
1195 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1196 sq->nr_queued[READ] + sq->nr_queued[WRITE],
1197 sq->nr_queued[READ], sq->nr_queued[WRITE]);
1199 ret = throtl_select_dispatch(sq);
1201 throtl_log(sq, "bios disp=%u", ret);
1205 if (throtl_schedule_next_dispatch(sq, false))
1208 /* this dispatch windows is still open, relax and repeat */
1209 spin_unlock_irq(&q->queue_lock);
1211 spin_lock_irq(&q->queue_lock);
1218 /* @parent_sq is another throl_grp, propagate dispatch */
1219 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1220 tg_update_disptime(tg);
1221 if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1222 /* window is already open, repeat dispatching */
1229 /* reached the top-level, queue issuing */
1230 queue_work(kthrotld_workqueue, &td->dispatch_work);
1233 spin_unlock_irq(&q->queue_lock);
1237 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1238 * @work: work item being executed
1240 * This function is queued for execution when bios reach the bio_lists[]
1241 * of throtl_data->service_queue. Those bios are ready and issued by this
1244 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1246 struct throtl_data *td = container_of(work, struct throtl_data,
1248 struct throtl_service_queue *td_sq = &td->service_queue;
1249 struct request_queue *q = td->queue;
1250 struct bio_list bio_list_on_stack;
1252 struct blk_plug plug;
1255 bio_list_init(&bio_list_on_stack);
1257 spin_lock_irq(&q->queue_lock);
1258 for (rw = READ; rw <= WRITE; rw++)
1259 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1260 bio_list_add(&bio_list_on_stack, bio);
1261 spin_unlock_irq(&q->queue_lock);
1263 if (!bio_list_empty(&bio_list_on_stack)) {
1264 blk_start_plug(&plug);
1265 while ((bio = bio_list_pop(&bio_list_on_stack)))
1266 submit_bio_noacct_nocheck(bio);
1267 blk_finish_plug(&plug);
1271 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1274 struct throtl_grp *tg = pd_to_tg(pd);
1275 u64 v = *(u64 *)((void *)tg + off);
1279 return __blkg_prfill_u64(sf, pd, v);
1282 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1285 struct throtl_grp *tg = pd_to_tg(pd);
1286 unsigned int v = *(unsigned int *)((void *)tg + off);
1290 return __blkg_prfill_u64(sf, pd, v);
1293 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1295 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1296 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1300 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1302 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1303 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1307 static void tg_conf_updated(struct throtl_grp *tg, bool global)
1309 struct throtl_service_queue *sq = &tg->service_queue;
1310 struct cgroup_subsys_state *pos_css;
1311 struct blkcg_gq *blkg;
1313 throtl_log(&tg->service_queue,
1314 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1315 tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1316 tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1319 * Update has_rules[] flags for the updated tg's subtree. A tg is
1320 * considered to have rules if either the tg itself or any of its
1321 * ancestors has rules. This identifies groups without any
1322 * restrictions in the whole hierarchy and allows them to bypass
1325 blkg_for_each_descendant_pre(blkg, pos_css,
1326 global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1327 struct throtl_grp *this_tg = blkg_to_tg(blkg);
1328 struct throtl_grp *parent_tg;
1330 tg_update_has_rules(this_tg);
1331 /* ignore root/second level */
1332 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1333 !blkg->parent->parent)
1335 parent_tg = blkg_to_tg(blkg->parent);
1337 * make sure all children has lower idle time threshold and
1338 * higher latency target
1340 this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1341 parent_tg->idletime_threshold);
1342 this_tg->latency_target = max(this_tg->latency_target,
1343 parent_tg->latency_target);
1347 * We're already holding queue_lock and know @tg is valid. Let's
1348 * apply the new config directly.
1350 * Restart the slices for both READ and WRITES. It might happen
1351 * that a group's limit are dropped suddenly and we don't want to
1352 * account recently dispatched IO with new low rate.
1354 throtl_start_new_slice(tg, READ, false);
1355 throtl_start_new_slice(tg, WRITE, false);
1357 if (tg->flags & THROTL_TG_PENDING) {
1358 tg_update_disptime(tg);
1359 throtl_schedule_next_dispatch(sq->parent_sq, true);
1363 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1364 char *buf, size_t nbytes, loff_t off, bool is_u64)
1366 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1367 struct blkg_conf_ctx ctx;
1368 struct throtl_grp *tg;
1372 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1377 if (sscanf(ctx.body, "%llu", &v) != 1)
1382 tg = blkg_to_tg(ctx.blkg);
1383 tg_update_carryover(tg);
1386 *(u64 *)((void *)tg + of_cft(of)->private) = v;
1388 *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1390 tg_conf_updated(tg, false);
1393 blkg_conf_finish(&ctx);
1394 return ret ?: nbytes;
1397 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1398 char *buf, size_t nbytes, loff_t off)
1400 return tg_set_conf(of, buf, nbytes, off, true);
1403 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1404 char *buf, size_t nbytes, loff_t off)
1406 return tg_set_conf(of, buf, nbytes, off, false);
1409 static int tg_print_rwstat(struct seq_file *sf, void *v)
1411 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1412 blkg_prfill_rwstat, &blkcg_policy_throtl,
1413 seq_cft(sf)->private, true);
1417 static u64 tg_prfill_rwstat_recursive(struct seq_file *sf,
1418 struct blkg_policy_data *pd, int off)
1420 struct blkg_rwstat_sample sum;
1422 blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off,
1424 return __blkg_prfill_rwstat(sf, pd, &sum);
1427 static int tg_print_rwstat_recursive(struct seq_file *sf, void *v)
1429 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1430 tg_prfill_rwstat_recursive, &blkcg_policy_throtl,
1431 seq_cft(sf)->private, true);
1435 static struct cftype throtl_legacy_files[] = {
1437 .name = "throttle.read_bps_device",
1438 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1439 .seq_show = tg_print_conf_u64,
1440 .write = tg_set_conf_u64,
1443 .name = "throttle.write_bps_device",
1444 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1445 .seq_show = tg_print_conf_u64,
1446 .write = tg_set_conf_u64,
1449 .name = "throttle.read_iops_device",
1450 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1451 .seq_show = tg_print_conf_uint,
1452 .write = tg_set_conf_uint,
1455 .name = "throttle.write_iops_device",
1456 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1457 .seq_show = tg_print_conf_uint,
1458 .write = tg_set_conf_uint,
1461 .name = "throttle.io_service_bytes",
1462 .private = offsetof(struct throtl_grp, stat_bytes),
1463 .seq_show = tg_print_rwstat,
1466 .name = "throttle.io_service_bytes_recursive",
1467 .private = offsetof(struct throtl_grp, stat_bytes),
1468 .seq_show = tg_print_rwstat_recursive,
1471 .name = "throttle.io_serviced",
1472 .private = offsetof(struct throtl_grp, stat_ios),
1473 .seq_show = tg_print_rwstat,
1476 .name = "throttle.io_serviced_recursive",
1477 .private = offsetof(struct throtl_grp, stat_ios),
1478 .seq_show = tg_print_rwstat_recursive,
1483 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1486 struct throtl_grp *tg = pd_to_tg(pd);
1487 const char *dname = blkg_dev_name(pd->blkg);
1488 char bufs[4][21] = { "max", "max", "max", "max" };
1490 unsigned int iops_dft;
1491 char idle_time[26] = "";
1492 char latency_time[26] = "";
1497 if (off == LIMIT_LOW) {
1502 iops_dft = UINT_MAX;
1505 if (tg->bps_conf[READ][off] == bps_dft &&
1506 tg->bps_conf[WRITE][off] == bps_dft &&
1507 tg->iops_conf[READ][off] == iops_dft &&
1508 tg->iops_conf[WRITE][off] == iops_dft &&
1509 (off != LIMIT_LOW ||
1510 (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1511 tg->latency_target_conf == DFL_LATENCY_TARGET)))
1514 if (tg->bps_conf[READ][off] != U64_MAX)
1515 snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1516 tg->bps_conf[READ][off]);
1517 if (tg->bps_conf[WRITE][off] != U64_MAX)
1518 snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1519 tg->bps_conf[WRITE][off]);
1520 if (tg->iops_conf[READ][off] != UINT_MAX)
1521 snprintf(bufs[2], sizeof(bufs[2]), "%u",
1522 tg->iops_conf[READ][off]);
1523 if (tg->iops_conf[WRITE][off] != UINT_MAX)
1524 snprintf(bufs[3], sizeof(bufs[3]), "%u",
1525 tg->iops_conf[WRITE][off]);
1526 if (off == LIMIT_LOW) {
1527 if (tg->idletime_threshold_conf == ULONG_MAX)
1528 strcpy(idle_time, " idle=max");
1530 snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1531 tg->idletime_threshold_conf);
1533 if (tg->latency_target_conf == ULONG_MAX)
1534 strcpy(latency_time, " latency=max");
1536 snprintf(latency_time, sizeof(latency_time),
1537 " latency=%lu", tg->latency_target_conf);
1540 seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1541 dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1546 static int tg_print_limit(struct seq_file *sf, void *v)
1548 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1549 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1553 static ssize_t tg_set_limit(struct kernfs_open_file *of,
1554 char *buf, size_t nbytes, loff_t off)
1556 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1557 struct blkg_conf_ctx ctx;
1558 struct throtl_grp *tg;
1560 unsigned long idle_time;
1561 unsigned long latency_time;
1563 int index = of_cft(of)->private;
1565 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1569 tg = blkg_to_tg(ctx.blkg);
1570 tg_update_carryover(tg);
1572 v[0] = tg->bps_conf[READ][index];
1573 v[1] = tg->bps_conf[WRITE][index];
1574 v[2] = tg->iops_conf[READ][index];
1575 v[3] = tg->iops_conf[WRITE][index];
1577 idle_time = tg->idletime_threshold_conf;
1578 latency_time = tg->latency_target_conf;
1580 char tok[27]; /* wiops=18446744073709551616 */
1585 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1594 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1602 if (!strcmp(tok, "rbps") && val > 1)
1604 else if (!strcmp(tok, "wbps") && val > 1)
1606 else if (!strcmp(tok, "riops") && val > 1)
1607 v[2] = min_t(u64, val, UINT_MAX);
1608 else if (!strcmp(tok, "wiops") && val > 1)
1609 v[3] = min_t(u64, val, UINT_MAX);
1610 else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1612 else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1618 tg->bps_conf[READ][index] = v[0];
1619 tg->bps_conf[WRITE][index] = v[1];
1620 tg->iops_conf[READ][index] = v[2];
1621 tg->iops_conf[WRITE][index] = v[3];
1623 if (index == LIMIT_MAX) {
1624 tg->bps[READ][index] = v[0];
1625 tg->bps[WRITE][index] = v[1];
1626 tg->iops[READ][index] = v[2];
1627 tg->iops[WRITE][index] = v[3];
1629 tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1630 tg->bps_conf[READ][LIMIT_MAX]);
1631 tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1632 tg->bps_conf[WRITE][LIMIT_MAX]);
1633 tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1634 tg->iops_conf[READ][LIMIT_MAX]);
1635 tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1636 tg->iops_conf[WRITE][LIMIT_MAX]);
1637 tg->idletime_threshold_conf = idle_time;
1638 tg->latency_target_conf = latency_time;
1640 /* force user to configure all settings for low limit */
1641 if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1642 tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1643 tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1644 tg->latency_target_conf == DFL_LATENCY_TARGET) {
1645 tg->bps[READ][LIMIT_LOW] = 0;
1646 tg->bps[WRITE][LIMIT_LOW] = 0;
1647 tg->iops[READ][LIMIT_LOW] = 0;
1648 tg->iops[WRITE][LIMIT_LOW] = 0;
1649 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1650 tg->latency_target = DFL_LATENCY_TARGET;
1651 } else if (index == LIMIT_LOW) {
1652 tg->idletime_threshold = tg->idletime_threshold_conf;
1653 tg->latency_target = tg->latency_target_conf;
1656 blk_throtl_update_limit_valid(tg->td);
1657 if (tg->td->limit_valid[LIMIT_LOW]) {
1658 if (index == LIMIT_LOW)
1659 tg->td->limit_index = LIMIT_LOW;
1661 tg->td->limit_index = LIMIT_MAX;
1662 tg_conf_updated(tg, index == LIMIT_LOW &&
1663 tg->td->limit_valid[LIMIT_LOW]);
1666 blkg_conf_finish(&ctx);
1667 return ret ?: nbytes;
1670 static struct cftype throtl_files[] = {
1671 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1674 .flags = CFTYPE_NOT_ON_ROOT,
1675 .seq_show = tg_print_limit,
1676 .write = tg_set_limit,
1677 .private = LIMIT_LOW,
1682 .flags = CFTYPE_NOT_ON_ROOT,
1683 .seq_show = tg_print_limit,
1684 .write = tg_set_limit,
1685 .private = LIMIT_MAX,
1690 static void throtl_shutdown_wq(struct request_queue *q)
1692 struct throtl_data *td = q->td;
1694 cancel_work_sync(&td->dispatch_work);
1697 struct blkcg_policy blkcg_policy_throtl = {
1698 .dfl_cftypes = throtl_files,
1699 .legacy_cftypes = throtl_legacy_files,
1701 .pd_alloc_fn = throtl_pd_alloc,
1702 .pd_init_fn = throtl_pd_init,
1703 .pd_online_fn = throtl_pd_online,
1704 .pd_offline_fn = throtl_pd_offline,
1705 .pd_free_fn = throtl_pd_free,
1708 void blk_throtl_cancel_bios(struct gendisk *disk)
1710 struct request_queue *q = disk->queue;
1711 struct cgroup_subsys_state *pos_css;
1712 struct blkcg_gq *blkg;
1714 spin_lock_irq(&q->queue_lock);
1716 * queue_lock is held, rcu lock is not needed here technically.
1717 * However, rcu lock is still held to emphasize that following
1718 * path need RCU protection and to prevent warning from lockdep.
1721 blkg_for_each_descendant_post(blkg, pos_css, q->root_blkg) {
1722 struct throtl_grp *tg = blkg_to_tg(blkg);
1723 struct throtl_service_queue *sq = &tg->service_queue;
1726 * Set the flag to make sure throtl_pending_timer_fn() won't
1727 * stop until all throttled bios are dispatched.
1729 tg->flags |= THROTL_TG_CANCELING;
1732 * Do not dispatch cgroup without THROTL_TG_PENDING or cgroup
1733 * will be inserted to service queue without THROTL_TG_PENDING
1734 * set in tg_update_disptime below. Then IO dispatched from
1735 * child in tg_dispatch_one_bio will trigger double insertion
1736 * and corrupt the tree.
1738 if (!(tg->flags & THROTL_TG_PENDING))
1742 * Update disptime after setting the above flag to make sure
1743 * throtl_select_dispatch() won't exit without dispatching.
1745 tg_update_disptime(tg);
1747 throtl_schedule_pending_timer(sq, jiffies + 1);
1750 spin_unlock_irq(&q->queue_lock);
1753 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1754 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1756 unsigned long rtime = jiffies, wtime = jiffies;
1758 if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1759 rtime = tg->last_low_overflow_time[READ];
1760 if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1761 wtime = tg->last_low_overflow_time[WRITE];
1762 return min(rtime, wtime);
1765 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1767 struct throtl_service_queue *parent_sq;
1768 struct throtl_grp *parent = tg;
1769 unsigned long ret = __tg_last_low_overflow_time(tg);
1772 parent_sq = parent->service_queue.parent_sq;
1773 parent = sq_to_tg(parent_sq);
1778 * The parent doesn't have low limit, it always reaches low
1779 * limit. Its overflow time is useless for children
1781 if (!parent->bps[READ][LIMIT_LOW] &&
1782 !parent->iops[READ][LIMIT_LOW] &&
1783 !parent->bps[WRITE][LIMIT_LOW] &&
1784 !parent->iops[WRITE][LIMIT_LOW])
1786 if (time_after(__tg_last_low_overflow_time(parent), ret))
1787 ret = __tg_last_low_overflow_time(parent);
1792 static bool throtl_tg_is_idle(struct throtl_grp *tg)
1795 * cgroup is idle if:
1796 * - single idle is too long, longer than a fixed value (in case user
1797 * configure a too big threshold) or 4 times of idletime threshold
1798 * - average think time is more than threshold
1799 * - IO latency is largely below threshold
1804 time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1805 ret = tg->latency_target == DFL_LATENCY_TARGET ||
1806 tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1807 (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1808 tg->avg_idletime > tg->idletime_threshold ||
1809 (tg->latency_target && tg->bio_cnt &&
1810 tg->bad_bio_cnt * 5 < tg->bio_cnt);
1811 throtl_log(&tg->service_queue,
1812 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1813 tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1814 tg->bio_cnt, ret, tg->td->scale);
1818 static bool throtl_low_limit_reached(struct throtl_grp *tg, int rw)
1820 struct throtl_service_queue *sq = &tg->service_queue;
1821 bool limit = tg->bps[rw][LIMIT_LOW] || tg->iops[rw][LIMIT_LOW];
1824 * if low limit is zero, low limit is always reached.
1825 * if low limit is non-zero, we can check if there is any request
1826 * is queued to determine if low limit is reached as we throttle
1827 * request according to limit.
1829 return !limit || sq->nr_queued[rw];
1832 static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1835 * cgroup reaches low limit when low limit of READ and WRITE are
1836 * both reached, it's ok to upgrade to next limit if cgroup reaches
1839 if (throtl_low_limit_reached(tg, READ) &&
1840 throtl_low_limit_reached(tg, WRITE))
1843 if (time_after_eq(jiffies,
1844 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1845 throtl_tg_is_idle(tg))
1850 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1853 if (throtl_tg_can_upgrade(tg))
1855 tg = sq_to_tg(tg->service_queue.parent_sq);
1856 if (!tg || !tg_to_blkg(tg)->parent)
1862 static bool throtl_can_upgrade(struct throtl_data *td,
1863 struct throtl_grp *this_tg)
1865 struct cgroup_subsys_state *pos_css;
1866 struct blkcg_gq *blkg;
1868 if (td->limit_index != LIMIT_LOW)
1871 if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1875 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1876 struct throtl_grp *tg = blkg_to_tg(blkg);
1880 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1882 if (!throtl_hierarchy_can_upgrade(tg)) {
1891 static void throtl_upgrade_check(struct throtl_grp *tg)
1893 unsigned long now = jiffies;
1895 if (tg->td->limit_index != LIMIT_LOW)
1898 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1901 tg->last_check_time = now;
1903 if (!time_after_eq(now,
1904 __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1907 if (throtl_can_upgrade(tg->td, NULL))
1908 throtl_upgrade_state(tg->td);
1911 static void throtl_upgrade_state(struct throtl_data *td)
1913 struct cgroup_subsys_state *pos_css;
1914 struct blkcg_gq *blkg;
1916 throtl_log(&td->service_queue, "upgrade to max");
1917 td->limit_index = LIMIT_MAX;
1918 td->low_upgrade_time = jiffies;
1921 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1922 struct throtl_grp *tg = blkg_to_tg(blkg);
1923 struct throtl_service_queue *sq = &tg->service_queue;
1925 tg->disptime = jiffies - 1;
1926 throtl_select_dispatch(sq);
1927 throtl_schedule_next_dispatch(sq, true);
1930 throtl_select_dispatch(&td->service_queue);
1931 throtl_schedule_next_dispatch(&td->service_queue, true);
1932 queue_work(kthrotld_workqueue, &td->dispatch_work);
1935 static void throtl_downgrade_state(struct throtl_data *td)
1939 throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1941 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1945 td->limit_index = LIMIT_LOW;
1946 td->low_downgrade_time = jiffies;
1949 static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1951 struct throtl_data *td = tg->td;
1952 unsigned long now = jiffies;
1955 * If cgroup is below low limit, consider downgrade and throttle other
1958 if (time_after_eq(now, tg_last_low_overflow_time(tg) +
1959 td->throtl_slice) &&
1960 (!throtl_tg_is_idle(tg) ||
1961 !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
1966 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
1968 struct throtl_data *td = tg->td;
1970 if (time_before(jiffies, td->low_upgrade_time + td->throtl_slice))
1974 if (!throtl_tg_can_downgrade(tg))
1976 tg = sq_to_tg(tg->service_queue.parent_sq);
1977 if (!tg || !tg_to_blkg(tg)->parent)
1983 static void throtl_downgrade_check(struct throtl_grp *tg)
1987 unsigned long elapsed_time;
1988 unsigned long now = jiffies;
1990 if (tg->td->limit_index != LIMIT_MAX ||
1991 !tg->td->limit_valid[LIMIT_LOW])
1993 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1995 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1998 elapsed_time = now - tg->last_check_time;
1999 tg->last_check_time = now;
2001 if (time_before(now, tg_last_low_overflow_time(tg) +
2002 tg->td->throtl_slice))
2005 if (tg->bps[READ][LIMIT_LOW]) {
2006 bps = tg->last_bytes_disp[READ] * HZ;
2007 do_div(bps, elapsed_time);
2008 if (bps >= tg->bps[READ][LIMIT_LOW])
2009 tg->last_low_overflow_time[READ] = now;
2012 if (tg->bps[WRITE][LIMIT_LOW]) {
2013 bps = tg->last_bytes_disp[WRITE] * HZ;
2014 do_div(bps, elapsed_time);
2015 if (bps >= tg->bps[WRITE][LIMIT_LOW])
2016 tg->last_low_overflow_time[WRITE] = now;
2019 if (tg->iops[READ][LIMIT_LOW]) {
2020 iops = tg->last_io_disp[READ] * HZ / elapsed_time;
2021 if (iops >= tg->iops[READ][LIMIT_LOW])
2022 tg->last_low_overflow_time[READ] = now;
2025 if (tg->iops[WRITE][LIMIT_LOW]) {
2026 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
2027 if (iops >= tg->iops[WRITE][LIMIT_LOW])
2028 tg->last_low_overflow_time[WRITE] = now;
2032 * If cgroup is below low limit, consider downgrade and throttle other
2035 if (throtl_hierarchy_can_downgrade(tg))
2036 throtl_downgrade_state(tg->td);
2038 tg->last_bytes_disp[READ] = 0;
2039 tg->last_bytes_disp[WRITE] = 0;
2040 tg->last_io_disp[READ] = 0;
2041 tg->last_io_disp[WRITE] = 0;
2044 static void blk_throtl_update_idletime(struct throtl_grp *tg)
2047 unsigned long last_finish_time = tg->last_finish_time;
2049 if (last_finish_time == 0)
2052 now = ktime_get_ns() >> 10;
2053 if (now <= last_finish_time ||
2054 last_finish_time == tg->checked_last_finish_time)
2057 tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2058 tg->checked_last_finish_time = last_finish_time;
2061 static void throtl_update_latency_buckets(struct throtl_data *td)
2063 struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
2065 unsigned long last_latency[2] = { 0 };
2066 unsigned long latency[2];
2068 if (!blk_queue_nonrot(td->queue) || !td->limit_valid[LIMIT_LOW])
2070 if (time_before(jiffies, td->last_calculate_time + HZ))
2072 td->last_calculate_time = jiffies;
2074 memset(avg_latency, 0, sizeof(avg_latency));
2075 for (rw = READ; rw <= WRITE; rw++) {
2076 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2077 struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
2079 for_each_possible_cpu(cpu) {
2080 struct latency_bucket *bucket;
2082 /* this isn't race free, but ok in practice */
2083 bucket = per_cpu_ptr(td->latency_buckets[rw],
2085 tmp->total_latency += bucket[i].total_latency;
2086 tmp->samples += bucket[i].samples;
2087 bucket[i].total_latency = 0;
2088 bucket[i].samples = 0;
2091 if (tmp->samples >= 32) {
2092 int samples = tmp->samples;
2094 latency[rw] = tmp->total_latency;
2096 tmp->total_latency = 0;
2098 latency[rw] /= samples;
2099 if (latency[rw] == 0)
2101 avg_latency[rw][i].latency = latency[rw];
2106 for (rw = READ; rw <= WRITE; rw++) {
2107 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2108 if (!avg_latency[rw][i].latency) {
2109 if (td->avg_buckets[rw][i].latency < last_latency[rw])
2110 td->avg_buckets[rw][i].latency =
2115 if (!td->avg_buckets[rw][i].valid)
2116 latency[rw] = avg_latency[rw][i].latency;
2118 latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2119 avg_latency[rw][i].latency) >> 3;
2121 td->avg_buckets[rw][i].latency = max(latency[rw],
2123 td->avg_buckets[rw][i].valid = true;
2124 last_latency[rw] = td->avg_buckets[rw][i].latency;
2128 for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2129 throtl_log(&td->service_queue,
2130 "Latency bucket %d: read latency=%ld, read valid=%d, "
2131 "write latency=%ld, write valid=%d", i,
2132 td->avg_buckets[READ][i].latency,
2133 td->avg_buckets[READ][i].valid,
2134 td->avg_buckets[WRITE][i].latency,
2135 td->avg_buckets[WRITE][i].valid);
2138 static inline void throtl_update_latency_buckets(struct throtl_data *td)
2142 static void blk_throtl_update_idletime(struct throtl_grp *tg)
2146 static void throtl_downgrade_check(struct throtl_grp *tg)
2150 static void throtl_upgrade_check(struct throtl_grp *tg)
2154 static bool throtl_can_upgrade(struct throtl_data *td,
2155 struct throtl_grp *this_tg)
2160 static void throtl_upgrade_state(struct throtl_data *td)
2165 bool __blk_throtl_bio(struct bio *bio)
2167 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2168 struct blkcg_gq *blkg = bio->bi_blkg;
2169 struct throtl_qnode *qn = NULL;
2170 struct throtl_grp *tg = blkg_to_tg(blkg);
2171 struct throtl_service_queue *sq;
2172 bool rw = bio_data_dir(bio);
2173 bool throttled = false;
2174 struct throtl_data *td = tg->td;
2178 if (!cgroup_subsys_on_dfl(io_cgrp_subsys)) {
2179 blkg_rwstat_add(&tg->stat_bytes, bio->bi_opf,
2180 bio->bi_iter.bi_size);
2181 blkg_rwstat_add(&tg->stat_ios, bio->bi_opf, 1);
2184 spin_lock_irq(&q->queue_lock);
2186 throtl_update_latency_buckets(td);
2188 blk_throtl_update_idletime(tg);
2190 sq = &tg->service_queue;
2194 if (tg->last_low_overflow_time[rw] == 0)
2195 tg->last_low_overflow_time[rw] = jiffies;
2196 throtl_downgrade_check(tg);
2197 throtl_upgrade_check(tg);
2198 /* throtl is FIFO - if bios are already queued, should queue */
2199 if (sq->nr_queued[rw])
2202 /* if above limits, break to queue */
2203 if (!tg_may_dispatch(tg, bio, NULL)) {
2204 tg->last_low_overflow_time[rw] = jiffies;
2205 if (throtl_can_upgrade(td, tg)) {
2206 throtl_upgrade_state(td);
2212 /* within limits, let's charge and dispatch directly */
2213 throtl_charge_bio(tg, bio);
2216 * We need to trim slice even when bios are not being queued
2217 * otherwise it might happen that a bio is not queued for
2218 * a long time and slice keeps on extending and trim is not
2219 * called for a long time. Now if limits are reduced suddenly
2220 * we take into account all the IO dispatched so far at new
2221 * low rate and * newly queued IO gets a really long dispatch
2224 * So keep on trimming slice even if bio is not queued.
2226 throtl_trim_slice(tg, rw);
2229 * @bio passed through this layer without being throttled.
2230 * Climb up the ladder. If we're already at the top, it
2231 * can be executed directly.
2233 qn = &tg->qnode_on_parent[rw];
2237 bio_set_flag(bio, BIO_BPS_THROTTLED);
2242 /* out-of-limit, queue to @tg */
2243 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2244 rw == READ ? 'R' : 'W',
2245 tg->bytes_disp[rw], bio->bi_iter.bi_size,
2246 tg_bps_limit(tg, rw),
2247 tg->io_disp[rw], tg_iops_limit(tg, rw),
2248 sq->nr_queued[READ], sq->nr_queued[WRITE]);
2250 tg->last_low_overflow_time[rw] = jiffies;
2252 td->nr_queued[rw]++;
2253 throtl_add_bio_tg(bio, qn, tg);
2257 * Update @tg's dispatch time and force schedule dispatch if @tg
2258 * was empty before @bio. The forced scheduling isn't likely to
2259 * cause undue delay as @bio is likely to be dispatched directly if
2260 * its @tg's disptime is not in the future.
2262 if (tg->flags & THROTL_TG_WAS_EMPTY) {
2263 tg_update_disptime(tg);
2264 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2268 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2269 if (throttled || !td->track_bio_latency)
2270 bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
2272 spin_unlock_irq(&q->queue_lock);
2278 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2279 static void throtl_track_latency(struct throtl_data *td, sector_t size,
2280 enum req_op op, unsigned long time)
2282 const bool rw = op_is_write(op);
2283 struct latency_bucket *latency;
2286 if (!td || td->limit_index != LIMIT_LOW ||
2287 !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
2288 !blk_queue_nonrot(td->queue))
2291 index = request_bucket_index(size);
2293 latency = get_cpu_ptr(td->latency_buckets[rw]);
2294 latency[index].total_latency += time;
2295 latency[index].samples++;
2296 put_cpu_ptr(td->latency_buckets[rw]);
2299 void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2301 struct request_queue *q = rq->q;
2302 struct throtl_data *td = q->td;
2304 throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq),
2308 void blk_throtl_bio_endio(struct bio *bio)
2310 struct blkcg_gq *blkg;
2311 struct throtl_grp *tg;
2313 unsigned long finish_time;
2314 unsigned long start_time;
2316 int rw = bio_data_dir(bio);
2318 blkg = bio->bi_blkg;
2321 tg = blkg_to_tg(blkg);
2322 if (!tg->td->limit_valid[LIMIT_LOW])
2325 finish_time_ns = ktime_get_ns();
2326 tg->last_finish_time = finish_time_ns >> 10;
2328 start_time = bio_issue_time(&bio->bi_issue) >> 10;
2329 finish_time = __bio_issue_time(finish_time_ns) >> 10;
2330 if (!start_time || finish_time <= start_time)
2333 lat = finish_time - start_time;
2334 /* this is only for bio based driver */
2335 if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
2336 throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
2339 if (tg->latency_target && lat >= tg->td->filtered_latency) {
2341 unsigned int threshold;
2343 bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
2344 threshold = tg->td->avg_buckets[rw][bucket].latency +
2346 if (lat > threshold)
2349 * Not race free, could get wrong count, which means cgroups
2355 if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2356 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2358 tg->bad_bio_cnt /= 2;
2363 int blk_throtl_init(struct gendisk *disk)
2365 struct request_queue *q = disk->queue;
2366 struct throtl_data *td;
2369 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2372 td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
2373 LATENCY_BUCKET_SIZE, __alignof__(u64));
2374 if (!td->latency_buckets[READ]) {
2378 td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
2379 LATENCY_BUCKET_SIZE, __alignof__(u64));
2380 if (!td->latency_buckets[WRITE]) {
2381 free_percpu(td->latency_buckets[READ]);
2386 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2387 throtl_service_queue_init(&td->service_queue);
2392 td->limit_valid[LIMIT_MAX] = true;
2393 td->limit_index = LIMIT_MAX;
2394 td->low_upgrade_time = jiffies;
2395 td->low_downgrade_time = jiffies;
2397 /* activate policy */
2398 ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2400 free_percpu(td->latency_buckets[READ]);
2401 free_percpu(td->latency_buckets[WRITE]);
2407 void blk_throtl_exit(struct gendisk *disk)
2409 struct request_queue *q = disk->queue;
2412 del_timer_sync(&q->td->service_queue.pending_timer);
2413 throtl_shutdown_wq(q);
2414 blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2415 free_percpu(q->td->latency_buckets[READ]);
2416 free_percpu(q->td->latency_buckets[WRITE]);
2420 void blk_throtl_register(struct gendisk *disk)
2422 struct request_queue *q = disk->queue;
2423 struct throtl_data *td;
2429 if (blk_queue_nonrot(q)) {
2430 td->throtl_slice = DFL_THROTL_SLICE_SSD;
2431 td->filtered_latency = LATENCY_FILTERED_SSD;
2433 td->throtl_slice = DFL_THROTL_SLICE_HD;
2434 td->filtered_latency = LATENCY_FILTERED_HD;
2435 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2436 td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2437 td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2440 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2441 /* if no low limit, use previous default */
2442 td->throtl_slice = DFL_THROTL_SLICE_HD;
2445 td->track_bio_latency = !queue_is_mq(q);
2446 if (!td->track_bio_latency)
2447 blk_stat_enable_accounting(q);
2450 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2451 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2455 return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2458 ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2459 const char *page, size_t count)
2466 if (kstrtoul(page, 10, &v))
2468 t = msecs_to_jiffies(v);
2469 if (t == 0 || t > MAX_THROTL_SLICE)
2471 q->td->throtl_slice = t;
2476 static int __init throtl_init(void)
2478 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2479 if (!kthrotld_workqueue)
2480 panic("Failed to create kthrotld\n");
2482 return blkcg_policy_register(&blkcg_policy_throtl);
2485 module_init(throtl_init);