blk-throttle: Move service tree validation out of the throtl_rb_first()
[platform/kernel/linux-rpi.git] / block / blk-throttle.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Interface for controlling IO bandwidth on a request queue
4  *
5  * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
6  */
7
8 #include <linux/module.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/bio.h>
12 #include <linux/blktrace_api.h>
13 #include <linux/blk-cgroup.h>
14 #include "blk.h"
15 #include "blk-cgroup-rwstat.h"
16
17 /* Max dispatch from a group in 1 round */
18 #define THROTL_GRP_QUANTUM 8
19
20 /* Total max dispatch from all groups in one round */
21 #define THROTL_QUANTUM 32
22
23 /* Throttling is performed over a slice and after that slice is renewed */
24 #define DFL_THROTL_SLICE_HD (HZ / 10)
25 #define DFL_THROTL_SLICE_SSD (HZ / 50)
26 #define MAX_THROTL_SLICE (HZ)
27 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
28 #define MIN_THROTL_BPS (320 * 1024)
29 #define MIN_THROTL_IOPS (10)
30 #define DFL_LATENCY_TARGET (-1L)
31 #define DFL_IDLE_THRESHOLD (0)
32 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
33 #define LATENCY_FILTERED_SSD (0)
34 /*
35  * For HD, very small latency comes from sequential IO. Such IO is helpless to
36  * help determine if its IO is impacted by others, hence we ignore the IO
37  */
38 #define LATENCY_FILTERED_HD (1000L) /* 1ms */
39
40 static struct blkcg_policy blkcg_policy_throtl;
41
42 /* A workqueue to queue throttle related work */
43 static struct workqueue_struct *kthrotld_workqueue;
44
45 /*
46  * To implement hierarchical throttling, throtl_grps form a tree and bios
47  * are dispatched upwards level by level until they reach the top and get
48  * issued.  When dispatching bios from the children and local group at each
49  * level, if the bios are dispatched into a single bio_list, there's a risk
50  * of a local or child group which can queue many bios at once filling up
51  * the list starving others.
52  *
53  * To avoid such starvation, dispatched bios are queued separately
54  * according to where they came from.  When they are again dispatched to
55  * the parent, they're popped in round-robin order so that no single source
56  * hogs the dispatch window.
57  *
58  * throtl_qnode is used to keep the queued bios separated by their sources.
59  * Bios are queued to throtl_qnode which in turn is queued to
60  * throtl_service_queue and then dispatched in round-robin order.
61  *
62  * It's also used to track the reference counts on blkg's.  A qnode always
63  * belongs to a throtl_grp and gets queued on itself or the parent, so
64  * incrementing the reference of the associated throtl_grp when a qnode is
65  * queued and decrementing when dequeued is enough to keep the whole blkg
66  * tree pinned while bios are in flight.
67  */
68 struct throtl_qnode {
69         struct list_head        node;           /* service_queue->queued[] */
70         struct bio_list         bios;           /* queued bios */
71         struct throtl_grp       *tg;            /* tg this qnode belongs to */
72 };
73
74 struct throtl_service_queue {
75         struct throtl_service_queue *parent_sq; /* the parent service_queue */
76
77         /*
78          * Bios queued directly to this service_queue or dispatched from
79          * children throtl_grp's.
80          */
81         struct list_head        queued[2];      /* throtl_qnode [READ/WRITE] */
82         unsigned int            nr_queued[2];   /* number of queued bios */
83
84         /*
85          * RB tree of active children throtl_grp's, which are sorted by
86          * their ->disptime.
87          */
88         struct rb_root_cached   pending_tree;   /* RB tree of active tgs */
89         unsigned int            nr_pending;     /* # queued in the tree */
90         unsigned long           first_pending_disptime; /* disptime of the first tg */
91         struct timer_list       pending_timer;  /* fires on first_pending_disptime */
92 };
93
94 enum tg_state_flags {
95         THROTL_TG_PENDING       = 1 << 0,       /* on parent's pending tree */
96         THROTL_TG_WAS_EMPTY     = 1 << 1,       /* bio_lists[] became non-empty */
97 };
98
99 #define rb_entry_tg(node)       rb_entry((node), struct throtl_grp, rb_node)
100
101 enum {
102         LIMIT_LOW,
103         LIMIT_MAX,
104         LIMIT_CNT,
105 };
106
107 struct throtl_grp {
108         /* must be the first member */
109         struct blkg_policy_data pd;
110
111         /* active throtl group service_queue member */
112         struct rb_node rb_node;
113
114         /* throtl_data this group belongs to */
115         struct throtl_data *td;
116
117         /* this group's service queue */
118         struct throtl_service_queue service_queue;
119
120         /*
121          * qnode_on_self is used when bios are directly queued to this
122          * throtl_grp so that local bios compete fairly with bios
123          * dispatched from children.  qnode_on_parent is used when bios are
124          * dispatched from this throtl_grp into its parent and will compete
125          * with the sibling qnode_on_parents and the parent's
126          * qnode_on_self.
127          */
128         struct throtl_qnode qnode_on_self[2];
129         struct throtl_qnode qnode_on_parent[2];
130
131         /*
132          * Dispatch time in jiffies. This is the estimated time when group
133          * will unthrottle and is ready to dispatch more bio. It is used as
134          * key to sort active groups in service tree.
135          */
136         unsigned long disptime;
137
138         unsigned int flags;
139
140         /* are there any throtl rules between this group and td? */
141         bool has_rules[2];
142
143         /* internally used bytes per second rate limits */
144         uint64_t bps[2][LIMIT_CNT];
145         /* user configured bps limits */
146         uint64_t bps_conf[2][LIMIT_CNT];
147
148         /* internally used IOPS limits */
149         unsigned int iops[2][LIMIT_CNT];
150         /* user configured IOPS limits */
151         unsigned int iops_conf[2][LIMIT_CNT];
152
153         /* Number of bytes dispatched in current slice */
154         uint64_t bytes_disp[2];
155         /* Number of bio's dispatched in current slice */
156         unsigned int io_disp[2];
157
158         unsigned long last_low_overflow_time[2];
159
160         uint64_t last_bytes_disp[2];
161         unsigned int last_io_disp[2];
162
163         unsigned long last_check_time;
164
165         unsigned long latency_target; /* us */
166         unsigned long latency_target_conf; /* us */
167         /* When did we start a new slice */
168         unsigned long slice_start[2];
169         unsigned long slice_end[2];
170
171         unsigned long last_finish_time; /* ns / 1024 */
172         unsigned long checked_last_finish_time; /* ns / 1024 */
173         unsigned long avg_idletime; /* ns / 1024 */
174         unsigned long idletime_threshold; /* us */
175         unsigned long idletime_threshold_conf; /* us */
176
177         unsigned int bio_cnt; /* total bios */
178         unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
179         unsigned long bio_cnt_reset_time;
180
181         struct blkg_rwstat stat_bytes;
182         struct blkg_rwstat stat_ios;
183 };
184
185 /* We measure latency for request size from <= 4k to >= 1M */
186 #define LATENCY_BUCKET_SIZE 9
187
188 struct latency_bucket {
189         unsigned long total_latency; /* ns / 1024 */
190         int samples;
191 };
192
193 struct avg_latency_bucket {
194         unsigned long latency; /* ns / 1024 */
195         bool valid;
196 };
197
198 struct throtl_data
199 {
200         /* service tree for active throtl groups */
201         struct throtl_service_queue service_queue;
202
203         struct request_queue *queue;
204
205         /* Total Number of queued bios on READ and WRITE lists */
206         unsigned int nr_queued[2];
207
208         unsigned int throtl_slice;
209
210         /* Work for dispatching throttled bios */
211         struct work_struct dispatch_work;
212         unsigned int limit_index;
213         bool limit_valid[LIMIT_CNT];
214
215         unsigned long low_upgrade_time;
216         unsigned long low_downgrade_time;
217
218         unsigned int scale;
219
220         struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
221         struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
222         struct latency_bucket __percpu *latency_buckets[2];
223         unsigned long last_calculate_time;
224         unsigned long filtered_latency;
225
226         bool track_bio_latency;
227 };
228
229 static void throtl_pending_timer_fn(struct timer_list *t);
230
231 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
232 {
233         return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
234 }
235
236 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
237 {
238         return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
239 }
240
241 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
242 {
243         return pd_to_blkg(&tg->pd);
244 }
245
246 /**
247  * sq_to_tg - return the throl_grp the specified service queue belongs to
248  * @sq: the throtl_service_queue of interest
249  *
250  * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
251  * embedded in throtl_data, %NULL is returned.
252  */
253 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
254 {
255         if (sq && sq->parent_sq)
256                 return container_of(sq, struct throtl_grp, service_queue);
257         else
258                 return NULL;
259 }
260
261 /**
262  * sq_to_td - return throtl_data the specified service queue belongs to
263  * @sq: the throtl_service_queue of interest
264  *
265  * A service_queue can be embedded in either a throtl_grp or throtl_data.
266  * Determine the associated throtl_data accordingly and return it.
267  */
268 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
269 {
270         struct throtl_grp *tg = sq_to_tg(sq);
271
272         if (tg)
273                 return tg->td;
274         else
275                 return container_of(sq, struct throtl_data, service_queue);
276 }
277
278 /*
279  * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
280  * make the IO dispatch more smooth.
281  * Scale up: linearly scale up according to lapsed time since upgrade. For
282  *           every throtl_slice, the limit scales up 1/2 .low limit till the
283  *           limit hits .max limit
284  * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
285  */
286 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
287 {
288         /* arbitrary value to avoid too big scale */
289         if (td->scale < 4096 && time_after_eq(jiffies,
290             td->low_upgrade_time + td->scale * td->throtl_slice))
291                 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
292
293         return low + (low >> 1) * td->scale;
294 }
295
296 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
297 {
298         struct blkcg_gq *blkg = tg_to_blkg(tg);
299         struct throtl_data *td;
300         uint64_t ret;
301
302         if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
303                 return U64_MAX;
304
305         td = tg->td;
306         ret = tg->bps[rw][td->limit_index];
307         if (ret == 0 && td->limit_index == LIMIT_LOW) {
308                 /* intermediate node or iops isn't 0 */
309                 if (!list_empty(&blkg->blkcg->css.children) ||
310                     tg->iops[rw][td->limit_index])
311                         return U64_MAX;
312                 else
313                         return MIN_THROTL_BPS;
314         }
315
316         if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
317             tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
318                 uint64_t adjusted;
319
320                 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
321                 ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
322         }
323         return ret;
324 }
325
326 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
327 {
328         struct blkcg_gq *blkg = tg_to_blkg(tg);
329         struct throtl_data *td;
330         unsigned int ret;
331
332         if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
333                 return UINT_MAX;
334
335         td = tg->td;
336         ret = tg->iops[rw][td->limit_index];
337         if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
338                 /* intermediate node or bps isn't 0 */
339                 if (!list_empty(&blkg->blkcg->css.children) ||
340                     tg->bps[rw][td->limit_index])
341                         return UINT_MAX;
342                 else
343                         return MIN_THROTL_IOPS;
344         }
345
346         if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
347             tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
348                 uint64_t adjusted;
349
350                 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
351                 if (adjusted > UINT_MAX)
352                         adjusted = UINT_MAX;
353                 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
354         }
355         return ret;
356 }
357
358 #define request_bucket_index(sectors) \
359         clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
360
361 /**
362  * throtl_log - log debug message via blktrace
363  * @sq: the service_queue being reported
364  * @fmt: printf format string
365  * @args: printf args
366  *
367  * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
368  * throtl_grp; otherwise, just "throtl".
369  */
370 #define throtl_log(sq, fmt, args...)    do {                            \
371         struct throtl_grp *__tg = sq_to_tg((sq));                       \
372         struct throtl_data *__td = sq_to_td((sq));                      \
373                                                                         \
374         (void)__td;                                                     \
375         if (likely(!blk_trace_note_message_enabled(__td->queue)))       \
376                 break;                                                  \
377         if ((__tg)) {                                                   \
378                 blk_add_cgroup_trace_msg(__td->queue,                   \
379                         tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\
380         } else {                                                        \
381                 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);  \
382         }                                                               \
383 } while (0)
384
385 static inline unsigned int throtl_bio_data_size(struct bio *bio)
386 {
387         /* assume it's one sector */
388         if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
389                 return 512;
390         return bio->bi_iter.bi_size;
391 }
392
393 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
394 {
395         INIT_LIST_HEAD(&qn->node);
396         bio_list_init(&qn->bios);
397         qn->tg = tg;
398 }
399
400 /**
401  * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
402  * @bio: bio being added
403  * @qn: qnode to add bio to
404  * @queued: the service_queue->queued[] list @qn belongs to
405  *
406  * Add @bio to @qn and put @qn on @queued if it's not already on.
407  * @qn->tg's reference count is bumped when @qn is activated.  See the
408  * comment on top of throtl_qnode definition for details.
409  */
410 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
411                                  struct list_head *queued)
412 {
413         bio_list_add(&qn->bios, bio);
414         if (list_empty(&qn->node)) {
415                 list_add_tail(&qn->node, queued);
416                 blkg_get(tg_to_blkg(qn->tg));
417         }
418 }
419
420 /**
421  * throtl_peek_queued - peek the first bio on a qnode list
422  * @queued: the qnode list to peek
423  */
424 static struct bio *throtl_peek_queued(struct list_head *queued)
425 {
426         struct throtl_qnode *qn;
427         struct bio *bio;
428
429         if (list_empty(queued))
430                 return NULL;
431
432         qn = list_first_entry(queued, struct throtl_qnode, node);
433         bio = bio_list_peek(&qn->bios);
434         WARN_ON_ONCE(!bio);
435         return bio;
436 }
437
438 /**
439  * throtl_pop_queued - pop the first bio form a qnode list
440  * @queued: the qnode list to pop a bio from
441  * @tg_to_put: optional out argument for throtl_grp to put
442  *
443  * Pop the first bio from the qnode list @queued.  After popping, the first
444  * qnode is removed from @queued if empty or moved to the end of @queued so
445  * that the popping order is round-robin.
446  *
447  * When the first qnode is removed, its associated throtl_grp should be put
448  * too.  If @tg_to_put is NULL, this function automatically puts it;
449  * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
450  * responsible for putting it.
451  */
452 static struct bio *throtl_pop_queued(struct list_head *queued,
453                                      struct throtl_grp **tg_to_put)
454 {
455         struct throtl_qnode *qn;
456         struct bio *bio;
457
458         if (list_empty(queued))
459                 return NULL;
460
461         qn = list_first_entry(queued, struct throtl_qnode, node);
462         bio = bio_list_pop(&qn->bios);
463         WARN_ON_ONCE(!bio);
464
465         if (bio_list_empty(&qn->bios)) {
466                 list_del_init(&qn->node);
467                 if (tg_to_put)
468                         *tg_to_put = qn->tg;
469                 else
470                         blkg_put(tg_to_blkg(qn->tg));
471         } else {
472                 list_move_tail(&qn->node, queued);
473         }
474
475         return bio;
476 }
477
478 /* init a service_queue, assumes the caller zeroed it */
479 static void throtl_service_queue_init(struct throtl_service_queue *sq)
480 {
481         INIT_LIST_HEAD(&sq->queued[0]);
482         INIT_LIST_HEAD(&sq->queued[1]);
483         sq->pending_tree = RB_ROOT_CACHED;
484         timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
485 }
486
487 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp,
488                                                 struct request_queue *q,
489                                                 struct blkcg *blkcg)
490 {
491         struct throtl_grp *tg;
492         int rw;
493
494         tg = kzalloc_node(sizeof(*tg), gfp, q->node);
495         if (!tg)
496                 return NULL;
497
498         if (blkg_rwstat_init(&tg->stat_bytes, gfp))
499                 goto err_free_tg;
500
501         if (blkg_rwstat_init(&tg->stat_ios, gfp))
502                 goto err_exit_stat_bytes;
503
504         throtl_service_queue_init(&tg->service_queue);
505
506         for (rw = READ; rw <= WRITE; rw++) {
507                 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
508                 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
509         }
510
511         RB_CLEAR_NODE(&tg->rb_node);
512         tg->bps[READ][LIMIT_MAX] = U64_MAX;
513         tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
514         tg->iops[READ][LIMIT_MAX] = UINT_MAX;
515         tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
516         tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
517         tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
518         tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
519         tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
520         /* LIMIT_LOW will have default value 0 */
521
522         tg->latency_target = DFL_LATENCY_TARGET;
523         tg->latency_target_conf = DFL_LATENCY_TARGET;
524         tg->idletime_threshold = DFL_IDLE_THRESHOLD;
525         tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
526
527         return &tg->pd;
528
529 err_exit_stat_bytes:
530         blkg_rwstat_exit(&tg->stat_bytes);
531 err_free_tg:
532         kfree(tg);
533         return NULL;
534 }
535
536 static void throtl_pd_init(struct blkg_policy_data *pd)
537 {
538         struct throtl_grp *tg = pd_to_tg(pd);
539         struct blkcg_gq *blkg = tg_to_blkg(tg);
540         struct throtl_data *td = blkg->q->td;
541         struct throtl_service_queue *sq = &tg->service_queue;
542
543         /*
544          * If on the default hierarchy, we switch to properly hierarchical
545          * behavior where limits on a given throtl_grp are applied to the
546          * whole subtree rather than just the group itself.  e.g. If 16M
547          * read_bps limit is set on the root group, the whole system can't
548          * exceed 16M for the device.
549          *
550          * If not on the default hierarchy, the broken flat hierarchy
551          * behavior is retained where all throtl_grps are treated as if
552          * they're all separate root groups right below throtl_data.
553          * Limits of a group don't interact with limits of other groups
554          * regardless of the position of the group in the hierarchy.
555          */
556         sq->parent_sq = &td->service_queue;
557         if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
558                 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
559         tg->td = td;
560 }
561
562 /*
563  * Set has_rules[] if @tg or any of its parents have limits configured.
564  * This doesn't require walking up to the top of the hierarchy as the
565  * parent's has_rules[] is guaranteed to be correct.
566  */
567 static void tg_update_has_rules(struct throtl_grp *tg)
568 {
569         struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
570         struct throtl_data *td = tg->td;
571         int rw;
572
573         for (rw = READ; rw <= WRITE; rw++)
574                 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
575                         (td->limit_valid[td->limit_index] &&
576                          (tg_bps_limit(tg, rw) != U64_MAX ||
577                           tg_iops_limit(tg, rw) != UINT_MAX));
578 }
579
580 static void throtl_pd_online(struct blkg_policy_data *pd)
581 {
582         struct throtl_grp *tg = pd_to_tg(pd);
583         /*
584          * We don't want new groups to escape the limits of its ancestors.
585          * Update has_rules[] after a new group is brought online.
586          */
587         tg_update_has_rules(tg);
588 }
589
590 static void blk_throtl_update_limit_valid(struct throtl_data *td)
591 {
592         struct cgroup_subsys_state *pos_css;
593         struct blkcg_gq *blkg;
594         bool low_valid = false;
595
596         rcu_read_lock();
597         blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
598                 struct throtl_grp *tg = blkg_to_tg(blkg);
599
600                 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
601                     tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
602                         low_valid = true;
603                         break;
604                 }
605         }
606         rcu_read_unlock();
607
608         td->limit_valid[LIMIT_LOW] = low_valid;
609 }
610
611 static void throtl_upgrade_state(struct throtl_data *td);
612 static void throtl_pd_offline(struct blkg_policy_data *pd)
613 {
614         struct throtl_grp *tg = pd_to_tg(pd);
615
616         tg->bps[READ][LIMIT_LOW] = 0;
617         tg->bps[WRITE][LIMIT_LOW] = 0;
618         tg->iops[READ][LIMIT_LOW] = 0;
619         tg->iops[WRITE][LIMIT_LOW] = 0;
620
621         blk_throtl_update_limit_valid(tg->td);
622
623         if (!tg->td->limit_valid[tg->td->limit_index])
624                 throtl_upgrade_state(tg->td);
625 }
626
627 static void throtl_pd_free(struct blkg_policy_data *pd)
628 {
629         struct throtl_grp *tg = pd_to_tg(pd);
630
631         del_timer_sync(&tg->service_queue.pending_timer);
632         blkg_rwstat_exit(&tg->stat_bytes);
633         blkg_rwstat_exit(&tg->stat_ios);
634         kfree(tg);
635 }
636
637 static struct throtl_grp *
638 throtl_rb_first(struct throtl_service_queue *parent_sq)
639 {
640         struct rb_node *n;
641
642         n = rb_first_cached(&parent_sq->pending_tree);
643         WARN_ON_ONCE(!n);
644         if (!n)
645                 return NULL;
646         return rb_entry_tg(n);
647 }
648
649 static void throtl_rb_erase(struct rb_node *n,
650                             struct throtl_service_queue *parent_sq)
651 {
652         rb_erase_cached(n, &parent_sq->pending_tree);
653         RB_CLEAR_NODE(n);
654         --parent_sq->nr_pending;
655 }
656
657 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
658 {
659         struct throtl_grp *tg;
660
661         tg = throtl_rb_first(parent_sq);
662         if (!tg)
663                 return;
664
665         parent_sq->first_pending_disptime = tg->disptime;
666 }
667
668 static void tg_service_queue_add(struct throtl_grp *tg)
669 {
670         struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
671         struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node;
672         struct rb_node *parent = NULL;
673         struct throtl_grp *__tg;
674         unsigned long key = tg->disptime;
675         bool leftmost = true;
676
677         while (*node != NULL) {
678                 parent = *node;
679                 __tg = rb_entry_tg(parent);
680
681                 if (time_before(key, __tg->disptime))
682                         node = &parent->rb_left;
683                 else {
684                         node = &parent->rb_right;
685                         leftmost = false;
686                 }
687         }
688
689         rb_link_node(&tg->rb_node, parent, node);
690         rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree,
691                                leftmost);
692 }
693
694 static void __throtl_enqueue_tg(struct throtl_grp *tg)
695 {
696         tg_service_queue_add(tg);
697         tg->flags |= THROTL_TG_PENDING;
698         tg->service_queue.parent_sq->nr_pending++;
699 }
700
701 static void throtl_enqueue_tg(struct throtl_grp *tg)
702 {
703         if (!(tg->flags & THROTL_TG_PENDING))
704                 __throtl_enqueue_tg(tg);
705 }
706
707 static void __throtl_dequeue_tg(struct throtl_grp *tg)
708 {
709         throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
710         tg->flags &= ~THROTL_TG_PENDING;
711 }
712
713 static void throtl_dequeue_tg(struct throtl_grp *tg)
714 {
715         if (tg->flags & THROTL_TG_PENDING)
716                 __throtl_dequeue_tg(tg);
717 }
718
719 /* Call with queue lock held */
720 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
721                                           unsigned long expires)
722 {
723         unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
724
725         /*
726          * Since we are adjusting the throttle limit dynamically, the sleep
727          * time calculated according to previous limit might be invalid. It's
728          * possible the cgroup sleep time is very long and no other cgroups
729          * have IO running so notify the limit changes. Make sure the cgroup
730          * doesn't sleep too long to avoid the missed notification.
731          */
732         if (time_after(expires, max_expire))
733                 expires = max_expire;
734         mod_timer(&sq->pending_timer, expires);
735         throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
736                    expires - jiffies, jiffies);
737 }
738
739 /**
740  * throtl_schedule_next_dispatch - schedule the next dispatch cycle
741  * @sq: the service_queue to schedule dispatch for
742  * @force: force scheduling
743  *
744  * Arm @sq->pending_timer so that the next dispatch cycle starts on the
745  * dispatch time of the first pending child.  Returns %true if either timer
746  * is armed or there's no pending child left.  %false if the current
747  * dispatch window is still open and the caller should continue
748  * dispatching.
749  *
750  * If @force is %true, the dispatch timer is always scheduled and this
751  * function is guaranteed to return %true.  This is to be used when the
752  * caller can't dispatch itself and needs to invoke pending_timer
753  * unconditionally.  Note that forced scheduling is likely to induce short
754  * delay before dispatch starts even if @sq->first_pending_disptime is not
755  * in the future and thus shouldn't be used in hot paths.
756  */
757 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
758                                           bool force)
759 {
760         /* any pending children left? */
761         if (!sq->nr_pending)
762                 return true;
763
764         update_min_dispatch_time(sq);
765
766         /* is the next dispatch time in the future? */
767         if (force || time_after(sq->first_pending_disptime, jiffies)) {
768                 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
769                 return true;
770         }
771
772         /* tell the caller to continue dispatching */
773         return false;
774 }
775
776 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
777                 bool rw, unsigned long start)
778 {
779         tg->bytes_disp[rw] = 0;
780         tg->io_disp[rw] = 0;
781
782         /*
783          * Previous slice has expired. We must have trimmed it after last
784          * bio dispatch. That means since start of last slice, we never used
785          * that bandwidth. Do try to make use of that bandwidth while giving
786          * credit.
787          */
788         if (time_after_eq(start, tg->slice_start[rw]))
789                 tg->slice_start[rw] = start;
790
791         tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
792         throtl_log(&tg->service_queue,
793                    "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
794                    rw == READ ? 'R' : 'W', tg->slice_start[rw],
795                    tg->slice_end[rw], jiffies);
796 }
797
798 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
799 {
800         tg->bytes_disp[rw] = 0;
801         tg->io_disp[rw] = 0;
802         tg->slice_start[rw] = jiffies;
803         tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
804         throtl_log(&tg->service_queue,
805                    "[%c] new slice start=%lu end=%lu jiffies=%lu",
806                    rw == READ ? 'R' : 'W', tg->slice_start[rw],
807                    tg->slice_end[rw], jiffies);
808 }
809
810 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
811                                         unsigned long jiffy_end)
812 {
813         tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
814 }
815
816 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
817                                        unsigned long jiffy_end)
818 {
819         tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
820         throtl_log(&tg->service_queue,
821                    "[%c] extend slice start=%lu end=%lu jiffies=%lu",
822                    rw == READ ? 'R' : 'W', tg->slice_start[rw],
823                    tg->slice_end[rw], jiffies);
824 }
825
826 /* Determine if previously allocated or extended slice is complete or not */
827 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
828 {
829         if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
830                 return false;
831
832         return true;
833 }
834
835 /* Trim the used slices and adjust slice start accordingly */
836 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
837 {
838         unsigned long nr_slices, time_elapsed, io_trim;
839         u64 bytes_trim, tmp;
840
841         BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
842
843         /*
844          * If bps are unlimited (-1), then time slice don't get
845          * renewed. Don't try to trim the slice if slice is used. A new
846          * slice will start when appropriate.
847          */
848         if (throtl_slice_used(tg, rw))
849                 return;
850
851         /*
852          * A bio has been dispatched. Also adjust slice_end. It might happen
853          * that initially cgroup limit was very low resulting in high
854          * slice_end, but later limit was bumped up and bio was dispatched
855          * sooner, then we need to reduce slice_end. A high bogus slice_end
856          * is bad because it does not allow new slice to start.
857          */
858
859         throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
860
861         time_elapsed = jiffies - tg->slice_start[rw];
862
863         nr_slices = time_elapsed / tg->td->throtl_slice;
864
865         if (!nr_slices)
866                 return;
867         tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
868         do_div(tmp, HZ);
869         bytes_trim = tmp;
870
871         io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
872                 HZ;
873
874         if (!bytes_trim && !io_trim)
875                 return;
876
877         if (tg->bytes_disp[rw] >= bytes_trim)
878                 tg->bytes_disp[rw] -= bytes_trim;
879         else
880                 tg->bytes_disp[rw] = 0;
881
882         if (tg->io_disp[rw] >= io_trim)
883                 tg->io_disp[rw] -= io_trim;
884         else
885                 tg->io_disp[rw] = 0;
886
887         tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
888
889         throtl_log(&tg->service_queue,
890                    "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
891                    rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
892                    tg->slice_start[rw], tg->slice_end[rw], jiffies);
893 }
894
895 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
896                                   u32 iops_limit, unsigned long *wait)
897 {
898         bool rw = bio_data_dir(bio);
899         unsigned int io_allowed;
900         unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
901         u64 tmp;
902
903         if (iops_limit == UINT_MAX) {
904                 if (wait)
905                         *wait = 0;
906                 return true;
907         }
908
909         jiffy_elapsed = jiffies - tg->slice_start[rw];
910
911         /* Round up to the next throttle slice, wait time must be nonzero */
912         jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
913
914         /*
915          * jiffy_elapsed_rnd should not be a big value as minimum iops can be
916          * 1 then at max jiffy elapsed should be equivalent of 1 second as we
917          * will allow dispatch after 1 second and after that slice should
918          * have been trimmed.
919          */
920
921         tmp = (u64)iops_limit * jiffy_elapsed_rnd;
922         do_div(tmp, HZ);
923
924         if (tmp > UINT_MAX)
925                 io_allowed = UINT_MAX;
926         else
927                 io_allowed = tmp;
928
929         if (tg->io_disp[rw] + 1 <= io_allowed) {
930                 if (wait)
931                         *wait = 0;
932                 return true;
933         }
934
935         /* Calc approx time to dispatch */
936         jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
937
938         if (wait)
939                 *wait = jiffy_wait;
940         return false;
941 }
942
943 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
944                                  u64 bps_limit, unsigned long *wait)
945 {
946         bool rw = bio_data_dir(bio);
947         u64 bytes_allowed, extra_bytes, tmp;
948         unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
949         unsigned int bio_size = throtl_bio_data_size(bio);
950
951         if (bps_limit == U64_MAX) {
952                 if (wait)
953                         *wait = 0;
954                 return true;
955         }
956
957         jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
958
959         /* Slice has just started. Consider one slice interval */
960         if (!jiffy_elapsed)
961                 jiffy_elapsed_rnd = tg->td->throtl_slice;
962
963         jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
964
965         tmp = bps_limit * jiffy_elapsed_rnd;
966         do_div(tmp, HZ);
967         bytes_allowed = tmp;
968
969         if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
970                 if (wait)
971                         *wait = 0;
972                 return true;
973         }
974
975         /* Calc approx time to dispatch */
976         extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
977         jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit);
978
979         if (!jiffy_wait)
980                 jiffy_wait = 1;
981
982         /*
983          * This wait time is without taking into consideration the rounding
984          * up we did. Add that time also.
985          */
986         jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
987         if (wait)
988                 *wait = jiffy_wait;
989         return false;
990 }
991
992 /*
993  * Returns whether one can dispatch a bio or not. Also returns approx number
994  * of jiffies to wait before this bio is with-in IO rate and can be dispatched
995  */
996 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
997                             unsigned long *wait)
998 {
999         bool rw = bio_data_dir(bio);
1000         unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
1001         u64 bps_limit = tg_bps_limit(tg, rw);
1002         u32 iops_limit = tg_iops_limit(tg, rw);
1003
1004         /*
1005          * Currently whole state machine of group depends on first bio
1006          * queued in the group bio list. So one should not be calling
1007          * this function with a different bio if there are other bios
1008          * queued.
1009          */
1010         BUG_ON(tg->service_queue.nr_queued[rw] &&
1011                bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
1012
1013         /* If tg->bps = -1, then BW is unlimited */
1014         if (bps_limit == U64_MAX && iops_limit == UINT_MAX) {
1015                 if (wait)
1016                         *wait = 0;
1017                 return true;
1018         }
1019
1020         /*
1021          * If previous slice expired, start a new one otherwise renew/extend
1022          * existing slice to make sure it is at least throtl_slice interval
1023          * long since now. New slice is started only for empty throttle group.
1024          * If there is queued bio, that means there should be an active
1025          * slice and it should be extended instead.
1026          */
1027         if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
1028                 throtl_start_new_slice(tg, rw);
1029         else {
1030                 if (time_before(tg->slice_end[rw],
1031                     jiffies + tg->td->throtl_slice))
1032                         throtl_extend_slice(tg, rw,
1033                                 jiffies + tg->td->throtl_slice);
1034         }
1035
1036         if (tg_with_in_bps_limit(tg, bio, bps_limit, &bps_wait) &&
1037             tg_with_in_iops_limit(tg, bio, iops_limit, &iops_wait)) {
1038                 if (wait)
1039                         *wait = 0;
1040                 return true;
1041         }
1042
1043         max_wait = max(bps_wait, iops_wait);
1044
1045         if (wait)
1046                 *wait = max_wait;
1047
1048         if (time_before(tg->slice_end[rw], jiffies + max_wait))
1049                 throtl_extend_slice(tg, rw, jiffies + max_wait);
1050
1051         return false;
1052 }
1053
1054 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
1055 {
1056         bool rw = bio_data_dir(bio);
1057         unsigned int bio_size = throtl_bio_data_size(bio);
1058
1059         /* Charge the bio to the group */
1060         tg->bytes_disp[rw] += bio_size;
1061         tg->io_disp[rw]++;
1062         tg->last_bytes_disp[rw] += bio_size;
1063         tg->last_io_disp[rw]++;
1064
1065         /*
1066          * BIO_THROTTLED is used to prevent the same bio to be throttled
1067          * more than once as a throttled bio will go through blk-throtl the
1068          * second time when it eventually gets issued.  Set it when a bio
1069          * is being charged to a tg.
1070          */
1071         if (!bio_flagged(bio, BIO_THROTTLED))
1072                 bio_set_flag(bio, BIO_THROTTLED);
1073 }
1074
1075 /**
1076  * throtl_add_bio_tg - add a bio to the specified throtl_grp
1077  * @bio: bio to add
1078  * @qn: qnode to use
1079  * @tg: the target throtl_grp
1080  *
1081  * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
1082  * tg->qnode_on_self[] is used.
1083  */
1084 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
1085                               struct throtl_grp *tg)
1086 {
1087         struct throtl_service_queue *sq = &tg->service_queue;
1088         bool rw = bio_data_dir(bio);
1089
1090         if (!qn)
1091                 qn = &tg->qnode_on_self[rw];
1092
1093         /*
1094          * If @tg doesn't currently have any bios queued in the same
1095          * direction, queueing @bio can change when @tg should be
1096          * dispatched.  Mark that @tg was empty.  This is automatically
1097          * cleared on the next tg_update_disptime().
1098          */
1099         if (!sq->nr_queued[rw])
1100                 tg->flags |= THROTL_TG_WAS_EMPTY;
1101
1102         throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1103
1104         sq->nr_queued[rw]++;
1105         throtl_enqueue_tg(tg);
1106 }
1107
1108 static void tg_update_disptime(struct throtl_grp *tg)
1109 {
1110         struct throtl_service_queue *sq = &tg->service_queue;
1111         unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1112         struct bio *bio;
1113
1114         bio = throtl_peek_queued(&sq->queued[READ]);
1115         if (bio)
1116                 tg_may_dispatch(tg, bio, &read_wait);
1117
1118         bio = throtl_peek_queued(&sq->queued[WRITE]);
1119         if (bio)
1120                 tg_may_dispatch(tg, bio, &write_wait);
1121
1122         min_wait = min(read_wait, write_wait);
1123         disptime = jiffies + min_wait;
1124
1125         /* Update dispatch time */
1126         throtl_dequeue_tg(tg);
1127         tg->disptime = disptime;
1128         throtl_enqueue_tg(tg);
1129
1130         /* see throtl_add_bio_tg() */
1131         tg->flags &= ~THROTL_TG_WAS_EMPTY;
1132 }
1133
1134 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1135                                         struct throtl_grp *parent_tg, bool rw)
1136 {
1137         if (throtl_slice_used(parent_tg, rw)) {
1138                 throtl_start_new_slice_with_credit(parent_tg, rw,
1139                                 child_tg->slice_start[rw]);
1140         }
1141
1142 }
1143
1144 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1145 {
1146         struct throtl_service_queue *sq = &tg->service_queue;
1147         struct throtl_service_queue *parent_sq = sq->parent_sq;
1148         struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1149         struct throtl_grp *tg_to_put = NULL;
1150         struct bio *bio;
1151
1152         /*
1153          * @bio is being transferred from @tg to @parent_sq.  Popping a bio
1154          * from @tg may put its reference and @parent_sq might end up
1155          * getting released prematurely.  Remember the tg to put and put it
1156          * after @bio is transferred to @parent_sq.
1157          */
1158         bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1159         sq->nr_queued[rw]--;
1160
1161         throtl_charge_bio(tg, bio);
1162
1163         /*
1164          * If our parent is another tg, we just need to transfer @bio to
1165          * the parent using throtl_add_bio_tg().  If our parent is
1166          * @td->service_queue, @bio is ready to be issued.  Put it on its
1167          * bio_lists[] and decrease total number queued.  The caller is
1168          * responsible for issuing these bios.
1169          */
1170         if (parent_tg) {
1171                 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1172                 start_parent_slice_with_credit(tg, parent_tg, rw);
1173         } else {
1174                 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1175                                      &parent_sq->queued[rw]);
1176                 BUG_ON(tg->td->nr_queued[rw] <= 0);
1177                 tg->td->nr_queued[rw]--;
1178         }
1179
1180         throtl_trim_slice(tg, rw);
1181
1182         if (tg_to_put)
1183                 blkg_put(tg_to_blkg(tg_to_put));
1184 }
1185
1186 static int throtl_dispatch_tg(struct throtl_grp *tg)
1187 {
1188         struct throtl_service_queue *sq = &tg->service_queue;
1189         unsigned int nr_reads = 0, nr_writes = 0;
1190         unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4;
1191         unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads;
1192         struct bio *bio;
1193
1194         /* Try to dispatch 75% READS and 25% WRITES */
1195
1196         while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1197                tg_may_dispatch(tg, bio, NULL)) {
1198
1199                 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1200                 nr_reads++;
1201
1202                 if (nr_reads >= max_nr_reads)
1203                         break;
1204         }
1205
1206         while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1207                tg_may_dispatch(tg, bio, NULL)) {
1208
1209                 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1210                 nr_writes++;
1211
1212                 if (nr_writes >= max_nr_writes)
1213                         break;
1214         }
1215
1216         return nr_reads + nr_writes;
1217 }
1218
1219 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1220 {
1221         unsigned int nr_disp = 0;
1222
1223         while (1) {
1224                 struct throtl_grp *tg;
1225                 struct throtl_service_queue *sq;
1226
1227                 if (!parent_sq->nr_pending)
1228                         break;
1229
1230                 tg = throtl_rb_first(parent_sq);
1231                 if (!tg)
1232                         break;
1233
1234                 if (time_before(jiffies, tg->disptime))
1235                         break;
1236
1237                 throtl_dequeue_tg(tg);
1238
1239                 nr_disp += throtl_dispatch_tg(tg);
1240
1241                 sq = &tg->service_queue;
1242                 if (sq->nr_queued[0] || sq->nr_queued[1])
1243                         tg_update_disptime(tg);
1244
1245                 if (nr_disp >= THROTL_QUANTUM)
1246                         break;
1247         }
1248
1249         return nr_disp;
1250 }
1251
1252 static bool throtl_can_upgrade(struct throtl_data *td,
1253         struct throtl_grp *this_tg);
1254 /**
1255  * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1256  * @t: the pending_timer member of the throtl_service_queue being serviced
1257  *
1258  * This timer is armed when a child throtl_grp with active bio's become
1259  * pending and queued on the service_queue's pending_tree and expires when
1260  * the first child throtl_grp should be dispatched.  This function
1261  * dispatches bio's from the children throtl_grps to the parent
1262  * service_queue.
1263  *
1264  * If the parent's parent is another throtl_grp, dispatching is propagated
1265  * by either arming its pending_timer or repeating dispatch directly.  If
1266  * the top-level service_tree is reached, throtl_data->dispatch_work is
1267  * kicked so that the ready bio's are issued.
1268  */
1269 static void throtl_pending_timer_fn(struct timer_list *t)
1270 {
1271         struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1272         struct throtl_grp *tg = sq_to_tg(sq);
1273         struct throtl_data *td = sq_to_td(sq);
1274         struct request_queue *q = td->queue;
1275         struct throtl_service_queue *parent_sq;
1276         bool dispatched;
1277         int ret;
1278
1279         spin_lock_irq(&q->queue_lock);
1280         if (throtl_can_upgrade(td, NULL))
1281                 throtl_upgrade_state(td);
1282
1283 again:
1284         parent_sq = sq->parent_sq;
1285         dispatched = false;
1286
1287         while (true) {
1288                 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1289                            sq->nr_queued[READ] + sq->nr_queued[WRITE],
1290                            sq->nr_queued[READ], sq->nr_queued[WRITE]);
1291
1292                 ret = throtl_select_dispatch(sq);
1293                 if (ret) {
1294                         throtl_log(sq, "bios disp=%u", ret);
1295                         dispatched = true;
1296                 }
1297
1298                 if (throtl_schedule_next_dispatch(sq, false))
1299                         break;
1300
1301                 /* this dispatch windows is still open, relax and repeat */
1302                 spin_unlock_irq(&q->queue_lock);
1303                 cpu_relax();
1304                 spin_lock_irq(&q->queue_lock);
1305         }
1306
1307         if (!dispatched)
1308                 goto out_unlock;
1309
1310         if (parent_sq) {
1311                 /* @parent_sq is another throl_grp, propagate dispatch */
1312                 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1313                         tg_update_disptime(tg);
1314                         if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1315                                 /* window is already open, repeat dispatching */
1316                                 sq = parent_sq;
1317                                 tg = sq_to_tg(sq);
1318                                 goto again;
1319                         }
1320                 }
1321         } else {
1322                 /* reached the top-level, queue issuing */
1323                 queue_work(kthrotld_workqueue, &td->dispatch_work);
1324         }
1325 out_unlock:
1326         spin_unlock_irq(&q->queue_lock);
1327 }
1328
1329 /**
1330  * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1331  * @work: work item being executed
1332  *
1333  * This function is queued for execution when bios reach the bio_lists[]
1334  * of throtl_data->service_queue.  Those bios are ready and issued by this
1335  * function.
1336  */
1337 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1338 {
1339         struct throtl_data *td = container_of(work, struct throtl_data,
1340                                               dispatch_work);
1341         struct throtl_service_queue *td_sq = &td->service_queue;
1342         struct request_queue *q = td->queue;
1343         struct bio_list bio_list_on_stack;
1344         struct bio *bio;
1345         struct blk_plug plug;
1346         int rw;
1347
1348         bio_list_init(&bio_list_on_stack);
1349
1350         spin_lock_irq(&q->queue_lock);
1351         for (rw = READ; rw <= WRITE; rw++)
1352                 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1353                         bio_list_add(&bio_list_on_stack, bio);
1354         spin_unlock_irq(&q->queue_lock);
1355
1356         if (!bio_list_empty(&bio_list_on_stack)) {
1357                 blk_start_plug(&plug);
1358                 while ((bio = bio_list_pop(&bio_list_on_stack)))
1359                         submit_bio_noacct(bio);
1360                 blk_finish_plug(&plug);
1361         }
1362 }
1363
1364 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1365                               int off)
1366 {
1367         struct throtl_grp *tg = pd_to_tg(pd);
1368         u64 v = *(u64 *)((void *)tg + off);
1369
1370         if (v == U64_MAX)
1371                 return 0;
1372         return __blkg_prfill_u64(sf, pd, v);
1373 }
1374
1375 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1376                                int off)
1377 {
1378         struct throtl_grp *tg = pd_to_tg(pd);
1379         unsigned int v = *(unsigned int *)((void *)tg + off);
1380
1381         if (v == UINT_MAX)
1382                 return 0;
1383         return __blkg_prfill_u64(sf, pd, v);
1384 }
1385
1386 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1387 {
1388         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1389                           &blkcg_policy_throtl, seq_cft(sf)->private, false);
1390         return 0;
1391 }
1392
1393 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1394 {
1395         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1396                           &blkcg_policy_throtl, seq_cft(sf)->private, false);
1397         return 0;
1398 }
1399
1400 static void tg_conf_updated(struct throtl_grp *tg, bool global)
1401 {
1402         struct throtl_service_queue *sq = &tg->service_queue;
1403         struct cgroup_subsys_state *pos_css;
1404         struct blkcg_gq *blkg;
1405
1406         throtl_log(&tg->service_queue,
1407                    "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1408                    tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1409                    tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1410
1411         /*
1412          * Update has_rules[] flags for the updated tg's subtree.  A tg is
1413          * considered to have rules if either the tg itself or any of its
1414          * ancestors has rules.  This identifies groups without any
1415          * restrictions in the whole hierarchy and allows them to bypass
1416          * blk-throttle.
1417          */
1418         blkg_for_each_descendant_pre(blkg, pos_css,
1419                         global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1420                 struct throtl_grp *this_tg = blkg_to_tg(blkg);
1421                 struct throtl_grp *parent_tg;
1422
1423                 tg_update_has_rules(this_tg);
1424                 /* ignore root/second level */
1425                 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1426                     !blkg->parent->parent)
1427                         continue;
1428                 parent_tg = blkg_to_tg(blkg->parent);
1429                 /*
1430                  * make sure all children has lower idle time threshold and
1431                  * higher latency target
1432                  */
1433                 this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1434                                 parent_tg->idletime_threshold);
1435                 this_tg->latency_target = max(this_tg->latency_target,
1436                                 parent_tg->latency_target);
1437         }
1438
1439         /*
1440          * We're already holding queue_lock and know @tg is valid.  Let's
1441          * apply the new config directly.
1442          *
1443          * Restart the slices for both READ and WRITES. It might happen
1444          * that a group's limit are dropped suddenly and we don't want to
1445          * account recently dispatched IO with new low rate.
1446          */
1447         throtl_start_new_slice(tg, READ);
1448         throtl_start_new_slice(tg, WRITE);
1449
1450         if (tg->flags & THROTL_TG_PENDING) {
1451                 tg_update_disptime(tg);
1452                 throtl_schedule_next_dispatch(sq->parent_sq, true);
1453         }
1454 }
1455
1456 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1457                            char *buf, size_t nbytes, loff_t off, bool is_u64)
1458 {
1459         struct blkcg *blkcg = css_to_blkcg(of_css(of));
1460         struct blkg_conf_ctx ctx;
1461         struct throtl_grp *tg;
1462         int ret;
1463         u64 v;
1464
1465         ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1466         if (ret)
1467                 return ret;
1468
1469         ret = -EINVAL;
1470         if (sscanf(ctx.body, "%llu", &v) != 1)
1471                 goto out_finish;
1472         if (!v)
1473                 v = U64_MAX;
1474
1475         tg = blkg_to_tg(ctx.blkg);
1476
1477         if (is_u64)
1478                 *(u64 *)((void *)tg + of_cft(of)->private) = v;
1479         else
1480                 *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1481
1482         tg_conf_updated(tg, false);
1483         ret = 0;
1484 out_finish:
1485         blkg_conf_finish(&ctx);
1486         return ret ?: nbytes;
1487 }
1488
1489 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1490                                char *buf, size_t nbytes, loff_t off)
1491 {
1492         return tg_set_conf(of, buf, nbytes, off, true);
1493 }
1494
1495 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1496                                 char *buf, size_t nbytes, loff_t off)
1497 {
1498         return tg_set_conf(of, buf, nbytes, off, false);
1499 }
1500
1501 static int tg_print_rwstat(struct seq_file *sf, void *v)
1502 {
1503         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1504                           blkg_prfill_rwstat, &blkcg_policy_throtl,
1505                           seq_cft(sf)->private, true);
1506         return 0;
1507 }
1508
1509 static u64 tg_prfill_rwstat_recursive(struct seq_file *sf,
1510                                       struct blkg_policy_data *pd, int off)
1511 {
1512         struct blkg_rwstat_sample sum;
1513
1514         blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off,
1515                                   &sum);
1516         return __blkg_prfill_rwstat(sf, pd, &sum);
1517 }
1518
1519 static int tg_print_rwstat_recursive(struct seq_file *sf, void *v)
1520 {
1521         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1522                           tg_prfill_rwstat_recursive, &blkcg_policy_throtl,
1523                           seq_cft(sf)->private, true);
1524         return 0;
1525 }
1526
1527 static struct cftype throtl_legacy_files[] = {
1528         {
1529                 .name = "throttle.read_bps_device",
1530                 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1531                 .seq_show = tg_print_conf_u64,
1532                 .write = tg_set_conf_u64,
1533         },
1534         {
1535                 .name = "throttle.write_bps_device",
1536                 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1537                 .seq_show = tg_print_conf_u64,
1538                 .write = tg_set_conf_u64,
1539         },
1540         {
1541                 .name = "throttle.read_iops_device",
1542                 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1543                 .seq_show = tg_print_conf_uint,
1544                 .write = tg_set_conf_uint,
1545         },
1546         {
1547                 .name = "throttle.write_iops_device",
1548                 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1549                 .seq_show = tg_print_conf_uint,
1550                 .write = tg_set_conf_uint,
1551         },
1552         {
1553                 .name = "throttle.io_service_bytes",
1554                 .private = offsetof(struct throtl_grp, stat_bytes),
1555                 .seq_show = tg_print_rwstat,
1556         },
1557         {
1558                 .name = "throttle.io_service_bytes_recursive",
1559                 .private = offsetof(struct throtl_grp, stat_bytes),
1560                 .seq_show = tg_print_rwstat_recursive,
1561         },
1562         {
1563                 .name = "throttle.io_serviced",
1564                 .private = offsetof(struct throtl_grp, stat_ios),
1565                 .seq_show = tg_print_rwstat,
1566         },
1567         {
1568                 .name = "throttle.io_serviced_recursive",
1569                 .private = offsetof(struct throtl_grp, stat_ios),
1570                 .seq_show = tg_print_rwstat_recursive,
1571         },
1572         { }     /* terminate */
1573 };
1574
1575 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1576                          int off)
1577 {
1578         struct throtl_grp *tg = pd_to_tg(pd);
1579         const char *dname = blkg_dev_name(pd->blkg);
1580         char bufs[4][21] = { "max", "max", "max", "max" };
1581         u64 bps_dft;
1582         unsigned int iops_dft;
1583         char idle_time[26] = "";
1584         char latency_time[26] = "";
1585
1586         if (!dname)
1587                 return 0;
1588
1589         if (off == LIMIT_LOW) {
1590                 bps_dft = 0;
1591                 iops_dft = 0;
1592         } else {
1593                 bps_dft = U64_MAX;
1594                 iops_dft = UINT_MAX;
1595         }
1596
1597         if (tg->bps_conf[READ][off] == bps_dft &&
1598             tg->bps_conf[WRITE][off] == bps_dft &&
1599             tg->iops_conf[READ][off] == iops_dft &&
1600             tg->iops_conf[WRITE][off] == iops_dft &&
1601             (off != LIMIT_LOW ||
1602              (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1603               tg->latency_target_conf == DFL_LATENCY_TARGET)))
1604                 return 0;
1605
1606         if (tg->bps_conf[READ][off] != U64_MAX)
1607                 snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1608                         tg->bps_conf[READ][off]);
1609         if (tg->bps_conf[WRITE][off] != U64_MAX)
1610                 snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1611                         tg->bps_conf[WRITE][off]);
1612         if (tg->iops_conf[READ][off] != UINT_MAX)
1613                 snprintf(bufs[2], sizeof(bufs[2]), "%u",
1614                         tg->iops_conf[READ][off]);
1615         if (tg->iops_conf[WRITE][off] != UINT_MAX)
1616                 snprintf(bufs[3], sizeof(bufs[3]), "%u",
1617                         tg->iops_conf[WRITE][off]);
1618         if (off == LIMIT_LOW) {
1619                 if (tg->idletime_threshold_conf == ULONG_MAX)
1620                         strcpy(idle_time, " idle=max");
1621                 else
1622                         snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1623                                 tg->idletime_threshold_conf);
1624
1625                 if (tg->latency_target_conf == ULONG_MAX)
1626                         strcpy(latency_time, " latency=max");
1627                 else
1628                         snprintf(latency_time, sizeof(latency_time),
1629                                 " latency=%lu", tg->latency_target_conf);
1630         }
1631
1632         seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1633                    dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1634                    latency_time);
1635         return 0;
1636 }
1637
1638 static int tg_print_limit(struct seq_file *sf, void *v)
1639 {
1640         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1641                           &blkcg_policy_throtl, seq_cft(sf)->private, false);
1642         return 0;
1643 }
1644
1645 static ssize_t tg_set_limit(struct kernfs_open_file *of,
1646                           char *buf, size_t nbytes, loff_t off)
1647 {
1648         struct blkcg *blkcg = css_to_blkcg(of_css(of));
1649         struct blkg_conf_ctx ctx;
1650         struct throtl_grp *tg;
1651         u64 v[4];
1652         unsigned long idle_time;
1653         unsigned long latency_time;
1654         int ret;
1655         int index = of_cft(of)->private;
1656
1657         ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1658         if (ret)
1659                 return ret;
1660
1661         tg = blkg_to_tg(ctx.blkg);
1662
1663         v[0] = tg->bps_conf[READ][index];
1664         v[1] = tg->bps_conf[WRITE][index];
1665         v[2] = tg->iops_conf[READ][index];
1666         v[3] = tg->iops_conf[WRITE][index];
1667
1668         idle_time = tg->idletime_threshold_conf;
1669         latency_time = tg->latency_target_conf;
1670         while (true) {
1671                 char tok[27];   /* wiops=18446744073709551616 */
1672                 char *p;
1673                 u64 val = U64_MAX;
1674                 int len;
1675
1676                 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1677                         break;
1678                 if (tok[0] == '\0')
1679                         break;
1680                 ctx.body += len;
1681
1682                 ret = -EINVAL;
1683                 p = tok;
1684                 strsep(&p, "=");
1685                 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1686                         goto out_finish;
1687
1688                 ret = -ERANGE;
1689                 if (!val)
1690                         goto out_finish;
1691
1692                 ret = -EINVAL;
1693                 if (!strcmp(tok, "rbps") && val > 1)
1694                         v[0] = val;
1695                 else if (!strcmp(tok, "wbps") && val > 1)
1696                         v[1] = val;
1697                 else if (!strcmp(tok, "riops") && val > 1)
1698                         v[2] = min_t(u64, val, UINT_MAX);
1699                 else if (!strcmp(tok, "wiops") && val > 1)
1700                         v[3] = min_t(u64, val, UINT_MAX);
1701                 else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1702                         idle_time = val;
1703                 else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1704                         latency_time = val;
1705                 else
1706                         goto out_finish;
1707         }
1708
1709         tg->bps_conf[READ][index] = v[0];
1710         tg->bps_conf[WRITE][index] = v[1];
1711         tg->iops_conf[READ][index] = v[2];
1712         tg->iops_conf[WRITE][index] = v[3];
1713
1714         if (index == LIMIT_MAX) {
1715                 tg->bps[READ][index] = v[0];
1716                 tg->bps[WRITE][index] = v[1];
1717                 tg->iops[READ][index] = v[2];
1718                 tg->iops[WRITE][index] = v[3];
1719         }
1720         tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1721                 tg->bps_conf[READ][LIMIT_MAX]);
1722         tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1723                 tg->bps_conf[WRITE][LIMIT_MAX]);
1724         tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1725                 tg->iops_conf[READ][LIMIT_MAX]);
1726         tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1727                 tg->iops_conf[WRITE][LIMIT_MAX]);
1728         tg->idletime_threshold_conf = idle_time;
1729         tg->latency_target_conf = latency_time;
1730
1731         /* force user to configure all settings for low limit  */
1732         if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1733               tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1734             tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1735             tg->latency_target_conf == DFL_LATENCY_TARGET) {
1736                 tg->bps[READ][LIMIT_LOW] = 0;
1737                 tg->bps[WRITE][LIMIT_LOW] = 0;
1738                 tg->iops[READ][LIMIT_LOW] = 0;
1739                 tg->iops[WRITE][LIMIT_LOW] = 0;
1740                 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1741                 tg->latency_target = DFL_LATENCY_TARGET;
1742         } else if (index == LIMIT_LOW) {
1743                 tg->idletime_threshold = tg->idletime_threshold_conf;
1744                 tg->latency_target = tg->latency_target_conf;
1745         }
1746
1747         blk_throtl_update_limit_valid(tg->td);
1748         if (tg->td->limit_valid[LIMIT_LOW]) {
1749                 if (index == LIMIT_LOW)
1750                         tg->td->limit_index = LIMIT_LOW;
1751         } else
1752                 tg->td->limit_index = LIMIT_MAX;
1753         tg_conf_updated(tg, index == LIMIT_LOW &&
1754                 tg->td->limit_valid[LIMIT_LOW]);
1755         ret = 0;
1756 out_finish:
1757         blkg_conf_finish(&ctx);
1758         return ret ?: nbytes;
1759 }
1760
1761 static struct cftype throtl_files[] = {
1762 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1763         {
1764                 .name = "low",
1765                 .flags = CFTYPE_NOT_ON_ROOT,
1766                 .seq_show = tg_print_limit,
1767                 .write = tg_set_limit,
1768                 .private = LIMIT_LOW,
1769         },
1770 #endif
1771         {
1772                 .name = "max",
1773                 .flags = CFTYPE_NOT_ON_ROOT,
1774                 .seq_show = tg_print_limit,
1775                 .write = tg_set_limit,
1776                 .private = LIMIT_MAX,
1777         },
1778         { }     /* terminate */
1779 };
1780
1781 static void throtl_shutdown_wq(struct request_queue *q)
1782 {
1783         struct throtl_data *td = q->td;
1784
1785         cancel_work_sync(&td->dispatch_work);
1786 }
1787
1788 static struct blkcg_policy blkcg_policy_throtl = {
1789         .dfl_cftypes            = throtl_files,
1790         .legacy_cftypes         = throtl_legacy_files,
1791
1792         .pd_alloc_fn            = throtl_pd_alloc,
1793         .pd_init_fn             = throtl_pd_init,
1794         .pd_online_fn           = throtl_pd_online,
1795         .pd_offline_fn          = throtl_pd_offline,
1796         .pd_free_fn             = throtl_pd_free,
1797 };
1798
1799 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1800 {
1801         unsigned long rtime = jiffies, wtime = jiffies;
1802
1803         if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1804                 rtime = tg->last_low_overflow_time[READ];
1805         if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1806                 wtime = tg->last_low_overflow_time[WRITE];
1807         return min(rtime, wtime);
1808 }
1809
1810 /* tg should not be an intermediate node */
1811 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1812 {
1813         struct throtl_service_queue *parent_sq;
1814         struct throtl_grp *parent = tg;
1815         unsigned long ret = __tg_last_low_overflow_time(tg);
1816
1817         while (true) {
1818                 parent_sq = parent->service_queue.parent_sq;
1819                 parent = sq_to_tg(parent_sq);
1820                 if (!parent)
1821                         break;
1822
1823                 /*
1824                  * The parent doesn't have low limit, it always reaches low
1825                  * limit. Its overflow time is useless for children
1826                  */
1827                 if (!parent->bps[READ][LIMIT_LOW] &&
1828                     !parent->iops[READ][LIMIT_LOW] &&
1829                     !parent->bps[WRITE][LIMIT_LOW] &&
1830                     !parent->iops[WRITE][LIMIT_LOW])
1831                         continue;
1832                 if (time_after(__tg_last_low_overflow_time(parent), ret))
1833                         ret = __tg_last_low_overflow_time(parent);
1834         }
1835         return ret;
1836 }
1837
1838 static bool throtl_tg_is_idle(struct throtl_grp *tg)
1839 {
1840         /*
1841          * cgroup is idle if:
1842          * - single idle is too long, longer than a fixed value (in case user
1843          *   configure a too big threshold) or 4 times of idletime threshold
1844          * - average think time is more than threshold
1845          * - IO latency is largely below threshold
1846          */
1847         unsigned long time;
1848         bool ret;
1849
1850         time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1851         ret = tg->latency_target == DFL_LATENCY_TARGET ||
1852               tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1853               (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1854               tg->avg_idletime > tg->idletime_threshold ||
1855               (tg->latency_target && tg->bio_cnt &&
1856                 tg->bad_bio_cnt * 5 < tg->bio_cnt);
1857         throtl_log(&tg->service_queue,
1858                 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1859                 tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1860                 tg->bio_cnt, ret, tg->td->scale);
1861         return ret;
1862 }
1863
1864 static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1865 {
1866         struct throtl_service_queue *sq = &tg->service_queue;
1867         bool read_limit, write_limit;
1868
1869         /*
1870          * if cgroup reaches low limit (if low limit is 0, the cgroup always
1871          * reaches), it's ok to upgrade to next limit
1872          */
1873         read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1874         write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1875         if (!read_limit && !write_limit)
1876                 return true;
1877         if (read_limit && sq->nr_queued[READ] &&
1878             (!write_limit || sq->nr_queued[WRITE]))
1879                 return true;
1880         if (write_limit && sq->nr_queued[WRITE] &&
1881             (!read_limit || sq->nr_queued[READ]))
1882                 return true;
1883
1884         if (time_after_eq(jiffies,
1885                 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1886             throtl_tg_is_idle(tg))
1887                 return true;
1888         return false;
1889 }
1890
1891 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1892 {
1893         while (true) {
1894                 if (throtl_tg_can_upgrade(tg))
1895                         return true;
1896                 tg = sq_to_tg(tg->service_queue.parent_sq);
1897                 if (!tg || !tg_to_blkg(tg)->parent)
1898                         return false;
1899         }
1900         return false;
1901 }
1902
1903 static bool throtl_can_upgrade(struct throtl_data *td,
1904         struct throtl_grp *this_tg)
1905 {
1906         struct cgroup_subsys_state *pos_css;
1907         struct blkcg_gq *blkg;
1908
1909         if (td->limit_index != LIMIT_LOW)
1910                 return false;
1911
1912         if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1913                 return false;
1914
1915         rcu_read_lock();
1916         blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1917                 struct throtl_grp *tg = blkg_to_tg(blkg);
1918
1919                 if (tg == this_tg)
1920                         continue;
1921                 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1922                         continue;
1923                 if (!throtl_hierarchy_can_upgrade(tg)) {
1924                         rcu_read_unlock();
1925                         return false;
1926                 }
1927         }
1928         rcu_read_unlock();
1929         return true;
1930 }
1931
1932 static void throtl_upgrade_check(struct throtl_grp *tg)
1933 {
1934         unsigned long now = jiffies;
1935
1936         if (tg->td->limit_index != LIMIT_LOW)
1937                 return;
1938
1939         if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1940                 return;
1941
1942         tg->last_check_time = now;
1943
1944         if (!time_after_eq(now,
1945              __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1946                 return;
1947
1948         if (throtl_can_upgrade(tg->td, NULL))
1949                 throtl_upgrade_state(tg->td);
1950 }
1951
1952 static void throtl_upgrade_state(struct throtl_data *td)
1953 {
1954         struct cgroup_subsys_state *pos_css;
1955         struct blkcg_gq *blkg;
1956
1957         throtl_log(&td->service_queue, "upgrade to max");
1958         td->limit_index = LIMIT_MAX;
1959         td->low_upgrade_time = jiffies;
1960         td->scale = 0;
1961         rcu_read_lock();
1962         blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1963                 struct throtl_grp *tg = blkg_to_tg(blkg);
1964                 struct throtl_service_queue *sq = &tg->service_queue;
1965
1966                 tg->disptime = jiffies - 1;
1967                 throtl_select_dispatch(sq);
1968                 throtl_schedule_next_dispatch(sq, true);
1969         }
1970         rcu_read_unlock();
1971         throtl_select_dispatch(&td->service_queue);
1972         throtl_schedule_next_dispatch(&td->service_queue, true);
1973         queue_work(kthrotld_workqueue, &td->dispatch_work);
1974 }
1975
1976 static void throtl_downgrade_state(struct throtl_data *td)
1977 {
1978         td->scale /= 2;
1979
1980         throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1981         if (td->scale) {
1982                 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1983                 return;
1984         }
1985
1986         td->limit_index = LIMIT_LOW;
1987         td->low_downgrade_time = jiffies;
1988 }
1989
1990 static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1991 {
1992         struct throtl_data *td = tg->td;
1993         unsigned long now = jiffies;
1994
1995         /*
1996          * If cgroup is below low limit, consider downgrade and throttle other
1997          * cgroups
1998          */
1999         if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
2000             time_after_eq(now, tg_last_low_overflow_time(tg) +
2001                                         td->throtl_slice) &&
2002             (!throtl_tg_is_idle(tg) ||
2003              !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
2004                 return true;
2005         return false;
2006 }
2007
2008 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
2009 {
2010         while (true) {
2011                 if (!throtl_tg_can_downgrade(tg))
2012                         return false;
2013                 tg = sq_to_tg(tg->service_queue.parent_sq);
2014                 if (!tg || !tg_to_blkg(tg)->parent)
2015                         break;
2016         }
2017         return true;
2018 }
2019
2020 static void throtl_downgrade_check(struct throtl_grp *tg)
2021 {
2022         uint64_t bps;
2023         unsigned int iops;
2024         unsigned long elapsed_time;
2025         unsigned long now = jiffies;
2026
2027         if (tg->td->limit_index != LIMIT_MAX ||
2028             !tg->td->limit_valid[LIMIT_LOW])
2029                 return;
2030         if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
2031                 return;
2032         if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
2033                 return;
2034
2035         elapsed_time = now - tg->last_check_time;
2036         tg->last_check_time = now;
2037
2038         if (time_before(now, tg_last_low_overflow_time(tg) +
2039                         tg->td->throtl_slice))
2040                 return;
2041
2042         if (tg->bps[READ][LIMIT_LOW]) {
2043                 bps = tg->last_bytes_disp[READ] * HZ;
2044                 do_div(bps, elapsed_time);
2045                 if (bps >= tg->bps[READ][LIMIT_LOW])
2046                         tg->last_low_overflow_time[READ] = now;
2047         }
2048
2049         if (tg->bps[WRITE][LIMIT_LOW]) {
2050                 bps = tg->last_bytes_disp[WRITE] * HZ;
2051                 do_div(bps, elapsed_time);
2052                 if (bps >= tg->bps[WRITE][LIMIT_LOW])
2053                         tg->last_low_overflow_time[WRITE] = now;
2054         }
2055
2056         if (tg->iops[READ][LIMIT_LOW]) {
2057                 iops = tg->last_io_disp[READ] * HZ / elapsed_time;
2058                 if (iops >= tg->iops[READ][LIMIT_LOW])
2059                         tg->last_low_overflow_time[READ] = now;
2060         }
2061
2062         if (tg->iops[WRITE][LIMIT_LOW]) {
2063                 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
2064                 if (iops >= tg->iops[WRITE][LIMIT_LOW])
2065                         tg->last_low_overflow_time[WRITE] = now;
2066         }
2067
2068         /*
2069          * If cgroup is below low limit, consider downgrade and throttle other
2070          * cgroups
2071          */
2072         if (throtl_hierarchy_can_downgrade(tg))
2073                 throtl_downgrade_state(tg->td);
2074
2075         tg->last_bytes_disp[READ] = 0;
2076         tg->last_bytes_disp[WRITE] = 0;
2077         tg->last_io_disp[READ] = 0;
2078         tg->last_io_disp[WRITE] = 0;
2079 }
2080
2081 static void blk_throtl_update_idletime(struct throtl_grp *tg)
2082 {
2083         unsigned long now;
2084         unsigned long last_finish_time = tg->last_finish_time;
2085
2086         if (last_finish_time == 0)
2087                 return;
2088
2089         now = ktime_get_ns() >> 10;
2090         if (now <= last_finish_time ||
2091             last_finish_time == tg->checked_last_finish_time)
2092                 return;
2093
2094         tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2095         tg->checked_last_finish_time = last_finish_time;
2096 }
2097
2098 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2099 static void throtl_update_latency_buckets(struct throtl_data *td)
2100 {
2101         struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
2102         int i, cpu, rw;
2103         unsigned long last_latency[2] = { 0 };
2104         unsigned long latency[2];
2105
2106         if (!blk_queue_nonrot(td->queue) || !td->limit_valid[LIMIT_LOW])
2107                 return;
2108         if (time_before(jiffies, td->last_calculate_time + HZ))
2109                 return;
2110         td->last_calculate_time = jiffies;
2111
2112         memset(avg_latency, 0, sizeof(avg_latency));
2113         for (rw = READ; rw <= WRITE; rw++) {
2114                 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2115                         struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
2116
2117                         for_each_possible_cpu(cpu) {
2118                                 struct latency_bucket *bucket;
2119
2120                                 /* this isn't race free, but ok in practice */
2121                                 bucket = per_cpu_ptr(td->latency_buckets[rw],
2122                                         cpu);
2123                                 tmp->total_latency += bucket[i].total_latency;
2124                                 tmp->samples += bucket[i].samples;
2125                                 bucket[i].total_latency = 0;
2126                                 bucket[i].samples = 0;
2127                         }
2128
2129                         if (tmp->samples >= 32) {
2130                                 int samples = tmp->samples;
2131
2132                                 latency[rw] = tmp->total_latency;
2133
2134                                 tmp->total_latency = 0;
2135                                 tmp->samples = 0;
2136                                 latency[rw] /= samples;
2137                                 if (latency[rw] == 0)
2138                                         continue;
2139                                 avg_latency[rw][i].latency = latency[rw];
2140                         }
2141                 }
2142         }
2143
2144         for (rw = READ; rw <= WRITE; rw++) {
2145                 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2146                         if (!avg_latency[rw][i].latency) {
2147                                 if (td->avg_buckets[rw][i].latency < last_latency[rw])
2148                                         td->avg_buckets[rw][i].latency =
2149                                                 last_latency[rw];
2150                                 continue;
2151                         }
2152
2153                         if (!td->avg_buckets[rw][i].valid)
2154                                 latency[rw] = avg_latency[rw][i].latency;
2155                         else
2156                                 latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2157                                         avg_latency[rw][i].latency) >> 3;
2158
2159                         td->avg_buckets[rw][i].latency = max(latency[rw],
2160                                 last_latency[rw]);
2161                         td->avg_buckets[rw][i].valid = true;
2162                         last_latency[rw] = td->avg_buckets[rw][i].latency;
2163                 }
2164         }
2165
2166         for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2167                 throtl_log(&td->service_queue,
2168                         "Latency bucket %d: read latency=%ld, read valid=%d, "
2169                         "write latency=%ld, write valid=%d", i,
2170                         td->avg_buckets[READ][i].latency,
2171                         td->avg_buckets[READ][i].valid,
2172                         td->avg_buckets[WRITE][i].latency,
2173                         td->avg_buckets[WRITE][i].valid);
2174 }
2175 #else
2176 static inline void throtl_update_latency_buckets(struct throtl_data *td)
2177 {
2178 }
2179 #endif
2180
2181 bool blk_throtl_bio(struct bio *bio)
2182 {
2183         struct request_queue *q = bio->bi_disk->queue;
2184         struct blkcg_gq *blkg = bio->bi_blkg;
2185         struct throtl_qnode *qn = NULL;
2186         struct throtl_grp *tg = blkg_to_tg(blkg);
2187         struct throtl_service_queue *sq;
2188         bool rw = bio_data_dir(bio);
2189         bool throttled = false;
2190         struct throtl_data *td = tg->td;
2191
2192         rcu_read_lock();
2193
2194         /* see throtl_charge_bio() */
2195         if (bio_flagged(bio, BIO_THROTTLED))
2196                 goto out;
2197
2198         if (!cgroup_subsys_on_dfl(io_cgrp_subsys)) {
2199                 blkg_rwstat_add(&tg->stat_bytes, bio->bi_opf,
2200                                 bio->bi_iter.bi_size);
2201                 blkg_rwstat_add(&tg->stat_ios, bio->bi_opf, 1);
2202         }
2203
2204         if (!tg->has_rules[rw])
2205                 goto out;
2206
2207         spin_lock_irq(&q->queue_lock);
2208
2209         throtl_update_latency_buckets(td);
2210
2211         blk_throtl_update_idletime(tg);
2212
2213         sq = &tg->service_queue;
2214
2215 again:
2216         while (true) {
2217                 if (tg->last_low_overflow_time[rw] == 0)
2218                         tg->last_low_overflow_time[rw] = jiffies;
2219                 throtl_downgrade_check(tg);
2220                 throtl_upgrade_check(tg);
2221                 /* throtl is FIFO - if bios are already queued, should queue */
2222                 if (sq->nr_queued[rw])
2223                         break;
2224
2225                 /* if above limits, break to queue */
2226                 if (!tg_may_dispatch(tg, bio, NULL)) {
2227                         tg->last_low_overflow_time[rw] = jiffies;
2228                         if (throtl_can_upgrade(td, tg)) {
2229                                 throtl_upgrade_state(td);
2230                                 goto again;
2231                         }
2232                         break;
2233                 }
2234
2235                 /* within limits, let's charge and dispatch directly */
2236                 throtl_charge_bio(tg, bio);
2237
2238                 /*
2239                  * We need to trim slice even when bios are not being queued
2240                  * otherwise it might happen that a bio is not queued for
2241                  * a long time and slice keeps on extending and trim is not
2242                  * called for a long time. Now if limits are reduced suddenly
2243                  * we take into account all the IO dispatched so far at new
2244                  * low rate and * newly queued IO gets a really long dispatch
2245                  * time.
2246                  *
2247                  * So keep on trimming slice even if bio is not queued.
2248                  */
2249                 throtl_trim_slice(tg, rw);
2250
2251                 /*
2252                  * @bio passed through this layer without being throttled.
2253                  * Climb up the ladder.  If we're already at the top, it
2254                  * can be executed directly.
2255                  */
2256                 qn = &tg->qnode_on_parent[rw];
2257                 sq = sq->parent_sq;
2258                 tg = sq_to_tg(sq);
2259                 if (!tg)
2260                         goto out_unlock;
2261         }
2262
2263         /* out-of-limit, queue to @tg */
2264         throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2265                    rw == READ ? 'R' : 'W',
2266                    tg->bytes_disp[rw], bio->bi_iter.bi_size,
2267                    tg_bps_limit(tg, rw),
2268                    tg->io_disp[rw], tg_iops_limit(tg, rw),
2269                    sq->nr_queued[READ], sq->nr_queued[WRITE]);
2270
2271         tg->last_low_overflow_time[rw] = jiffies;
2272
2273         td->nr_queued[rw]++;
2274         throtl_add_bio_tg(bio, qn, tg);
2275         throttled = true;
2276
2277         /*
2278          * Update @tg's dispatch time and force schedule dispatch if @tg
2279          * was empty before @bio.  The forced scheduling isn't likely to
2280          * cause undue delay as @bio is likely to be dispatched directly if
2281          * its @tg's disptime is not in the future.
2282          */
2283         if (tg->flags & THROTL_TG_WAS_EMPTY) {
2284                 tg_update_disptime(tg);
2285                 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2286         }
2287
2288 out_unlock:
2289         spin_unlock_irq(&q->queue_lock);
2290 out:
2291         bio_set_flag(bio, BIO_THROTTLED);
2292
2293 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2294         if (throttled || !td->track_bio_latency)
2295                 bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
2296 #endif
2297         rcu_read_unlock();
2298         return throttled;
2299 }
2300
2301 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2302 static void throtl_track_latency(struct throtl_data *td, sector_t size,
2303         int op, unsigned long time)
2304 {
2305         struct latency_bucket *latency;
2306         int index;
2307
2308         if (!td || td->limit_index != LIMIT_LOW ||
2309             !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
2310             !blk_queue_nonrot(td->queue))
2311                 return;
2312
2313         index = request_bucket_index(size);
2314
2315         latency = get_cpu_ptr(td->latency_buckets[op]);
2316         latency[index].total_latency += time;
2317         latency[index].samples++;
2318         put_cpu_ptr(td->latency_buckets[op]);
2319 }
2320
2321 void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2322 {
2323         struct request_queue *q = rq->q;
2324         struct throtl_data *td = q->td;
2325
2326         throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq),
2327                              time_ns >> 10);
2328 }
2329
2330 void blk_throtl_bio_endio(struct bio *bio)
2331 {
2332         struct blkcg_gq *blkg;
2333         struct throtl_grp *tg;
2334         u64 finish_time_ns;
2335         unsigned long finish_time;
2336         unsigned long start_time;
2337         unsigned long lat;
2338         int rw = bio_data_dir(bio);
2339
2340         blkg = bio->bi_blkg;
2341         if (!blkg)
2342                 return;
2343         tg = blkg_to_tg(blkg);
2344         if (!tg->td->limit_valid[LIMIT_LOW])
2345                 return;
2346
2347         finish_time_ns = ktime_get_ns();
2348         tg->last_finish_time = finish_time_ns >> 10;
2349
2350         start_time = bio_issue_time(&bio->bi_issue) >> 10;
2351         finish_time = __bio_issue_time(finish_time_ns) >> 10;
2352         if (!start_time || finish_time <= start_time)
2353                 return;
2354
2355         lat = finish_time - start_time;
2356         /* this is only for bio based driver */
2357         if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
2358                 throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
2359                                      bio_op(bio), lat);
2360
2361         if (tg->latency_target && lat >= tg->td->filtered_latency) {
2362                 int bucket;
2363                 unsigned int threshold;
2364
2365                 bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
2366                 threshold = tg->td->avg_buckets[rw][bucket].latency +
2367                         tg->latency_target;
2368                 if (lat > threshold)
2369                         tg->bad_bio_cnt++;
2370                 /*
2371                  * Not race free, could get wrong count, which means cgroups
2372                  * will be throttled
2373                  */
2374                 tg->bio_cnt++;
2375         }
2376
2377         if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2378                 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2379                 tg->bio_cnt /= 2;
2380                 tg->bad_bio_cnt /= 2;
2381         }
2382 }
2383 #endif
2384
2385 int blk_throtl_init(struct request_queue *q)
2386 {
2387         struct throtl_data *td;
2388         int ret;
2389
2390         td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2391         if (!td)
2392                 return -ENOMEM;
2393         td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
2394                 LATENCY_BUCKET_SIZE, __alignof__(u64));
2395         if (!td->latency_buckets[READ]) {
2396                 kfree(td);
2397                 return -ENOMEM;
2398         }
2399         td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
2400                 LATENCY_BUCKET_SIZE, __alignof__(u64));
2401         if (!td->latency_buckets[WRITE]) {
2402                 free_percpu(td->latency_buckets[READ]);
2403                 kfree(td);
2404                 return -ENOMEM;
2405         }
2406
2407         INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2408         throtl_service_queue_init(&td->service_queue);
2409
2410         q->td = td;
2411         td->queue = q;
2412
2413         td->limit_valid[LIMIT_MAX] = true;
2414         td->limit_index = LIMIT_MAX;
2415         td->low_upgrade_time = jiffies;
2416         td->low_downgrade_time = jiffies;
2417
2418         /* activate policy */
2419         ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2420         if (ret) {
2421                 free_percpu(td->latency_buckets[READ]);
2422                 free_percpu(td->latency_buckets[WRITE]);
2423                 kfree(td);
2424         }
2425         return ret;
2426 }
2427
2428 void blk_throtl_exit(struct request_queue *q)
2429 {
2430         BUG_ON(!q->td);
2431         throtl_shutdown_wq(q);
2432         blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2433         free_percpu(q->td->latency_buckets[READ]);
2434         free_percpu(q->td->latency_buckets[WRITE]);
2435         kfree(q->td);
2436 }
2437
2438 void blk_throtl_register_queue(struct request_queue *q)
2439 {
2440         struct throtl_data *td;
2441         int i;
2442
2443         td = q->td;
2444         BUG_ON(!td);
2445
2446         if (blk_queue_nonrot(q)) {
2447                 td->throtl_slice = DFL_THROTL_SLICE_SSD;
2448                 td->filtered_latency = LATENCY_FILTERED_SSD;
2449         } else {
2450                 td->throtl_slice = DFL_THROTL_SLICE_HD;
2451                 td->filtered_latency = LATENCY_FILTERED_HD;
2452                 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2453                         td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2454                         td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2455                 }
2456         }
2457 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2458         /* if no low limit, use previous default */
2459         td->throtl_slice = DFL_THROTL_SLICE_HD;
2460 #endif
2461
2462         td->track_bio_latency = !queue_is_mq(q);
2463         if (!td->track_bio_latency)
2464                 blk_stat_enable_accounting(q);
2465 }
2466
2467 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2468 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2469 {
2470         if (!q->td)
2471                 return -EINVAL;
2472         return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2473 }
2474
2475 ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2476         const char *page, size_t count)
2477 {
2478         unsigned long v;
2479         unsigned long t;
2480
2481         if (!q->td)
2482                 return -EINVAL;
2483         if (kstrtoul(page, 10, &v))
2484                 return -EINVAL;
2485         t = msecs_to_jiffies(v);
2486         if (t == 0 || t > MAX_THROTL_SLICE)
2487                 return -EINVAL;
2488         q->td->throtl_slice = t;
2489         return count;
2490 }
2491 #endif
2492
2493 static int __init throtl_init(void)
2494 {
2495         kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2496         if (!kthrotld_workqueue)
2497                 panic("Failed to create kthrotld\n");
2498
2499         return blkcg_policy_register(&blkcg_policy_throtl);
2500 }
2501
2502 module_init(throtl_init);