ARM: tizen_bcm2711_defconfig: Fix console loglevel for logo display
[platform/kernel/linux-rpi.git] / block / blk-throttle.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Interface for controlling IO bandwidth on a request queue
4  *
5  * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
6  */
7
8 #include <linux/module.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/bio.h>
12 #include <linux/blktrace_api.h>
13 #include <linux/blk-cgroup.h>
14 #include "blk.h"
15 #include "blk-cgroup-rwstat.h"
16
17 /* Max dispatch from a group in 1 round */
18 #define THROTL_GRP_QUANTUM 8
19
20 /* Total max dispatch from all groups in one round */
21 #define THROTL_QUANTUM 32
22
23 /* Throttling is performed over a slice and after that slice is renewed */
24 #define DFL_THROTL_SLICE_HD (HZ / 10)
25 #define DFL_THROTL_SLICE_SSD (HZ / 50)
26 #define MAX_THROTL_SLICE (HZ)
27 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
28 #define MIN_THROTL_BPS (320 * 1024)
29 #define MIN_THROTL_IOPS (10)
30 #define DFL_LATENCY_TARGET (-1L)
31 #define DFL_IDLE_THRESHOLD (0)
32 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
33 #define LATENCY_FILTERED_SSD (0)
34 /*
35  * For HD, very small latency comes from sequential IO. Such IO is helpless to
36  * help determine if its IO is impacted by others, hence we ignore the IO
37  */
38 #define LATENCY_FILTERED_HD (1000L) /* 1ms */
39
40 static struct blkcg_policy blkcg_policy_throtl;
41
42 /* A workqueue to queue throttle related work */
43 static struct workqueue_struct *kthrotld_workqueue;
44
45 /*
46  * To implement hierarchical throttling, throtl_grps form a tree and bios
47  * are dispatched upwards level by level until they reach the top and get
48  * issued.  When dispatching bios from the children and local group at each
49  * level, if the bios are dispatched into a single bio_list, there's a risk
50  * of a local or child group which can queue many bios at once filling up
51  * the list starving others.
52  *
53  * To avoid such starvation, dispatched bios are queued separately
54  * according to where they came from.  When they are again dispatched to
55  * the parent, they're popped in round-robin order so that no single source
56  * hogs the dispatch window.
57  *
58  * throtl_qnode is used to keep the queued bios separated by their sources.
59  * Bios are queued to throtl_qnode which in turn is queued to
60  * throtl_service_queue and then dispatched in round-robin order.
61  *
62  * It's also used to track the reference counts on blkg's.  A qnode always
63  * belongs to a throtl_grp and gets queued on itself or the parent, so
64  * incrementing the reference of the associated throtl_grp when a qnode is
65  * queued and decrementing when dequeued is enough to keep the whole blkg
66  * tree pinned while bios are in flight.
67  */
68 struct throtl_qnode {
69         struct list_head        node;           /* service_queue->queued[] */
70         struct bio_list         bios;           /* queued bios */
71         struct throtl_grp       *tg;            /* tg this qnode belongs to */
72 };
73
74 struct throtl_service_queue {
75         struct throtl_service_queue *parent_sq; /* the parent service_queue */
76
77         /*
78          * Bios queued directly to this service_queue or dispatched from
79          * children throtl_grp's.
80          */
81         struct list_head        queued[2];      /* throtl_qnode [READ/WRITE] */
82         unsigned int            nr_queued[2];   /* number of queued bios */
83
84         /*
85          * RB tree of active children throtl_grp's, which are sorted by
86          * their ->disptime.
87          */
88         struct rb_root_cached   pending_tree;   /* RB tree of active tgs */
89         unsigned int            nr_pending;     /* # queued in the tree */
90         unsigned long           first_pending_disptime; /* disptime of the first tg */
91         struct timer_list       pending_timer;  /* fires on first_pending_disptime */
92 };
93
94 enum tg_state_flags {
95         THROTL_TG_PENDING       = 1 << 0,       /* on parent's pending tree */
96         THROTL_TG_WAS_EMPTY     = 1 << 1,       /* bio_lists[] became non-empty */
97 };
98
99 #define rb_entry_tg(node)       rb_entry((node), struct throtl_grp, rb_node)
100
101 enum {
102         LIMIT_LOW,
103         LIMIT_MAX,
104         LIMIT_CNT,
105 };
106
107 struct throtl_grp {
108         /* must be the first member */
109         struct blkg_policy_data pd;
110
111         /* active throtl group service_queue member */
112         struct rb_node rb_node;
113
114         /* throtl_data this group belongs to */
115         struct throtl_data *td;
116
117         /* this group's service queue */
118         struct throtl_service_queue service_queue;
119
120         /*
121          * qnode_on_self is used when bios are directly queued to this
122          * throtl_grp so that local bios compete fairly with bios
123          * dispatched from children.  qnode_on_parent is used when bios are
124          * dispatched from this throtl_grp into its parent and will compete
125          * with the sibling qnode_on_parents and the parent's
126          * qnode_on_self.
127          */
128         struct throtl_qnode qnode_on_self[2];
129         struct throtl_qnode qnode_on_parent[2];
130
131         /*
132          * Dispatch time in jiffies. This is the estimated time when group
133          * will unthrottle and is ready to dispatch more bio. It is used as
134          * key to sort active groups in service tree.
135          */
136         unsigned long disptime;
137
138         unsigned int flags;
139
140         /* are there any throtl rules between this group and td? */
141         bool has_rules[2];
142
143         /* internally used bytes per second rate limits */
144         uint64_t bps[2][LIMIT_CNT];
145         /* user configured bps limits */
146         uint64_t bps_conf[2][LIMIT_CNT];
147
148         /* internally used IOPS limits */
149         unsigned int iops[2][LIMIT_CNT];
150         /* user configured IOPS limits */
151         unsigned int iops_conf[2][LIMIT_CNT];
152
153         /* Number of bytes dispatched in current slice */
154         uint64_t bytes_disp[2];
155         /* Number of bio's dispatched in current slice */
156         unsigned int io_disp[2];
157
158         unsigned long last_low_overflow_time[2];
159
160         uint64_t last_bytes_disp[2];
161         unsigned int last_io_disp[2];
162
163         unsigned long last_check_time;
164
165         unsigned long latency_target; /* us */
166         unsigned long latency_target_conf; /* us */
167         /* When did we start a new slice */
168         unsigned long slice_start[2];
169         unsigned long slice_end[2];
170
171         unsigned long last_finish_time; /* ns / 1024 */
172         unsigned long checked_last_finish_time; /* ns / 1024 */
173         unsigned long avg_idletime; /* ns / 1024 */
174         unsigned long idletime_threshold; /* us */
175         unsigned long idletime_threshold_conf; /* us */
176
177         unsigned int bio_cnt; /* total bios */
178         unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
179         unsigned long bio_cnt_reset_time;
180
181         atomic_t io_split_cnt[2];
182         atomic_t last_io_split_cnt[2];
183
184         struct blkg_rwstat stat_bytes;
185         struct blkg_rwstat stat_ios;
186 };
187
188 /* We measure latency for request size from <= 4k to >= 1M */
189 #define LATENCY_BUCKET_SIZE 9
190
191 struct latency_bucket {
192         unsigned long total_latency; /* ns / 1024 */
193         int samples;
194 };
195
196 struct avg_latency_bucket {
197         unsigned long latency; /* ns / 1024 */
198         bool valid;
199 };
200
201 struct throtl_data
202 {
203         /* service tree for active throtl groups */
204         struct throtl_service_queue service_queue;
205
206         struct request_queue *queue;
207
208         /* Total Number of queued bios on READ and WRITE lists */
209         unsigned int nr_queued[2];
210
211         unsigned int throtl_slice;
212
213         /* Work for dispatching throttled bios */
214         struct work_struct dispatch_work;
215         unsigned int limit_index;
216         bool limit_valid[LIMIT_CNT];
217
218         unsigned long low_upgrade_time;
219         unsigned long low_downgrade_time;
220
221         unsigned int scale;
222
223         struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
224         struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
225         struct latency_bucket __percpu *latency_buckets[2];
226         unsigned long last_calculate_time;
227         unsigned long filtered_latency;
228
229         bool track_bio_latency;
230 };
231
232 static void throtl_pending_timer_fn(struct timer_list *t);
233
234 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
235 {
236         return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
237 }
238
239 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
240 {
241         return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
242 }
243
244 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
245 {
246         return pd_to_blkg(&tg->pd);
247 }
248
249 /**
250  * sq_to_tg - return the throl_grp the specified service queue belongs to
251  * @sq: the throtl_service_queue of interest
252  *
253  * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
254  * embedded in throtl_data, %NULL is returned.
255  */
256 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
257 {
258         if (sq && sq->parent_sq)
259                 return container_of(sq, struct throtl_grp, service_queue);
260         else
261                 return NULL;
262 }
263
264 /**
265  * sq_to_td - return throtl_data the specified service queue belongs to
266  * @sq: the throtl_service_queue of interest
267  *
268  * A service_queue can be embedded in either a throtl_grp or throtl_data.
269  * Determine the associated throtl_data accordingly and return it.
270  */
271 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
272 {
273         struct throtl_grp *tg = sq_to_tg(sq);
274
275         if (tg)
276                 return tg->td;
277         else
278                 return container_of(sq, struct throtl_data, service_queue);
279 }
280
281 /*
282  * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
283  * make the IO dispatch more smooth.
284  * Scale up: linearly scale up according to lapsed time since upgrade. For
285  *           every throtl_slice, the limit scales up 1/2 .low limit till the
286  *           limit hits .max limit
287  * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
288  */
289 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
290 {
291         /* arbitrary value to avoid too big scale */
292         if (td->scale < 4096 && time_after_eq(jiffies,
293             td->low_upgrade_time + td->scale * td->throtl_slice))
294                 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
295
296         return low + (low >> 1) * td->scale;
297 }
298
299 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
300 {
301         struct blkcg_gq *blkg = tg_to_blkg(tg);
302         struct throtl_data *td;
303         uint64_t ret;
304
305         if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
306                 return U64_MAX;
307
308         td = tg->td;
309         ret = tg->bps[rw][td->limit_index];
310         if (ret == 0 && td->limit_index == LIMIT_LOW) {
311                 /* intermediate node or iops isn't 0 */
312                 if (!list_empty(&blkg->blkcg->css.children) ||
313                     tg->iops[rw][td->limit_index])
314                         return U64_MAX;
315                 else
316                         return MIN_THROTL_BPS;
317         }
318
319         if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
320             tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
321                 uint64_t adjusted;
322
323                 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
324                 ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
325         }
326         return ret;
327 }
328
329 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
330 {
331         struct blkcg_gq *blkg = tg_to_blkg(tg);
332         struct throtl_data *td;
333         unsigned int ret;
334
335         if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
336                 return UINT_MAX;
337
338         td = tg->td;
339         ret = tg->iops[rw][td->limit_index];
340         if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
341                 /* intermediate node or bps isn't 0 */
342                 if (!list_empty(&blkg->blkcg->css.children) ||
343                     tg->bps[rw][td->limit_index])
344                         return UINT_MAX;
345                 else
346                         return MIN_THROTL_IOPS;
347         }
348
349         if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
350             tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
351                 uint64_t adjusted;
352
353                 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
354                 if (adjusted > UINT_MAX)
355                         adjusted = UINT_MAX;
356                 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
357         }
358         return ret;
359 }
360
361 #define request_bucket_index(sectors) \
362         clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
363
364 /**
365  * throtl_log - log debug message via blktrace
366  * @sq: the service_queue being reported
367  * @fmt: printf format string
368  * @args: printf args
369  *
370  * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
371  * throtl_grp; otherwise, just "throtl".
372  */
373 #define throtl_log(sq, fmt, args...)    do {                            \
374         struct throtl_grp *__tg = sq_to_tg((sq));                       \
375         struct throtl_data *__td = sq_to_td((sq));                      \
376                                                                         \
377         (void)__td;                                                     \
378         if (likely(!blk_trace_note_message_enabled(__td->queue)))       \
379                 break;                                                  \
380         if ((__tg)) {                                                   \
381                 blk_add_cgroup_trace_msg(__td->queue,                   \
382                         tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\
383         } else {                                                        \
384                 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);  \
385         }                                                               \
386 } while (0)
387
388 static inline unsigned int throtl_bio_data_size(struct bio *bio)
389 {
390         /* assume it's one sector */
391         if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
392                 return 512;
393         return bio->bi_iter.bi_size;
394 }
395
396 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
397 {
398         INIT_LIST_HEAD(&qn->node);
399         bio_list_init(&qn->bios);
400         qn->tg = tg;
401 }
402
403 /**
404  * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
405  * @bio: bio being added
406  * @qn: qnode to add bio to
407  * @queued: the service_queue->queued[] list @qn belongs to
408  *
409  * Add @bio to @qn and put @qn on @queued if it's not already on.
410  * @qn->tg's reference count is bumped when @qn is activated.  See the
411  * comment on top of throtl_qnode definition for details.
412  */
413 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
414                                  struct list_head *queued)
415 {
416         bio_list_add(&qn->bios, bio);
417         if (list_empty(&qn->node)) {
418                 list_add_tail(&qn->node, queued);
419                 blkg_get(tg_to_blkg(qn->tg));
420         }
421 }
422
423 /**
424  * throtl_peek_queued - peek the first bio on a qnode list
425  * @queued: the qnode list to peek
426  */
427 static struct bio *throtl_peek_queued(struct list_head *queued)
428 {
429         struct throtl_qnode *qn;
430         struct bio *bio;
431
432         if (list_empty(queued))
433                 return NULL;
434
435         qn = list_first_entry(queued, struct throtl_qnode, node);
436         bio = bio_list_peek(&qn->bios);
437         WARN_ON_ONCE(!bio);
438         return bio;
439 }
440
441 /**
442  * throtl_pop_queued - pop the first bio form a qnode list
443  * @queued: the qnode list to pop a bio from
444  * @tg_to_put: optional out argument for throtl_grp to put
445  *
446  * Pop the first bio from the qnode list @queued.  After popping, the first
447  * qnode is removed from @queued if empty or moved to the end of @queued so
448  * that the popping order is round-robin.
449  *
450  * When the first qnode is removed, its associated throtl_grp should be put
451  * too.  If @tg_to_put is NULL, this function automatically puts it;
452  * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
453  * responsible for putting it.
454  */
455 static struct bio *throtl_pop_queued(struct list_head *queued,
456                                      struct throtl_grp **tg_to_put)
457 {
458         struct throtl_qnode *qn;
459         struct bio *bio;
460
461         if (list_empty(queued))
462                 return NULL;
463
464         qn = list_first_entry(queued, struct throtl_qnode, node);
465         bio = bio_list_pop(&qn->bios);
466         WARN_ON_ONCE(!bio);
467
468         if (bio_list_empty(&qn->bios)) {
469                 list_del_init(&qn->node);
470                 if (tg_to_put)
471                         *tg_to_put = qn->tg;
472                 else
473                         blkg_put(tg_to_blkg(qn->tg));
474         } else {
475                 list_move_tail(&qn->node, queued);
476         }
477
478         return bio;
479 }
480
481 /* init a service_queue, assumes the caller zeroed it */
482 static void throtl_service_queue_init(struct throtl_service_queue *sq)
483 {
484         INIT_LIST_HEAD(&sq->queued[0]);
485         INIT_LIST_HEAD(&sq->queued[1]);
486         sq->pending_tree = RB_ROOT_CACHED;
487         timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
488 }
489
490 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp,
491                                                 struct request_queue *q,
492                                                 struct blkcg *blkcg)
493 {
494         struct throtl_grp *tg;
495         int rw;
496
497         tg = kzalloc_node(sizeof(*tg), gfp, q->node);
498         if (!tg)
499                 return NULL;
500
501         if (blkg_rwstat_init(&tg->stat_bytes, gfp))
502                 goto err_free_tg;
503
504         if (blkg_rwstat_init(&tg->stat_ios, gfp))
505                 goto err_exit_stat_bytes;
506
507         throtl_service_queue_init(&tg->service_queue);
508
509         for (rw = READ; rw <= WRITE; rw++) {
510                 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
511                 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
512         }
513
514         RB_CLEAR_NODE(&tg->rb_node);
515         tg->bps[READ][LIMIT_MAX] = U64_MAX;
516         tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
517         tg->iops[READ][LIMIT_MAX] = UINT_MAX;
518         tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
519         tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
520         tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
521         tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
522         tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
523         /* LIMIT_LOW will have default value 0 */
524
525         tg->latency_target = DFL_LATENCY_TARGET;
526         tg->latency_target_conf = DFL_LATENCY_TARGET;
527         tg->idletime_threshold = DFL_IDLE_THRESHOLD;
528         tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
529
530         return &tg->pd;
531
532 err_exit_stat_bytes:
533         blkg_rwstat_exit(&tg->stat_bytes);
534 err_free_tg:
535         kfree(tg);
536         return NULL;
537 }
538
539 static void throtl_pd_init(struct blkg_policy_data *pd)
540 {
541         struct throtl_grp *tg = pd_to_tg(pd);
542         struct blkcg_gq *blkg = tg_to_blkg(tg);
543         struct throtl_data *td = blkg->q->td;
544         struct throtl_service_queue *sq = &tg->service_queue;
545
546         /*
547          * If on the default hierarchy, we switch to properly hierarchical
548          * behavior where limits on a given throtl_grp are applied to the
549          * whole subtree rather than just the group itself.  e.g. If 16M
550          * read_bps limit is set on the root group, the whole system can't
551          * exceed 16M for the device.
552          *
553          * If not on the default hierarchy, the broken flat hierarchy
554          * behavior is retained where all throtl_grps are treated as if
555          * they're all separate root groups right below throtl_data.
556          * Limits of a group don't interact with limits of other groups
557          * regardless of the position of the group in the hierarchy.
558          */
559         sq->parent_sq = &td->service_queue;
560         if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
561                 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
562         tg->td = td;
563 }
564
565 /*
566  * Set has_rules[] if @tg or any of its parents have limits configured.
567  * This doesn't require walking up to the top of the hierarchy as the
568  * parent's has_rules[] is guaranteed to be correct.
569  */
570 static void tg_update_has_rules(struct throtl_grp *tg)
571 {
572         struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
573         struct throtl_data *td = tg->td;
574         int rw;
575
576         for (rw = READ; rw <= WRITE; rw++)
577                 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
578                         (td->limit_valid[td->limit_index] &&
579                          (tg_bps_limit(tg, rw) != U64_MAX ||
580                           tg_iops_limit(tg, rw) != UINT_MAX));
581 }
582
583 static void throtl_pd_online(struct blkg_policy_data *pd)
584 {
585         struct throtl_grp *tg = pd_to_tg(pd);
586         /*
587          * We don't want new groups to escape the limits of its ancestors.
588          * Update has_rules[] after a new group is brought online.
589          */
590         tg_update_has_rules(tg);
591 }
592
593 static void blk_throtl_update_limit_valid(struct throtl_data *td)
594 {
595         struct cgroup_subsys_state *pos_css;
596         struct blkcg_gq *blkg;
597         bool low_valid = false;
598
599         rcu_read_lock();
600         blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
601                 struct throtl_grp *tg = blkg_to_tg(blkg);
602
603                 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
604                     tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
605                         low_valid = true;
606                         break;
607                 }
608         }
609         rcu_read_unlock();
610
611         td->limit_valid[LIMIT_LOW] = low_valid;
612 }
613
614 static void throtl_upgrade_state(struct throtl_data *td);
615 static void throtl_pd_offline(struct blkg_policy_data *pd)
616 {
617         struct throtl_grp *tg = pd_to_tg(pd);
618
619         tg->bps[READ][LIMIT_LOW] = 0;
620         tg->bps[WRITE][LIMIT_LOW] = 0;
621         tg->iops[READ][LIMIT_LOW] = 0;
622         tg->iops[WRITE][LIMIT_LOW] = 0;
623
624         blk_throtl_update_limit_valid(tg->td);
625
626         if (!tg->td->limit_valid[tg->td->limit_index])
627                 throtl_upgrade_state(tg->td);
628 }
629
630 static void throtl_pd_free(struct blkg_policy_data *pd)
631 {
632         struct throtl_grp *tg = pd_to_tg(pd);
633
634         del_timer_sync(&tg->service_queue.pending_timer);
635         blkg_rwstat_exit(&tg->stat_bytes);
636         blkg_rwstat_exit(&tg->stat_ios);
637         kfree(tg);
638 }
639
640 static struct throtl_grp *
641 throtl_rb_first(struct throtl_service_queue *parent_sq)
642 {
643         struct rb_node *n;
644
645         n = rb_first_cached(&parent_sq->pending_tree);
646         WARN_ON_ONCE(!n);
647         if (!n)
648                 return NULL;
649         return rb_entry_tg(n);
650 }
651
652 static void throtl_rb_erase(struct rb_node *n,
653                             struct throtl_service_queue *parent_sq)
654 {
655         rb_erase_cached(n, &parent_sq->pending_tree);
656         RB_CLEAR_NODE(n);
657         --parent_sq->nr_pending;
658 }
659
660 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
661 {
662         struct throtl_grp *tg;
663
664         tg = throtl_rb_first(parent_sq);
665         if (!tg)
666                 return;
667
668         parent_sq->first_pending_disptime = tg->disptime;
669 }
670
671 static void tg_service_queue_add(struct throtl_grp *tg)
672 {
673         struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
674         struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node;
675         struct rb_node *parent = NULL;
676         struct throtl_grp *__tg;
677         unsigned long key = tg->disptime;
678         bool leftmost = true;
679
680         while (*node != NULL) {
681                 parent = *node;
682                 __tg = rb_entry_tg(parent);
683
684                 if (time_before(key, __tg->disptime))
685                         node = &parent->rb_left;
686                 else {
687                         node = &parent->rb_right;
688                         leftmost = false;
689                 }
690         }
691
692         rb_link_node(&tg->rb_node, parent, node);
693         rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree,
694                                leftmost);
695 }
696
697 static void throtl_enqueue_tg(struct throtl_grp *tg)
698 {
699         if (!(tg->flags & THROTL_TG_PENDING)) {
700                 tg_service_queue_add(tg);
701                 tg->flags |= THROTL_TG_PENDING;
702                 tg->service_queue.parent_sq->nr_pending++;
703         }
704 }
705
706 static void throtl_dequeue_tg(struct throtl_grp *tg)
707 {
708         if (tg->flags & THROTL_TG_PENDING) {
709                 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
710                 tg->flags &= ~THROTL_TG_PENDING;
711         }
712 }
713
714 /* Call with queue lock held */
715 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
716                                           unsigned long expires)
717 {
718         unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
719
720         /*
721          * Since we are adjusting the throttle limit dynamically, the sleep
722          * time calculated according to previous limit might be invalid. It's
723          * possible the cgroup sleep time is very long and no other cgroups
724          * have IO running so notify the limit changes. Make sure the cgroup
725          * doesn't sleep too long to avoid the missed notification.
726          */
727         if (time_after(expires, max_expire))
728                 expires = max_expire;
729         mod_timer(&sq->pending_timer, expires);
730         throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
731                    expires - jiffies, jiffies);
732 }
733
734 /**
735  * throtl_schedule_next_dispatch - schedule the next dispatch cycle
736  * @sq: the service_queue to schedule dispatch for
737  * @force: force scheduling
738  *
739  * Arm @sq->pending_timer so that the next dispatch cycle starts on the
740  * dispatch time of the first pending child.  Returns %true if either timer
741  * is armed or there's no pending child left.  %false if the current
742  * dispatch window is still open and the caller should continue
743  * dispatching.
744  *
745  * If @force is %true, the dispatch timer is always scheduled and this
746  * function is guaranteed to return %true.  This is to be used when the
747  * caller can't dispatch itself and needs to invoke pending_timer
748  * unconditionally.  Note that forced scheduling is likely to induce short
749  * delay before dispatch starts even if @sq->first_pending_disptime is not
750  * in the future and thus shouldn't be used in hot paths.
751  */
752 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
753                                           bool force)
754 {
755         /* any pending children left? */
756         if (!sq->nr_pending)
757                 return true;
758
759         update_min_dispatch_time(sq);
760
761         /* is the next dispatch time in the future? */
762         if (force || time_after(sq->first_pending_disptime, jiffies)) {
763                 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
764                 return true;
765         }
766
767         /* tell the caller to continue dispatching */
768         return false;
769 }
770
771 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
772                 bool rw, unsigned long start)
773 {
774         tg->bytes_disp[rw] = 0;
775         tg->io_disp[rw] = 0;
776
777         atomic_set(&tg->io_split_cnt[rw], 0);
778
779         /*
780          * Previous slice has expired. We must have trimmed it after last
781          * bio dispatch. That means since start of last slice, we never used
782          * that bandwidth. Do try to make use of that bandwidth while giving
783          * credit.
784          */
785         if (time_after_eq(start, tg->slice_start[rw]))
786                 tg->slice_start[rw] = start;
787
788         tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
789         throtl_log(&tg->service_queue,
790                    "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
791                    rw == READ ? 'R' : 'W', tg->slice_start[rw],
792                    tg->slice_end[rw], jiffies);
793 }
794
795 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
796 {
797         tg->bytes_disp[rw] = 0;
798         tg->io_disp[rw] = 0;
799         tg->slice_start[rw] = jiffies;
800         tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
801
802         atomic_set(&tg->io_split_cnt[rw], 0);
803
804         throtl_log(&tg->service_queue,
805                    "[%c] new slice start=%lu end=%lu jiffies=%lu",
806                    rw == READ ? 'R' : 'W', tg->slice_start[rw],
807                    tg->slice_end[rw], jiffies);
808 }
809
810 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
811                                         unsigned long jiffy_end)
812 {
813         tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
814 }
815
816 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
817                                        unsigned long jiffy_end)
818 {
819         throtl_set_slice_end(tg, rw, jiffy_end);
820         throtl_log(&tg->service_queue,
821                    "[%c] extend slice start=%lu end=%lu jiffies=%lu",
822                    rw == READ ? 'R' : 'W', tg->slice_start[rw],
823                    tg->slice_end[rw], jiffies);
824 }
825
826 /* Determine if previously allocated or extended slice is complete or not */
827 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
828 {
829         if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
830                 return false;
831
832         return true;
833 }
834
835 /* Trim the used slices and adjust slice start accordingly */
836 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
837 {
838         unsigned long nr_slices, time_elapsed, io_trim;
839         u64 bytes_trim, tmp;
840
841         BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
842
843         /*
844          * If bps are unlimited (-1), then time slice don't get
845          * renewed. Don't try to trim the slice if slice is used. A new
846          * slice will start when appropriate.
847          */
848         if (throtl_slice_used(tg, rw))
849                 return;
850
851         /*
852          * A bio has been dispatched. Also adjust slice_end. It might happen
853          * that initially cgroup limit was very low resulting in high
854          * slice_end, but later limit was bumped up and bio was dispatched
855          * sooner, then we need to reduce slice_end. A high bogus slice_end
856          * is bad because it does not allow new slice to start.
857          */
858
859         throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
860
861         time_elapsed = jiffies - tg->slice_start[rw];
862
863         nr_slices = time_elapsed / tg->td->throtl_slice;
864
865         if (!nr_slices)
866                 return;
867         tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
868         do_div(tmp, HZ);
869         bytes_trim = tmp;
870
871         io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
872                 HZ;
873
874         if (!bytes_trim && !io_trim)
875                 return;
876
877         if (tg->bytes_disp[rw] >= bytes_trim)
878                 tg->bytes_disp[rw] -= bytes_trim;
879         else
880                 tg->bytes_disp[rw] = 0;
881
882         if (tg->io_disp[rw] >= io_trim)
883                 tg->io_disp[rw] -= io_trim;
884         else
885                 tg->io_disp[rw] = 0;
886
887         tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
888
889         throtl_log(&tg->service_queue,
890                    "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
891                    rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
892                    tg->slice_start[rw], tg->slice_end[rw], jiffies);
893 }
894
895 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
896                                   u32 iops_limit, unsigned long *wait)
897 {
898         bool rw = bio_data_dir(bio);
899         unsigned int io_allowed;
900         unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
901         u64 tmp;
902
903         if (iops_limit == UINT_MAX) {
904                 if (wait)
905                         *wait = 0;
906                 return true;
907         }
908
909         jiffy_elapsed = jiffies - tg->slice_start[rw];
910
911         /* Round up to the next throttle slice, wait time must be nonzero */
912         jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
913
914         /*
915          * jiffy_elapsed_rnd should not be a big value as minimum iops can be
916          * 1 then at max jiffy elapsed should be equivalent of 1 second as we
917          * will allow dispatch after 1 second and after that slice should
918          * have been trimmed.
919          */
920
921         tmp = (u64)iops_limit * jiffy_elapsed_rnd;
922         do_div(tmp, HZ);
923
924         if (tmp > UINT_MAX)
925                 io_allowed = UINT_MAX;
926         else
927                 io_allowed = tmp;
928
929         if (tg->io_disp[rw] + 1 <= io_allowed) {
930                 if (wait)
931                         *wait = 0;
932                 return true;
933         }
934
935         /* Calc approx time to dispatch */
936         jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
937
938         if (wait)
939                 *wait = jiffy_wait;
940         return false;
941 }
942
943 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
944                                  u64 bps_limit, unsigned long *wait)
945 {
946         bool rw = bio_data_dir(bio);
947         u64 bytes_allowed, extra_bytes, tmp;
948         unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
949         unsigned int bio_size = throtl_bio_data_size(bio);
950
951         if (bps_limit == U64_MAX) {
952                 if (wait)
953                         *wait = 0;
954                 return true;
955         }
956
957         jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
958
959         /* Slice has just started. Consider one slice interval */
960         if (!jiffy_elapsed)
961                 jiffy_elapsed_rnd = tg->td->throtl_slice;
962
963         jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
964
965         tmp = bps_limit * jiffy_elapsed_rnd;
966         do_div(tmp, HZ);
967         bytes_allowed = tmp;
968
969         if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
970                 if (wait)
971                         *wait = 0;
972                 return true;
973         }
974
975         /* Calc approx time to dispatch */
976         extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
977         jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit);
978
979         if (!jiffy_wait)
980                 jiffy_wait = 1;
981
982         /*
983          * This wait time is without taking into consideration the rounding
984          * up we did. Add that time also.
985          */
986         jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
987         if (wait)
988                 *wait = jiffy_wait;
989         return false;
990 }
991
992 /*
993  * Returns whether one can dispatch a bio or not. Also returns approx number
994  * of jiffies to wait before this bio is with-in IO rate and can be dispatched
995  */
996 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
997                             unsigned long *wait)
998 {
999         bool rw = bio_data_dir(bio);
1000         unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
1001         u64 bps_limit = tg_bps_limit(tg, rw);
1002         u32 iops_limit = tg_iops_limit(tg, rw);
1003
1004         /*
1005          * Currently whole state machine of group depends on first bio
1006          * queued in the group bio list. So one should not be calling
1007          * this function with a different bio if there are other bios
1008          * queued.
1009          */
1010         BUG_ON(tg->service_queue.nr_queued[rw] &&
1011                bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
1012
1013         /* If tg->bps = -1, then BW is unlimited */
1014         if (bps_limit == U64_MAX && iops_limit == UINT_MAX) {
1015                 if (wait)
1016                         *wait = 0;
1017                 return true;
1018         }
1019
1020         /*
1021          * If previous slice expired, start a new one otherwise renew/extend
1022          * existing slice to make sure it is at least throtl_slice interval
1023          * long since now. New slice is started only for empty throttle group.
1024          * If there is queued bio, that means there should be an active
1025          * slice and it should be extended instead.
1026          */
1027         if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
1028                 throtl_start_new_slice(tg, rw);
1029         else {
1030                 if (time_before(tg->slice_end[rw],
1031                     jiffies + tg->td->throtl_slice))
1032                         throtl_extend_slice(tg, rw,
1033                                 jiffies + tg->td->throtl_slice);
1034         }
1035
1036         if (iops_limit != UINT_MAX)
1037                 tg->io_disp[rw] += atomic_xchg(&tg->io_split_cnt[rw], 0);
1038
1039         if (tg_with_in_bps_limit(tg, bio, bps_limit, &bps_wait) &&
1040             tg_with_in_iops_limit(tg, bio, iops_limit, &iops_wait)) {
1041                 if (wait)
1042                         *wait = 0;
1043                 return true;
1044         }
1045
1046         max_wait = max(bps_wait, iops_wait);
1047
1048         if (wait)
1049                 *wait = max_wait;
1050
1051         if (time_before(tg->slice_end[rw], jiffies + max_wait))
1052                 throtl_extend_slice(tg, rw, jiffies + max_wait);
1053
1054         return false;
1055 }
1056
1057 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
1058 {
1059         bool rw = bio_data_dir(bio);
1060         unsigned int bio_size = throtl_bio_data_size(bio);
1061
1062         /* Charge the bio to the group */
1063         tg->bytes_disp[rw] += bio_size;
1064         tg->io_disp[rw]++;
1065         tg->last_bytes_disp[rw] += bio_size;
1066         tg->last_io_disp[rw]++;
1067
1068         /*
1069          * BIO_THROTTLED is used to prevent the same bio to be throttled
1070          * more than once as a throttled bio will go through blk-throtl the
1071          * second time when it eventually gets issued.  Set it when a bio
1072          * is being charged to a tg.
1073          */
1074         if (!bio_flagged(bio, BIO_THROTTLED))
1075                 bio_set_flag(bio, BIO_THROTTLED);
1076 }
1077
1078 /**
1079  * throtl_add_bio_tg - add a bio to the specified throtl_grp
1080  * @bio: bio to add
1081  * @qn: qnode to use
1082  * @tg: the target throtl_grp
1083  *
1084  * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
1085  * tg->qnode_on_self[] is used.
1086  */
1087 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
1088                               struct throtl_grp *tg)
1089 {
1090         struct throtl_service_queue *sq = &tg->service_queue;
1091         bool rw = bio_data_dir(bio);
1092
1093         if (!qn)
1094                 qn = &tg->qnode_on_self[rw];
1095
1096         /*
1097          * If @tg doesn't currently have any bios queued in the same
1098          * direction, queueing @bio can change when @tg should be
1099          * dispatched.  Mark that @tg was empty.  This is automatically
1100          * cleared on the next tg_update_disptime().
1101          */
1102         if (!sq->nr_queued[rw])
1103                 tg->flags |= THROTL_TG_WAS_EMPTY;
1104
1105         throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1106
1107         sq->nr_queued[rw]++;
1108         throtl_enqueue_tg(tg);
1109 }
1110
1111 static void tg_update_disptime(struct throtl_grp *tg)
1112 {
1113         struct throtl_service_queue *sq = &tg->service_queue;
1114         unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1115         struct bio *bio;
1116
1117         bio = throtl_peek_queued(&sq->queued[READ]);
1118         if (bio)
1119                 tg_may_dispatch(tg, bio, &read_wait);
1120
1121         bio = throtl_peek_queued(&sq->queued[WRITE]);
1122         if (bio)
1123                 tg_may_dispatch(tg, bio, &write_wait);
1124
1125         min_wait = min(read_wait, write_wait);
1126         disptime = jiffies + min_wait;
1127
1128         /* Update dispatch time */
1129         throtl_dequeue_tg(tg);
1130         tg->disptime = disptime;
1131         throtl_enqueue_tg(tg);
1132
1133         /* see throtl_add_bio_tg() */
1134         tg->flags &= ~THROTL_TG_WAS_EMPTY;
1135 }
1136
1137 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1138                                         struct throtl_grp *parent_tg, bool rw)
1139 {
1140         if (throtl_slice_used(parent_tg, rw)) {
1141                 throtl_start_new_slice_with_credit(parent_tg, rw,
1142                                 child_tg->slice_start[rw]);
1143         }
1144
1145 }
1146
1147 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1148 {
1149         struct throtl_service_queue *sq = &tg->service_queue;
1150         struct throtl_service_queue *parent_sq = sq->parent_sq;
1151         struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1152         struct throtl_grp *tg_to_put = NULL;
1153         struct bio *bio;
1154
1155         /*
1156          * @bio is being transferred from @tg to @parent_sq.  Popping a bio
1157          * from @tg may put its reference and @parent_sq might end up
1158          * getting released prematurely.  Remember the tg to put and put it
1159          * after @bio is transferred to @parent_sq.
1160          */
1161         bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1162         sq->nr_queued[rw]--;
1163
1164         throtl_charge_bio(tg, bio);
1165
1166         /*
1167          * If our parent is another tg, we just need to transfer @bio to
1168          * the parent using throtl_add_bio_tg().  If our parent is
1169          * @td->service_queue, @bio is ready to be issued.  Put it on its
1170          * bio_lists[] and decrease total number queued.  The caller is
1171          * responsible for issuing these bios.
1172          */
1173         if (parent_tg) {
1174                 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1175                 start_parent_slice_with_credit(tg, parent_tg, rw);
1176         } else {
1177                 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1178                                      &parent_sq->queued[rw]);
1179                 BUG_ON(tg->td->nr_queued[rw] <= 0);
1180                 tg->td->nr_queued[rw]--;
1181         }
1182
1183         throtl_trim_slice(tg, rw);
1184
1185         if (tg_to_put)
1186                 blkg_put(tg_to_blkg(tg_to_put));
1187 }
1188
1189 static int throtl_dispatch_tg(struct throtl_grp *tg)
1190 {
1191         struct throtl_service_queue *sq = &tg->service_queue;
1192         unsigned int nr_reads = 0, nr_writes = 0;
1193         unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4;
1194         unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads;
1195         struct bio *bio;
1196
1197         /* Try to dispatch 75% READS and 25% WRITES */
1198
1199         while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1200                tg_may_dispatch(tg, bio, NULL)) {
1201
1202                 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1203                 nr_reads++;
1204
1205                 if (nr_reads >= max_nr_reads)
1206                         break;
1207         }
1208
1209         while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1210                tg_may_dispatch(tg, bio, NULL)) {
1211
1212                 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1213                 nr_writes++;
1214
1215                 if (nr_writes >= max_nr_writes)
1216                         break;
1217         }
1218
1219         return nr_reads + nr_writes;
1220 }
1221
1222 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1223 {
1224         unsigned int nr_disp = 0;
1225
1226         while (1) {
1227                 struct throtl_grp *tg;
1228                 struct throtl_service_queue *sq;
1229
1230                 if (!parent_sq->nr_pending)
1231                         break;
1232
1233                 tg = throtl_rb_first(parent_sq);
1234                 if (!tg)
1235                         break;
1236
1237                 if (time_before(jiffies, tg->disptime))
1238                         break;
1239
1240                 throtl_dequeue_tg(tg);
1241
1242                 nr_disp += throtl_dispatch_tg(tg);
1243
1244                 sq = &tg->service_queue;
1245                 if (sq->nr_queued[0] || sq->nr_queued[1])
1246                         tg_update_disptime(tg);
1247
1248                 if (nr_disp >= THROTL_QUANTUM)
1249                         break;
1250         }
1251
1252         return nr_disp;
1253 }
1254
1255 static bool throtl_can_upgrade(struct throtl_data *td,
1256         struct throtl_grp *this_tg);
1257 /**
1258  * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1259  * @t: the pending_timer member of the throtl_service_queue being serviced
1260  *
1261  * This timer is armed when a child throtl_grp with active bio's become
1262  * pending and queued on the service_queue's pending_tree and expires when
1263  * the first child throtl_grp should be dispatched.  This function
1264  * dispatches bio's from the children throtl_grps to the parent
1265  * service_queue.
1266  *
1267  * If the parent's parent is another throtl_grp, dispatching is propagated
1268  * by either arming its pending_timer or repeating dispatch directly.  If
1269  * the top-level service_tree is reached, throtl_data->dispatch_work is
1270  * kicked so that the ready bio's are issued.
1271  */
1272 static void throtl_pending_timer_fn(struct timer_list *t)
1273 {
1274         struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1275         struct throtl_grp *tg = sq_to_tg(sq);
1276         struct throtl_data *td = sq_to_td(sq);
1277         struct request_queue *q = td->queue;
1278         struct throtl_service_queue *parent_sq;
1279         bool dispatched;
1280         int ret;
1281
1282         spin_lock_irq(&q->queue_lock);
1283         if (throtl_can_upgrade(td, NULL))
1284                 throtl_upgrade_state(td);
1285
1286 again:
1287         parent_sq = sq->parent_sq;
1288         dispatched = false;
1289
1290         while (true) {
1291                 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1292                            sq->nr_queued[READ] + sq->nr_queued[WRITE],
1293                            sq->nr_queued[READ], sq->nr_queued[WRITE]);
1294
1295                 ret = throtl_select_dispatch(sq);
1296                 if (ret) {
1297                         throtl_log(sq, "bios disp=%u", ret);
1298                         dispatched = true;
1299                 }
1300
1301                 if (throtl_schedule_next_dispatch(sq, false))
1302                         break;
1303
1304                 /* this dispatch windows is still open, relax and repeat */
1305                 spin_unlock_irq(&q->queue_lock);
1306                 cpu_relax();
1307                 spin_lock_irq(&q->queue_lock);
1308         }
1309
1310         if (!dispatched)
1311                 goto out_unlock;
1312
1313         if (parent_sq) {
1314                 /* @parent_sq is another throl_grp, propagate dispatch */
1315                 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1316                         tg_update_disptime(tg);
1317                         if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1318                                 /* window is already open, repeat dispatching */
1319                                 sq = parent_sq;
1320                                 tg = sq_to_tg(sq);
1321                                 goto again;
1322                         }
1323                 }
1324         } else {
1325                 /* reached the top-level, queue issuing */
1326                 queue_work(kthrotld_workqueue, &td->dispatch_work);
1327         }
1328 out_unlock:
1329         spin_unlock_irq(&q->queue_lock);
1330 }
1331
1332 /**
1333  * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1334  * @work: work item being executed
1335  *
1336  * This function is queued for execution when bios reach the bio_lists[]
1337  * of throtl_data->service_queue.  Those bios are ready and issued by this
1338  * function.
1339  */
1340 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1341 {
1342         struct throtl_data *td = container_of(work, struct throtl_data,
1343                                               dispatch_work);
1344         struct throtl_service_queue *td_sq = &td->service_queue;
1345         struct request_queue *q = td->queue;
1346         struct bio_list bio_list_on_stack;
1347         struct bio *bio;
1348         struct blk_plug plug;
1349         int rw;
1350
1351         bio_list_init(&bio_list_on_stack);
1352
1353         spin_lock_irq(&q->queue_lock);
1354         for (rw = READ; rw <= WRITE; rw++)
1355                 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1356                         bio_list_add(&bio_list_on_stack, bio);
1357         spin_unlock_irq(&q->queue_lock);
1358
1359         if (!bio_list_empty(&bio_list_on_stack)) {
1360                 blk_start_plug(&plug);
1361                 while ((bio = bio_list_pop(&bio_list_on_stack)))
1362                         submit_bio_noacct(bio);
1363                 blk_finish_plug(&plug);
1364         }
1365 }
1366
1367 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1368                               int off)
1369 {
1370         struct throtl_grp *tg = pd_to_tg(pd);
1371         u64 v = *(u64 *)((void *)tg + off);
1372
1373         if (v == U64_MAX)
1374                 return 0;
1375         return __blkg_prfill_u64(sf, pd, v);
1376 }
1377
1378 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1379                                int off)
1380 {
1381         struct throtl_grp *tg = pd_to_tg(pd);
1382         unsigned int v = *(unsigned int *)((void *)tg + off);
1383
1384         if (v == UINT_MAX)
1385                 return 0;
1386         return __blkg_prfill_u64(sf, pd, v);
1387 }
1388
1389 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1390 {
1391         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1392                           &blkcg_policy_throtl, seq_cft(sf)->private, false);
1393         return 0;
1394 }
1395
1396 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1397 {
1398         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1399                           &blkcg_policy_throtl, seq_cft(sf)->private, false);
1400         return 0;
1401 }
1402
1403 static void tg_conf_updated(struct throtl_grp *tg, bool global)
1404 {
1405         struct throtl_service_queue *sq = &tg->service_queue;
1406         struct cgroup_subsys_state *pos_css;
1407         struct blkcg_gq *blkg;
1408
1409         throtl_log(&tg->service_queue,
1410                    "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1411                    tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1412                    tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1413
1414         /*
1415          * Update has_rules[] flags for the updated tg's subtree.  A tg is
1416          * considered to have rules if either the tg itself or any of its
1417          * ancestors has rules.  This identifies groups without any
1418          * restrictions in the whole hierarchy and allows them to bypass
1419          * blk-throttle.
1420          */
1421         blkg_for_each_descendant_pre(blkg, pos_css,
1422                         global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1423                 struct throtl_grp *this_tg = blkg_to_tg(blkg);
1424                 struct throtl_grp *parent_tg;
1425
1426                 tg_update_has_rules(this_tg);
1427                 /* ignore root/second level */
1428                 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1429                     !blkg->parent->parent)
1430                         continue;
1431                 parent_tg = blkg_to_tg(blkg->parent);
1432                 /*
1433                  * make sure all children has lower idle time threshold and
1434                  * higher latency target
1435                  */
1436                 this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1437                                 parent_tg->idletime_threshold);
1438                 this_tg->latency_target = max(this_tg->latency_target,
1439                                 parent_tg->latency_target);
1440         }
1441
1442         /*
1443          * We're already holding queue_lock and know @tg is valid.  Let's
1444          * apply the new config directly.
1445          *
1446          * Restart the slices for both READ and WRITES. It might happen
1447          * that a group's limit are dropped suddenly and we don't want to
1448          * account recently dispatched IO with new low rate.
1449          */
1450         throtl_start_new_slice(tg, READ);
1451         throtl_start_new_slice(tg, WRITE);
1452
1453         if (tg->flags & THROTL_TG_PENDING) {
1454                 tg_update_disptime(tg);
1455                 throtl_schedule_next_dispatch(sq->parent_sq, true);
1456         }
1457 }
1458
1459 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1460                            char *buf, size_t nbytes, loff_t off, bool is_u64)
1461 {
1462         struct blkcg *blkcg = css_to_blkcg(of_css(of));
1463         struct blkg_conf_ctx ctx;
1464         struct throtl_grp *tg;
1465         int ret;
1466         u64 v;
1467
1468         ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1469         if (ret)
1470                 return ret;
1471
1472         ret = -EINVAL;
1473         if (sscanf(ctx.body, "%llu", &v) != 1)
1474                 goto out_finish;
1475         if (!v)
1476                 v = U64_MAX;
1477
1478         tg = blkg_to_tg(ctx.blkg);
1479
1480         if (is_u64)
1481                 *(u64 *)((void *)tg + of_cft(of)->private) = v;
1482         else
1483                 *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1484
1485         tg_conf_updated(tg, false);
1486         ret = 0;
1487 out_finish:
1488         blkg_conf_finish(&ctx);
1489         return ret ?: nbytes;
1490 }
1491
1492 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1493                                char *buf, size_t nbytes, loff_t off)
1494 {
1495         return tg_set_conf(of, buf, nbytes, off, true);
1496 }
1497
1498 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1499                                 char *buf, size_t nbytes, loff_t off)
1500 {
1501         return tg_set_conf(of, buf, nbytes, off, false);
1502 }
1503
1504 static int tg_print_rwstat(struct seq_file *sf, void *v)
1505 {
1506         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1507                           blkg_prfill_rwstat, &blkcg_policy_throtl,
1508                           seq_cft(sf)->private, true);
1509         return 0;
1510 }
1511
1512 static u64 tg_prfill_rwstat_recursive(struct seq_file *sf,
1513                                       struct blkg_policy_data *pd, int off)
1514 {
1515         struct blkg_rwstat_sample sum;
1516
1517         blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off,
1518                                   &sum);
1519         return __blkg_prfill_rwstat(sf, pd, &sum);
1520 }
1521
1522 static int tg_print_rwstat_recursive(struct seq_file *sf, void *v)
1523 {
1524         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1525                           tg_prfill_rwstat_recursive, &blkcg_policy_throtl,
1526                           seq_cft(sf)->private, true);
1527         return 0;
1528 }
1529
1530 static struct cftype throtl_legacy_files[] = {
1531         {
1532                 .name = "throttle.read_bps_device",
1533                 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1534                 .seq_show = tg_print_conf_u64,
1535                 .write = tg_set_conf_u64,
1536         },
1537         {
1538                 .name = "throttle.write_bps_device",
1539                 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1540                 .seq_show = tg_print_conf_u64,
1541                 .write = tg_set_conf_u64,
1542         },
1543         {
1544                 .name = "throttle.read_iops_device",
1545                 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1546                 .seq_show = tg_print_conf_uint,
1547                 .write = tg_set_conf_uint,
1548         },
1549         {
1550                 .name = "throttle.write_iops_device",
1551                 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1552                 .seq_show = tg_print_conf_uint,
1553                 .write = tg_set_conf_uint,
1554         },
1555         {
1556                 .name = "throttle.io_service_bytes",
1557                 .private = offsetof(struct throtl_grp, stat_bytes),
1558                 .seq_show = tg_print_rwstat,
1559         },
1560         {
1561                 .name = "throttle.io_service_bytes_recursive",
1562                 .private = offsetof(struct throtl_grp, stat_bytes),
1563                 .seq_show = tg_print_rwstat_recursive,
1564         },
1565         {
1566                 .name = "throttle.io_serviced",
1567                 .private = offsetof(struct throtl_grp, stat_ios),
1568                 .seq_show = tg_print_rwstat,
1569         },
1570         {
1571                 .name = "throttle.io_serviced_recursive",
1572                 .private = offsetof(struct throtl_grp, stat_ios),
1573                 .seq_show = tg_print_rwstat_recursive,
1574         },
1575         { }     /* terminate */
1576 };
1577
1578 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1579                          int off)
1580 {
1581         struct throtl_grp *tg = pd_to_tg(pd);
1582         const char *dname = blkg_dev_name(pd->blkg);
1583         char bufs[4][21] = { "max", "max", "max", "max" };
1584         u64 bps_dft;
1585         unsigned int iops_dft;
1586         char idle_time[26] = "";
1587         char latency_time[26] = "";
1588
1589         if (!dname)
1590                 return 0;
1591
1592         if (off == LIMIT_LOW) {
1593                 bps_dft = 0;
1594                 iops_dft = 0;
1595         } else {
1596                 bps_dft = U64_MAX;
1597                 iops_dft = UINT_MAX;
1598         }
1599
1600         if (tg->bps_conf[READ][off] == bps_dft &&
1601             tg->bps_conf[WRITE][off] == bps_dft &&
1602             tg->iops_conf[READ][off] == iops_dft &&
1603             tg->iops_conf[WRITE][off] == iops_dft &&
1604             (off != LIMIT_LOW ||
1605              (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1606               tg->latency_target_conf == DFL_LATENCY_TARGET)))
1607                 return 0;
1608
1609         if (tg->bps_conf[READ][off] != U64_MAX)
1610                 snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1611                         tg->bps_conf[READ][off]);
1612         if (tg->bps_conf[WRITE][off] != U64_MAX)
1613                 snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1614                         tg->bps_conf[WRITE][off]);
1615         if (tg->iops_conf[READ][off] != UINT_MAX)
1616                 snprintf(bufs[2], sizeof(bufs[2]), "%u",
1617                         tg->iops_conf[READ][off]);
1618         if (tg->iops_conf[WRITE][off] != UINT_MAX)
1619                 snprintf(bufs[3], sizeof(bufs[3]), "%u",
1620                         tg->iops_conf[WRITE][off]);
1621         if (off == LIMIT_LOW) {
1622                 if (tg->idletime_threshold_conf == ULONG_MAX)
1623                         strcpy(idle_time, " idle=max");
1624                 else
1625                         snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1626                                 tg->idletime_threshold_conf);
1627
1628                 if (tg->latency_target_conf == ULONG_MAX)
1629                         strcpy(latency_time, " latency=max");
1630                 else
1631                         snprintf(latency_time, sizeof(latency_time),
1632                                 " latency=%lu", tg->latency_target_conf);
1633         }
1634
1635         seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1636                    dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1637                    latency_time);
1638         return 0;
1639 }
1640
1641 static int tg_print_limit(struct seq_file *sf, void *v)
1642 {
1643         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1644                           &blkcg_policy_throtl, seq_cft(sf)->private, false);
1645         return 0;
1646 }
1647
1648 static ssize_t tg_set_limit(struct kernfs_open_file *of,
1649                           char *buf, size_t nbytes, loff_t off)
1650 {
1651         struct blkcg *blkcg = css_to_blkcg(of_css(of));
1652         struct blkg_conf_ctx ctx;
1653         struct throtl_grp *tg;
1654         u64 v[4];
1655         unsigned long idle_time;
1656         unsigned long latency_time;
1657         int ret;
1658         int index = of_cft(of)->private;
1659
1660         ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1661         if (ret)
1662                 return ret;
1663
1664         tg = blkg_to_tg(ctx.blkg);
1665
1666         v[0] = tg->bps_conf[READ][index];
1667         v[1] = tg->bps_conf[WRITE][index];
1668         v[2] = tg->iops_conf[READ][index];
1669         v[3] = tg->iops_conf[WRITE][index];
1670
1671         idle_time = tg->idletime_threshold_conf;
1672         latency_time = tg->latency_target_conf;
1673         while (true) {
1674                 char tok[27];   /* wiops=18446744073709551616 */
1675                 char *p;
1676                 u64 val = U64_MAX;
1677                 int len;
1678
1679                 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1680                         break;
1681                 if (tok[0] == '\0')
1682                         break;
1683                 ctx.body += len;
1684
1685                 ret = -EINVAL;
1686                 p = tok;
1687                 strsep(&p, "=");
1688                 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1689                         goto out_finish;
1690
1691                 ret = -ERANGE;
1692                 if (!val)
1693                         goto out_finish;
1694
1695                 ret = -EINVAL;
1696                 if (!strcmp(tok, "rbps") && val > 1)
1697                         v[0] = val;
1698                 else if (!strcmp(tok, "wbps") && val > 1)
1699                         v[1] = val;
1700                 else if (!strcmp(tok, "riops") && val > 1)
1701                         v[2] = min_t(u64, val, UINT_MAX);
1702                 else if (!strcmp(tok, "wiops") && val > 1)
1703                         v[3] = min_t(u64, val, UINT_MAX);
1704                 else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1705                         idle_time = val;
1706                 else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1707                         latency_time = val;
1708                 else
1709                         goto out_finish;
1710         }
1711
1712         tg->bps_conf[READ][index] = v[0];
1713         tg->bps_conf[WRITE][index] = v[1];
1714         tg->iops_conf[READ][index] = v[2];
1715         tg->iops_conf[WRITE][index] = v[3];
1716
1717         if (index == LIMIT_MAX) {
1718                 tg->bps[READ][index] = v[0];
1719                 tg->bps[WRITE][index] = v[1];
1720                 tg->iops[READ][index] = v[2];
1721                 tg->iops[WRITE][index] = v[3];
1722         }
1723         tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1724                 tg->bps_conf[READ][LIMIT_MAX]);
1725         tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1726                 tg->bps_conf[WRITE][LIMIT_MAX]);
1727         tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1728                 tg->iops_conf[READ][LIMIT_MAX]);
1729         tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1730                 tg->iops_conf[WRITE][LIMIT_MAX]);
1731         tg->idletime_threshold_conf = idle_time;
1732         tg->latency_target_conf = latency_time;
1733
1734         /* force user to configure all settings for low limit  */
1735         if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1736               tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1737             tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1738             tg->latency_target_conf == DFL_LATENCY_TARGET) {
1739                 tg->bps[READ][LIMIT_LOW] = 0;
1740                 tg->bps[WRITE][LIMIT_LOW] = 0;
1741                 tg->iops[READ][LIMIT_LOW] = 0;
1742                 tg->iops[WRITE][LIMIT_LOW] = 0;
1743                 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1744                 tg->latency_target = DFL_LATENCY_TARGET;
1745         } else if (index == LIMIT_LOW) {
1746                 tg->idletime_threshold = tg->idletime_threshold_conf;
1747                 tg->latency_target = tg->latency_target_conf;
1748         }
1749
1750         blk_throtl_update_limit_valid(tg->td);
1751         if (tg->td->limit_valid[LIMIT_LOW]) {
1752                 if (index == LIMIT_LOW)
1753                         tg->td->limit_index = LIMIT_LOW;
1754         } else
1755                 tg->td->limit_index = LIMIT_MAX;
1756         tg_conf_updated(tg, index == LIMIT_LOW &&
1757                 tg->td->limit_valid[LIMIT_LOW]);
1758         ret = 0;
1759 out_finish:
1760         blkg_conf_finish(&ctx);
1761         return ret ?: nbytes;
1762 }
1763
1764 static struct cftype throtl_files[] = {
1765 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1766         {
1767                 .name = "low",
1768                 .flags = CFTYPE_NOT_ON_ROOT,
1769                 .seq_show = tg_print_limit,
1770                 .write = tg_set_limit,
1771                 .private = LIMIT_LOW,
1772         },
1773 #endif
1774         {
1775                 .name = "max",
1776                 .flags = CFTYPE_NOT_ON_ROOT,
1777                 .seq_show = tg_print_limit,
1778                 .write = tg_set_limit,
1779                 .private = LIMIT_MAX,
1780         },
1781         { }     /* terminate */
1782 };
1783
1784 static void throtl_shutdown_wq(struct request_queue *q)
1785 {
1786         struct throtl_data *td = q->td;
1787
1788         cancel_work_sync(&td->dispatch_work);
1789 }
1790
1791 static struct blkcg_policy blkcg_policy_throtl = {
1792         .dfl_cftypes            = throtl_files,
1793         .legacy_cftypes         = throtl_legacy_files,
1794
1795         .pd_alloc_fn            = throtl_pd_alloc,
1796         .pd_init_fn             = throtl_pd_init,
1797         .pd_online_fn           = throtl_pd_online,
1798         .pd_offline_fn          = throtl_pd_offline,
1799         .pd_free_fn             = throtl_pd_free,
1800 };
1801
1802 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1803 {
1804         unsigned long rtime = jiffies, wtime = jiffies;
1805
1806         if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1807                 rtime = tg->last_low_overflow_time[READ];
1808         if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1809                 wtime = tg->last_low_overflow_time[WRITE];
1810         return min(rtime, wtime);
1811 }
1812
1813 /* tg should not be an intermediate node */
1814 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1815 {
1816         struct throtl_service_queue *parent_sq;
1817         struct throtl_grp *parent = tg;
1818         unsigned long ret = __tg_last_low_overflow_time(tg);
1819
1820         while (true) {
1821                 parent_sq = parent->service_queue.parent_sq;
1822                 parent = sq_to_tg(parent_sq);
1823                 if (!parent)
1824                         break;
1825
1826                 /*
1827                  * The parent doesn't have low limit, it always reaches low
1828                  * limit. Its overflow time is useless for children
1829                  */
1830                 if (!parent->bps[READ][LIMIT_LOW] &&
1831                     !parent->iops[READ][LIMIT_LOW] &&
1832                     !parent->bps[WRITE][LIMIT_LOW] &&
1833                     !parent->iops[WRITE][LIMIT_LOW])
1834                         continue;
1835                 if (time_after(__tg_last_low_overflow_time(parent), ret))
1836                         ret = __tg_last_low_overflow_time(parent);
1837         }
1838         return ret;
1839 }
1840
1841 static bool throtl_tg_is_idle(struct throtl_grp *tg)
1842 {
1843         /*
1844          * cgroup is idle if:
1845          * - single idle is too long, longer than a fixed value (in case user
1846          *   configure a too big threshold) or 4 times of idletime threshold
1847          * - average think time is more than threshold
1848          * - IO latency is largely below threshold
1849          */
1850         unsigned long time;
1851         bool ret;
1852
1853         time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1854         ret = tg->latency_target == DFL_LATENCY_TARGET ||
1855               tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1856               (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1857               tg->avg_idletime > tg->idletime_threshold ||
1858               (tg->latency_target && tg->bio_cnt &&
1859                 tg->bad_bio_cnt * 5 < tg->bio_cnt);
1860         throtl_log(&tg->service_queue,
1861                 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1862                 tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1863                 tg->bio_cnt, ret, tg->td->scale);
1864         return ret;
1865 }
1866
1867 static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1868 {
1869         struct throtl_service_queue *sq = &tg->service_queue;
1870         bool read_limit, write_limit;
1871
1872         /*
1873          * if cgroup reaches low limit (if low limit is 0, the cgroup always
1874          * reaches), it's ok to upgrade to next limit
1875          */
1876         read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1877         write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1878         if (!read_limit && !write_limit)
1879                 return true;
1880         if (read_limit && sq->nr_queued[READ] &&
1881             (!write_limit || sq->nr_queued[WRITE]))
1882                 return true;
1883         if (write_limit && sq->nr_queued[WRITE] &&
1884             (!read_limit || sq->nr_queued[READ]))
1885                 return true;
1886
1887         if (time_after_eq(jiffies,
1888                 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1889             throtl_tg_is_idle(tg))
1890                 return true;
1891         return false;
1892 }
1893
1894 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1895 {
1896         while (true) {
1897                 if (throtl_tg_can_upgrade(tg))
1898                         return true;
1899                 tg = sq_to_tg(tg->service_queue.parent_sq);
1900                 if (!tg || !tg_to_blkg(tg)->parent)
1901                         return false;
1902         }
1903         return false;
1904 }
1905
1906 static bool throtl_can_upgrade(struct throtl_data *td,
1907         struct throtl_grp *this_tg)
1908 {
1909         struct cgroup_subsys_state *pos_css;
1910         struct blkcg_gq *blkg;
1911
1912         if (td->limit_index != LIMIT_LOW)
1913                 return false;
1914
1915         if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1916                 return false;
1917
1918         rcu_read_lock();
1919         blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1920                 struct throtl_grp *tg = blkg_to_tg(blkg);
1921
1922                 if (tg == this_tg)
1923                         continue;
1924                 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1925                         continue;
1926                 if (!throtl_hierarchy_can_upgrade(tg)) {
1927                         rcu_read_unlock();
1928                         return false;
1929                 }
1930         }
1931         rcu_read_unlock();
1932         return true;
1933 }
1934
1935 static void throtl_upgrade_check(struct throtl_grp *tg)
1936 {
1937         unsigned long now = jiffies;
1938
1939         if (tg->td->limit_index != LIMIT_LOW)
1940                 return;
1941
1942         if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1943                 return;
1944
1945         tg->last_check_time = now;
1946
1947         if (!time_after_eq(now,
1948              __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1949                 return;
1950
1951         if (throtl_can_upgrade(tg->td, NULL))
1952                 throtl_upgrade_state(tg->td);
1953 }
1954
1955 static void throtl_upgrade_state(struct throtl_data *td)
1956 {
1957         struct cgroup_subsys_state *pos_css;
1958         struct blkcg_gq *blkg;
1959
1960         throtl_log(&td->service_queue, "upgrade to max");
1961         td->limit_index = LIMIT_MAX;
1962         td->low_upgrade_time = jiffies;
1963         td->scale = 0;
1964         rcu_read_lock();
1965         blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1966                 struct throtl_grp *tg = blkg_to_tg(blkg);
1967                 struct throtl_service_queue *sq = &tg->service_queue;
1968
1969                 tg->disptime = jiffies - 1;
1970                 throtl_select_dispatch(sq);
1971                 throtl_schedule_next_dispatch(sq, true);
1972         }
1973         rcu_read_unlock();
1974         throtl_select_dispatch(&td->service_queue);
1975         throtl_schedule_next_dispatch(&td->service_queue, true);
1976         queue_work(kthrotld_workqueue, &td->dispatch_work);
1977 }
1978
1979 static void throtl_downgrade_state(struct throtl_data *td)
1980 {
1981         td->scale /= 2;
1982
1983         throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1984         if (td->scale) {
1985                 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1986                 return;
1987         }
1988
1989         td->limit_index = LIMIT_LOW;
1990         td->low_downgrade_time = jiffies;
1991 }
1992
1993 static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1994 {
1995         struct throtl_data *td = tg->td;
1996         unsigned long now = jiffies;
1997
1998         /*
1999          * If cgroup is below low limit, consider downgrade and throttle other
2000          * cgroups
2001          */
2002         if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
2003             time_after_eq(now, tg_last_low_overflow_time(tg) +
2004                                         td->throtl_slice) &&
2005             (!throtl_tg_is_idle(tg) ||
2006              !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
2007                 return true;
2008         return false;
2009 }
2010
2011 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
2012 {
2013         while (true) {
2014                 if (!throtl_tg_can_downgrade(tg))
2015                         return false;
2016                 tg = sq_to_tg(tg->service_queue.parent_sq);
2017                 if (!tg || !tg_to_blkg(tg)->parent)
2018                         break;
2019         }
2020         return true;
2021 }
2022
2023 static void throtl_downgrade_check(struct throtl_grp *tg)
2024 {
2025         uint64_t bps;
2026         unsigned int iops;
2027         unsigned long elapsed_time;
2028         unsigned long now = jiffies;
2029
2030         if (tg->td->limit_index != LIMIT_MAX ||
2031             !tg->td->limit_valid[LIMIT_LOW])
2032                 return;
2033         if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
2034                 return;
2035         if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
2036                 return;
2037
2038         elapsed_time = now - tg->last_check_time;
2039         tg->last_check_time = now;
2040
2041         if (time_before(now, tg_last_low_overflow_time(tg) +
2042                         tg->td->throtl_slice))
2043                 return;
2044
2045         if (tg->bps[READ][LIMIT_LOW]) {
2046                 bps = tg->last_bytes_disp[READ] * HZ;
2047                 do_div(bps, elapsed_time);
2048                 if (bps >= tg->bps[READ][LIMIT_LOW])
2049                         tg->last_low_overflow_time[READ] = now;
2050         }
2051
2052         if (tg->bps[WRITE][LIMIT_LOW]) {
2053                 bps = tg->last_bytes_disp[WRITE] * HZ;
2054                 do_div(bps, elapsed_time);
2055                 if (bps >= tg->bps[WRITE][LIMIT_LOW])
2056                         tg->last_low_overflow_time[WRITE] = now;
2057         }
2058
2059         if (tg->iops[READ][LIMIT_LOW]) {
2060                 tg->last_io_disp[READ] += atomic_xchg(&tg->last_io_split_cnt[READ], 0);
2061                 iops = tg->last_io_disp[READ] * HZ / elapsed_time;
2062                 if (iops >= tg->iops[READ][LIMIT_LOW])
2063                         tg->last_low_overflow_time[READ] = now;
2064         }
2065
2066         if (tg->iops[WRITE][LIMIT_LOW]) {
2067                 tg->last_io_disp[WRITE] += atomic_xchg(&tg->last_io_split_cnt[WRITE], 0);
2068                 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
2069                 if (iops >= tg->iops[WRITE][LIMIT_LOW])
2070                         tg->last_low_overflow_time[WRITE] = now;
2071         }
2072
2073         /*
2074          * If cgroup is below low limit, consider downgrade and throttle other
2075          * cgroups
2076          */
2077         if (throtl_hierarchy_can_downgrade(tg))
2078                 throtl_downgrade_state(tg->td);
2079
2080         tg->last_bytes_disp[READ] = 0;
2081         tg->last_bytes_disp[WRITE] = 0;
2082         tg->last_io_disp[READ] = 0;
2083         tg->last_io_disp[WRITE] = 0;
2084 }
2085
2086 static void blk_throtl_update_idletime(struct throtl_grp *tg)
2087 {
2088         unsigned long now;
2089         unsigned long last_finish_time = tg->last_finish_time;
2090
2091         if (last_finish_time == 0)
2092                 return;
2093
2094         now = ktime_get_ns() >> 10;
2095         if (now <= last_finish_time ||
2096             last_finish_time == tg->checked_last_finish_time)
2097                 return;
2098
2099         tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2100         tg->checked_last_finish_time = last_finish_time;
2101 }
2102
2103 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2104 static void throtl_update_latency_buckets(struct throtl_data *td)
2105 {
2106         struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
2107         int i, cpu, rw;
2108         unsigned long last_latency[2] = { 0 };
2109         unsigned long latency[2];
2110
2111         if (!blk_queue_nonrot(td->queue) || !td->limit_valid[LIMIT_LOW])
2112                 return;
2113         if (time_before(jiffies, td->last_calculate_time + HZ))
2114                 return;
2115         td->last_calculate_time = jiffies;
2116
2117         memset(avg_latency, 0, sizeof(avg_latency));
2118         for (rw = READ; rw <= WRITE; rw++) {
2119                 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2120                         struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
2121
2122                         for_each_possible_cpu(cpu) {
2123                                 struct latency_bucket *bucket;
2124
2125                                 /* this isn't race free, but ok in practice */
2126                                 bucket = per_cpu_ptr(td->latency_buckets[rw],
2127                                         cpu);
2128                                 tmp->total_latency += bucket[i].total_latency;
2129                                 tmp->samples += bucket[i].samples;
2130                                 bucket[i].total_latency = 0;
2131                                 bucket[i].samples = 0;
2132                         }
2133
2134                         if (tmp->samples >= 32) {
2135                                 int samples = tmp->samples;
2136
2137                                 latency[rw] = tmp->total_latency;
2138
2139                                 tmp->total_latency = 0;
2140                                 tmp->samples = 0;
2141                                 latency[rw] /= samples;
2142                                 if (latency[rw] == 0)
2143                                         continue;
2144                                 avg_latency[rw][i].latency = latency[rw];
2145                         }
2146                 }
2147         }
2148
2149         for (rw = READ; rw <= WRITE; rw++) {
2150                 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2151                         if (!avg_latency[rw][i].latency) {
2152                                 if (td->avg_buckets[rw][i].latency < last_latency[rw])
2153                                         td->avg_buckets[rw][i].latency =
2154                                                 last_latency[rw];
2155                                 continue;
2156                         }
2157
2158                         if (!td->avg_buckets[rw][i].valid)
2159                                 latency[rw] = avg_latency[rw][i].latency;
2160                         else
2161                                 latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2162                                         avg_latency[rw][i].latency) >> 3;
2163
2164                         td->avg_buckets[rw][i].latency = max(latency[rw],
2165                                 last_latency[rw]);
2166                         td->avg_buckets[rw][i].valid = true;
2167                         last_latency[rw] = td->avg_buckets[rw][i].latency;
2168                 }
2169         }
2170
2171         for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2172                 throtl_log(&td->service_queue,
2173                         "Latency bucket %d: read latency=%ld, read valid=%d, "
2174                         "write latency=%ld, write valid=%d", i,
2175                         td->avg_buckets[READ][i].latency,
2176                         td->avg_buckets[READ][i].valid,
2177                         td->avg_buckets[WRITE][i].latency,
2178                         td->avg_buckets[WRITE][i].valid);
2179 }
2180 #else
2181 static inline void throtl_update_latency_buckets(struct throtl_data *td)
2182 {
2183 }
2184 #endif
2185
2186 void blk_throtl_charge_bio_split(struct bio *bio)
2187 {
2188         struct blkcg_gq *blkg = bio->bi_blkg;
2189         struct throtl_grp *parent = blkg_to_tg(blkg);
2190         struct throtl_service_queue *parent_sq;
2191         bool rw = bio_data_dir(bio);
2192
2193         do {
2194                 if (!parent->has_rules[rw])
2195                         break;
2196
2197                 atomic_inc(&parent->io_split_cnt[rw]);
2198                 atomic_inc(&parent->last_io_split_cnt[rw]);
2199
2200                 parent_sq = parent->service_queue.parent_sq;
2201                 parent = sq_to_tg(parent_sq);
2202         } while (parent);
2203 }
2204
2205 bool blk_throtl_bio(struct bio *bio)
2206 {
2207         struct request_queue *q = bio->bi_disk->queue;
2208         struct blkcg_gq *blkg = bio->bi_blkg;
2209         struct throtl_qnode *qn = NULL;
2210         struct throtl_grp *tg = blkg_to_tg(blkg);
2211         struct throtl_service_queue *sq;
2212         bool rw = bio_data_dir(bio);
2213         bool throttled = false;
2214         struct throtl_data *td = tg->td;
2215
2216         rcu_read_lock();
2217
2218         /* see throtl_charge_bio() */
2219         if (bio_flagged(bio, BIO_THROTTLED))
2220                 goto out;
2221
2222         if (!cgroup_subsys_on_dfl(io_cgrp_subsys)) {
2223                 blkg_rwstat_add(&tg->stat_bytes, bio->bi_opf,
2224                                 bio->bi_iter.bi_size);
2225                 blkg_rwstat_add(&tg->stat_ios, bio->bi_opf, 1);
2226         }
2227
2228         if (!tg->has_rules[rw])
2229                 goto out;
2230
2231         spin_lock_irq(&q->queue_lock);
2232
2233         throtl_update_latency_buckets(td);
2234
2235         blk_throtl_update_idletime(tg);
2236
2237         sq = &tg->service_queue;
2238
2239 again:
2240         while (true) {
2241                 if (tg->last_low_overflow_time[rw] == 0)
2242                         tg->last_low_overflow_time[rw] = jiffies;
2243                 throtl_downgrade_check(tg);
2244                 throtl_upgrade_check(tg);
2245                 /* throtl is FIFO - if bios are already queued, should queue */
2246                 if (sq->nr_queued[rw])
2247                         break;
2248
2249                 /* if above limits, break to queue */
2250                 if (!tg_may_dispatch(tg, bio, NULL)) {
2251                         tg->last_low_overflow_time[rw] = jiffies;
2252                         if (throtl_can_upgrade(td, tg)) {
2253                                 throtl_upgrade_state(td);
2254                                 goto again;
2255                         }
2256                         break;
2257                 }
2258
2259                 /* within limits, let's charge and dispatch directly */
2260                 throtl_charge_bio(tg, bio);
2261
2262                 /*
2263                  * We need to trim slice even when bios are not being queued
2264                  * otherwise it might happen that a bio is not queued for
2265                  * a long time and slice keeps on extending and trim is not
2266                  * called for a long time. Now if limits are reduced suddenly
2267                  * we take into account all the IO dispatched so far at new
2268                  * low rate and * newly queued IO gets a really long dispatch
2269                  * time.
2270                  *
2271                  * So keep on trimming slice even if bio is not queued.
2272                  */
2273                 throtl_trim_slice(tg, rw);
2274
2275                 /*
2276                  * @bio passed through this layer without being throttled.
2277                  * Climb up the ladder.  If we're already at the top, it
2278                  * can be executed directly.
2279                  */
2280                 qn = &tg->qnode_on_parent[rw];
2281                 sq = sq->parent_sq;
2282                 tg = sq_to_tg(sq);
2283                 if (!tg)
2284                         goto out_unlock;
2285         }
2286
2287         /* out-of-limit, queue to @tg */
2288         throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2289                    rw == READ ? 'R' : 'W',
2290                    tg->bytes_disp[rw], bio->bi_iter.bi_size,
2291                    tg_bps_limit(tg, rw),
2292                    tg->io_disp[rw], tg_iops_limit(tg, rw),
2293                    sq->nr_queued[READ], sq->nr_queued[WRITE]);
2294
2295         tg->last_low_overflow_time[rw] = jiffies;
2296
2297         td->nr_queued[rw]++;
2298         throtl_add_bio_tg(bio, qn, tg);
2299         throttled = true;
2300
2301         /*
2302          * Update @tg's dispatch time and force schedule dispatch if @tg
2303          * was empty before @bio.  The forced scheduling isn't likely to
2304          * cause undue delay as @bio is likely to be dispatched directly if
2305          * its @tg's disptime is not in the future.
2306          */
2307         if (tg->flags & THROTL_TG_WAS_EMPTY) {
2308                 tg_update_disptime(tg);
2309                 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2310         }
2311
2312 out_unlock:
2313         spin_unlock_irq(&q->queue_lock);
2314 out:
2315         bio_set_flag(bio, BIO_THROTTLED);
2316
2317 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2318         if (throttled || !td->track_bio_latency)
2319                 bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
2320 #endif
2321         rcu_read_unlock();
2322         return throttled;
2323 }
2324
2325 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2326 static void throtl_track_latency(struct throtl_data *td, sector_t size,
2327         int op, unsigned long time)
2328 {
2329         struct latency_bucket *latency;
2330         int index;
2331
2332         if (!td || td->limit_index != LIMIT_LOW ||
2333             !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
2334             !blk_queue_nonrot(td->queue))
2335                 return;
2336
2337         index = request_bucket_index(size);
2338
2339         latency = get_cpu_ptr(td->latency_buckets[op]);
2340         latency[index].total_latency += time;
2341         latency[index].samples++;
2342         put_cpu_ptr(td->latency_buckets[op]);
2343 }
2344
2345 void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2346 {
2347         struct request_queue *q = rq->q;
2348         struct throtl_data *td = q->td;
2349
2350         throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq),
2351                              time_ns >> 10);
2352 }
2353
2354 void blk_throtl_bio_endio(struct bio *bio)
2355 {
2356         struct blkcg_gq *blkg;
2357         struct throtl_grp *tg;
2358         u64 finish_time_ns;
2359         unsigned long finish_time;
2360         unsigned long start_time;
2361         unsigned long lat;
2362         int rw = bio_data_dir(bio);
2363
2364         blkg = bio->bi_blkg;
2365         if (!blkg)
2366                 return;
2367         tg = blkg_to_tg(blkg);
2368         if (!tg->td->limit_valid[LIMIT_LOW])
2369                 return;
2370
2371         finish_time_ns = ktime_get_ns();
2372         tg->last_finish_time = finish_time_ns >> 10;
2373
2374         start_time = bio_issue_time(&bio->bi_issue) >> 10;
2375         finish_time = __bio_issue_time(finish_time_ns) >> 10;
2376         if (!start_time || finish_time <= start_time)
2377                 return;
2378
2379         lat = finish_time - start_time;
2380         /* this is only for bio based driver */
2381         if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
2382                 throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
2383                                      bio_op(bio), lat);
2384
2385         if (tg->latency_target && lat >= tg->td->filtered_latency) {
2386                 int bucket;
2387                 unsigned int threshold;
2388
2389                 bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
2390                 threshold = tg->td->avg_buckets[rw][bucket].latency +
2391                         tg->latency_target;
2392                 if (lat > threshold)
2393                         tg->bad_bio_cnt++;
2394                 /*
2395                  * Not race free, could get wrong count, which means cgroups
2396                  * will be throttled
2397                  */
2398                 tg->bio_cnt++;
2399         }
2400
2401         if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2402                 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2403                 tg->bio_cnt /= 2;
2404                 tg->bad_bio_cnt /= 2;
2405         }
2406 }
2407 #endif
2408
2409 int blk_throtl_init(struct request_queue *q)
2410 {
2411         struct throtl_data *td;
2412         int ret;
2413
2414         td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2415         if (!td)
2416                 return -ENOMEM;
2417         td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
2418                 LATENCY_BUCKET_SIZE, __alignof__(u64));
2419         if (!td->latency_buckets[READ]) {
2420                 kfree(td);
2421                 return -ENOMEM;
2422         }
2423         td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
2424                 LATENCY_BUCKET_SIZE, __alignof__(u64));
2425         if (!td->latency_buckets[WRITE]) {
2426                 free_percpu(td->latency_buckets[READ]);
2427                 kfree(td);
2428                 return -ENOMEM;
2429         }
2430
2431         INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2432         throtl_service_queue_init(&td->service_queue);
2433
2434         q->td = td;
2435         td->queue = q;
2436
2437         td->limit_valid[LIMIT_MAX] = true;
2438         td->limit_index = LIMIT_MAX;
2439         td->low_upgrade_time = jiffies;
2440         td->low_downgrade_time = jiffies;
2441
2442         /* activate policy */
2443         ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2444         if (ret) {
2445                 free_percpu(td->latency_buckets[READ]);
2446                 free_percpu(td->latency_buckets[WRITE]);
2447                 kfree(td);
2448         }
2449         return ret;
2450 }
2451
2452 void blk_throtl_exit(struct request_queue *q)
2453 {
2454         BUG_ON(!q->td);
2455         del_timer_sync(&q->td->service_queue.pending_timer);
2456         throtl_shutdown_wq(q);
2457         blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2458         free_percpu(q->td->latency_buckets[READ]);
2459         free_percpu(q->td->latency_buckets[WRITE]);
2460         kfree(q->td);
2461 }
2462
2463 void blk_throtl_register_queue(struct request_queue *q)
2464 {
2465         struct throtl_data *td;
2466         int i;
2467
2468         td = q->td;
2469         BUG_ON(!td);
2470
2471         if (blk_queue_nonrot(q)) {
2472                 td->throtl_slice = DFL_THROTL_SLICE_SSD;
2473                 td->filtered_latency = LATENCY_FILTERED_SSD;
2474         } else {
2475                 td->throtl_slice = DFL_THROTL_SLICE_HD;
2476                 td->filtered_latency = LATENCY_FILTERED_HD;
2477                 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2478                         td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2479                         td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2480                 }
2481         }
2482 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2483         /* if no low limit, use previous default */
2484         td->throtl_slice = DFL_THROTL_SLICE_HD;
2485 #endif
2486
2487         td->track_bio_latency = !queue_is_mq(q);
2488         if (!td->track_bio_latency)
2489                 blk_stat_enable_accounting(q);
2490 }
2491
2492 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2493 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2494 {
2495         if (!q->td)
2496                 return -EINVAL;
2497         return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2498 }
2499
2500 ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2501         const char *page, size_t count)
2502 {
2503         unsigned long v;
2504         unsigned long t;
2505
2506         if (!q->td)
2507                 return -EINVAL;
2508         if (kstrtoul(page, 10, &v))
2509                 return -EINVAL;
2510         t = msecs_to_jiffies(v);
2511         if (t == 0 || t > MAX_THROTL_SLICE)
2512                 return -EINVAL;
2513         q->td->throtl_slice = t;
2514         return count;
2515 }
2516 #endif
2517
2518 static int __init throtl_init(void)
2519 {
2520         kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2521         if (!kthrotld_workqueue)
2522                 panic("Failed to create kthrotld\n");
2523
2524         return blkcg_policy_register(&blkcg_policy_throtl);
2525 }
2526
2527 module_init(throtl_init);