1 // SPDX-License-Identifier: GPL-2.0
3 * Interface for controlling IO bandwidth on a request queue
5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
8 #include <linux/module.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/bio.h>
12 #include <linux/blktrace_api.h>
13 #include <linux/blk-cgroup.h>
15 #include "blk-cgroup-rwstat.h"
17 #include "blk-throttle.h"
19 /* Max dispatch from a group in 1 round */
20 #define THROTL_GRP_QUANTUM 8
22 /* Total max dispatch from all groups in one round */
23 #define THROTL_QUANTUM 32
25 /* Throttling is performed over a slice and after that slice is renewed */
26 #define DFL_THROTL_SLICE_HD (HZ / 10)
27 #define DFL_THROTL_SLICE_SSD (HZ / 50)
28 #define MAX_THROTL_SLICE (HZ)
29 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
30 #define MIN_THROTL_BPS (320 * 1024)
31 #define MIN_THROTL_IOPS (10)
32 #define DFL_LATENCY_TARGET (-1L)
33 #define DFL_IDLE_THRESHOLD (0)
34 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
35 #define LATENCY_FILTERED_SSD (0)
37 * For HD, very small latency comes from sequential IO. Such IO is helpless to
38 * help determine if its IO is impacted by others, hence we ignore the IO
40 #define LATENCY_FILTERED_HD (1000L) /* 1ms */
42 /* A workqueue to queue throttle related work */
43 static struct workqueue_struct *kthrotld_workqueue;
46 THROTL_TG_PENDING = 1 << 0, /* on parent's pending tree */
47 THROTL_TG_WAS_EMPTY = 1 << 1, /* bio_lists[] became non-empty */
50 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
52 /* We measure latency for request size from <= 4k to >= 1M */
53 #define LATENCY_BUCKET_SIZE 9
55 struct latency_bucket {
56 unsigned long total_latency; /* ns / 1024 */
60 struct avg_latency_bucket {
61 unsigned long latency; /* ns / 1024 */
67 /* service tree for active throtl groups */
68 struct throtl_service_queue service_queue;
70 struct request_queue *queue;
72 /* Total Number of queued bios on READ and WRITE lists */
73 unsigned int nr_queued[2];
75 unsigned int throtl_slice;
77 /* Work for dispatching throttled bios */
78 struct work_struct dispatch_work;
79 unsigned int limit_index;
80 bool limit_valid[LIMIT_CNT];
82 unsigned long low_upgrade_time;
83 unsigned long low_downgrade_time;
87 struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
88 struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
89 struct latency_bucket __percpu *latency_buckets[2];
90 unsigned long last_calculate_time;
91 unsigned long filtered_latency;
93 bool track_bio_latency;
96 static void throtl_pending_timer_fn(struct timer_list *t);
98 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
100 return pd_to_blkg(&tg->pd);
104 * sq_to_tg - return the throl_grp the specified service queue belongs to
105 * @sq: the throtl_service_queue of interest
107 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
108 * embedded in throtl_data, %NULL is returned.
110 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
112 if (sq && sq->parent_sq)
113 return container_of(sq, struct throtl_grp, service_queue);
119 * sq_to_td - return throtl_data the specified service queue belongs to
120 * @sq: the throtl_service_queue of interest
122 * A service_queue can be embedded in either a throtl_grp or throtl_data.
123 * Determine the associated throtl_data accordingly and return it.
125 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
127 struct throtl_grp *tg = sq_to_tg(sq);
132 return container_of(sq, struct throtl_data, service_queue);
136 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
137 * make the IO dispatch more smooth.
138 * Scale up: linearly scale up according to lapsed time since upgrade. For
139 * every throtl_slice, the limit scales up 1/2 .low limit till the
140 * limit hits .max limit
141 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
143 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
145 /* arbitrary value to avoid too big scale */
146 if (td->scale < 4096 && time_after_eq(jiffies,
147 td->low_upgrade_time + td->scale * td->throtl_slice))
148 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
150 return low + (low >> 1) * td->scale;
153 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
155 struct blkcg_gq *blkg = tg_to_blkg(tg);
156 struct throtl_data *td;
159 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
163 ret = tg->bps[rw][td->limit_index];
164 if (ret == 0 && td->limit_index == LIMIT_LOW) {
165 /* intermediate node or iops isn't 0 */
166 if (!list_empty(&blkg->blkcg->css.children) ||
167 tg->iops[rw][td->limit_index])
170 return MIN_THROTL_BPS;
173 if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
174 tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
177 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
178 ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
183 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
185 struct blkcg_gq *blkg = tg_to_blkg(tg);
186 struct throtl_data *td;
189 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
193 ret = tg->iops[rw][td->limit_index];
194 if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
195 /* intermediate node or bps isn't 0 */
196 if (!list_empty(&blkg->blkcg->css.children) ||
197 tg->bps[rw][td->limit_index])
200 return MIN_THROTL_IOPS;
203 if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
204 tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
207 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
208 if (adjusted > UINT_MAX)
210 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
215 #define request_bucket_index(sectors) \
216 clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
219 * throtl_log - log debug message via blktrace
220 * @sq: the service_queue being reported
221 * @fmt: printf format string
224 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
225 * throtl_grp; otherwise, just "throtl".
227 #define throtl_log(sq, fmt, args...) do { \
228 struct throtl_grp *__tg = sq_to_tg((sq)); \
229 struct throtl_data *__td = sq_to_td((sq)); \
232 if (likely(!blk_trace_note_message_enabled(__td->queue))) \
235 blk_add_cgroup_trace_msg(__td->queue, \
236 tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\
238 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
242 static inline unsigned int throtl_bio_data_size(struct bio *bio)
244 /* assume it's one sector */
245 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
247 return bio->bi_iter.bi_size;
250 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
252 INIT_LIST_HEAD(&qn->node);
253 bio_list_init(&qn->bios);
258 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
259 * @bio: bio being added
260 * @qn: qnode to add bio to
261 * @queued: the service_queue->queued[] list @qn belongs to
263 * Add @bio to @qn and put @qn on @queued if it's not already on.
264 * @qn->tg's reference count is bumped when @qn is activated. See the
265 * comment on top of throtl_qnode definition for details.
267 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
268 struct list_head *queued)
270 bio_list_add(&qn->bios, bio);
271 if (list_empty(&qn->node)) {
272 list_add_tail(&qn->node, queued);
273 blkg_get(tg_to_blkg(qn->tg));
278 * throtl_peek_queued - peek the first bio on a qnode list
279 * @queued: the qnode list to peek
281 static struct bio *throtl_peek_queued(struct list_head *queued)
283 struct throtl_qnode *qn;
286 if (list_empty(queued))
289 qn = list_first_entry(queued, struct throtl_qnode, node);
290 bio = bio_list_peek(&qn->bios);
296 * throtl_pop_queued - pop the first bio form a qnode list
297 * @queued: the qnode list to pop a bio from
298 * @tg_to_put: optional out argument for throtl_grp to put
300 * Pop the first bio from the qnode list @queued. After popping, the first
301 * qnode is removed from @queued if empty or moved to the end of @queued so
302 * that the popping order is round-robin.
304 * When the first qnode is removed, its associated throtl_grp should be put
305 * too. If @tg_to_put is NULL, this function automatically puts it;
306 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
307 * responsible for putting it.
309 static struct bio *throtl_pop_queued(struct list_head *queued,
310 struct throtl_grp **tg_to_put)
312 struct throtl_qnode *qn;
315 if (list_empty(queued))
318 qn = list_first_entry(queued, struct throtl_qnode, node);
319 bio = bio_list_pop(&qn->bios);
322 if (bio_list_empty(&qn->bios)) {
323 list_del_init(&qn->node);
327 blkg_put(tg_to_blkg(qn->tg));
329 list_move_tail(&qn->node, queued);
335 /* init a service_queue, assumes the caller zeroed it */
336 static void throtl_service_queue_init(struct throtl_service_queue *sq)
338 INIT_LIST_HEAD(&sq->queued[0]);
339 INIT_LIST_HEAD(&sq->queued[1]);
340 sq->pending_tree = RB_ROOT_CACHED;
341 timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
344 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp,
345 struct request_queue *q,
348 struct throtl_grp *tg;
351 tg = kzalloc_node(sizeof(*tg), gfp, q->node);
355 if (blkg_rwstat_init(&tg->stat_bytes, gfp))
358 if (blkg_rwstat_init(&tg->stat_ios, gfp))
359 goto err_exit_stat_bytes;
361 throtl_service_queue_init(&tg->service_queue);
363 for (rw = READ; rw <= WRITE; rw++) {
364 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
365 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
368 RB_CLEAR_NODE(&tg->rb_node);
369 tg->bps[READ][LIMIT_MAX] = U64_MAX;
370 tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
371 tg->iops[READ][LIMIT_MAX] = UINT_MAX;
372 tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
373 tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
374 tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
375 tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
376 tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
377 /* LIMIT_LOW will have default value 0 */
379 tg->latency_target = DFL_LATENCY_TARGET;
380 tg->latency_target_conf = DFL_LATENCY_TARGET;
381 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
382 tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
387 blkg_rwstat_exit(&tg->stat_bytes);
393 static void throtl_pd_init(struct blkg_policy_data *pd)
395 struct throtl_grp *tg = pd_to_tg(pd);
396 struct blkcg_gq *blkg = tg_to_blkg(tg);
397 struct throtl_data *td = blkg->q->td;
398 struct throtl_service_queue *sq = &tg->service_queue;
401 * If on the default hierarchy, we switch to properly hierarchical
402 * behavior where limits on a given throtl_grp are applied to the
403 * whole subtree rather than just the group itself. e.g. If 16M
404 * read_bps limit is set on the root group, the whole system can't
405 * exceed 16M for the device.
407 * If not on the default hierarchy, the broken flat hierarchy
408 * behavior is retained where all throtl_grps are treated as if
409 * they're all separate root groups right below throtl_data.
410 * Limits of a group don't interact with limits of other groups
411 * regardless of the position of the group in the hierarchy.
413 sq->parent_sq = &td->service_queue;
414 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
415 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
420 * Set has_rules[] if @tg or any of its parents have limits configured.
421 * This doesn't require walking up to the top of the hierarchy as the
422 * parent's has_rules[] is guaranteed to be correct.
424 static void tg_update_has_rules(struct throtl_grp *tg)
426 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
427 struct throtl_data *td = tg->td;
430 for (rw = READ; rw <= WRITE; rw++)
431 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
432 (td->limit_valid[td->limit_index] &&
433 (tg_bps_limit(tg, rw) != U64_MAX ||
434 tg_iops_limit(tg, rw) != UINT_MAX));
437 static void throtl_pd_online(struct blkg_policy_data *pd)
439 struct throtl_grp *tg = pd_to_tg(pd);
441 * We don't want new groups to escape the limits of its ancestors.
442 * Update has_rules[] after a new group is brought online.
444 tg_update_has_rules(tg);
447 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
448 static void blk_throtl_update_limit_valid(struct throtl_data *td)
450 struct cgroup_subsys_state *pos_css;
451 struct blkcg_gq *blkg;
452 bool low_valid = false;
455 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
456 struct throtl_grp *tg = blkg_to_tg(blkg);
458 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
459 tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
466 td->limit_valid[LIMIT_LOW] = low_valid;
469 static inline void blk_throtl_update_limit_valid(struct throtl_data *td)
474 static void throtl_upgrade_state(struct throtl_data *td);
475 static void throtl_pd_offline(struct blkg_policy_data *pd)
477 struct throtl_grp *tg = pd_to_tg(pd);
479 tg->bps[READ][LIMIT_LOW] = 0;
480 tg->bps[WRITE][LIMIT_LOW] = 0;
481 tg->iops[READ][LIMIT_LOW] = 0;
482 tg->iops[WRITE][LIMIT_LOW] = 0;
484 blk_throtl_update_limit_valid(tg->td);
486 if (!tg->td->limit_valid[tg->td->limit_index])
487 throtl_upgrade_state(tg->td);
490 static void throtl_pd_free(struct blkg_policy_data *pd)
492 struct throtl_grp *tg = pd_to_tg(pd);
494 del_timer_sync(&tg->service_queue.pending_timer);
495 blkg_rwstat_exit(&tg->stat_bytes);
496 blkg_rwstat_exit(&tg->stat_ios);
500 static struct throtl_grp *
501 throtl_rb_first(struct throtl_service_queue *parent_sq)
505 n = rb_first_cached(&parent_sq->pending_tree);
509 return rb_entry_tg(n);
512 static void throtl_rb_erase(struct rb_node *n,
513 struct throtl_service_queue *parent_sq)
515 rb_erase_cached(n, &parent_sq->pending_tree);
517 --parent_sq->nr_pending;
520 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
522 struct throtl_grp *tg;
524 tg = throtl_rb_first(parent_sq);
528 parent_sq->first_pending_disptime = tg->disptime;
531 static void tg_service_queue_add(struct throtl_grp *tg)
533 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
534 struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node;
535 struct rb_node *parent = NULL;
536 struct throtl_grp *__tg;
537 unsigned long key = tg->disptime;
538 bool leftmost = true;
540 while (*node != NULL) {
542 __tg = rb_entry_tg(parent);
544 if (time_before(key, __tg->disptime))
545 node = &parent->rb_left;
547 node = &parent->rb_right;
552 rb_link_node(&tg->rb_node, parent, node);
553 rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree,
557 static void throtl_enqueue_tg(struct throtl_grp *tg)
559 if (!(tg->flags & THROTL_TG_PENDING)) {
560 tg_service_queue_add(tg);
561 tg->flags |= THROTL_TG_PENDING;
562 tg->service_queue.parent_sq->nr_pending++;
566 static void throtl_dequeue_tg(struct throtl_grp *tg)
568 if (tg->flags & THROTL_TG_PENDING) {
569 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
570 tg->flags &= ~THROTL_TG_PENDING;
574 /* Call with queue lock held */
575 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
576 unsigned long expires)
578 unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
581 * Since we are adjusting the throttle limit dynamically, the sleep
582 * time calculated according to previous limit might be invalid. It's
583 * possible the cgroup sleep time is very long and no other cgroups
584 * have IO running so notify the limit changes. Make sure the cgroup
585 * doesn't sleep too long to avoid the missed notification.
587 if (time_after(expires, max_expire))
588 expires = max_expire;
589 mod_timer(&sq->pending_timer, expires);
590 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
591 expires - jiffies, jiffies);
595 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
596 * @sq: the service_queue to schedule dispatch for
597 * @force: force scheduling
599 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
600 * dispatch time of the first pending child. Returns %true if either timer
601 * is armed or there's no pending child left. %false if the current
602 * dispatch window is still open and the caller should continue
605 * If @force is %true, the dispatch timer is always scheduled and this
606 * function is guaranteed to return %true. This is to be used when the
607 * caller can't dispatch itself and needs to invoke pending_timer
608 * unconditionally. Note that forced scheduling is likely to induce short
609 * delay before dispatch starts even if @sq->first_pending_disptime is not
610 * in the future and thus shouldn't be used in hot paths.
612 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
615 /* any pending children left? */
619 update_min_dispatch_time(sq);
621 /* is the next dispatch time in the future? */
622 if (force || time_after(sq->first_pending_disptime, jiffies)) {
623 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
627 /* tell the caller to continue dispatching */
631 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
632 bool rw, unsigned long start)
634 tg->bytes_disp[rw] = 0;
637 atomic_set(&tg->io_split_cnt[rw], 0);
640 * Previous slice has expired. We must have trimmed it after last
641 * bio dispatch. That means since start of last slice, we never used
642 * that bandwidth. Do try to make use of that bandwidth while giving
645 if (time_after_eq(start, tg->slice_start[rw]))
646 tg->slice_start[rw] = start;
648 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
649 throtl_log(&tg->service_queue,
650 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
651 rw == READ ? 'R' : 'W', tg->slice_start[rw],
652 tg->slice_end[rw], jiffies);
655 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
657 tg->bytes_disp[rw] = 0;
659 tg->slice_start[rw] = jiffies;
660 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
662 atomic_set(&tg->io_split_cnt[rw], 0);
664 throtl_log(&tg->service_queue,
665 "[%c] new slice start=%lu end=%lu jiffies=%lu",
666 rw == READ ? 'R' : 'W', tg->slice_start[rw],
667 tg->slice_end[rw], jiffies);
670 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
671 unsigned long jiffy_end)
673 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
676 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
677 unsigned long jiffy_end)
679 throtl_set_slice_end(tg, rw, jiffy_end);
680 throtl_log(&tg->service_queue,
681 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
682 rw == READ ? 'R' : 'W', tg->slice_start[rw],
683 tg->slice_end[rw], jiffies);
686 /* Determine if previously allocated or extended slice is complete or not */
687 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
689 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
695 /* Trim the used slices and adjust slice start accordingly */
696 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
698 unsigned long nr_slices, time_elapsed, io_trim;
701 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
704 * If bps are unlimited (-1), then time slice don't get
705 * renewed. Don't try to trim the slice if slice is used. A new
706 * slice will start when appropriate.
708 if (throtl_slice_used(tg, rw))
712 * A bio has been dispatched. Also adjust slice_end. It might happen
713 * that initially cgroup limit was very low resulting in high
714 * slice_end, but later limit was bumped up and bio was dispatched
715 * sooner, then we need to reduce slice_end. A high bogus slice_end
716 * is bad because it does not allow new slice to start.
719 throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
721 time_elapsed = jiffies - tg->slice_start[rw];
723 nr_slices = time_elapsed / tg->td->throtl_slice;
727 tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
731 io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
734 if (!bytes_trim && !io_trim)
737 if (tg->bytes_disp[rw] >= bytes_trim)
738 tg->bytes_disp[rw] -= bytes_trim;
740 tg->bytes_disp[rw] = 0;
742 if (tg->io_disp[rw] >= io_trim)
743 tg->io_disp[rw] -= io_trim;
747 tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
749 throtl_log(&tg->service_queue,
750 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
751 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
752 tg->slice_start[rw], tg->slice_end[rw], jiffies);
755 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
756 u32 iops_limit, unsigned long *wait)
758 bool rw = bio_data_dir(bio);
759 unsigned int io_allowed;
760 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
763 if (iops_limit == UINT_MAX) {
769 jiffy_elapsed = jiffies - tg->slice_start[rw];
771 /* Round up to the next throttle slice, wait time must be nonzero */
772 jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
775 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
776 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
777 * will allow dispatch after 1 second and after that slice should
781 tmp = (u64)iops_limit * jiffy_elapsed_rnd;
785 io_allowed = UINT_MAX;
789 if (tg->io_disp[rw] + 1 <= io_allowed) {
795 /* Calc approx time to dispatch */
796 jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
803 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
804 u64 bps_limit, unsigned long *wait)
806 bool rw = bio_data_dir(bio);
807 u64 bytes_allowed, extra_bytes, tmp;
808 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
809 unsigned int bio_size = throtl_bio_data_size(bio);
811 if (bps_limit == U64_MAX) {
817 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
819 /* Slice has just started. Consider one slice interval */
821 jiffy_elapsed_rnd = tg->td->throtl_slice;
823 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
825 tmp = bps_limit * jiffy_elapsed_rnd;
829 if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
835 /* Calc approx time to dispatch */
836 extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
837 jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit);
843 * This wait time is without taking into consideration the rounding
844 * up we did. Add that time also.
846 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
853 * Returns whether one can dispatch a bio or not. Also returns approx number
854 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
856 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
859 bool rw = bio_data_dir(bio);
860 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
861 u64 bps_limit = tg_bps_limit(tg, rw);
862 u32 iops_limit = tg_iops_limit(tg, rw);
865 * Currently whole state machine of group depends on first bio
866 * queued in the group bio list. So one should not be calling
867 * this function with a different bio if there are other bios
870 BUG_ON(tg->service_queue.nr_queued[rw] &&
871 bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
873 /* If tg->bps = -1, then BW is unlimited */
874 if (bps_limit == U64_MAX && iops_limit == UINT_MAX) {
881 * If previous slice expired, start a new one otherwise renew/extend
882 * existing slice to make sure it is at least throtl_slice interval
883 * long since now. New slice is started only for empty throttle group.
884 * If there is queued bio, that means there should be an active
885 * slice and it should be extended instead.
887 if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
888 throtl_start_new_slice(tg, rw);
890 if (time_before(tg->slice_end[rw],
891 jiffies + tg->td->throtl_slice))
892 throtl_extend_slice(tg, rw,
893 jiffies + tg->td->throtl_slice);
896 if (iops_limit != UINT_MAX)
897 tg->io_disp[rw] += atomic_xchg(&tg->io_split_cnt[rw], 0);
899 if (tg_with_in_bps_limit(tg, bio, bps_limit, &bps_wait) &&
900 tg_with_in_iops_limit(tg, bio, iops_limit, &iops_wait)) {
906 max_wait = max(bps_wait, iops_wait);
911 if (time_before(tg->slice_end[rw], jiffies + max_wait))
912 throtl_extend_slice(tg, rw, jiffies + max_wait);
917 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
919 bool rw = bio_data_dir(bio);
920 unsigned int bio_size = throtl_bio_data_size(bio);
922 /* Charge the bio to the group */
923 tg->bytes_disp[rw] += bio_size;
925 tg->last_bytes_disp[rw] += bio_size;
926 tg->last_io_disp[rw]++;
929 * BIO_THROTTLED is used to prevent the same bio to be throttled
930 * more than once as a throttled bio will go through blk-throtl the
931 * second time when it eventually gets issued. Set it when a bio
932 * is being charged to a tg.
934 if (!bio_flagged(bio, BIO_THROTTLED))
935 bio_set_flag(bio, BIO_THROTTLED);
939 * throtl_add_bio_tg - add a bio to the specified throtl_grp
942 * @tg: the target throtl_grp
944 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
945 * tg->qnode_on_self[] is used.
947 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
948 struct throtl_grp *tg)
950 struct throtl_service_queue *sq = &tg->service_queue;
951 bool rw = bio_data_dir(bio);
954 qn = &tg->qnode_on_self[rw];
957 * If @tg doesn't currently have any bios queued in the same
958 * direction, queueing @bio can change when @tg should be
959 * dispatched. Mark that @tg was empty. This is automatically
960 * cleared on the next tg_update_disptime().
962 if (!sq->nr_queued[rw])
963 tg->flags |= THROTL_TG_WAS_EMPTY;
965 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
968 throtl_enqueue_tg(tg);
971 static void tg_update_disptime(struct throtl_grp *tg)
973 struct throtl_service_queue *sq = &tg->service_queue;
974 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
977 bio = throtl_peek_queued(&sq->queued[READ]);
979 tg_may_dispatch(tg, bio, &read_wait);
981 bio = throtl_peek_queued(&sq->queued[WRITE]);
983 tg_may_dispatch(tg, bio, &write_wait);
985 min_wait = min(read_wait, write_wait);
986 disptime = jiffies + min_wait;
988 /* Update dispatch time */
989 throtl_dequeue_tg(tg);
990 tg->disptime = disptime;
991 throtl_enqueue_tg(tg);
993 /* see throtl_add_bio_tg() */
994 tg->flags &= ~THROTL_TG_WAS_EMPTY;
997 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
998 struct throtl_grp *parent_tg, bool rw)
1000 if (throtl_slice_used(parent_tg, rw)) {
1001 throtl_start_new_slice_with_credit(parent_tg, rw,
1002 child_tg->slice_start[rw]);
1007 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1009 struct throtl_service_queue *sq = &tg->service_queue;
1010 struct throtl_service_queue *parent_sq = sq->parent_sq;
1011 struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1012 struct throtl_grp *tg_to_put = NULL;
1016 * @bio is being transferred from @tg to @parent_sq. Popping a bio
1017 * from @tg may put its reference and @parent_sq might end up
1018 * getting released prematurely. Remember the tg to put and put it
1019 * after @bio is transferred to @parent_sq.
1021 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1022 sq->nr_queued[rw]--;
1024 throtl_charge_bio(tg, bio);
1027 * If our parent is another tg, we just need to transfer @bio to
1028 * the parent using throtl_add_bio_tg(). If our parent is
1029 * @td->service_queue, @bio is ready to be issued. Put it on its
1030 * bio_lists[] and decrease total number queued. The caller is
1031 * responsible for issuing these bios.
1034 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1035 start_parent_slice_with_credit(tg, parent_tg, rw);
1037 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1038 &parent_sq->queued[rw]);
1039 BUG_ON(tg->td->nr_queued[rw] <= 0);
1040 tg->td->nr_queued[rw]--;
1043 throtl_trim_slice(tg, rw);
1046 blkg_put(tg_to_blkg(tg_to_put));
1049 static int throtl_dispatch_tg(struct throtl_grp *tg)
1051 struct throtl_service_queue *sq = &tg->service_queue;
1052 unsigned int nr_reads = 0, nr_writes = 0;
1053 unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4;
1054 unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads;
1057 /* Try to dispatch 75% READS and 25% WRITES */
1059 while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1060 tg_may_dispatch(tg, bio, NULL)) {
1062 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1065 if (nr_reads >= max_nr_reads)
1069 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1070 tg_may_dispatch(tg, bio, NULL)) {
1072 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1075 if (nr_writes >= max_nr_writes)
1079 return nr_reads + nr_writes;
1082 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1084 unsigned int nr_disp = 0;
1087 struct throtl_grp *tg;
1088 struct throtl_service_queue *sq;
1090 if (!parent_sq->nr_pending)
1093 tg = throtl_rb_first(parent_sq);
1097 if (time_before(jiffies, tg->disptime))
1100 throtl_dequeue_tg(tg);
1102 nr_disp += throtl_dispatch_tg(tg);
1104 sq = &tg->service_queue;
1105 if (sq->nr_queued[0] || sq->nr_queued[1])
1106 tg_update_disptime(tg);
1108 if (nr_disp >= THROTL_QUANTUM)
1115 static bool throtl_can_upgrade(struct throtl_data *td,
1116 struct throtl_grp *this_tg);
1118 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1119 * @t: the pending_timer member of the throtl_service_queue being serviced
1121 * This timer is armed when a child throtl_grp with active bio's become
1122 * pending and queued on the service_queue's pending_tree and expires when
1123 * the first child throtl_grp should be dispatched. This function
1124 * dispatches bio's from the children throtl_grps to the parent
1127 * If the parent's parent is another throtl_grp, dispatching is propagated
1128 * by either arming its pending_timer or repeating dispatch directly. If
1129 * the top-level service_tree is reached, throtl_data->dispatch_work is
1130 * kicked so that the ready bio's are issued.
1132 static void throtl_pending_timer_fn(struct timer_list *t)
1134 struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1135 struct throtl_grp *tg = sq_to_tg(sq);
1136 struct throtl_data *td = sq_to_td(sq);
1137 struct request_queue *q = td->queue;
1138 struct throtl_service_queue *parent_sq;
1142 spin_lock_irq(&q->queue_lock);
1143 if (throtl_can_upgrade(td, NULL))
1144 throtl_upgrade_state(td);
1147 parent_sq = sq->parent_sq;
1151 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1152 sq->nr_queued[READ] + sq->nr_queued[WRITE],
1153 sq->nr_queued[READ], sq->nr_queued[WRITE]);
1155 ret = throtl_select_dispatch(sq);
1157 throtl_log(sq, "bios disp=%u", ret);
1161 if (throtl_schedule_next_dispatch(sq, false))
1164 /* this dispatch windows is still open, relax and repeat */
1165 spin_unlock_irq(&q->queue_lock);
1167 spin_lock_irq(&q->queue_lock);
1174 /* @parent_sq is another throl_grp, propagate dispatch */
1175 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1176 tg_update_disptime(tg);
1177 if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1178 /* window is already open, repeat dispatching */
1185 /* reached the top-level, queue issuing */
1186 queue_work(kthrotld_workqueue, &td->dispatch_work);
1189 spin_unlock_irq(&q->queue_lock);
1193 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1194 * @work: work item being executed
1196 * This function is queued for execution when bios reach the bio_lists[]
1197 * of throtl_data->service_queue. Those bios are ready and issued by this
1200 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1202 struct throtl_data *td = container_of(work, struct throtl_data,
1204 struct throtl_service_queue *td_sq = &td->service_queue;
1205 struct request_queue *q = td->queue;
1206 struct bio_list bio_list_on_stack;
1208 struct blk_plug plug;
1211 bio_list_init(&bio_list_on_stack);
1213 spin_lock_irq(&q->queue_lock);
1214 for (rw = READ; rw <= WRITE; rw++)
1215 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1216 bio_list_add(&bio_list_on_stack, bio);
1217 spin_unlock_irq(&q->queue_lock);
1219 if (!bio_list_empty(&bio_list_on_stack)) {
1220 blk_start_plug(&plug);
1221 while ((bio = bio_list_pop(&bio_list_on_stack)))
1222 submit_bio_noacct(bio);
1223 blk_finish_plug(&plug);
1227 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1230 struct throtl_grp *tg = pd_to_tg(pd);
1231 u64 v = *(u64 *)((void *)tg + off);
1235 return __blkg_prfill_u64(sf, pd, v);
1238 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1241 struct throtl_grp *tg = pd_to_tg(pd);
1242 unsigned int v = *(unsigned int *)((void *)tg + off);
1246 return __blkg_prfill_u64(sf, pd, v);
1249 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1251 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1252 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1256 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1258 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1259 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1263 static void tg_conf_updated(struct throtl_grp *tg, bool global)
1265 struct throtl_service_queue *sq = &tg->service_queue;
1266 struct cgroup_subsys_state *pos_css;
1267 struct blkcg_gq *blkg;
1269 throtl_log(&tg->service_queue,
1270 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1271 tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1272 tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1275 * Update has_rules[] flags for the updated tg's subtree. A tg is
1276 * considered to have rules if either the tg itself or any of its
1277 * ancestors has rules. This identifies groups without any
1278 * restrictions in the whole hierarchy and allows them to bypass
1281 blkg_for_each_descendant_pre(blkg, pos_css,
1282 global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1283 struct throtl_grp *this_tg = blkg_to_tg(blkg);
1284 struct throtl_grp *parent_tg;
1286 tg_update_has_rules(this_tg);
1287 /* ignore root/second level */
1288 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1289 !blkg->parent->parent)
1291 parent_tg = blkg_to_tg(blkg->parent);
1293 * make sure all children has lower idle time threshold and
1294 * higher latency target
1296 this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1297 parent_tg->idletime_threshold);
1298 this_tg->latency_target = max(this_tg->latency_target,
1299 parent_tg->latency_target);
1303 * We're already holding queue_lock and know @tg is valid. Let's
1304 * apply the new config directly.
1306 * Restart the slices for both READ and WRITES. It might happen
1307 * that a group's limit are dropped suddenly and we don't want to
1308 * account recently dispatched IO with new low rate.
1310 throtl_start_new_slice(tg, READ);
1311 throtl_start_new_slice(tg, WRITE);
1313 if (tg->flags & THROTL_TG_PENDING) {
1314 tg_update_disptime(tg);
1315 throtl_schedule_next_dispatch(sq->parent_sq, true);
1319 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1320 char *buf, size_t nbytes, loff_t off, bool is_u64)
1322 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1323 struct blkg_conf_ctx ctx;
1324 struct throtl_grp *tg;
1328 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1333 if (sscanf(ctx.body, "%llu", &v) != 1)
1338 tg = blkg_to_tg(ctx.blkg);
1341 *(u64 *)((void *)tg + of_cft(of)->private) = v;
1343 *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1345 tg_conf_updated(tg, false);
1348 blkg_conf_finish(&ctx);
1349 return ret ?: nbytes;
1352 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1353 char *buf, size_t nbytes, loff_t off)
1355 return tg_set_conf(of, buf, nbytes, off, true);
1358 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1359 char *buf, size_t nbytes, loff_t off)
1361 return tg_set_conf(of, buf, nbytes, off, false);
1364 static int tg_print_rwstat(struct seq_file *sf, void *v)
1366 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1367 blkg_prfill_rwstat, &blkcg_policy_throtl,
1368 seq_cft(sf)->private, true);
1372 static u64 tg_prfill_rwstat_recursive(struct seq_file *sf,
1373 struct blkg_policy_data *pd, int off)
1375 struct blkg_rwstat_sample sum;
1377 blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off,
1379 return __blkg_prfill_rwstat(sf, pd, &sum);
1382 static int tg_print_rwstat_recursive(struct seq_file *sf, void *v)
1384 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1385 tg_prfill_rwstat_recursive, &blkcg_policy_throtl,
1386 seq_cft(sf)->private, true);
1390 static struct cftype throtl_legacy_files[] = {
1392 .name = "throttle.read_bps_device",
1393 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1394 .seq_show = tg_print_conf_u64,
1395 .write = tg_set_conf_u64,
1398 .name = "throttle.write_bps_device",
1399 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1400 .seq_show = tg_print_conf_u64,
1401 .write = tg_set_conf_u64,
1404 .name = "throttle.read_iops_device",
1405 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1406 .seq_show = tg_print_conf_uint,
1407 .write = tg_set_conf_uint,
1410 .name = "throttle.write_iops_device",
1411 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1412 .seq_show = tg_print_conf_uint,
1413 .write = tg_set_conf_uint,
1416 .name = "throttle.io_service_bytes",
1417 .private = offsetof(struct throtl_grp, stat_bytes),
1418 .seq_show = tg_print_rwstat,
1421 .name = "throttle.io_service_bytes_recursive",
1422 .private = offsetof(struct throtl_grp, stat_bytes),
1423 .seq_show = tg_print_rwstat_recursive,
1426 .name = "throttle.io_serviced",
1427 .private = offsetof(struct throtl_grp, stat_ios),
1428 .seq_show = tg_print_rwstat,
1431 .name = "throttle.io_serviced_recursive",
1432 .private = offsetof(struct throtl_grp, stat_ios),
1433 .seq_show = tg_print_rwstat_recursive,
1438 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1441 struct throtl_grp *tg = pd_to_tg(pd);
1442 const char *dname = blkg_dev_name(pd->blkg);
1443 char bufs[4][21] = { "max", "max", "max", "max" };
1445 unsigned int iops_dft;
1446 char idle_time[26] = "";
1447 char latency_time[26] = "";
1452 if (off == LIMIT_LOW) {
1457 iops_dft = UINT_MAX;
1460 if (tg->bps_conf[READ][off] == bps_dft &&
1461 tg->bps_conf[WRITE][off] == bps_dft &&
1462 tg->iops_conf[READ][off] == iops_dft &&
1463 tg->iops_conf[WRITE][off] == iops_dft &&
1464 (off != LIMIT_LOW ||
1465 (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1466 tg->latency_target_conf == DFL_LATENCY_TARGET)))
1469 if (tg->bps_conf[READ][off] != U64_MAX)
1470 snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1471 tg->bps_conf[READ][off]);
1472 if (tg->bps_conf[WRITE][off] != U64_MAX)
1473 snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1474 tg->bps_conf[WRITE][off]);
1475 if (tg->iops_conf[READ][off] != UINT_MAX)
1476 snprintf(bufs[2], sizeof(bufs[2]), "%u",
1477 tg->iops_conf[READ][off]);
1478 if (tg->iops_conf[WRITE][off] != UINT_MAX)
1479 snprintf(bufs[3], sizeof(bufs[3]), "%u",
1480 tg->iops_conf[WRITE][off]);
1481 if (off == LIMIT_LOW) {
1482 if (tg->idletime_threshold_conf == ULONG_MAX)
1483 strcpy(idle_time, " idle=max");
1485 snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1486 tg->idletime_threshold_conf);
1488 if (tg->latency_target_conf == ULONG_MAX)
1489 strcpy(latency_time, " latency=max");
1491 snprintf(latency_time, sizeof(latency_time),
1492 " latency=%lu", tg->latency_target_conf);
1495 seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1496 dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1501 static int tg_print_limit(struct seq_file *sf, void *v)
1503 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1504 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1508 static ssize_t tg_set_limit(struct kernfs_open_file *of,
1509 char *buf, size_t nbytes, loff_t off)
1511 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1512 struct blkg_conf_ctx ctx;
1513 struct throtl_grp *tg;
1515 unsigned long idle_time;
1516 unsigned long latency_time;
1518 int index = of_cft(of)->private;
1520 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1524 tg = blkg_to_tg(ctx.blkg);
1526 v[0] = tg->bps_conf[READ][index];
1527 v[1] = tg->bps_conf[WRITE][index];
1528 v[2] = tg->iops_conf[READ][index];
1529 v[3] = tg->iops_conf[WRITE][index];
1531 idle_time = tg->idletime_threshold_conf;
1532 latency_time = tg->latency_target_conf;
1534 char tok[27]; /* wiops=18446744073709551616 */
1539 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1548 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1556 if (!strcmp(tok, "rbps") && val > 1)
1558 else if (!strcmp(tok, "wbps") && val > 1)
1560 else if (!strcmp(tok, "riops") && val > 1)
1561 v[2] = min_t(u64, val, UINT_MAX);
1562 else if (!strcmp(tok, "wiops") && val > 1)
1563 v[3] = min_t(u64, val, UINT_MAX);
1564 else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1566 else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1572 tg->bps_conf[READ][index] = v[0];
1573 tg->bps_conf[WRITE][index] = v[1];
1574 tg->iops_conf[READ][index] = v[2];
1575 tg->iops_conf[WRITE][index] = v[3];
1577 if (index == LIMIT_MAX) {
1578 tg->bps[READ][index] = v[0];
1579 tg->bps[WRITE][index] = v[1];
1580 tg->iops[READ][index] = v[2];
1581 tg->iops[WRITE][index] = v[3];
1583 tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1584 tg->bps_conf[READ][LIMIT_MAX]);
1585 tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1586 tg->bps_conf[WRITE][LIMIT_MAX]);
1587 tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1588 tg->iops_conf[READ][LIMIT_MAX]);
1589 tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1590 tg->iops_conf[WRITE][LIMIT_MAX]);
1591 tg->idletime_threshold_conf = idle_time;
1592 tg->latency_target_conf = latency_time;
1594 /* force user to configure all settings for low limit */
1595 if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1596 tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1597 tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1598 tg->latency_target_conf == DFL_LATENCY_TARGET) {
1599 tg->bps[READ][LIMIT_LOW] = 0;
1600 tg->bps[WRITE][LIMIT_LOW] = 0;
1601 tg->iops[READ][LIMIT_LOW] = 0;
1602 tg->iops[WRITE][LIMIT_LOW] = 0;
1603 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1604 tg->latency_target = DFL_LATENCY_TARGET;
1605 } else if (index == LIMIT_LOW) {
1606 tg->idletime_threshold = tg->idletime_threshold_conf;
1607 tg->latency_target = tg->latency_target_conf;
1610 blk_throtl_update_limit_valid(tg->td);
1611 if (tg->td->limit_valid[LIMIT_LOW]) {
1612 if (index == LIMIT_LOW)
1613 tg->td->limit_index = LIMIT_LOW;
1615 tg->td->limit_index = LIMIT_MAX;
1616 tg_conf_updated(tg, index == LIMIT_LOW &&
1617 tg->td->limit_valid[LIMIT_LOW]);
1620 blkg_conf_finish(&ctx);
1621 return ret ?: nbytes;
1624 static struct cftype throtl_files[] = {
1625 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1628 .flags = CFTYPE_NOT_ON_ROOT,
1629 .seq_show = tg_print_limit,
1630 .write = tg_set_limit,
1631 .private = LIMIT_LOW,
1636 .flags = CFTYPE_NOT_ON_ROOT,
1637 .seq_show = tg_print_limit,
1638 .write = tg_set_limit,
1639 .private = LIMIT_MAX,
1644 static void throtl_shutdown_wq(struct request_queue *q)
1646 struct throtl_data *td = q->td;
1648 cancel_work_sync(&td->dispatch_work);
1651 struct blkcg_policy blkcg_policy_throtl = {
1652 .dfl_cftypes = throtl_files,
1653 .legacy_cftypes = throtl_legacy_files,
1655 .pd_alloc_fn = throtl_pd_alloc,
1656 .pd_init_fn = throtl_pd_init,
1657 .pd_online_fn = throtl_pd_online,
1658 .pd_offline_fn = throtl_pd_offline,
1659 .pd_free_fn = throtl_pd_free,
1662 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1664 unsigned long rtime = jiffies, wtime = jiffies;
1666 if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1667 rtime = tg->last_low_overflow_time[READ];
1668 if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1669 wtime = tg->last_low_overflow_time[WRITE];
1670 return min(rtime, wtime);
1673 /* tg should not be an intermediate node */
1674 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1676 struct throtl_service_queue *parent_sq;
1677 struct throtl_grp *parent = tg;
1678 unsigned long ret = __tg_last_low_overflow_time(tg);
1681 parent_sq = parent->service_queue.parent_sq;
1682 parent = sq_to_tg(parent_sq);
1687 * The parent doesn't have low limit, it always reaches low
1688 * limit. Its overflow time is useless for children
1690 if (!parent->bps[READ][LIMIT_LOW] &&
1691 !parent->iops[READ][LIMIT_LOW] &&
1692 !parent->bps[WRITE][LIMIT_LOW] &&
1693 !parent->iops[WRITE][LIMIT_LOW])
1695 if (time_after(__tg_last_low_overflow_time(parent), ret))
1696 ret = __tg_last_low_overflow_time(parent);
1701 static bool throtl_tg_is_idle(struct throtl_grp *tg)
1704 * cgroup is idle if:
1705 * - single idle is too long, longer than a fixed value (in case user
1706 * configure a too big threshold) or 4 times of idletime threshold
1707 * - average think time is more than threshold
1708 * - IO latency is largely below threshold
1713 time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1714 ret = tg->latency_target == DFL_LATENCY_TARGET ||
1715 tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1716 (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1717 tg->avg_idletime > tg->idletime_threshold ||
1718 (tg->latency_target && tg->bio_cnt &&
1719 tg->bad_bio_cnt * 5 < tg->bio_cnt);
1720 throtl_log(&tg->service_queue,
1721 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1722 tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1723 tg->bio_cnt, ret, tg->td->scale);
1727 static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1729 struct throtl_service_queue *sq = &tg->service_queue;
1730 bool read_limit, write_limit;
1733 * if cgroup reaches low limit (if low limit is 0, the cgroup always
1734 * reaches), it's ok to upgrade to next limit
1736 read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1737 write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1738 if (!read_limit && !write_limit)
1740 if (read_limit && sq->nr_queued[READ] &&
1741 (!write_limit || sq->nr_queued[WRITE]))
1743 if (write_limit && sq->nr_queued[WRITE] &&
1744 (!read_limit || sq->nr_queued[READ]))
1747 if (time_after_eq(jiffies,
1748 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1749 throtl_tg_is_idle(tg))
1754 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1757 if (throtl_tg_can_upgrade(tg))
1759 tg = sq_to_tg(tg->service_queue.parent_sq);
1760 if (!tg || !tg_to_blkg(tg)->parent)
1766 static bool throtl_can_upgrade(struct throtl_data *td,
1767 struct throtl_grp *this_tg)
1769 struct cgroup_subsys_state *pos_css;
1770 struct blkcg_gq *blkg;
1772 if (td->limit_index != LIMIT_LOW)
1775 if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1779 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1780 struct throtl_grp *tg = blkg_to_tg(blkg);
1784 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1786 if (!throtl_hierarchy_can_upgrade(tg)) {
1795 static void throtl_upgrade_check(struct throtl_grp *tg)
1797 unsigned long now = jiffies;
1799 if (tg->td->limit_index != LIMIT_LOW)
1802 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1805 tg->last_check_time = now;
1807 if (!time_after_eq(now,
1808 __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1811 if (throtl_can_upgrade(tg->td, NULL))
1812 throtl_upgrade_state(tg->td);
1815 static void throtl_upgrade_state(struct throtl_data *td)
1817 struct cgroup_subsys_state *pos_css;
1818 struct blkcg_gq *blkg;
1820 throtl_log(&td->service_queue, "upgrade to max");
1821 td->limit_index = LIMIT_MAX;
1822 td->low_upgrade_time = jiffies;
1825 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1826 struct throtl_grp *tg = blkg_to_tg(blkg);
1827 struct throtl_service_queue *sq = &tg->service_queue;
1829 tg->disptime = jiffies - 1;
1830 throtl_select_dispatch(sq);
1831 throtl_schedule_next_dispatch(sq, true);
1834 throtl_select_dispatch(&td->service_queue);
1835 throtl_schedule_next_dispatch(&td->service_queue, true);
1836 queue_work(kthrotld_workqueue, &td->dispatch_work);
1839 static void throtl_downgrade_state(struct throtl_data *td)
1843 throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1845 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1849 td->limit_index = LIMIT_LOW;
1850 td->low_downgrade_time = jiffies;
1853 static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1855 struct throtl_data *td = tg->td;
1856 unsigned long now = jiffies;
1859 * If cgroup is below low limit, consider downgrade and throttle other
1862 if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
1863 time_after_eq(now, tg_last_low_overflow_time(tg) +
1864 td->throtl_slice) &&
1865 (!throtl_tg_is_idle(tg) ||
1866 !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
1871 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
1874 if (!throtl_tg_can_downgrade(tg))
1876 tg = sq_to_tg(tg->service_queue.parent_sq);
1877 if (!tg || !tg_to_blkg(tg)->parent)
1883 static void throtl_downgrade_check(struct throtl_grp *tg)
1887 unsigned long elapsed_time;
1888 unsigned long now = jiffies;
1890 if (tg->td->limit_index != LIMIT_MAX ||
1891 !tg->td->limit_valid[LIMIT_LOW])
1893 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1895 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1898 elapsed_time = now - tg->last_check_time;
1899 tg->last_check_time = now;
1901 if (time_before(now, tg_last_low_overflow_time(tg) +
1902 tg->td->throtl_slice))
1905 if (tg->bps[READ][LIMIT_LOW]) {
1906 bps = tg->last_bytes_disp[READ] * HZ;
1907 do_div(bps, elapsed_time);
1908 if (bps >= tg->bps[READ][LIMIT_LOW])
1909 tg->last_low_overflow_time[READ] = now;
1912 if (tg->bps[WRITE][LIMIT_LOW]) {
1913 bps = tg->last_bytes_disp[WRITE] * HZ;
1914 do_div(bps, elapsed_time);
1915 if (bps >= tg->bps[WRITE][LIMIT_LOW])
1916 tg->last_low_overflow_time[WRITE] = now;
1919 if (tg->iops[READ][LIMIT_LOW]) {
1920 tg->last_io_disp[READ] += atomic_xchg(&tg->last_io_split_cnt[READ], 0);
1921 iops = tg->last_io_disp[READ] * HZ / elapsed_time;
1922 if (iops >= tg->iops[READ][LIMIT_LOW])
1923 tg->last_low_overflow_time[READ] = now;
1926 if (tg->iops[WRITE][LIMIT_LOW]) {
1927 tg->last_io_disp[WRITE] += atomic_xchg(&tg->last_io_split_cnt[WRITE], 0);
1928 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
1929 if (iops >= tg->iops[WRITE][LIMIT_LOW])
1930 tg->last_low_overflow_time[WRITE] = now;
1934 * If cgroup is below low limit, consider downgrade and throttle other
1937 if (throtl_hierarchy_can_downgrade(tg))
1938 throtl_downgrade_state(tg->td);
1940 tg->last_bytes_disp[READ] = 0;
1941 tg->last_bytes_disp[WRITE] = 0;
1942 tg->last_io_disp[READ] = 0;
1943 tg->last_io_disp[WRITE] = 0;
1946 static void blk_throtl_update_idletime(struct throtl_grp *tg)
1949 unsigned long last_finish_time = tg->last_finish_time;
1951 if (last_finish_time == 0)
1954 now = ktime_get_ns() >> 10;
1955 if (now <= last_finish_time ||
1956 last_finish_time == tg->checked_last_finish_time)
1959 tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
1960 tg->checked_last_finish_time = last_finish_time;
1963 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1964 static void throtl_update_latency_buckets(struct throtl_data *td)
1966 struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
1968 unsigned long last_latency[2] = { 0 };
1969 unsigned long latency[2];
1971 if (!blk_queue_nonrot(td->queue) || !td->limit_valid[LIMIT_LOW])
1973 if (time_before(jiffies, td->last_calculate_time + HZ))
1975 td->last_calculate_time = jiffies;
1977 memset(avg_latency, 0, sizeof(avg_latency));
1978 for (rw = READ; rw <= WRITE; rw++) {
1979 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
1980 struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
1982 for_each_possible_cpu(cpu) {
1983 struct latency_bucket *bucket;
1985 /* this isn't race free, but ok in practice */
1986 bucket = per_cpu_ptr(td->latency_buckets[rw],
1988 tmp->total_latency += bucket[i].total_latency;
1989 tmp->samples += bucket[i].samples;
1990 bucket[i].total_latency = 0;
1991 bucket[i].samples = 0;
1994 if (tmp->samples >= 32) {
1995 int samples = tmp->samples;
1997 latency[rw] = tmp->total_latency;
1999 tmp->total_latency = 0;
2001 latency[rw] /= samples;
2002 if (latency[rw] == 0)
2004 avg_latency[rw][i].latency = latency[rw];
2009 for (rw = READ; rw <= WRITE; rw++) {
2010 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2011 if (!avg_latency[rw][i].latency) {
2012 if (td->avg_buckets[rw][i].latency < last_latency[rw])
2013 td->avg_buckets[rw][i].latency =
2018 if (!td->avg_buckets[rw][i].valid)
2019 latency[rw] = avg_latency[rw][i].latency;
2021 latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2022 avg_latency[rw][i].latency) >> 3;
2024 td->avg_buckets[rw][i].latency = max(latency[rw],
2026 td->avg_buckets[rw][i].valid = true;
2027 last_latency[rw] = td->avg_buckets[rw][i].latency;
2031 for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2032 throtl_log(&td->service_queue,
2033 "Latency bucket %d: read latency=%ld, read valid=%d, "
2034 "write latency=%ld, write valid=%d", i,
2035 td->avg_buckets[READ][i].latency,
2036 td->avg_buckets[READ][i].valid,
2037 td->avg_buckets[WRITE][i].latency,
2038 td->avg_buckets[WRITE][i].valid);
2041 static inline void throtl_update_latency_buckets(struct throtl_data *td)
2046 void blk_throtl_charge_bio_split(struct bio *bio)
2048 struct blkcg_gq *blkg = bio->bi_blkg;
2049 struct throtl_grp *parent = blkg_to_tg(blkg);
2050 struct throtl_service_queue *parent_sq;
2051 bool rw = bio_data_dir(bio);
2054 if (!parent->has_rules[rw])
2057 atomic_inc(&parent->io_split_cnt[rw]);
2058 atomic_inc(&parent->last_io_split_cnt[rw]);
2060 parent_sq = parent->service_queue.parent_sq;
2061 parent = sq_to_tg(parent_sq);
2065 bool __blk_throtl_bio(struct bio *bio)
2067 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2068 struct blkcg_gq *blkg = bio->bi_blkg;
2069 struct throtl_qnode *qn = NULL;
2070 struct throtl_grp *tg = blkg_to_tg(blkg);
2071 struct throtl_service_queue *sq;
2072 bool rw = bio_data_dir(bio);
2073 bool throttled = false;
2074 struct throtl_data *td = tg->td;
2078 if (!cgroup_subsys_on_dfl(io_cgrp_subsys)) {
2079 blkg_rwstat_add(&tg->stat_bytes, bio->bi_opf,
2080 bio->bi_iter.bi_size);
2081 blkg_rwstat_add(&tg->stat_ios, bio->bi_opf, 1);
2084 spin_lock_irq(&q->queue_lock);
2086 throtl_update_latency_buckets(td);
2088 blk_throtl_update_idletime(tg);
2090 sq = &tg->service_queue;
2094 if (tg->last_low_overflow_time[rw] == 0)
2095 tg->last_low_overflow_time[rw] = jiffies;
2096 throtl_downgrade_check(tg);
2097 throtl_upgrade_check(tg);
2098 /* throtl is FIFO - if bios are already queued, should queue */
2099 if (sq->nr_queued[rw])
2102 /* if above limits, break to queue */
2103 if (!tg_may_dispatch(tg, bio, NULL)) {
2104 tg->last_low_overflow_time[rw] = jiffies;
2105 if (throtl_can_upgrade(td, tg)) {
2106 throtl_upgrade_state(td);
2112 /* within limits, let's charge and dispatch directly */
2113 throtl_charge_bio(tg, bio);
2116 * We need to trim slice even when bios are not being queued
2117 * otherwise it might happen that a bio is not queued for
2118 * a long time and slice keeps on extending and trim is not
2119 * called for a long time. Now if limits are reduced suddenly
2120 * we take into account all the IO dispatched so far at new
2121 * low rate and * newly queued IO gets a really long dispatch
2124 * So keep on trimming slice even if bio is not queued.
2126 throtl_trim_slice(tg, rw);
2129 * @bio passed through this layer without being throttled.
2130 * Climb up the ladder. If we're already at the top, it
2131 * can be executed directly.
2133 qn = &tg->qnode_on_parent[rw];
2140 /* out-of-limit, queue to @tg */
2141 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2142 rw == READ ? 'R' : 'W',
2143 tg->bytes_disp[rw], bio->bi_iter.bi_size,
2144 tg_bps_limit(tg, rw),
2145 tg->io_disp[rw], tg_iops_limit(tg, rw),
2146 sq->nr_queued[READ], sq->nr_queued[WRITE]);
2148 tg->last_low_overflow_time[rw] = jiffies;
2150 td->nr_queued[rw]++;
2151 throtl_add_bio_tg(bio, qn, tg);
2155 * Update @tg's dispatch time and force schedule dispatch if @tg
2156 * was empty before @bio. The forced scheduling isn't likely to
2157 * cause undue delay as @bio is likely to be dispatched directly if
2158 * its @tg's disptime is not in the future.
2160 if (tg->flags & THROTL_TG_WAS_EMPTY) {
2161 tg_update_disptime(tg);
2162 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2166 spin_unlock_irq(&q->queue_lock);
2167 bio_set_flag(bio, BIO_THROTTLED);
2169 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2170 if (throttled || !td->track_bio_latency)
2171 bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
2177 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2178 static void throtl_track_latency(struct throtl_data *td, sector_t size,
2179 int op, unsigned long time)
2181 struct latency_bucket *latency;
2184 if (!td || td->limit_index != LIMIT_LOW ||
2185 !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
2186 !blk_queue_nonrot(td->queue))
2189 index = request_bucket_index(size);
2191 latency = get_cpu_ptr(td->latency_buckets[op]);
2192 latency[index].total_latency += time;
2193 latency[index].samples++;
2194 put_cpu_ptr(td->latency_buckets[op]);
2197 void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2199 struct request_queue *q = rq->q;
2200 struct throtl_data *td = q->td;
2202 throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq),
2206 void blk_throtl_bio_endio(struct bio *bio)
2208 struct blkcg_gq *blkg;
2209 struct throtl_grp *tg;
2211 unsigned long finish_time;
2212 unsigned long start_time;
2214 int rw = bio_data_dir(bio);
2216 blkg = bio->bi_blkg;
2219 tg = blkg_to_tg(blkg);
2220 if (!tg->td->limit_valid[LIMIT_LOW])
2223 finish_time_ns = ktime_get_ns();
2224 tg->last_finish_time = finish_time_ns >> 10;
2226 start_time = bio_issue_time(&bio->bi_issue) >> 10;
2227 finish_time = __bio_issue_time(finish_time_ns) >> 10;
2228 if (!start_time || finish_time <= start_time)
2231 lat = finish_time - start_time;
2232 /* this is only for bio based driver */
2233 if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
2234 throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
2237 if (tg->latency_target && lat >= tg->td->filtered_latency) {
2239 unsigned int threshold;
2241 bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
2242 threshold = tg->td->avg_buckets[rw][bucket].latency +
2244 if (lat > threshold)
2247 * Not race free, could get wrong count, which means cgroups
2253 if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2254 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2256 tg->bad_bio_cnt /= 2;
2261 int blk_throtl_init(struct request_queue *q)
2263 struct throtl_data *td;
2266 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2269 td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
2270 LATENCY_BUCKET_SIZE, __alignof__(u64));
2271 if (!td->latency_buckets[READ]) {
2275 td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
2276 LATENCY_BUCKET_SIZE, __alignof__(u64));
2277 if (!td->latency_buckets[WRITE]) {
2278 free_percpu(td->latency_buckets[READ]);
2283 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2284 throtl_service_queue_init(&td->service_queue);
2289 td->limit_valid[LIMIT_MAX] = true;
2290 td->limit_index = LIMIT_MAX;
2291 td->low_upgrade_time = jiffies;
2292 td->low_downgrade_time = jiffies;
2294 /* activate policy */
2295 ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2297 free_percpu(td->latency_buckets[READ]);
2298 free_percpu(td->latency_buckets[WRITE]);
2304 void blk_throtl_exit(struct request_queue *q)
2307 del_timer_sync(&q->td->service_queue.pending_timer);
2308 throtl_shutdown_wq(q);
2309 blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2310 free_percpu(q->td->latency_buckets[READ]);
2311 free_percpu(q->td->latency_buckets[WRITE]);
2315 void blk_throtl_register_queue(struct request_queue *q)
2317 struct throtl_data *td;
2323 if (blk_queue_nonrot(q)) {
2324 td->throtl_slice = DFL_THROTL_SLICE_SSD;
2325 td->filtered_latency = LATENCY_FILTERED_SSD;
2327 td->throtl_slice = DFL_THROTL_SLICE_HD;
2328 td->filtered_latency = LATENCY_FILTERED_HD;
2329 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2330 td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2331 td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2334 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2335 /* if no low limit, use previous default */
2336 td->throtl_slice = DFL_THROTL_SLICE_HD;
2339 td->track_bio_latency = !queue_is_mq(q);
2340 if (!td->track_bio_latency)
2341 blk_stat_enable_accounting(q);
2344 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2345 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2349 return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2352 ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2353 const char *page, size_t count)
2360 if (kstrtoul(page, 10, &v))
2362 t = msecs_to_jiffies(v);
2363 if (t == 0 || t > MAX_THROTL_SLICE)
2365 q->td->throtl_slice = t;
2370 static int __init throtl_init(void)
2372 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2373 if (!kthrotld_workqueue)
2374 panic("Failed to create kthrotld\n");
2376 return blkcg_policy_register(&blkcg_policy_throtl);
2379 module_init(throtl_init);