1 // SPDX-License-Identifier: GPL-2.0
3 * Interface for controlling IO bandwidth on a request queue
5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
8 #include <linux/module.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/bio.h>
12 #include <linux/blktrace_api.h>
13 #include <linux/blk-cgroup.h>
15 #include "blk-cgroup-rwstat.h"
17 /* Max dispatch from a group in 1 round */
18 #define THROTL_GRP_QUANTUM 8
20 /* Total max dispatch from all groups in one round */
21 #define THROTL_QUANTUM 32
23 /* Throttling is performed over a slice and after that slice is renewed */
24 #define DFL_THROTL_SLICE_HD (HZ / 10)
25 #define DFL_THROTL_SLICE_SSD (HZ / 50)
26 #define MAX_THROTL_SLICE (HZ)
27 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
28 #define MIN_THROTL_BPS (320 * 1024)
29 #define MIN_THROTL_IOPS (10)
30 #define DFL_LATENCY_TARGET (-1L)
31 #define DFL_IDLE_THRESHOLD (0)
32 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
33 #define LATENCY_FILTERED_SSD (0)
35 * For HD, very small latency comes from sequential IO. Such IO is helpless to
36 * help determine if its IO is impacted by others, hence we ignore the IO
38 #define LATENCY_FILTERED_HD (1000L) /* 1ms */
40 static struct blkcg_policy blkcg_policy_throtl;
42 /* A workqueue to queue throttle related work */
43 static struct workqueue_struct *kthrotld_workqueue;
46 * To implement hierarchical throttling, throtl_grps form a tree and bios
47 * are dispatched upwards level by level until they reach the top and get
48 * issued. When dispatching bios from the children and local group at each
49 * level, if the bios are dispatched into a single bio_list, there's a risk
50 * of a local or child group which can queue many bios at once filling up
51 * the list starving others.
53 * To avoid such starvation, dispatched bios are queued separately
54 * according to where they came from. When they are again dispatched to
55 * the parent, they're popped in round-robin order so that no single source
56 * hogs the dispatch window.
58 * throtl_qnode is used to keep the queued bios separated by their sources.
59 * Bios are queued to throtl_qnode which in turn is queued to
60 * throtl_service_queue and then dispatched in round-robin order.
62 * It's also used to track the reference counts on blkg's. A qnode always
63 * belongs to a throtl_grp and gets queued on itself or the parent, so
64 * incrementing the reference of the associated throtl_grp when a qnode is
65 * queued and decrementing when dequeued is enough to keep the whole blkg
66 * tree pinned while bios are in flight.
69 struct list_head node; /* service_queue->queued[] */
70 struct bio_list bios; /* queued bios */
71 struct throtl_grp *tg; /* tg this qnode belongs to */
74 struct throtl_service_queue {
75 struct throtl_service_queue *parent_sq; /* the parent service_queue */
78 * Bios queued directly to this service_queue or dispatched from
79 * children throtl_grp's.
81 struct list_head queued[2]; /* throtl_qnode [READ/WRITE] */
82 unsigned int nr_queued[2]; /* number of queued bios */
85 * RB tree of active children throtl_grp's, which are sorted by
88 struct rb_root_cached pending_tree; /* RB tree of active tgs */
89 unsigned int nr_pending; /* # queued in the tree */
90 unsigned long first_pending_disptime; /* disptime of the first tg */
91 struct timer_list pending_timer; /* fires on first_pending_disptime */
95 THROTL_TG_PENDING = 1 << 0, /* on parent's pending tree */
96 THROTL_TG_WAS_EMPTY = 1 << 1, /* bio_lists[] became non-empty */
99 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
108 /* must be the first member */
109 struct blkg_policy_data pd;
111 /* active throtl group service_queue member */
112 struct rb_node rb_node;
114 /* throtl_data this group belongs to */
115 struct throtl_data *td;
117 /* this group's service queue */
118 struct throtl_service_queue service_queue;
121 * qnode_on_self is used when bios are directly queued to this
122 * throtl_grp so that local bios compete fairly with bios
123 * dispatched from children. qnode_on_parent is used when bios are
124 * dispatched from this throtl_grp into its parent and will compete
125 * with the sibling qnode_on_parents and the parent's
128 struct throtl_qnode qnode_on_self[2];
129 struct throtl_qnode qnode_on_parent[2];
132 * Dispatch time in jiffies. This is the estimated time when group
133 * will unthrottle and is ready to dispatch more bio. It is used as
134 * key to sort active groups in service tree.
136 unsigned long disptime;
140 /* are there any throtl rules between this group and td? */
143 /* internally used bytes per second rate limits */
144 uint64_t bps[2][LIMIT_CNT];
145 /* user configured bps limits */
146 uint64_t bps_conf[2][LIMIT_CNT];
148 /* internally used IOPS limits */
149 unsigned int iops[2][LIMIT_CNT];
150 /* user configured IOPS limits */
151 unsigned int iops_conf[2][LIMIT_CNT];
153 /* Number of bytes dispatched in current slice */
154 uint64_t bytes_disp[2];
155 /* Number of bio's dispatched in current slice */
156 unsigned int io_disp[2];
158 unsigned long last_low_overflow_time[2];
160 uint64_t last_bytes_disp[2];
161 unsigned int last_io_disp[2];
163 unsigned long last_check_time;
165 unsigned long latency_target; /* us */
166 unsigned long latency_target_conf; /* us */
167 /* When did we start a new slice */
168 unsigned long slice_start[2];
169 unsigned long slice_end[2];
171 unsigned long last_finish_time; /* ns / 1024 */
172 unsigned long checked_last_finish_time; /* ns / 1024 */
173 unsigned long avg_idletime; /* ns / 1024 */
174 unsigned long idletime_threshold; /* us */
175 unsigned long idletime_threshold_conf; /* us */
177 unsigned int bio_cnt; /* total bios */
178 unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
179 unsigned long bio_cnt_reset_time;
181 atomic_t io_split_cnt[2];
182 atomic_t last_io_split_cnt[2];
184 struct blkg_rwstat stat_bytes;
185 struct blkg_rwstat stat_ios;
188 /* We measure latency for request size from <= 4k to >= 1M */
189 #define LATENCY_BUCKET_SIZE 9
191 struct latency_bucket {
192 unsigned long total_latency; /* ns / 1024 */
196 struct avg_latency_bucket {
197 unsigned long latency; /* ns / 1024 */
203 /* service tree for active throtl groups */
204 struct throtl_service_queue service_queue;
206 struct request_queue *queue;
208 /* Total Number of queued bios on READ and WRITE lists */
209 unsigned int nr_queued[2];
211 unsigned int throtl_slice;
213 /* Work for dispatching throttled bios */
214 struct work_struct dispatch_work;
215 unsigned int limit_index;
216 bool limit_valid[LIMIT_CNT];
218 unsigned long low_upgrade_time;
219 unsigned long low_downgrade_time;
223 struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
224 struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
225 struct latency_bucket __percpu *latency_buckets[2];
226 unsigned long last_calculate_time;
227 unsigned long filtered_latency;
229 bool track_bio_latency;
232 static void throtl_pending_timer_fn(struct timer_list *t);
234 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
236 return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
239 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
241 return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
244 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
246 return pd_to_blkg(&tg->pd);
250 * sq_to_tg - return the throl_grp the specified service queue belongs to
251 * @sq: the throtl_service_queue of interest
253 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
254 * embedded in throtl_data, %NULL is returned.
256 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
258 if (sq && sq->parent_sq)
259 return container_of(sq, struct throtl_grp, service_queue);
265 * sq_to_td - return throtl_data the specified service queue belongs to
266 * @sq: the throtl_service_queue of interest
268 * A service_queue can be embedded in either a throtl_grp or throtl_data.
269 * Determine the associated throtl_data accordingly and return it.
271 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
273 struct throtl_grp *tg = sq_to_tg(sq);
278 return container_of(sq, struct throtl_data, service_queue);
282 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
283 * make the IO dispatch more smooth.
284 * Scale up: linearly scale up according to lapsed time since upgrade. For
285 * every throtl_slice, the limit scales up 1/2 .low limit till the
286 * limit hits .max limit
287 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
289 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
291 /* arbitrary value to avoid too big scale */
292 if (td->scale < 4096 && time_after_eq(jiffies,
293 td->low_upgrade_time + td->scale * td->throtl_slice))
294 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
296 return low + (low >> 1) * td->scale;
299 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
301 struct blkcg_gq *blkg = tg_to_blkg(tg);
302 struct throtl_data *td;
305 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
309 ret = tg->bps[rw][td->limit_index];
310 if (ret == 0 && td->limit_index == LIMIT_LOW) {
311 /* intermediate node or iops isn't 0 */
312 if (!list_empty(&blkg->blkcg->css.children) ||
313 tg->iops[rw][td->limit_index])
316 return MIN_THROTL_BPS;
319 if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
320 tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
323 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
324 ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
329 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
331 struct blkcg_gq *blkg = tg_to_blkg(tg);
332 struct throtl_data *td;
335 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
339 ret = tg->iops[rw][td->limit_index];
340 if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
341 /* intermediate node or bps isn't 0 */
342 if (!list_empty(&blkg->blkcg->css.children) ||
343 tg->bps[rw][td->limit_index])
346 return MIN_THROTL_IOPS;
349 if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
350 tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
353 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
354 if (adjusted > UINT_MAX)
356 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
361 #define request_bucket_index(sectors) \
362 clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
365 * throtl_log - log debug message via blktrace
366 * @sq: the service_queue being reported
367 * @fmt: printf format string
370 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
371 * throtl_grp; otherwise, just "throtl".
373 #define throtl_log(sq, fmt, args...) do { \
374 struct throtl_grp *__tg = sq_to_tg((sq)); \
375 struct throtl_data *__td = sq_to_td((sq)); \
378 if (likely(!blk_trace_note_message_enabled(__td->queue))) \
381 blk_add_cgroup_trace_msg(__td->queue, \
382 tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\
384 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
388 static inline unsigned int throtl_bio_data_size(struct bio *bio)
390 /* assume it's one sector */
391 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
393 return bio->bi_iter.bi_size;
396 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
398 INIT_LIST_HEAD(&qn->node);
399 bio_list_init(&qn->bios);
404 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
405 * @bio: bio being added
406 * @qn: qnode to add bio to
407 * @queued: the service_queue->queued[] list @qn belongs to
409 * Add @bio to @qn and put @qn on @queued if it's not already on.
410 * @qn->tg's reference count is bumped when @qn is activated. See the
411 * comment on top of throtl_qnode definition for details.
413 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
414 struct list_head *queued)
416 bio_list_add(&qn->bios, bio);
417 if (list_empty(&qn->node)) {
418 list_add_tail(&qn->node, queued);
419 blkg_get(tg_to_blkg(qn->tg));
424 * throtl_peek_queued - peek the first bio on a qnode list
425 * @queued: the qnode list to peek
427 static struct bio *throtl_peek_queued(struct list_head *queued)
429 struct throtl_qnode *qn;
432 if (list_empty(queued))
435 qn = list_first_entry(queued, struct throtl_qnode, node);
436 bio = bio_list_peek(&qn->bios);
442 * throtl_pop_queued - pop the first bio form a qnode list
443 * @queued: the qnode list to pop a bio from
444 * @tg_to_put: optional out argument for throtl_grp to put
446 * Pop the first bio from the qnode list @queued. After popping, the first
447 * qnode is removed from @queued if empty or moved to the end of @queued so
448 * that the popping order is round-robin.
450 * When the first qnode is removed, its associated throtl_grp should be put
451 * too. If @tg_to_put is NULL, this function automatically puts it;
452 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
453 * responsible for putting it.
455 static struct bio *throtl_pop_queued(struct list_head *queued,
456 struct throtl_grp **tg_to_put)
458 struct throtl_qnode *qn;
461 if (list_empty(queued))
464 qn = list_first_entry(queued, struct throtl_qnode, node);
465 bio = bio_list_pop(&qn->bios);
468 if (bio_list_empty(&qn->bios)) {
469 list_del_init(&qn->node);
473 blkg_put(tg_to_blkg(qn->tg));
475 list_move_tail(&qn->node, queued);
481 /* init a service_queue, assumes the caller zeroed it */
482 static void throtl_service_queue_init(struct throtl_service_queue *sq)
484 INIT_LIST_HEAD(&sq->queued[0]);
485 INIT_LIST_HEAD(&sq->queued[1]);
486 sq->pending_tree = RB_ROOT_CACHED;
487 timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
490 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp,
491 struct request_queue *q,
494 struct throtl_grp *tg;
497 tg = kzalloc_node(sizeof(*tg), gfp, q->node);
501 if (blkg_rwstat_init(&tg->stat_bytes, gfp))
504 if (blkg_rwstat_init(&tg->stat_ios, gfp))
505 goto err_exit_stat_bytes;
507 throtl_service_queue_init(&tg->service_queue);
509 for (rw = READ; rw <= WRITE; rw++) {
510 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
511 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
514 RB_CLEAR_NODE(&tg->rb_node);
515 tg->bps[READ][LIMIT_MAX] = U64_MAX;
516 tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
517 tg->iops[READ][LIMIT_MAX] = UINT_MAX;
518 tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
519 tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
520 tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
521 tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
522 tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
523 /* LIMIT_LOW will have default value 0 */
525 tg->latency_target = DFL_LATENCY_TARGET;
526 tg->latency_target_conf = DFL_LATENCY_TARGET;
527 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
528 tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
533 blkg_rwstat_exit(&tg->stat_bytes);
539 static void throtl_pd_init(struct blkg_policy_data *pd)
541 struct throtl_grp *tg = pd_to_tg(pd);
542 struct blkcg_gq *blkg = tg_to_blkg(tg);
543 struct throtl_data *td = blkg->q->td;
544 struct throtl_service_queue *sq = &tg->service_queue;
547 * If on the default hierarchy, we switch to properly hierarchical
548 * behavior where limits on a given throtl_grp are applied to the
549 * whole subtree rather than just the group itself. e.g. If 16M
550 * read_bps limit is set on the root group, the whole system can't
551 * exceed 16M for the device.
553 * If not on the default hierarchy, the broken flat hierarchy
554 * behavior is retained where all throtl_grps are treated as if
555 * they're all separate root groups right below throtl_data.
556 * Limits of a group don't interact with limits of other groups
557 * regardless of the position of the group in the hierarchy.
559 sq->parent_sq = &td->service_queue;
560 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
561 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
566 * Set has_rules[] if @tg or any of its parents have limits configured.
567 * This doesn't require walking up to the top of the hierarchy as the
568 * parent's has_rules[] is guaranteed to be correct.
570 static void tg_update_has_rules(struct throtl_grp *tg)
572 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
573 struct throtl_data *td = tg->td;
576 for (rw = READ; rw <= WRITE; rw++)
577 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
578 (td->limit_valid[td->limit_index] &&
579 (tg_bps_limit(tg, rw) != U64_MAX ||
580 tg_iops_limit(tg, rw) != UINT_MAX));
583 static void throtl_pd_online(struct blkg_policy_data *pd)
585 struct throtl_grp *tg = pd_to_tg(pd);
587 * We don't want new groups to escape the limits of its ancestors.
588 * Update has_rules[] after a new group is brought online.
590 tg_update_has_rules(tg);
593 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
594 static void blk_throtl_update_limit_valid(struct throtl_data *td)
596 struct cgroup_subsys_state *pos_css;
597 struct blkcg_gq *blkg;
598 bool low_valid = false;
601 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
602 struct throtl_grp *tg = blkg_to_tg(blkg);
604 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
605 tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
612 td->limit_valid[LIMIT_LOW] = low_valid;
615 static inline void blk_throtl_update_limit_valid(struct throtl_data *td)
620 static void throtl_upgrade_state(struct throtl_data *td);
621 static void throtl_pd_offline(struct blkg_policy_data *pd)
623 struct throtl_grp *tg = pd_to_tg(pd);
625 tg->bps[READ][LIMIT_LOW] = 0;
626 tg->bps[WRITE][LIMIT_LOW] = 0;
627 tg->iops[READ][LIMIT_LOW] = 0;
628 tg->iops[WRITE][LIMIT_LOW] = 0;
630 blk_throtl_update_limit_valid(tg->td);
632 if (!tg->td->limit_valid[tg->td->limit_index])
633 throtl_upgrade_state(tg->td);
636 static void throtl_pd_free(struct blkg_policy_data *pd)
638 struct throtl_grp *tg = pd_to_tg(pd);
640 del_timer_sync(&tg->service_queue.pending_timer);
641 blkg_rwstat_exit(&tg->stat_bytes);
642 blkg_rwstat_exit(&tg->stat_ios);
646 static struct throtl_grp *
647 throtl_rb_first(struct throtl_service_queue *parent_sq)
651 n = rb_first_cached(&parent_sq->pending_tree);
655 return rb_entry_tg(n);
658 static void throtl_rb_erase(struct rb_node *n,
659 struct throtl_service_queue *parent_sq)
661 rb_erase_cached(n, &parent_sq->pending_tree);
663 --parent_sq->nr_pending;
666 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
668 struct throtl_grp *tg;
670 tg = throtl_rb_first(parent_sq);
674 parent_sq->first_pending_disptime = tg->disptime;
677 static void tg_service_queue_add(struct throtl_grp *tg)
679 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
680 struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node;
681 struct rb_node *parent = NULL;
682 struct throtl_grp *__tg;
683 unsigned long key = tg->disptime;
684 bool leftmost = true;
686 while (*node != NULL) {
688 __tg = rb_entry_tg(parent);
690 if (time_before(key, __tg->disptime))
691 node = &parent->rb_left;
693 node = &parent->rb_right;
698 rb_link_node(&tg->rb_node, parent, node);
699 rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree,
703 static void throtl_enqueue_tg(struct throtl_grp *tg)
705 if (!(tg->flags & THROTL_TG_PENDING)) {
706 tg_service_queue_add(tg);
707 tg->flags |= THROTL_TG_PENDING;
708 tg->service_queue.parent_sq->nr_pending++;
712 static void throtl_dequeue_tg(struct throtl_grp *tg)
714 if (tg->flags & THROTL_TG_PENDING) {
715 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
716 tg->flags &= ~THROTL_TG_PENDING;
720 /* Call with queue lock held */
721 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
722 unsigned long expires)
724 unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
727 * Since we are adjusting the throttle limit dynamically, the sleep
728 * time calculated according to previous limit might be invalid. It's
729 * possible the cgroup sleep time is very long and no other cgroups
730 * have IO running so notify the limit changes. Make sure the cgroup
731 * doesn't sleep too long to avoid the missed notification.
733 if (time_after(expires, max_expire))
734 expires = max_expire;
735 mod_timer(&sq->pending_timer, expires);
736 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
737 expires - jiffies, jiffies);
741 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
742 * @sq: the service_queue to schedule dispatch for
743 * @force: force scheduling
745 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
746 * dispatch time of the first pending child. Returns %true if either timer
747 * is armed or there's no pending child left. %false if the current
748 * dispatch window is still open and the caller should continue
751 * If @force is %true, the dispatch timer is always scheduled and this
752 * function is guaranteed to return %true. This is to be used when the
753 * caller can't dispatch itself and needs to invoke pending_timer
754 * unconditionally. Note that forced scheduling is likely to induce short
755 * delay before dispatch starts even if @sq->first_pending_disptime is not
756 * in the future and thus shouldn't be used in hot paths.
758 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
761 /* any pending children left? */
765 update_min_dispatch_time(sq);
767 /* is the next dispatch time in the future? */
768 if (force || time_after(sq->first_pending_disptime, jiffies)) {
769 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
773 /* tell the caller to continue dispatching */
777 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
778 bool rw, unsigned long start)
780 tg->bytes_disp[rw] = 0;
783 atomic_set(&tg->io_split_cnt[rw], 0);
786 * Previous slice has expired. We must have trimmed it after last
787 * bio dispatch. That means since start of last slice, we never used
788 * that bandwidth. Do try to make use of that bandwidth while giving
791 if (time_after_eq(start, tg->slice_start[rw]))
792 tg->slice_start[rw] = start;
794 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
795 throtl_log(&tg->service_queue,
796 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
797 rw == READ ? 'R' : 'W', tg->slice_start[rw],
798 tg->slice_end[rw], jiffies);
801 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
803 tg->bytes_disp[rw] = 0;
805 tg->slice_start[rw] = jiffies;
806 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
808 atomic_set(&tg->io_split_cnt[rw], 0);
810 throtl_log(&tg->service_queue,
811 "[%c] new slice start=%lu end=%lu jiffies=%lu",
812 rw == READ ? 'R' : 'W', tg->slice_start[rw],
813 tg->slice_end[rw], jiffies);
816 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
817 unsigned long jiffy_end)
819 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
822 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
823 unsigned long jiffy_end)
825 throtl_set_slice_end(tg, rw, jiffy_end);
826 throtl_log(&tg->service_queue,
827 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
828 rw == READ ? 'R' : 'W', tg->slice_start[rw],
829 tg->slice_end[rw], jiffies);
832 /* Determine if previously allocated or extended slice is complete or not */
833 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
835 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
841 /* Trim the used slices and adjust slice start accordingly */
842 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
844 unsigned long nr_slices, time_elapsed, io_trim;
847 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
850 * If bps are unlimited (-1), then time slice don't get
851 * renewed. Don't try to trim the slice if slice is used. A new
852 * slice will start when appropriate.
854 if (throtl_slice_used(tg, rw))
858 * A bio has been dispatched. Also adjust slice_end. It might happen
859 * that initially cgroup limit was very low resulting in high
860 * slice_end, but later limit was bumped up and bio was dispatched
861 * sooner, then we need to reduce slice_end. A high bogus slice_end
862 * is bad because it does not allow new slice to start.
865 throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
867 time_elapsed = jiffies - tg->slice_start[rw];
869 nr_slices = time_elapsed / tg->td->throtl_slice;
873 tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
877 io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
880 if (!bytes_trim && !io_trim)
883 if (tg->bytes_disp[rw] >= bytes_trim)
884 tg->bytes_disp[rw] -= bytes_trim;
886 tg->bytes_disp[rw] = 0;
888 if (tg->io_disp[rw] >= io_trim)
889 tg->io_disp[rw] -= io_trim;
893 tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
895 throtl_log(&tg->service_queue,
896 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
897 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
898 tg->slice_start[rw], tg->slice_end[rw], jiffies);
901 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
902 u32 iops_limit, unsigned long *wait)
904 bool rw = bio_data_dir(bio);
905 unsigned int io_allowed;
906 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
909 if (iops_limit == UINT_MAX) {
915 jiffy_elapsed = jiffies - tg->slice_start[rw];
917 /* Round up to the next throttle slice, wait time must be nonzero */
918 jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
921 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
922 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
923 * will allow dispatch after 1 second and after that slice should
927 tmp = (u64)iops_limit * jiffy_elapsed_rnd;
931 io_allowed = UINT_MAX;
935 if (tg->io_disp[rw] + 1 <= io_allowed) {
941 /* Calc approx time to dispatch */
942 jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
949 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
950 u64 bps_limit, unsigned long *wait)
952 bool rw = bio_data_dir(bio);
953 u64 bytes_allowed, extra_bytes;
954 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
955 unsigned int bio_size = throtl_bio_data_size(bio);
957 if (bps_limit == U64_MAX) {
963 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
965 /* Slice has just started. Consider one slice interval */
967 jiffy_elapsed_rnd = tg->td->throtl_slice;
969 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
970 bytes_allowed = mul_u64_u64_div_u64(bps_limit, (u64)jiffy_elapsed_rnd,
973 if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
979 /* Calc approx time to dispatch */
980 extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
981 jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit);
987 * This wait time is without taking into consideration the rounding
988 * up we did. Add that time also.
990 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
997 * Returns whether one can dispatch a bio or not. Also returns approx number
998 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
1000 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
1001 unsigned long *wait)
1003 bool rw = bio_data_dir(bio);
1004 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
1005 u64 bps_limit = tg_bps_limit(tg, rw);
1006 u32 iops_limit = tg_iops_limit(tg, rw);
1009 * Currently whole state machine of group depends on first bio
1010 * queued in the group bio list. So one should not be calling
1011 * this function with a different bio if there are other bios
1014 BUG_ON(tg->service_queue.nr_queued[rw] &&
1015 bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
1017 /* If tg->bps = -1, then BW is unlimited */
1018 if (bps_limit == U64_MAX && iops_limit == UINT_MAX) {
1025 * If previous slice expired, start a new one otherwise renew/extend
1026 * existing slice to make sure it is at least throtl_slice interval
1027 * long since now. New slice is started only for empty throttle group.
1028 * If there is queued bio, that means there should be an active
1029 * slice and it should be extended instead.
1031 if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
1032 throtl_start_new_slice(tg, rw);
1034 if (time_before(tg->slice_end[rw],
1035 jiffies + tg->td->throtl_slice))
1036 throtl_extend_slice(tg, rw,
1037 jiffies + tg->td->throtl_slice);
1040 if (iops_limit != UINT_MAX)
1041 tg->io_disp[rw] += atomic_xchg(&tg->io_split_cnt[rw], 0);
1043 if (tg_with_in_bps_limit(tg, bio, bps_limit, &bps_wait) &&
1044 tg_with_in_iops_limit(tg, bio, iops_limit, &iops_wait)) {
1050 max_wait = max(bps_wait, iops_wait);
1055 if (time_before(tg->slice_end[rw], jiffies + max_wait))
1056 throtl_extend_slice(tg, rw, jiffies + max_wait);
1061 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
1063 bool rw = bio_data_dir(bio);
1064 unsigned int bio_size = throtl_bio_data_size(bio);
1066 /* Charge the bio to the group */
1067 tg->bytes_disp[rw] += bio_size;
1069 tg->last_bytes_disp[rw] += bio_size;
1070 tg->last_io_disp[rw]++;
1073 * BIO_THROTTLED is used to prevent the same bio to be throttled
1074 * more than once as a throttled bio will go through blk-throtl the
1075 * second time when it eventually gets issued. Set it when a bio
1076 * is being charged to a tg.
1078 if (!bio_flagged(bio, BIO_THROTTLED))
1079 bio_set_flag(bio, BIO_THROTTLED);
1083 * throtl_add_bio_tg - add a bio to the specified throtl_grp
1086 * @tg: the target throtl_grp
1088 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
1089 * tg->qnode_on_self[] is used.
1091 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
1092 struct throtl_grp *tg)
1094 struct throtl_service_queue *sq = &tg->service_queue;
1095 bool rw = bio_data_dir(bio);
1098 qn = &tg->qnode_on_self[rw];
1101 * If @tg doesn't currently have any bios queued in the same
1102 * direction, queueing @bio can change when @tg should be
1103 * dispatched. Mark that @tg was empty. This is automatically
1104 * cleared on the next tg_update_disptime().
1106 if (!sq->nr_queued[rw])
1107 tg->flags |= THROTL_TG_WAS_EMPTY;
1109 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1111 sq->nr_queued[rw]++;
1112 throtl_enqueue_tg(tg);
1115 static void tg_update_disptime(struct throtl_grp *tg)
1117 struct throtl_service_queue *sq = &tg->service_queue;
1118 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1121 bio = throtl_peek_queued(&sq->queued[READ]);
1123 tg_may_dispatch(tg, bio, &read_wait);
1125 bio = throtl_peek_queued(&sq->queued[WRITE]);
1127 tg_may_dispatch(tg, bio, &write_wait);
1129 min_wait = min(read_wait, write_wait);
1130 disptime = jiffies + min_wait;
1132 /* Update dispatch time */
1133 throtl_dequeue_tg(tg);
1134 tg->disptime = disptime;
1135 throtl_enqueue_tg(tg);
1137 /* see throtl_add_bio_tg() */
1138 tg->flags &= ~THROTL_TG_WAS_EMPTY;
1141 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1142 struct throtl_grp *parent_tg, bool rw)
1144 if (throtl_slice_used(parent_tg, rw)) {
1145 throtl_start_new_slice_with_credit(parent_tg, rw,
1146 child_tg->slice_start[rw]);
1151 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1153 struct throtl_service_queue *sq = &tg->service_queue;
1154 struct throtl_service_queue *parent_sq = sq->parent_sq;
1155 struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1156 struct throtl_grp *tg_to_put = NULL;
1160 * @bio is being transferred from @tg to @parent_sq. Popping a bio
1161 * from @tg may put its reference and @parent_sq might end up
1162 * getting released prematurely. Remember the tg to put and put it
1163 * after @bio is transferred to @parent_sq.
1165 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1166 sq->nr_queued[rw]--;
1168 throtl_charge_bio(tg, bio);
1171 * If our parent is another tg, we just need to transfer @bio to
1172 * the parent using throtl_add_bio_tg(). If our parent is
1173 * @td->service_queue, @bio is ready to be issued. Put it on its
1174 * bio_lists[] and decrease total number queued. The caller is
1175 * responsible for issuing these bios.
1178 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1179 start_parent_slice_with_credit(tg, parent_tg, rw);
1181 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1182 &parent_sq->queued[rw]);
1183 BUG_ON(tg->td->nr_queued[rw] <= 0);
1184 tg->td->nr_queued[rw]--;
1187 throtl_trim_slice(tg, rw);
1190 blkg_put(tg_to_blkg(tg_to_put));
1193 static int throtl_dispatch_tg(struct throtl_grp *tg)
1195 struct throtl_service_queue *sq = &tg->service_queue;
1196 unsigned int nr_reads = 0, nr_writes = 0;
1197 unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4;
1198 unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads;
1201 /* Try to dispatch 75% READS and 25% WRITES */
1203 while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1204 tg_may_dispatch(tg, bio, NULL)) {
1206 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1209 if (nr_reads >= max_nr_reads)
1213 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1214 tg_may_dispatch(tg, bio, NULL)) {
1216 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1219 if (nr_writes >= max_nr_writes)
1223 return nr_reads + nr_writes;
1226 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1228 unsigned int nr_disp = 0;
1231 struct throtl_grp *tg;
1232 struct throtl_service_queue *sq;
1234 if (!parent_sq->nr_pending)
1237 tg = throtl_rb_first(parent_sq);
1241 if (time_before(jiffies, tg->disptime))
1244 throtl_dequeue_tg(tg);
1246 nr_disp += throtl_dispatch_tg(tg);
1248 sq = &tg->service_queue;
1249 if (sq->nr_queued[0] || sq->nr_queued[1])
1250 tg_update_disptime(tg);
1252 if (nr_disp >= THROTL_QUANTUM)
1259 static bool throtl_can_upgrade(struct throtl_data *td,
1260 struct throtl_grp *this_tg);
1262 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1263 * @t: the pending_timer member of the throtl_service_queue being serviced
1265 * This timer is armed when a child throtl_grp with active bio's become
1266 * pending and queued on the service_queue's pending_tree and expires when
1267 * the first child throtl_grp should be dispatched. This function
1268 * dispatches bio's from the children throtl_grps to the parent
1271 * If the parent's parent is another throtl_grp, dispatching is propagated
1272 * by either arming its pending_timer or repeating dispatch directly. If
1273 * the top-level service_tree is reached, throtl_data->dispatch_work is
1274 * kicked so that the ready bio's are issued.
1276 static void throtl_pending_timer_fn(struct timer_list *t)
1278 struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1279 struct throtl_grp *tg = sq_to_tg(sq);
1280 struct throtl_data *td = sq_to_td(sq);
1281 struct request_queue *q = td->queue;
1282 struct throtl_service_queue *parent_sq;
1286 spin_lock_irq(&q->queue_lock);
1287 if (throtl_can_upgrade(td, NULL))
1288 throtl_upgrade_state(td);
1291 parent_sq = sq->parent_sq;
1295 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1296 sq->nr_queued[READ] + sq->nr_queued[WRITE],
1297 sq->nr_queued[READ], sq->nr_queued[WRITE]);
1299 ret = throtl_select_dispatch(sq);
1301 throtl_log(sq, "bios disp=%u", ret);
1305 if (throtl_schedule_next_dispatch(sq, false))
1308 /* this dispatch windows is still open, relax and repeat */
1309 spin_unlock_irq(&q->queue_lock);
1311 spin_lock_irq(&q->queue_lock);
1318 /* @parent_sq is another throl_grp, propagate dispatch */
1319 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1320 tg_update_disptime(tg);
1321 if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1322 /* window is already open, repeat dispatching */
1329 /* reached the top-level, queue issuing */
1330 queue_work(kthrotld_workqueue, &td->dispatch_work);
1333 spin_unlock_irq(&q->queue_lock);
1337 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1338 * @work: work item being executed
1340 * This function is queued for execution when bios reach the bio_lists[]
1341 * of throtl_data->service_queue. Those bios are ready and issued by this
1344 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1346 struct throtl_data *td = container_of(work, struct throtl_data,
1348 struct throtl_service_queue *td_sq = &td->service_queue;
1349 struct request_queue *q = td->queue;
1350 struct bio_list bio_list_on_stack;
1352 struct blk_plug plug;
1355 bio_list_init(&bio_list_on_stack);
1357 spin_lock_irq(&q->queue_lock);
1358 for (rw = READ; rw <= WRITE; rw++)
1359 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1360 bio_list_add(&bio_list_on_stack, bio);
1361 spin_unlock_irq(&q->queue_lock);
1363 if (!bio_list_empty(&bio_list_on_stack)) {
1364 blk_start_plug(&plug);
1365 while ((bio = bio_list_pop(&bio_list_on_stack)))
1366 submit_bio_noacct(bio);
1367 blk_finish_plug(&plug);
1371 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1374 struct throtl_grp *tg = pd_to_tg(pd);
1375 u64 v = *(u64 *)((void *)tg + off);
1379 return __blkg_prfill_u64(sf, pd, v);
1382 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1385 struct throtl_grp *tg = pd_to_tg(pd);
1386 unsigned int v = *(unsigned int *)((void *)tg + off);
1390 return __blkg_prfill_u64(sf, pd, v);
1393 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1395 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1396 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1400 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1402 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1403 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1407 static void tg_conf_updated(struct throtl_grp *tg, bool global)
1409 struct throtl_service_queue *sq = &tg->service_queue;
1410 struct cgroup_subsys_state *pos_css;
1411 struct blkcg_gq *blkg;
1413 throtl_log(&tg->service_queue,
1414 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1415 tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1416 tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1419 * Update has_rules[] flags for the updated tg's subtree. A tg is
1420 * considered to have rules if either the tg itself or any of its
1421 * ancestors has rules. This identifies groups without any
1422 * restrictions in the whole hierarchy and allows them to bypass
1425 blkg_for_each_descendant_pre(blkg, pos_css,
1426 global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1427 struct throtl_grp *this_tg = blkg_to_tg(blkg);
1428 struct throtl_grp *parent_tg;
1430 tg_update_has_rules(this_tg);
1431 /* ignore root/second level */
1432 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1433 !blkg->parent->parent)
1435 parent_tg = blkg_to_tg(blkg->parent);
1437 * make sure all children has lower idle time threshold and
1438 * higher latency target
1440 this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1441 parent_tg->idletime_threshold);
1442 this_tg->latency_target = max(this_tg->latency_target,
1443 parent_tg->latency_target);
1447 * We're already holding queue_lock and know @tg is valid. Let's
1448 * apply the new config directly.
1450 * Restart the slices for both READ and WRITES. It might happen
1451 * that a group's limit are dropped suddenly and we don't want to
1452 * account recently dispatched IO with new low rate.
1454 throtl_start_new_slice(tg, READ);
1455 throtl_start_new_slice(tg, WRITE);
1457 if (tg->flags & THROTL_TG_PENDING) {
1458 tg_update_disptime(tg);
1459 throtl_schedule_next_dispatch(sq->parent_sq, true);
1463 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1464 char *buf, size_t nbytes, loff_t off, bool is_u64)
1466 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1467 struct blkg_conf_ctx ctx;
1468 struct throtl_grp *tg;
1472 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1477 if (sscanf(ctx.body, "%llu", &v) != 1)
1482 tg = blkg_to_tg(ctx.blkg);
1485 *(u64 *)((void *)tg + of_cft(of)->private) = v;
1487 *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1489 tg_conf_updated(tg, false);
1492 blkg_conf_finish(&ctx);
1493 return ret ?: nbytes;
1496 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1497 char *buf, size_t nbytes, loff_t off)
1499 return tg_set_conf(of, buf, nbytes, off, true);
1502 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1503 char *buf, size_t nbytes, loff_t off)
1505 return tg_set_conf(of, buf, nbytes, off, false);
1508 static int tg_print_rwstat(struct seq_file *sf, void *v)
1510 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1511 blkg_prfill_rwstat, &blkcg_policy_throtl,
1512 seq_cft(sf)->private, true);
1516 static u64 tg_prfill_rwstat_recursive(struct seq_file *sf,
1517 struct blkg_policy_data *pd, int off)
1519 struct blkg_rwstat_sample sum;
1521 blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off,
1523 return __blkg_prfill_rwstat(sf, pd, &sum);
1526 static int tg_print_rwstat_recursive(struct seq_file *sf, void *v)
1528 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1529 tg_prfill_rwstat_recursive, &blkcg_policy_throtl,
1530 seq_cft(sf)->private, true);
1534 static struct cftype throtl_legacy_files[] = {
1536 .name = "throttle.read_bps_device",
1537 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1538 .seq_show = tg_print_conf_u64,
1539 .write = tg_set_conf_u64,
1542 .name = "throttle.write_bps_device",
1543 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1544 .seq_show = tg_print_conf_u64,
1545 .write = tg_set_conf_u64,
1548 .name = "throttle.read_iops_device",
1549 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1550 .seq_show = tg_print_conf_uint,
1551 .write = tg_set_conf_uint,
1554 .name = "throttle.write_iops_device",
1555 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1556 .seq_show = tg_print_conf_uint,
1557 .write = tg_set_conf_uint,
1560 .name = "throttle.io_service_bytes",
1561 .private = offsetof(struct throtl_grp, stat_bytes),
1562 .seq_show = tg_print_rwstat,
1565 .name = "throttle.io_service_bytes_recursive",
1566 .private = offsetof(struct throtl_grp, stat_bytes),
1567 .seq_show = tg_print_rwstat_recursive,
1570 .name = "throttle.io_serviced",
1571 .private = offsetof(struct throtl_grp, stat_ios),
1572 .seq_show = tg_print_rwstat,
1575 .name = "throttle.io_serviced_recursive",
1576 .private = offsetof(struct throtl_grp, stat_ios),
1577 .seq_show = tg_print_rwstat_recursive,
1582 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1585 struct throtl_grp *tg = pd_to_tg(pd);
1586 const char *dname = blkg_dev_name(pd->blkg);
1587 char bufs[4][21] = { "max", "max", "max", "max" };
1589 unsigned int iops_dft;
1590 char idle_time[26] = "";
1591 char latency_time[26] = "";
1596 if (off == LIMIT_LOW) {
1601 iops_dft = UINT_MAX;
1604 if (tg->bps_conf[READ][off] == bps_dft &&
1605 tg->bps_conf[WRITE][off] == bps_dft &&
1606 tg->iops_conf[READ][off] == iops_dft &&
1607 tg->iops_conf[WRITE][off] == iops_dft &&
1608 (off != LIMIT_LOW ||
1609 (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1610 tg->latency_target_conf == DFL_LATENCY_TARGET)))
1613 if (tg->bps_conf[READ][off] != U64_MAX)
1614 snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1615 tg->bps_conf[READ][off]);
1616 if (tg->bps_conf[WRITE][off] != U64_MAX)
1617 snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1618 tg->bps_conf[WRITE][off]);
1619 if (tg->iops_conf[READ][off] != UINT_MAX)
1620 snprintf(bufs[2], sizeof(bufs[2]), "%u",
1621 tg->iops_conf[READ][off]);
1622 if (tg->iops_conf[WRITE][off] != UINT_MAX)
1623 snprintf(bufs[3], sizeof(bufs[3]), "%u",
1624 tg->iops_conf[WRITE][off]);
1625 if (off == LIMIT_LOW) {
1626 if (tg->idletime_threshold_conf == ULONG_MAX)
1627 strcpy(idle_time, " idle=max");
1629 snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1630 tg->idletime_threshold_conf);
1632 if (tg->latency_target_conf == ULONG_MAX)
1633 strcpy(latency_time, " latency=max");
1635 snprintf(latency_time, sizeof(latency_time),
1636 " latency=%lu", tg->latency_target_conf);
1639 seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1640 dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1645 static int tg_print_limit(struct seq_file *sf, void *v)
1647 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1648 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1652 static ssize_t tg_set_limit(struct kernfs_open_file *of,
1653 char *buf, size_t nbytes, loff_t off)
1655 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1656 struct blkg_conf_ctx ctx;
1657 struct throtl_grp *tg;
1659 unsigned long idle_time;
1660 unsigned long latency_time;
1662 int index = of_cft(of)->private;
1664 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1668 tg = blkg_to_tg(ctx.blkg);
1670 v[0] = tg->bps_conf[READ][index];
1671 v[1] = tg->bps_conf[WRITE][index];
1672 v[2] = tg->iops_conf[READ][index];
1673 v[3] = tg->iops_conf[WRITE][index];
1675 idle_time = tg->idletime_threshold_conf;
1676 latency_time = tg->latency_target_conf;
1678 char tok[27]; /* wiops=18446744073709551616 */
1683 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1692 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1700 if (!strcmp(tok, "rbps") && val > 1)
1702 else if (!strcmp(tok, "wbps") && val > 1)
1704 else if (!strcmp(tok, "riops") && val > 1)
1705 v[2] = min_t(u64, val, UINT_MAX);
1706 else if (!strcmp(tok, "wiops") && val > 1)
1707 v[3] = min_t(u64, val, UINT_MAX);
1708 else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1710 else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1716 tg->bps_conf[READ][index] = v[0];
1717 tg->bps_conf[WRITE][index] = v[1];
1718 tg->iops_conf[READ][index] = v[2];
1719 tg->iops_conf[WRITE][index] = v[3];
1721 if (index == LIMIT_MAX) {
1722 tg->bps[READ][index] = v[0];
1723 tg->bps[WRITE][index] = v[1];
1724 tg->iops[READ][index] = v[2];
1725 tg->iops[WRITE][index] = v[3];
1727 tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1728 tg->bps_conf[READ][LIMIT_MAX]);
1729 tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1730 tg->bps_conf[WRITE][LIMIT_MAX]);
1731 tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1732 tg->iops_conf[READ][LIMIT_MAX]);
1733 tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1734 tg->iops_conf[WRITE][LIMIT_MAX]);
1735 tg->idletime_threshold_conf = idle_time;
1736 tg->latency_target_conf = latency_time;
1738 /* force user to configure all settings for low limit */
1739 if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1740 tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1741 tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1742 tg->latency_target_conf == DFL_LATENCY_TARGET) {
1743 tg->bps[READ][LIMIT_LOW] = 0;
1744 tg->bps[WRITE][LIMIT_LOW] = 0;
1745 tg->iops[READ][LIMIT_LOW] = 0;
1746 tg->iops[WRITE][LIMIT_LOW] = 0;
1747 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1748 tg->latency_target = DFL_LATENCY_TARGET;
1749 } else if (index == LIMIT_LOW) {
1750 tg->idletime_threshold = tg->idletime_threshold_conf;
1751 tg->latency_target = tg->latency_target_conf;
1754 blk_throtl_update_limit_valid(tg->td);
1755 if (tg->td->limit_valid[LIMIT_LOW]) {
1756 if (index == LIMIT_LOW)
1757 tg->td->limit_index = LIMIT_LOW;
1759 tg->td->limit_index = LIMIT_MAX;
1760 tg_conf_updated(tg, index == LIMIT_LOW &&
1761 tg->td->limit_valid[LIMIT_LOW]);
1764 blkg_conf_finish(&ctx);
1765 return ret ?: nbytes;
1768 static struct cftype throtl_files[] = {
1769 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1772 .flags = CFTYPE_NOT_ON_ROOT,
1773 .seq_show = tg_print_limit,
1774 .write = tg_set_limit,
1775 .private = LIMIT_LOW,
1780 .flags = CFTYPE_NOT_ON_ROOT,
1781 .seq_show = tg_print_limit,
1782 .write = tg_set_limit,
1783 .private = LIMIT_MAX,
1788 static void throtl_shutdown_wq(struct request_queue *q)
1790 struct throtl_data *td = q->td;
1792 cancel_work_sync(&td->dispatch_work);
1795 static struct blkcg_policy blkcg_policy_throtl = {
1796 .dfl_cftypes = throtl_files,
1797 .legacy_cftypes = throtl_legacy_files,
1799 .pd_alloc_fn = throtl_pd_alloc,
1800 .pd_init_fn = throtl_pd_init,
1801 .pd_online_fn = throtl_pd_online,
1802 .pd_offline_fn = throtl_pd_offline,
1803 .pd_free_fn = throtl_pd_free,
1806 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1808 unsigned long rtime = jiffies, wtime = jiffies;
1810 if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1811 rtime = tg->last_low_overflow_time[READ];
1812 if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1813 wtime = tg->last_low_overflow_time[WRITE];
1814 return min(rtime, wtime);
1817 /* tg should not be an intermediate node */
1818 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1820 struct throtl_service_queue *parent_sq;
1821 struct throtl_grp *parent = tg;
1822 unsigned long ret = __tg_last_low_overflow_time(tg);
1825 parent_sq = parent->service_queue.parent_sq;
1826 parent = sq_to_tg(parent_sq);
1831 * The parent doesn't have low limit, it always reaches low
1832 * limit. Its overflow time is useless for children
1834 if (!parent->bps[READ][LIMIT_LOW] &&
1835 !parent->iops[READ][LIMIT_LOW] &&
1836 !parent->bps[WRITE][LIMIT_LOW] &&
1837 !parent->iops[WRITE][LIMIT_LOW])
1839 if (time_after(__tg_last_low_overflow_time(parent), ret))
1840 ret = __tg_last_low_overflow_time(parent);
1845 static bool throtl_tg_is_idle(struct throtl_grp *tg)
1848 * cgroup is idle if:
1849 * - single idle is too long, longer than a fixed value (in case user
1850 * configure a too big threshold) or 4 times of idletime threshold
1851 * - average think time is more than threshold
1852 * - IO latency is largely below threshold
1857 time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1858 ret = tg->latency_target == DFL_LATENCY_TARGET ||
1859 tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1860 (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1861 tg->avg_idletime > tg->idletime_threshold ||
1862 (tg->latency_target && tg->bio_cnt &&
1863 tg->bad_bio_cnt * 5 < tg->bio_cnt);
1864 throtl_log(&tg->service_queue,
1865 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1866 tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1867 tg->bio_cnt, ret, tg->td->scale);
1871 static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1873 struct throtl_service_queue *sq = &tg->service_queue;
1874 bool read_limit, write_limit;
1877 * if cgroup reaches low limit (if low limit is 0, the cgroup always
1878 * reaches), it's ok to upgrade to next limit
1880 read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1881 write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1882 if (!read_limit && !write_limit)
1884 if (read_limit && sq->nr_queued[READ] &&
1885 (!write_limit || sq->nr_queued[WRITE]))
1887 if (write_limit && sq->nr_queued[WRITE] &&
1888 (!read_limit || sq->nr_queued[READ]))
1891 if (time_after_eq(jiffies,
1892 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1893 throtl_tg_is_idle(tg))
1898 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1901 if (throtl_tg_can_upgrade(tg))
1903 tg = sq_to_tg(tg->service_queue.parent_sq);
1904 if (!tg || !tg_to_blkg(tg)->parent)
1910 static bool throtl_can_upgrade(struct throtl_data *td,
1911 struct throtl_grp *this_tg)
1913 struct cgroup_subsys_state *pos_css;
1914 struct blkcg_gq *blkg;
1916 if (td->limit_index != LIMIT_LOW)
1919 if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1923 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1924 struct throtl_grp *tg = blkg_to_tg(blkg);
1928 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1930 if (!throtl_hierarchy_can_upgrade(tg)) {
1939 static void throtl_upgrade_check(struct throtl_grp *tg)
1941 unsigned long now = jiffies;
1943 if (tg->td->limit_index != LIMIT_LOW)
1946 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1949 tg->last_check_time = now;
1951 if (!time_after_eq(now,
1952 __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1955 if (throtl_can_upgrade(tg->td, NULL))
1956 throtl_upgrade_state(tg->td);
1959 static void throtl_upgrade_state(struct throtl_data *td)
1961 struct cgroup_subsys_state *pos_css;
1962 struct blkcg_gq *blkg;
1964 throtl_log(&td->service_queue, "upgrade to max");
1965 td->limit_index = LIMIT_MAX;
1966 td->low_upgrade_time = jiffies;
1969 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1970 struct throtl_grp *tg = blkg_to_tg(blkg);
1971 struct throtl_service_queue *sq = &tg->service_queue;
1973 tg->disptime = jiffies - 1;
1974 throtl_select_dispatch(sq);
1975 throtl_schedule_next_dispatch(sq, true);
1978 throtl_select_dispatch(&td->service_queue);
1979 throtl_schedule_next_dispatch(&td->service_queue, true);
1980 queue_work(kthrotld_workqueue, &td->dispatch_work);
1983 static void throtl_downgrade_state(struct throtl_data *td)
1987 throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1989 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1993 td->limit_index = LIMIT_LOW;
1994 td->low_downgrade_time = jiffies;
1997 static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1999 struct throtl_data *td = tg->td;
2000 unsigned long now = jiffies;
2003 * If cgroup is below low limit, consider downgrade and throttle other
2006 if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
2007 time_after_eq(now, tg_last_low_overflow_time(tg) +
2008 td->throtl_slice) &&
2009 (!throtl_tg_is_idle(tg) ||
2010 !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
2015 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
2018 if (!throtl_tg_can_downgrade(tg))
2020 tg = sq_to_tg(tg->service_queue.parent_sq);
2021 if (!tg || !tg_to_blkg(tg)->parent)
2027 static void throtl_downgrade_check(struct throtl_grp *tg)
2031 unsigned long elapsed_time;
2032 unsigned long now = jiffies;
2034 if (tg->td->limit_index != LIMIT_MAX ||
2035 !tg->td->limit_valid[LIMIT_LOW])
2037 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
2039 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
2042 elapsed_time = now - tg->last_check_time;
2043 tg->last_check_time = now;
2045 if (time_before(now, tg_last_low_overflow_time(tg) +
2046 tg->td->throtl_slice))
2049 if (tg->bps[READ][LIMIT_LOW]) {
2050 bps = tg->last_bytes_disp[READ] * HZ;
2051 do_div(bps, elapsed_time);
2052 if (bps >= tg->bps[READ][LIMIT_LOW])
2053 tg->last_low_overflow_time[READ] = now;
2056 if (tg->bps[WRITE][LIMIT_LOW]) {
2057 bps = tg->last_bytes_disp[WRITE] * HZ;
2058 do_div(bps, elapsed_time);
2059 if (bps >= tg->bps[WRITE][LIMIT_LOW])
2060 tg->last_low_overflow_time[WRITE] = now;
2063 if (tg->iops[READ][LIMIT_LOW]) {
2064 tg->last_io_disp[READ] += atomic_xchg(&tg->last_io_split_cnt[READ], 0);
2065 iops = tg->last_io_disp[READ] * HZ / elapsed_time;
2066 if (iops >= tg->iops[READ][LIMIT_LOW])
2067 tg->last_low_overflow_time[READ] = now;
2070 if (tg->iops[WRITE][LIMIT_LOW]) {
2071 tg->last_io_disp[WRITE] += atomic_xchg(&tg->last_io_split_cnt[WRITE], 0);
2072 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
2073 if (iops >= tg->iops[WRITE][LIMIT_LOW])
2074 tg->last_low_overflow_time[WRITE] = now;
2078 * If cgroup is below low limit, consider downgrade and throttle other
2081 if (throtl_hierarchy_can_downgrade(tg))
2082 throtl_downgrade_state(tg->td);
2084 tg->last_bytes_disp[READ] = 0;
2085 tg->last_bytes_disp[WRITE] = 0;
2086 tg->last_io_disp[READ] = 0;
2087 tg->last_io_disp[WRITE] = 0;
2090 static void blk_throtl_update_idletime(struct throtl_grp *tg)
2093 unsigned long last_finish_time = tg->last_finish_time;
2095 if (last_finish_time == 0)
2098 now = ktime_get_ns() >> 10;
2099 if (now <= last_finish_time ||
2100 last_finish_time == tg->checked_last_finish_time)
2103 tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2104 tg->checked_last_finish_time = last_finish_time;
2107 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2108 static void throtl_update_latency_buckets(struct throtl_data *td)
2110 struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
2112 unsigned long last_latency[2] = { 0 };
2113 unsigned long latency[2];
2115 if (!blk_queue_nonrot(td->queue) || !td->limit_valid[LIMIT_LOW])
2117 if (time_before(jiffies, td->last_calculate_time + HZ))
2119 td->last_calculate_time = jiffies;
2121 memset(avg_latency, 0, sizeof(avg_latency));
2122 for (rw = READ; rw <= WRITE; rw++) {
2123 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2124 struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
2126 for_each_possible_cpu(cpu) {
2127 struct latency_bucket *bucket;
2129 /* this isn't race free, but ok in practice */
2130 bucket = per_cpu_ptr(td->latency_buckets[rw],
2132 tmp->total_latency += bucket[i].total_latency;
2133 tmp->samples += bucket[i].samples;
2134 bucket[i].total_latency = 0;
2135 bucket[i].samples = 0;
2138 if (tmp->samples >= 32) {
2139 int samples = tmp->samples;
2141 latency[rw] = tmp->total_latency;
2143 tmp->total_latency = 0;
2145 latency[rw] /= samples;
2146 if (latency[rw] == 0)
2148 avg_latency[rw][i].latency = latency[rw];
2153 for (rw = READ; rw <= WRITE; rw++) {
2154 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2155 if (!avg_latency[rw][i].latency) {
2156 if (td->avg_buckets[rw][i].latency < last_latency[rw])
2157 td->avg_buckets[rw][i].latency =
2162 if (!td->avg_buckets[rw][i].valid)
2163 latency[rw] = avg_latency[rw][i].latency;
2165 latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2166 avg_latency[rw][i].latency) >> 3;
2168 td->avg_buckets[rw][i].latency = max(latency[rw],
2170 td->avg_buckets[rw][i].valid = true;
2171 last_latency[rw] = td->avg_buckets[rw][i].latency;
2175 for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2176 throtl_log(&td->service_queue,
2177 "Latency bucket %d: read latency=%ld, read valid=%d, "
2178 "write latency=%ld, write valid=%d", i,
2179 td->avg_buckets[READ][i].latency,
2180 td->avg_buckets[READ][i].valid,
2181 td->avg_buckets[WRITE][i].latency,
2182 td->avg_buckets[WRITE][i].valid);
2185 static inline void throtl_update_latency_buckets(struct throtl_data *td)
2190 void blk_throtl_charge_bio_split(struct bio *bio)
2192 struct blkcg_gq *blkg = bio->bi_blkg;
2193 struct throtl_grp *parent = blkg_to_tg(blkg);
2194 struct throtl_service_queue *parent_sq;
2195 bool rw = bio_data_dir(bio);
2198 if (!parent->has_rules[rw])
2201 atomic_inc(&parent->io_split_cnt[rw]);
2202 atomic_inc(&parent->last_io_split_cnt[rw]);
2204 parent_sq = parent->service_queue.parent_sq;
2205 parent = sq_to_tg(parent_sq);
2209 bool blk_throtl_bio(struct bio *bio)
2211 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
2212 struct blkcg_gq *blkg = bio->bi_blkg;
2213 struct throtl_qnode *qn = NULL;
2214 struct throtl_grp *tg = blkg_to_tg(blkg);
2215 struct throtl_service_queue *sq;
2216 bool rw = bio_data_dir(bio);
2217 bool throttled = false;
2218 struct throtl_data *td = tg->td;
2222 /* see throtl_charge_bio() */
2223 if (bio_flagged(bio, BIO_THROTTLED))
2226 if (!cgroup_subsys_on_dfl(io_cgrp_subsys)) {
2227 blkg_rwstat_add(&tg->stat_bytes, bio->bi_opf,
2228 bio->bi_iter.bi_size);
2229 blkg_rwstat_add(&tg->stat_ios, bio->bi_opf, 1);
2232 if (!tg->has_rules[rw])
2235 spin_lock_irq(&q->queue_lock);
2237 throtl_update_latency_buckets(td);
2239 blk_throtl_update_idletime(tg);
2241 sq = &tg->service_queue;
2245 if (tg->last_low_overflow_time[rw] == 0)
2246 tg->last_low_overflow_time[rw] = jiffies;
2247 throtl_downgrade_check(tg);
2248 throtl_upgrade_check(tg);
2249 /* throtl is FIFO - if bios are already queued, should queue */
2250 if (sq->nr_queued[rw])
2253 /* if above limits, break to queue */
2254 if (!tg_may_dispatch(tg, bio, NULL)) {
2255 tg->last_low_overflow_time[rw] = jiffies;
2256 if (throtl_can_upgrade(td, tg)) {
2257 throtl_upgrade_state(td);
2263 /* within limits, let's charge and dispatch directly */
2264 throtl_charge_bio(tg, bio);
2267 * We need to trim slice even when bios are not being queued
2268 * otherwise it might happen that a bio is not queued for
2269 * a long time and slice keeps on extending and trim is not
2270 * called for a long time. Now if limits are reduced suddenly
2271 * we take into account all the IO dispatched so far at new
2272 * low rate and * newly queued IO gets a really long dispatch
2275 * So keep on trimming slice even if bio is not queued.
2277 throtl_trim_slice(tg, rw);
2280 * @bio passed through this layer without being throttled.
2281 * Climb up the ladder. If we're already at the top, it
2282 * can be executed directly.
2284 qn = &tg->qnode_on_parent[rw];
2291 /* out-of-limit, queue to @tg */
2292 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2293 rw == READ ? 'R' : 'W',
2294 tg->bytes_disp[rw], bio->bi_iter.bi_size,
2295 tg_bps_limit(tg, rw),
2296 tg->io_disp[rw], tg_iops_limit(tg, rw),
2297 sq->nr_queued[READ], sq->nr_queued[WRITE]);
2299 tg->last_low_overflow_time[rw] = jiffies;
2301 td->nr_queued[rw]++;
2302 throtl_add_bio_tg(bio, qn, tg);
2306 * Update @tg's dispatch time and force schedule dispatch if @tg
2307 * was empty before @bio. The forced scheduling isn't likely to
2308 * cause undue delay as @bio is likely to be dispatched directly if
2309 * its @tg's disptime is not in the future.
2311 if (tg->flags & THROTL_TG_WAS_EMPTY) {
2312 tg_update_disptime(tg);
2313 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2317 spin_unlock_irq(&q->queue_lock);
2319 bio_set_flag(bio, BIO_THROTTLED);
2321 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2322 if (throttled || !td->track_bio_latency)
2323 bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
2329 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2330 static void throtl_track_latency(struct throtl_data *td, sector_t size,
2331 int op, unsigned long time)
2333 struct latency_bucket *latency;
2336 if (!td || td->limit_index != LIMIT_LOW ||
2337 !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
2338 !blk_queue_nonrot(td->queue))
2341 index = request_bucket_index(size);
2343 latency = get_cpu_ptr(td->latency_buckets[op]);
2344 latency[index].total_latency += time;
2345 latency[index].samples++;
2346 put_cpu_ptr(td->latency_buckets[op]);
2349 void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2351 struct request_queue *q = rq->q;
2352 struct throtl_data *td = q->td;
2354 throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq),
2358 void blk_throtl_bio_endio(struct bio *bio)
2360 struct blkcg_gq *blkg;
2361 struct throtl_grp *tg;
2363 unsigned long finish_time;
2364 unsigned long start_time;
2366 int rw = bio_data_dir(bio);
2368 blkg = bio->bi_blkg;
2371 tg = blkg_to_tg(blkg);
2372 if (!tg->td->limit_valid[LIMIT_LOW])
2375 finish_time_ns = ktime_get_ns();
2376 tg->last_finish_time = finish_time_ns >> 10;
2378 start_time = bio_issue_time(&bio->bi_issue) >> 10;
2379 finish_time = __bio_issue_time(finish_time_ns) >> 10;
2380 if (!start_time || finish_time <= start_time)
2383 lat = finish_time - start_time;
2384 /* this is only for bio based driver */
2385 if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
2386 throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
2389 if (tg->latency_target && lat >= tg->td->filtered_latency) {
2391 unsigned int threshold;
2393 bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
2394 threshold = tg->td->avg_buckets[rw][bucket].latency +
2396 if (lat > threshold)
2399 * Not race free, could get wrong count, which means cgroups
2405 if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2406 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2408 tg->bad_bio_cnt /= 2;
2413 int blk_throtl_init(struct request_queue *q)
2415 struct throtl_data *td;
2418 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2421 td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
2422 LATENCY_BUCKET_SIZE, __alignof__(u64));
2423 if (!td->latency_buckets[READ]) {
2427 td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
2428 LATENCY_BUCKET_SIZE, __alignof__(u64));
2429 if (!td->latency_buckets[WRITE]) {
2430 free_percpu(td->latency_buckets[READ]);
2435 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2436 throtl_service_queue_init(&td->service_queue);
2441 td->limit_valid[LIMIT_MAX] = true;
2442 td->limit_index = LIMIT_MAX;
2443 td->low_upgrade_time = jiffies;
2444 td->low_downgrade_time = jiffies;
2446 /* activate policy */
2447 ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2449 free_percpu(td->latency_buckets[READ]);
2450 free_percpu(td->latency_buckets[WRITE]);
2456 void blk_throtl_exit(struct request_queue *q)
2459 del_timer_sync(&q->td->service_queue.pending_timer);
2460 throtl_shutdown_wq(q);
2461 blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2462 free_percpu(q->td->latency_buckets[READ]);
2463 free_percpu(q->td->latency_buckets[WRITE]);
2467 void blk_throtl_register_queue(struct request_queue *q)
2469 struct throtl_data *td;
2475 if (blk_queue_nonrot(q)) {
2476 td->throtl_slice = DFL_THROTL_SLICE_SSD;
2477 td->filtered_latency = LATENCY_FILTERED_SSD;
2479 td->throtl_slice = DFL_THROTL_SLICE_HD;
2480 td->filtered_latency = LATENCY_FILTERED_HD;
2481 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2482 td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2483 td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2486 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2487 /* if no low limit, use previous default */
2488 td->throtl_slice = DFL_THROTL_SLICE_HD;
2491 td->track_bio_latency = !queue_is_mq(q);
2492 if (!td->track_bio_latency)
2493 blk_stat_enable_accounting(q);
2496 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2497 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2501 return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2504 ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2505 const char *page, size_t count)
2512 if (kstrtoul(page, 10, &v))
2514 t = msecs_to_jiffies(v);
2515 if (t == 0 || t > MAX_THROTL_SLICE)
2517 q->td->throtl_slice = t;
2522 static int __init throtl_init(void)
2524 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2525 if (!kthrotld_workqueue)
2526 panic("Failed to create kthrotld\n");
2528 return blkcg_policy_register(&blkcg_policy_throtl);
2531 module_init(throtl_init);