1 // SPDX-License-Identifier: GPL-2.0
3 * Interface for controlling IO bandwidth on a request queue
5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
8 #include <linux/module.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/bio.h>
12 #include <linux/blktrace_api.h>
14 #include "blk-cgroup-rwstat.h"
16 #include "blk-throttle.h"
18 /* Max dispatch from a group in 1 round */
19 #define THROTL_GRP_QUANTUM 8
21 /* Total max dispatch from all groups in one round */
22 #define THROTL_QUANTUM 32
24 /* Throttling is performed over a slice and after that slice is renewed */
25 #define DFL_THROTL_SLICE_HD (HZ / 10)
26 #define DFL_THROTL_SLICE_SSD (HZ / 50)
27 #define MAX_THROTL_SLICE (HZ)
28 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
29 #define MIN_THROTL_BPS (320 * 1024)
30 #define MIN_THROTL_IOPS (10)
31 #define DFL_LATENCY_TARGET (-1L)
32 #define DFL_IDLE_THRESHOLD (0)
33 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
34 #define LATENCY_FILTERED_SSD (0)
36 * For HD, very small latency comes from sequential IO. Such IO is helpless to
37 * help determine if its IO is impacted by others, hence we ignore the IO
39 #define LATENCY_FILTERED_HD (1000L) /* 1ms */
41 /* A workqueue to queue throttle related work */
42 static struct workqueue_struct *kthrotld_workqueue;
44 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
46 /* We measure latency for request size from <= 4k to >= 1M */
47 #define LATENCY_BUCKET_SIZE 9
49 struct latency_bucket {
50 unsigned long total_latency; /* ns / 1024 */
54 struct avg_latency_bucket {
55 unsigned long latency; /* ns / 1024 */
61 /* service tree for active throtl groups */
62 struct throtl_service_queue service_queue;
64 struct request_queue *queue;
66 /* Total Number of queued bios on READ and WRITE lists */
67 unsigned int nr_queued[2];
69 unsigned int throtl_slice;
71 /* Work for dispatching throttled bios */
72 struct work_struct dispatch_work;
73 unsigned int limit_index;
74 bool limit_valid[LIMIT_CNT];
76 unsigned long low_upgrade_time;
77 unsigned long low_downgrade_time;
81 struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
82 struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
83 struct latency_bucket __percpu *latency_buckets[2];
84 unsigned long last_calculate_time;
85 unsigned long filtered_latency;
87 bool track_bio_latency;
90 static void throtl_pending_timer_fn(struct timer_list *t);
92 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
94 return pd_to_blkg(&tg->pd);
98 * sq_to_tg - return the throl_grp the specified service queue belongs to
99 * @sq: the throtl_service_queue of interest
101 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
102 * embedded in throtl_data, %NULL is returned.
104 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
106 if (sq && sq->parent_sq)
107 return container_of(sq, struct throtl_grp, service_queue);
113 * sq_to_td - return throtl_data the specified service queue belongs to
114 * @sq: the throtl_service_queue of interest
116 * A service_queue can be embedded in either a throtl_grp or throtl_data.
117 * Determine the associated throtl_data accordingly and return it.
119 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
121 struct throtl_grp *tg = sq_to_tg(sq);
126 return container_of(sq, struct throtl_data, service_queue);
130 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
131 * make the IO dispatch more smooth.
132 * Scale up: linearly scale up according to elapsed time since upgrade. For
133 * every throtl_slice, the limit scales up 1/2 .low limit till the
134 * limit hits .max limit
135 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
137 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
139 /* arbitrary value to avoid too big scale */
140 if (td->scale < 4096 && time_after_eq(jiffies,
141 td->low_upgrade_time + td->scale * td->throtl_slice))
142 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
144 return low + (low >> 1) * td->scale;
147 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
149 struct blkcg_gq *blkg = tg_to_blkg(tg);
150 struct throtl_data *td;
153 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
157 ret = tg->bps[rw][td->limit_index];
158 if (ret == 0 && td->limit_index == LIMIT_LOW) {
159 /* intermediate node or iops isn't 0 */
160 if (!list_empty(&blkg->blkcg->css.children) ||
161 tg->iops[rw][td->limit_index])
164 return MIN_THROTL_BPS;
167 if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
168 tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
171 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
172 ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
177 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
179 struct blkcg_gq *blkg = tg_to_blkg(tg);
180 struct throtl_data *td;
183 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
187 ret = tg->iops[rw][td->limit_index];
188 if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
189 /* intermediate node or bps isn't 0 */
190 if (!list_empty(&blkg->blkcg->css.children) ||
191 tg->bps[rw][td->limit_index])
194 return MIN_THROTL_IOPS;
197 if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
198 tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
201 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
202 if (adjusted > UINT_MAX)
204 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
209 #define request_bucket_index(sectors) \
210 clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
213 * throtl_log - log debug message via blktrace
214 * @sq: the service_queue being reported
215 * @fmt: printf format string
218 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
219 * throtl_grp; otherwise, just "throtl".
221 #define throtl_log(sq, fmt, args...) do { \
222 struct throtl_grp *__tg = sq_to_tg((sq)); \
223 struct throtl_data *__td = sq_to_td((sq)); \
226 if (likely(!blk_trace_note_message_enabled(__td->queue))) \
229 blk_add_cgroup_trace_msg(__td->queue, \
230 &tg_to_blkg(__tg)->blkcg->css, "throtl " fmt, ##args);\
232 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
236 static inline unsigned int throtl_bio_data_size(struct bio *bio)
238 /* assume it's one sector */
239 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
241 return bio->bi_iter.bi_size;
244 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
246 INIT_LIST_HEAD(&qn->node);
247 bio_list_init(&qn->bios);
252 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
253 * @bio: bio being added
254 * @qn: qnode to add bio to
255 * @queued: the service_queue->queued[] list @qn belongs to
257 * Add @bio to @qn and put @qn on @queued if it's not already on.
258 * @qn->tg's reference count is bumped when @qn is activated. See the
259 * comment on top of throtl_qnode definition for details.
261 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
262 struct list_head *queued)
264 bio_list_add(&qn->bios, bio);
265 if (list_empty(&qn->node)) {
266 list_add_tail(&qn->node, queued);
267 blkg_get(tg_to_blkg(qn->tg));
272 * throtl_peek_queued - peek the first bio on a qnode list
273 * @queued: the qnode list to peek
275 static struct bio *throtl_peek_queued(struct list_head *queued)
277 struct throtl_qnode *qn;
280 if (list_empty(queued))
283 qn = list_first_entry(queued, struct throtl_qnode, node);
284 bio = bio_list_peek(&qn->bios);
290 * throtl_pop_queued - pop the first bio form a qnode list
291 * @queued: the qnode list to pop a bio from
292 * @tg_to_put: optional out argument for throtl_grp to put
294 * Pop the first bio from the qnode list @queued. After popping, the first
295 * qnode is removed from @queued if empty or moved to the end of @queued so
296 * that the popping order is round-robin.
298 * When the first qnode is removed, its associated throtl_grp should be put
299 * too. If @tg_to_put is NULL, this function automatically puts it;
300 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
301 * responsible for putting it.
303 static struct bio *throtl_pop_queued(struct list_head *queued,
304 struct throtl_grp **tg_to_put)
306 struct throtl_qnode *qn;
309 if (list_empty(queued))
312 qn = list_first_entry(queued, struct throtl_qnode, node);
313 bio = bio_list_pop(&qn->bios);
316 if (bio_list_empty(&qn->bios)) {
317 list_del_init(&qn->node);
321 blkg_put(tg_to_blkg(qn->tg));
323 list_move_tail(&qn->node, queued);
329 /* init a service_queue, assumes the caller zeroed it */
330 static void throtl_service_queue_init(struct throtl_service_queue *sq)
332 INIT_LIST_HEAD(&sq->queued[READ]);
333 INIT_LIST_HEAD(&sq->queued[WRITE]);
334 sq->pending_tree = RB_ROOT_CACHED;
335 timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
338 static struct blkg_policy_data *throtl_pd_alloc(struct gendisk *disk,
339 struct blkcg *blkcg, gfp_t gfp)
341 struct throtl_grp *tg;
344 tg = kzalloc_node(sizeof(*tg), gfp, disk->node_id);
348 if (blkg_rwstat_init(&tg->stat_bytes, gfp))
351 if (blkg_rwstat_init(&tg->stat_ios, gfp))
352 goto err_exit_stat_bytes;
354 throtl_service_queue_init(&tg->service_queue);
356 for (rw = READ; rw <= WRITE; rw++) {
357 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
358 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
361 RB_CLEAR_NODE(&tg->rb_node);
362 tg->bps[READ][LIMIT_MAX] = U64_MAX;
363 tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
364 tg->iops[READ][LIMIT_MAX] = UINT_MAX;
365 tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
366 tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
367 tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
368 tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
369 tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
370 /* LIMIT_LOW will have default value 0 */
372 tg->latency_target = DFL_LATENCY_TARGET;
373 tg->latency_target_conf = DFL_LATENCY_TARGET;
374 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
375 tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
380 blkg_rwstat_exit(&tg->stat_bytes);
386 static void throtl_pd_init(struct blkg_policy_data *pd)
388 struct throtl_grp *tg = pd_to_tg(pd);
389 struct blkcg_gq *blkg = tg_to_blkg(tg);
390 struct throtl_data *td = blkg->q->td;
391 struct throtl_service_queue *sq = &tg->service_queue;
394 * If on the default hierarchy, we switch to properly hierarchical
395 * behavior where limits on a given throtl_grp are applied to the
396 * whole subtree rather than just the group itself. e.g. If 16M
397 * read_bps limit is set on a parent group, summary bps of
398 * parent group and its subtree groups can't exceed 16M for the
401 * If not on the default hierarchy, the broken flat hierarchy
402 * behavior is retained where all throtl_grps are treated as if
403 * they're all separate root groups right below throtl_data.
404 * Limits of a group don't interact with limits of other groups
405 * regardless of the position of the group in the hierarchy.
407 sq->parent_sq = &td->service_queue;
408 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
409 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
414 * Set has_rules[] if @tg or any of its parents have limits configured.
415 * This doesn't require walking up to the top of the hierarchy as the
416 * parent's has_rules[] is guaranteed to be correct.
418 static void tg_update_has_rules(struct throtl_grp *tg)
420 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
421 struct throtl_data *td = tg->td;
424 for (rw = READ; rw <= WRITE; rw++) {
425 tg->has_rules_iops[rw] =
426 (parent_tg && parent_tg->has_rules_iops[rw]) ||
427 (td->limit_valid[td->limit_index] &&
428 tg_iops_limit(tg, rw) != UINT_MAX);
429 tg->has_rules_bps[rw] =
430 (parent_tg && parent_tg->has_rules_bps[rw]) ||
431 (td->limit_valid[td->limit_index] &&
432 (tg_bps_limit(tg, rw) != U64_MAX));
436 static void throtl_pd_online(struct blkg_policy_data *pd)
438 struct throtl_grp *tg = pd_to_tg(pd);
440 * We don't want new groups to escape the limits of its ancestors.
441 * Update has_rules[] after a new group is brought online.
443 tg_update_has_rules(tg);
446 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
447 static void blk_throtl_update_limit_valid(struct throtl_data *td)
449 struct cgroup_subsys_state *pos_css;
450 struct blkcg_gq *blkg;
451 bool low_valid = false;
454 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
455 struct throtl_grp *tg = blkg_to_tg(blkg);
457 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
458 tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
465 td->limit_valid[LIMIT_LOW] = low_valid;
468 static inline void blk_throtl_update_limit_valid(struct throtl_data *td)
473 static void throtl_upgrade_state(struct throtl_data *td);
474 static void throtl_pd_offline(struct blkg_policy_data *pd)
476 struct throtl_grp *tg = pd_to_tg(pd);
478 tg->bps[READ][LIMIT_LOW] = 0;
479 tg->bps[WRITE][LIMIT_LOW] = 0;
480 tg->iops[READ][LIMIT_LOW] = 0;
481 tg->iops[WRITE][LIMIT_LOW] = 0;
483 blk_throtl_update_limit_valid(tg->td);
485 if (!tg->td->limit_valid[tg->td->limit_index])
486 throtl_upgrade_state(tg->td);
489 static void throtl_pd_free(struct blkg_policy_data *pd)
491 struct throtl_grp *tg = pd_to_tg(pd);
493 del_timer_sync(&tg->service_queue.pending_timer);
494 blkg_rwstat_exit(&tg->stat_bytes);
495 blkg_rwstat_exit(&tg->stat_ios);
499 static struct throtl_grp *
500 throtl_rb_first(struct throtl_service_queue *parent_sq)
504 n = rb_first_cached(&parent_sq->pending_tree);
508 return rb_entry_tg(n);
511 static void throtl_rb_erase(struct rb_node *n,
512 struct throtl_service_queue *parent_sq)
514 rb_erase_cached(n, &parent_sq->pending_tree);
518 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
520 struct throtl_grp *tg;
522 tg = throtl_rb_first(parent_sq);
526 parent_sq->first_pending_disptime = tg->disptime;
529 static void tg_service_queue_add(struct throtl_grp *tg)
531 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
532 struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node;
533 struct rb_node *parent = NULL;
534 struct throtl_grp *__tg;
535 unsigned long key = tg->disptime;
536 bool leftmost = true;
538 while (*node != NULL) {
540 __tg = rb_entry_tg(parent);
542 if (time_before(key, __tg->disptime))
543 node = &parent->rb_left;
545 node = &parent->rb_right;
550 rb_link_node(&tg->rb_node, parent, node);
551 rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree,
555 static void throtl_enqueue_tg(struct throtl_grp *tg)
557 if (!(tg->flags & THROTL_TG_PENDING)) {
558 tg_service_queue_add(tg);
559 tg->flags |= THROTL_TG_PENDING;
560 tg->service_queue.parent_sq->nr_pending++;
564 static void throtl_dequeue_tg(struct throtl_grp *tg)
566 if (tg->flags & THROTL_TG_PENDING) {
567 struct throtl_service_queue *parent_sq =
568 tg->service_queue.parent_sq;
570 throtl_rb_erase(&tg->rb_node, parent_sq);
571 --parent_sq->nr_pending;
572 tg->flags &= ~THROTL_TG_PENDING;
576 /* Call with queue lock held */
577 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
578 unsigned long expires)
580 unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
583 * Since we are adjusting the throttle limit dynamically, the sleep
584 * time calculated according to previous limit might be invalid. It's
585 * possible the cgroup sleep time is very long and no other cgroups
586 * have IO running so notify the limit changes. Make sure the cgroup
587 * doesn't sleep too long to avoid the missed notification.
589 if (time_after(expires, max_expire))
590 expires = max_expire;
591 mod_timer(&sq->pending_timer, expires);
592 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
593 expires - jiffies, jiffies);
597 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
598 * @sq: the service_queue to schedule dispatch for
599 * @force: force scheduling
601 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
602 * dispatch time of the first pending child. Returns %true if either timer
603 * is armed or there's no pending child left. %false if the current
604 * dispatch window is still open and the caller should continue
607 * If @force is %true, the dispatch timer is always scheduled and this
608 * function is guaranteed to return %true. This is to be used when the
609 * caller can't dispatch itself and needs to invoke pending_timer
610 * unconditionally. Note that forced scheduling is likely to induce short
611 * delay before dispatch starts even if @sq->first_pending_disptime is not
612 * in the future and thus shouldn't be used in hot paths.
614 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
617 /* any pending children left? */
621 update_min_dispatch_time(sq);
623 /* is the next dispatch time in the future? */
624 if (force || time_after(sq->first_pending_disptime, jiffies)) {
625 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
629 /* tell the caller to continue dispatching */
633 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
634 bool rw, unsigned long start)
636 tg->bytes_disp[rw] = 0;
638 tg->carryover_bytes[rw] = 0;
639 tg->carryover_ios[rw] = 0;
642 * Previous slice has expired. We must have trimmed it after last
643 * bio dispatch. That means since start of last slice, we never used
644 * that bandwidth. Do try to make use of that bandwidth while giving
647 if (time_after(start, tg->slice_start[rw]))
648 tg->slice_start[rw] = start;
650 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
651 throtl_log(&tg->service_queue,
652 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
653 rw == READ ? 'R' : 'W', tg->slice_start[rw],
654 tg->slice_end[rw], jiffies);
657 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw,
658 bool clear_carryover)
660 tg->bytes_disp[rw] = 0;
662 tg->slice_start[rw] = jiffies;
663 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
664 if (clear_carryover) {
665 tg->carryover_bytes[rw] = 0;
666 tg->carryover_ios[rw] = 0;
669 throtl_log(&tg->service_queue,
670 "[%c] new slice start=%lu end=%lu jiffies=%lu",
671 rw == READ ? 'R' : 'W', tg->slice_start[rw],
672 tg->slice_end[rw], jiffies);
675 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
676 unsigned long jiffy_end)
678 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
681 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
682 unsigned long jiffy_end)
684 throtl_set_slice_end(tg, rw, jiffy_end);
685 throtl_log(&tg->service_queue,
686 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
687 rw == READ ? 'R' : 'W', tg->slice_start[rw],
688 tg->slice_end[rw], jiffies);
691 /* Determine if previously allocated or extended slice is complete or not */
692 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
694 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
700 static unsigned int calculate_io_allowed(u32 iops_limit,
701 unsigned long jiffy_elapsed)
703 unsigned int io_allowed;
707 * jiffy_elapsed should not be a big value as minimum iops can be
708 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
709 * will allow dispatch after 1 second and after that slice should
713 tmp = (u64)iops_limit * jiffy_elapsed;
717 io_allowed = UINT_MAX;
724 static u64 calculate_bytes_allowed(u64 bps_limit, unsigned long jiffy_elapsed)
726 return mul_u64_u64_div_u64(bps_limit, (u64)jiffy_elapsed, (u64)HZ);
729 /* Trim the used slices and adjust slice start accordingly */
730 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
732 unsigned long time_elapsed;
733 long long bytes_trim;
736 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
739 * If bps are unlimited (-1), then time slice don't get
740 * renewed. Don't try to trim the slice if slice is used. A new
741 * slice will start when appropriate.
743 if (throtl_slice_used(tg, rw))
747 * A bio has been dispatched. Also adjust slice_end. It might happen
748 * that initially cgroup limit was very low resulting in high
749 * slice_end, but later limit was bumped up and bio was dispatched
750 * sooner, then we need to reduce slice_end. A high bogus slice_end
751 * is bad because it does not allow new slice to start.
754 throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
756 time_elapsed = rounddown(jiffies - tg->slice_start[rw],
757 tg->td->throtl_slice);
761 bytes_trim = calculate_bytes_allowed(tg_bps_limit(tg, rw),
763 tg->carryover_bytes[rw];
764 io_trim = calculate_io_allowed(tg_iops_limit(tg, rw), time_elapsed) +
765 tg->carryover_ios[rw];
766 if (bytes_trim <= 0 && io_trim <= 0)
769 tg->carryover_bytes[rw] = 0;
770 if ((long long)tg->bytes_disp[rw] >= bytes_trim)
771 tg->bytes_disp[rw] -= bytes_trim;
773 tg->bytes_disp[rw] = 0;
775 tg->carryover_ios[rw] = 0;
776 if ((int)tg->io_disp[rw] >= io_trim)
777 tg->io_disp[rw] -= io_trim;
781 tg->slice_start[rw] += time_elapsed;
783 throtl_log(&tg->service_queue,
784 "[%c] trim slice nr=%lu bytes=%lld io=%d start=%lu end=%lu jiffies=%lu",
785 rw == READ ? 'R' : 'W', time_elapsed / tg->td->throtl_slice,
786 bytes_trim, io_trim, tg->slice_start[rw], tg->slice_end[rw],
790 static void __tg_update_carryover(struct throtl_grp *tg, bool rw)
792 unsigned long jiffy_elapsed = jiffies - tg->slice_start[rw];
793 u64 bps_limit = tg_bps_limit(tg, rw);
794 u32 iops_limit = tg_iops_limit(tg, rw);
797 * If config is updated while bios are still throttled, calculate and
798 * accumulate how many bytes/ios are waited across changes. And
799 * carryover_bytes/ios will be used to calculate new wait time under new
802 if (bps_limit != U64_MAX)
803 tg->carryover_bytes[rw] +=
804 calculate_bytes_allowed(bps_limit, jiffy_elapsed) -
806 if (iops_limit != UINT_MAX)
807 tg->carryover_ios[rw] +=
808 calculate_io_allowed(iops_limit, jiffy_elapsed) -
812 static void tg_update_carryover(struct throtl_grp *tg)
814 if (tg->service_queue.nr_queued[READ])
815 __tg_update_carryover(tg, READ);
816 if (tg->service_queue.nr_queued[WRITE])
817 __tg_update_carryover(tg, WRITE);
819 /* see comments in struct throtl_grp for meaning of these fields. */
820 throtl_log(&tg->service_queue, "%s: %lld %lld %d %d\n", __func__,
821 tg->carryover_bytes[READ], tg->carryover_bytes[WRITE],
822 tg->carryover_ios[READ], tg->carryover_ios[WRITE]);
825 static unsigned long tg_within_iops_limit(struct throtl_grp *tg, struct bio *bio,
828 bool rw = bio_data_dir(bio);
830 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
832 if (iops_limit == UINT_MAX) {
836 jiffy_elapsed = jiffies - tg->slice_start[rw];
838 /* Round up to the next throttle slice, wait time must be nonzero */
839 jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
840 io_allowed = calculate_io_allowed(iops_limit, jiffy_elapsed_rnd) +
841 tg->carryover_ios[rw];
842 if (io_allowed > 0 && tg->io_disp[rw] + 1 <= io_allowed)
845 /* Calc approx time to dispatch */
846 jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
850 static unsigned long tg_within_bps_limit(struct throtl_grp *tg, struct bio *bio,
853 bool rw = bio_data_dir(bio);
854 long long bytes_allowed;
856 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
857 unsigned int bio_size = throtl_bio_data_size(bio);
859 /* no need to throttle if this bio's bytes have been accounted */
860 if (bps_limit == U64_MAX || bio_flagged(bio, BIO_BPS_THROTTLED)) {
864 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
866 /* Slice has just started. Consider one slice interval */
868 jiffy_elapsed_rnd = tg->td->throtl_slice;
870 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
871 bytes_allowed = calculate_bytes_allowed(bps_limit, jiffy_elapsed_rnd) +
872 tg->carryover_bytes[rw];
873 if (bytes_allowed > 0 && tg->bytes_disp[rw] + bio_size <= bytes_allowed)
876 /* Calc approx time to dispatch */
877 extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
878 jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit);
884 * This wait time is without taking into consideration the rounding
885 * up we did. Add that time also.
887 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
892 * Returns whether one can dispatch a bio or not. Also returns approx number
893 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
895 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
898 bool rw = bio_data_dir(bio);
899 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
900 u64 bps_limit = tg_bps_limit(tg, rw);
901 u32 iops_limit = tg_iops_limit(tg, rw);
904 * Currently whole state machine of group depends on first bio
905 * queued in the group bio list. So one should not be calling
906 * this function with a different bio if there are other bios
909 BUG_ON(tg->service_queue.nr_queued[rw] &&
910 bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
912 /* If tg->bps = -1, then BW is unlimited */
913 if ((bps_limit == U64_MAX && iops_limit == UINT_MAX) ||
914 tg->flags & THROTL_TG_CANCELING) {
921 * If previous slice expired, start a new one otherwise renew/extend
922 * existing slice to make sure it is at least throtl_slice interval
923 * long since now. New slice is started only for empty throttle group.
924 * If there is queued bio, that means there should be an active
925 * slice and it should be extended instead.
927 if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
928 throtl_start_new_slice(tg, rw, true);
930 if (time_before(tg->slice_end[rw],
931 jiffies + tg->td->throtl_slice))
932 throtl_extend_slice(tg, rw,
933 jiffies + tg->td->throtl_slice);
936 bps_wait = tg_within_bps_limit(tg, bio, bps_limit);
937 iops_wait = tg_within_iops_limit(tg, bio, iops_limit);
938 if (bps_wait + iops_wait == 0) {
944 max_wait = max(bps_wait, iops_wait);
949 if (time_before(tg->slice_end[rw], jiffies + max_wait))
950 throtl_extend_slice(tg, rw, jiffies + max_wait);
955 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
957 bool rw = bio_data_dir(bio);
958 unsigned int bio_size = throtl_bio_data_size(bio);
960 /* Charge the bio to the group */
961 if (!bio_flagged(bio, BIO_BPS_THROTTLED)) {
962 tg->bytes_disp[rw] += bio_size;
963 tg->last_bytes_disp[rw] += bio_size;
967 tg->last_io_disp[rw]++;
971 * throtl_add_bio_tg - add a bio to the specified throtl_grp
974 * @tg: the target throtl_grp
976 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
977 * tg->qnode_on_self[] is used.
979 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
980 struct throtl_grp *tg)
982 struct throtl_service_queue *sq = &tg->service_queue;
983 bool rw = bio_data_dir(bio);
986 qn = &tg->qnode_on_self[rw];
989 * If @tg doesn't currently have any bios queued in the same
990 * direction, queueing @bio can change when @tg should be
991 * dispatched. Mark that @tg was empty. This is automatically
992 * cleared on the next tg_update_disptime().
994 if (!sq->nr_queued[rw])
995 tg->flags |= THROTL_TG_WAS_EMPTY;
997 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1000 throtl_enqueue_tg(tg);
1003 static void tg_update_disptime(struct throtl_grp *tg)
1005 struct throtl_service_queue *sq = &tg->service_queue;
1006 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1009 bio = throtl_peek_queued(&sq->queued[READ]);
1011 tg_may_dispatch(tg, bio, &read_wait);
1013 bio = throtl_peek_queued(&sq->queued[WRITE]);
1015 tg_may_dispatch(tg, bio, &write_wait);
1017 min_wait = min(read_wait, write_wait);
1018 disptime = jiffies + min_wait;
1020 /* Update dispatch time */
1021 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
1022 tg->disptime = disptime;
1023 tg_service_queue_add(tg);
1025 /* see throtl_add_bio_tg() */
1026 tg->flags &= ~THROTL_TG_WAS_EMPTY;
1029 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1030 struct throtl_grp *parent_tg, bool rw)
1032 if (throtl_slice_used(parent_tg, rw)) {
1033 throtl_start_new_slice_with_credit(parent_tg, rw,
1034 child_tg->slice_start[rw]);
1039 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1041 struct throtl_service_queue *sq = &tg->service_queue;
1042 struct throtl_service_queue *parent_sq = sq->parent_sq;
1043 struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1044 struct throtl_grp *tg_to_put = NULL;
1048 * @bio is being transferred from @tg to @parent_sq. Popping a bio
1049 * from @tg may put its reference and @parent_sq might end up
1050 * getting released prematurely. Remember the tg to put and put it
1051 * after @bio is transferred to @parent_sq.
1053 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1054 sq->nr_queued[rw]--;
1056 throtl_charge_bio(tg, bio);
1059 * If our parent is another tg, we just need to transfer @bio to
1060 * the parent using throtl_add_bio_tg(). If our parent is
1061 * @td->service_queue, @bio is ready to be issued. Put it on its
1062 * bio_lists[] and decrease total number queued. The caller is
1063 * responsible for issuing these bios.
1066 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1067 start_parent_slice_with_credit(tg, parent_tg, rw);
1069 bio_set_flag(bio, BIO_BPS_THROTTLED);
1070 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1071 &parent_sq->queued[rw]);
1072 BUG_ON(tg->td->nr_queued[rw] <= 0);
1073 tg->td->nr_queued[rw]--;
1076 throtl_trim_slice(tg, rw);
1079 blkg_put(tg_to_blkg(tg_to_put));
1082 static int throtl_dispatch_tg(struct throtl_grp *tg)
1084 struct throtl_service_queue *sq = &tg->service_queue;
1085 unsigned int nr_reads = 0, nr_writes = 0;
1086 unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4;
1087 unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads;
1090 /* Try to dispatch 75% READS and 25% WRITES */
1092 while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1093 tg_may_dispatch(tg, bio, NULL)) {
1095 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1098 if (nr_reads >= max_nr_reads)
1102 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1103 tg_may_dispatch(tg, bio, NULL)) {
1105 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1108 if (nr_writes >= max_nr_writes)
1112 return nr_reads + nr_writes;
1115 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1117 unsigned int nr_disp = 0;
1120 struct throtl_grp *tg;
1121 struct throtl_service_queue *sq;
1123 if (!parent_sq->nr_pending)
1126 tg = throtl_rb_first(parent_sq);
1130 if (time_before(jiffies, tg->disptime))
1133 nr_disp += throtl_dispatch_tg(tg);
1135 sq = &tg->service_queue;
1136 if (sq->nr_queued[READ] || sq->nr_queued[WRITE])
1137 tg_update_disptime(tg);
1139 throtl_dequeue_tg(tg);
1141 if (nr_disp >= THROTL_QUANTUM)
1148 static bool throtl_can_upgrade(struct throtl_data *td,
1149 struct throtl_grp *this_tg);
1151 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1152 * @t: the pending_timer member of the throtl_service_queue being serviced
1154 * This timer is armed when a child throtl_grp with active bio's become
1155 * pending and queued on the service_queue's pending_tree and expires when
1156 * the first child throtl_grp should be dispatched. This function
1157 * dispatches bio's from the children throtl_grps to the parent
1160 * If the parent's parent is another throtl_grp, dispatching is propagated
1161 * by either arming its pending_timer or repeating dispatch directly. If
1162 * the top-level service_tree is reached, throtl_data->dispatch_work is
1163 * kicked so that the ready bio's are issued.
1165 static void throtl_pending_timer_fn(struct timer_list *t)
1167 struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1168 struct throtl_grp *tg = sq_to_tg(sq);
1169 struct throtl_data *td = sq_to_td(sq);
1170 struct throtl_service_queue *parent_sq;
1171 struct request_queue *q;
1175 /* throtl_data may be gone, so figure out request queue by blkg */
1181 spin_lock_irq(&q->queue_lock);
1186 if (throtl_can_upgrade(td, NULL))
1187 throtl_upgrade_state(td);
1190 parent_sq = sq->parent_sq;
1194 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1195 sq->nr_queued[READ] + sq->nr_queued[WRITE],
1196 sq->nr_queued[READ], sq->nr_queued[WRITE]);
1198 ret = throtl_select_dispatch(sq);
1200 throtl_log(sq, "bios disp=%u", ret);
1204 if (throtl_schedule_next_dispatch(sq, false))
1207 /* this dispatch windows is still open, relax and repeat */
1208 spin_unlock_irq(&q->queue_lock);
1210 spin_lock_irq(&q->queue_lock);
1217 /* @parent_sq is another throl_grp, propagate dispatch */
1218 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1219 tg_update_disptime(tg);
1220 if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1221 /* window is already open, repeat dispatching */
1228 /* reached the top-level, queue issuing */
1229 queue_work(kthrotld_workqueue, &td->dispatch_work);
1232 spin_unlock_irq(&q->queue_lock);
1236 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1237 * @work: work item being executed
1239 * This function is queued for execution when bios reach the bio_lists[]
1240 * of throtl_data->service_queue. Those bios are ready and issued by this
1243 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1245 struct throtl_data *td = container_of(work, struct throtl_data,
1247 struct throtl_service_queue *td_sq = &td->service_queue;
1248 struct request_queue *q = td->queue;
1249 struct bio_list bio_list_on_stack;
1251 struct blk_plug plug;
1254 bio_list_init(&bio_list_on_stack);
1256 spin_lock_irq(&q->queue_lock);
1257 for (rw = READ; rw <= WRITE; rw++)
1258 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1259 bio_list_add(&bio_list_on_stack, bio);
1260 spin_unlock_irq(&q->queue_lock);
1262 if (!bio_list_empty(&bio_list_on_stack)) {
1263 blk_start_plug(&plug);
1264 while ((bio = bio_list_pop(&bio_list_on_stack)))
1265 submit_bio_noacct_nocheck(bio);
1266 blk_finish_plug(&plug);
1270 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1273 struct throtl_grp *tg = pd_to_tg(pd);
1274 u64 v = *(u64 *)((void *)tg + off);
1278 return __blkg_prfill_u64(sf, pd, v);
1281 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1284 struct throtl_grp *tg = pd_to_tg(pd);
1285 unsigned int v = *(unsigned int *)((void *)tg + off);
1289 return __blkg_prfill_u64(sf, pd, v);
1292 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1294 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1295 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1299 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1301 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1302 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1306 static void tg_conf_updated(struct throtl_grp *tg, bool global)
1308 struct throtl_service_queue *sq = &tg->service_queue;
1309 struct cgroup_subsys_state *pos_css;
1310 struct blkcg_gq *blkg;
1312 throtl_log(&tg->service_queue,
1313 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1314 tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1315 tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1318 * Update has_rules[] flags for the updated tg's subtree. A tg is
1319 * considered to have rules if either the tg itself or any of its
1320 * ancestors has rules. This identifies groups without any
1321 * restrictions in the whole hierarchy and allows them to bypass
1324 blkg_for_each_descendant_pre(blkg, pos_css,
1325 global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1326 struct throtl_grp *this_tg = blkg_to_tg(blkg);
1327 struct throtl_grp *parent_tg;
1329 tg_update_has_rules(this_tg);
1330 /* ignore root/second level */
1331 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1332 !blkg->parent->parent)
1334 parent_tg = blkg_to_tg(blkg->parent);
1336 * make sure all children has lower idle time threshold and
1337 * higher latency target
1339 this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1340 parent_tg->idletime_threshold);
1341 this_tg->latency_target = max(this_tg->latency_target,
1342 parent_tg->latency_target);
1346 * We're already holding queue_lock and know @tg is valid. Let's
1347 * apply the new config directly.
1349 * Restart the slices for both READ and WRITES. It might happen
1350 * that a group's limit are dropped suddenly and we don't want to
1351 * account recently dispatched IO with new low rate.
1353 throtl_start_new_slice(tg, READ, false);
1354 throtl_start_new_slice(tg, WRITE, false);
1356 if (tg->flags & THROTL_TG_PENDING) {
1357 tg_update_disptime(tg);
1358 throtl_schedule_next_dispatch(sq->parent_sq, true);
1362 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1363 char *buf, size_t nbytes, loff_t off, bool is_u64)
1365 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1366 struct blkg_conf_ctx ctx;
1367 struct throtl_grp *tg;
1371 blkg_conf_init(&ctx, buf);
1373 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, &ctx);
1378 if (sscanf(ctx.body, "%llu", &v) != 1)
1383 tg = blkg_to_tg(ctx.blkg);
1384 tg_update_carryover(tg);
1387 *(u64 *)((void *)tg + of_cft(of)->private) = v;
1389 *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1391 tg_conf_updated(tg, false);
1394 blkg_conf_exit(&ctx);
1395 return ret ?: nbytes;
1398 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1399 char *buf, size_t nbytes, loff_t off)
1401 return tg_set_conf(of, buf, nbytes, off, true);
1404 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1405 char *buf, size_t nbytes, loff_t off)
1407 return tg_set_conf(of, buf, nbytes, off, false);
1410 static int tg_print_rwstat(struct seq_file *sf, void *v)
1412 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1413 blkg_prfill_rwstat, &blkcg_policy_throtl,
1414 seq_cft(sf)->private, true);
1418 static u64 tg_prfill_rwstat_recursive(struct seq_file *sf,
1419 struct blkg_policy_data *pd, int off)
1421 struct blkg_rwstat_sample sum;
1423 blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off,
1425 return __blkg_prfill_rwstat(sf, pd, &sum);
1428 static int tg_print_rwstat_recursive(struct seq_file *sf, void *v)
1430 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1431 tg_prfill_rwstat_recursive, &blkcg_policy_throtl,
1432 seq_cft(sf)->private, true);
1436 static struct cftype throtl_legacy_files[] = {
1438 .name = "throttle.read_bps_device",
1439 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1440 .seq_show = tg_print_conf_u64,
1441 .write = tg_set_conf_u64,
1444 .name = "throttle.write_bps_device",
1445 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1446 .seq_show = tg_print_conf_u64,
1447 .write = tg_set_conf_u64,
1450 .name = "throttle.read_iops_device",
1451 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1452 .seq_show = tg_print_conf_uint,
1453 .write = tg_set_conf_uint,
1456 .name = "throttle.write_iops_device",
1457 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1458 .seq_show = tg_print_conf_uint,
1459 .write = tg_set_conf_uint,
1462 .name = "throttle.io_service_bytes",
1463 .private = offsetof(struct throtl_grp, stat_bytes),
1464 .seq_show = tg_print_rwstat,
1467 .name = "throttle.io_service_bytes_recursive",
1468 .private = offsetof(struct throtl_grp, stat_bytes),
1469 .seq_show = tg_print_rwstat_recursive,
1472 .name = "throttle.io_serviced",
1473 .private = offsetof(struct throtl_grp, stat_ios),
1474 .seq_show = tg_print_rwstat,
1477 .name = "throttle.io_serviced_recursive",
1478 .private = offsetof(struct throtl_grp, stat_ios),
1479 .seq_show = tg_print_rwstat_recursive,
1484 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1487 struct throtl_grp *tg = pd_to_tg(pd);
1488 const char *dname = blkg_dev_name(pd->blkg);
1489 char bufs[4][21] = { "max", "max", "max", "max" };
1491 unsigned int iops_dft;
1492 char idle_time[26] = "";
1493 char latency_time[26] = "";
1498 if (off == LIMIT_LOW) {
1503 iops_dft = UINT_MAX;
1506 if (tg->bps_conf[READ][off] == bps_dft &&
1507 tg->bps_conf[WRITE][off] == bps_dft &&
1508 tg->iops_conf[READ][off] == iops_dft &&
1509 tg->iops_conf[WRITE][off] == iops_dft &&
1510 (off != LIMIT_LOW ||
1511 (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1512 tg->latency_target_conf == DFL_LATENCY_TARGET)))
1515 if (tg->bps_conf[READ][off] != U64_MAX)
1516 snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1517 tg->bps_conf[READ][off]);
1518 if (tg->bps_conf[WRITE][off] != U64_MAX)
1519 snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1520 tg->bps_conf[WRITE][off]);
1521 if (tg->iops_conf[READ][off] != UINT_MAX)
1522 snprintf(bufs[2], sizeof(bufs[2]), "%u",
1523 tg->iops_conf[READ][off]);
1524 if (tg->iops_conf[WRITE][off] != UINT_MAX)
1525 snprintf(bufs[3], sizeof(bufs[3]), "%u",
1526 tg->iops_conf[WRITE][off]);
1527 if (off == LIMIT_LOW) {
1528 if (tg->idletime_threshold_conf == ULONG_MAX)
1529 strcpy(idle_time, " idle=max");
1531 snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1532 tg->idletime_threshold_conf);
1534 if (tg->latency_target_conf == ULONG_MAX)
1535 strcpy(latency_time, " latency=max");
1537 snprintf(latency_time, sizeof(latency_time),
1538 " latency=%lu", tg->latency_target_conf);
1541 seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1542 dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1547 static int tg_print_limit(struct seq_file *sf, void *v)
1549 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1550 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1554 static ssize_t tg_set_limit(struct kernfs_open_file *of,
1555 char *buf, size_t nbytes, loff_t off)
1557 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1558 struct blkg_conf_ctx ctx;
1559 struct throtl_grp *tg;
1561 unsigned long idle_time;
1562 unsigned long latency_time;
1564 int index = of_cft(of)->private;
1566 blkg_conf_init(&ctx, buf);
1568 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, &ctx);
1572 tg = blkg_to_tg(ctx.blkg);
1573 tg_update_carryover(tg);
1575 v[0] = tg->bps_conf[READ][index];
1576 v[1] = tg->bps_conf[WRITE][index];
1577 v[2] = tg->iops_conf[READ][index];
1578 v[3] = tg->iops_conf[WRITE][index];
1580 idle_time = tg->idletime_threshold_conf;
1581 latency_time = tg->latency_target_conf;
1583 char tok[27]; /* wiops=18446744073709551616 */
1588 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1597 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1605 if (!strcmp(tok, "rbps") && val > 1)
1607 else if (!strcmp(tok, "wbps") && val > 1)
1609 else if (!strcmp(tok, "riops") && val > 1)
1610 v[2] = min_t(u64, val, UINT_MAX);
1611 else if (!strcmp(tok, "wiops") && val > 1)
1612 v[3] = min_t(u64, val, UINT_MAX);
1613 else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1615 else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1621 tg->bps_conf[READ][index] = v[0];
1622 tg->bps_conf[WRITE][index] = v[1];
1623 tg->iops_conf[READ][index] = v[2];
1624 tg->iops_conf[WRITE][index] = v[3];
1626 if (index == LIMIT_MAX) {
1627 tg->bps[READ][index] = v[0];
1628 tg->bps[WRITE][index] = v[1];
1629 tg->iops[READ][index] = v[2];
1630 tg->iops[WRITE][index] = v[3];
1632 tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1633 tg->bps_conf[READ][LIMIT_MAX]);
1634 tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1635 tg->bps_conf[WRITE][LIMIT_MAX]);
1636 tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1637 tg->iops_conf[READ][LIMIT_MAX]);
1638 tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1639 tg->iops_conf[WRITE][LIMIT_MAX]);
1640 tg->idletime_threshold_conf = idle_time;
1641 tg->latency_target_conf = latency_time;
1643 /* force user to configure all settings for low limit */
1644 if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1645 tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1646 tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1647 tg->latency_target_conf == DFL_LATENCY_TARGET) {
1648 tg->bps[READ][LIMIT_LOW] = 0;
1649 tg->bps[WRITE][LIMIT_LOW] = 0;
1650 tg->iops[READ][LIMIT_LOW] = 0;
1651 tg->iops[WRITE][LIMIT_LOW] = 0;
1652 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1653 tg->latency_target = DFL_LATENCY_TARGET;
1654 } else if (index == LIMIT_LOW) {
1655 tg->idletime_threshold = tg->idletime_threshold_conf;
1656 tg->latency_target = tg->latency_target_conf;
1659 blk_throtl_update_limit_valid(tg->td);
1660 if (tg->td->limit_valid[LIMIT_LOW]) {
1661 if (index == LIMIT_LOW)
1662 tg->td->limit_index = LIMIT_LOW;
1664 tg->td->limit_index = LIMIT_MAX;
1665 tg_conf_updated(tg, index == LIMIT_LOW &&
1666 tg->td->limit_valid[LIMIT_LOW]);
1669 blkg_conf_exit(&ctx);
1670 return ret ?: nbytes;
1673 static struct cftype throtl_files[] = {
1674 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1677 .flags = CFTYPE_NOT_ON_ROOT,
1678 .seq_show = tg_print_limit,
1679 .write = tg_set_limit,
1680 .private = LIMIT_LOW,
1685 .flags = CFTYPE_NOT_ON_ROOT,
1686 .seq_show = tg_print_limit,
1687 .write = tg_set_limit,
1688 .private = LIMIT_MAX,
1693 static void throtl_shutdown_wq(struct request_queue *q)
1695 struct throtl_data *td = q->td;
1697 cancel_work_sync(&td->dispatch_work);
1700 struct blkcg_policy blkcg_policy_throtl = {
1701 .dfl_cftypes = throtl_files,
1702 .legacy_cftypes = throtl_legacy_files,
1704 .pd_alloc_fn = throtl_pd_alloc,
1705 .pd_init_fn = throtl_pd_init,
1706 .pd_online_fn = throtl_pd_online,
1707 .pd_offline_fn = throtl_pd_offline,
1708 .pd_free_fn = throtl_pd_free,
1711 void blk_throtl_cancel_bios(struct gendisk *disk)
1713 struct request_queue *q = disk->queue;
1714 struct cgroup_subsys_state *pos_css;
1715 struct blkcg_gq *blkg;
1717 spin_lock_irq(&q->queue_lock);
1719 * queue_lock is held, rcu lock is not needed here technically.
1720 * However, rcu lock is still held to emphasize that following
1721 * path need RCU protection and to prevent warning from lockdep.
1724 blkg_for_each_descendant_post(blkg, pos_css, q->root_blkg) {
1725 struct throtl_grp *tg = blkg_to_tg(blkg);
1726 struct throtl_service_queue *sq = &tg->service_queue;
1729 * Set the flag to make sure throtl_pending_timer_fn() won't
1730 * stop until all throttled bios are dispatched.
1732 tg->flags |= THROTL_TG_CANCELING;
1735 * Do not dispatch cgroup without THROTL_TG_PENDING or cgroup
1736 * will be inserted to service queue without THROTL_TG_PENDING
1737 * set in tg_update_disptime below. Then IO dispatched from
1738 * child in tg_dispatch_one_bio will trigger double insertion
1739 * and corrupt the tree.
1741 if (!(tg->flags & THROTL_TG_PENDING))
1745 * Update disptime after setting the above flag to make sure
1746 * throtl_select_dispatch() won't exit without dispatching.
1748 tg_update_disptime(tg);
1750 throtl_schedule_pending_timer(sq, jiffies + 1);
1753 spin_unlock_irq(&q->queue_lock);
1756 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1757 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1759 unsigned long rtime = jiffies, wtime = jiffies;
1761 if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1762 rtime = tg->last_low_overflow_time[READ];
1763 if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1764 wtime = tg->last_low_overflow_time[WRITE];
1765 return min(rtime, wtime);
1768 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1770 struct throtl_service_queue *parent_sq;
1771 struct throtl_grp *parent = tg;
1772 unsigned long ret = __tg_last_low_overflow_time(tg);
1775 parent_sq = parent->service_queue.parent_sq;
1776 parent = sq_to_tg(parent_sq);
1781 * The parent doesn't have low limit, it always reaches low
1782 * limit. Its overflow time is useless for children
1784 if (!parent->bps[READ][LIMIT_LOW] &&
1785 !parent->iops[READ][LIMIT_LOW] &&
1786 !parent->bps[WRITE][LIMIT_LOW] &&
1787 !parent->iops[WRITE][LIMIT_LOW])
1789 if (time_after(__tg_last_low_overflow_time(parent), ret))
1790 ret = __tg_last_low_overflow_time(parent);
1795 static bool throtl_tg_is_idle(struct throtl_grp *tg)
1798 * cgroup is idle if:
1799 * - single idle is too long, longer than a fixed value (in case user
1800 * configure a too big threshold) or 4 times of idletime threshold
1801 * - average think time is more than threshold
1802 * - IO latency is largely below threshold
1807 time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1808 ret = tg->latency_target == DFL_LATENCY_TARGET ||
1809 tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1810 (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1811 tg->avg_idletime > tg->idletime_threshold ||
1812 (tg->latency_target && tg->bio_cnt &&
1813 tg->bad_bio_cnt * 5 < tg->bio_cnt);
1814 throtl_log(&tg->service_queue,
1815 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1816 tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1817 tg->bio_cnt, ret, tg->td->scale);
1821 static bool throtl_low_limit_reached(struct throtl_grp *tg, int rw)
1823 struct throtl_service_queue *sq = &tg->service_queue;
1824 bool limit = tg->bps[rw][LIMIT_LOW] || tg->iops[rw][LIMIT_LOW];
1827 * if low limit is zero, low limit is always reached.
1828 * if low limit is non-zero, we can check if there is any request
1829 * is queued to determine if low limit is reached as we throttle
1830 * request according to limit.
1832 return !limit || sq->nr_queued[rw];
1835 static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1838 * cgroup reaches low limit when low limit of READ and WRITE are
1839 * both reached, it's ok to upgrade to next limit if cgroup reaches
1842 if (throtl_low_limit_reached(tg, READ) &&
1843 throtl_low_limit_reached(tg, WRITE))
1846 if (time_after_eq(jiffies,
1847 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1848 throtl_tg_is_idle(tg))
1853 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1856 if (throtl_tg_can_upgrade(tg))
1858 tg = sq_to_tg(tg->service_queue.parent_sq);
1859 if (!tg || !tg_to_blkg(tg)->parent)
1865 static bool throtl_can_upgrade(struct throtl_data *td,
1866 struct throtl_grp *this_tg)
1868 struct cgroup_subsys_state *pos_css;
1869 struct blkcg_gq *blkg;
1871 if (td->limit_index != LIMIT_LOW)
1874 if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1878 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1879 struct throtl_grp *tg = blkg_to_tg(blkg);
1883 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1885 if (!throtl_hierarchy_can_upgrade(tg)) {
1894 static void throtl_upgrade_check(struct throtl_grp *tg)
1896 unsigned long now = jiffies;
1898 if (tg->td->limit_index != LIMIT_LOW)
1901 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1904 tg->last_check_time = now;
1906 if (!time_after_eq(now,
1907 __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1910 if (throtl_can_upgrade(tg->td, NULL))
1911 throtl_upgrade_state(tg->td);
1914 static void throtl_upgrade_state(struct throtl_data *td)
1916 struct cgroup_subsys_state *pos_css;
1917 struct blkcg_gq *blkg;
1919 throtl_log(&td->service_queue, "upgrade to max");
1920 td->limit_index = LIMIT_MAX;
1921 td->low_upgrade_time = jiffies;
1924 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1925 struct throtl_grp *tg = blkg_to_tg(blkg);
1926 struct throtl_service_queue *sq = &tg->service_queue;
1928 tg->disptime = jiffies - 1;
1929 throtl_select_dispatch(sq);
1930 throtl_schedule_next_dispatch(sq, true);
1933 throtl_select_dispatch(&td->service_queue);
1934 throtl_schedule_next_dispatch(&td->service_queue, true);
1935 queue_work(kthrotld_workqueue, &td->dispatch_work);
1938 static void throtl_downgrade_state(struct throtl_data *td)
1942 throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1944 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1948 td->limit_index = LIMIT_LOW;
1949 td->low_downgrade_time = jiffies;
1952 static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1954 struct throtl_data *td = tg->td;
1955 unsigned long now = jiffies;
1958 * If cgroup is below low limit, consider downgrade and throttle other
1961 if (time_after_eq(now, tg_last_low_overflow_time(tg) +
1962 td->throtl_slice) &&
1963 (!throtl_tg_is_idle(tg) ||
1964 !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
1969 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
1971 struct throtl_data *td = tg->td;
1973 if (time_before(jiffies, td->low_upgrade_time + td->throtl_slice))
1977 if (!throtl_tg_can_downgrade(tg))
1979 tg = sq_to_tg(tg->service_queue.parent_sq);
1980 if (!tg || !tg_to_blkg(tg)->parent)
1986 static void throtl_downgrade_check(struct throtl_grp *tg)
1990 unsigned long elapsed_time;
1991 unsigned long now = jiffies;
1993 if (tg->td->limit_index != LIMIT_MAX ||
1994 !tg->td->limit_valid[LIMIT_LOW])
1996 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1998 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
2001 elapsed_time = now - tg->last_check_time;
2002 tg->last_check_time = now;
2004 if (time_before(now, tg_last_low_overflow_time(tg) +
2005 tg->td->throtl_slice))
2008 if (tg->bps[READ][LIMIT_LOW]) {
2009 bps = tg->last_bytes_disp[READ] * HZ;
2010 do_div(bps, elapsed_time);
2011 if (bps >= tg->bps[READ][LIMIT_LOW])
2012 tg->last_low_overflow_time[READ] = now;
2015 if (tg->bps[WRITE][LIMIT_LOW]) {
2016 bps = tg->last_bytes_disp[WRITE] * HZ;
2017 do_div(bps, elapsed_time);
2018 if (bps >= tg->bps[WRITE][LIMIT_LOW])
2019 tg->last_low_overflow_time[WRITE] = now;
2022 if (tg->iops[READ][LIMIT_LOW]) {
2023 iops = tg->last_io_disp[READ] * HZ / elapsed_time;
2024 if (iops >= tg->iops[READ][LIMIT_LOW])
2025 tg->last_low_overflow_time[READ] = now;
2028 if (tg->iops[WRITE][LIMIT_LOW]) {
2029 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
2030 if (iops >= tg->iops[WRITE][LIMIT_LOW])
2031 tg->last_low_overflow_time[WRITE] = now;
2035 * If cgroup is below low limit, consider downgrade and throttle other
2038 if (throtl_hierarchy_can_downgrade(tg))
2039 throtl_downgrade_state(tg->td);
2041 tg->last_bytes_disp[READ] = 0;
2042 tg->last_bytes_disp[WRITE] = 0;
2043 tg->last_io_disp[READ] = 0;
2044 tg->last_io_disp[WRITE] = 0;
2047 static void blk_throtl_update_idletime(struct throtl_grp *tg)
2050 unsigned long last_finish_time = tg->last_finish_time;
2052 if (last_finish_time == 0)
2055 now = ktime_get_ns() >> 10;
2056 if (now <= last_finish_time ||
2057 last_finish_time == tg->checked_last_finish_time)
2060 tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2061 tg->checked_last_finish_time = last_finish_time;
2064 static void throtl_update_latency_buckets(struct throtl_data *td)
2066 struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
2068 unsigned long last_latency[2] = { 0 };
2069 unsigned long latency[2];
2071 if (!blk_queue_nonrot(td->queue) || !td->limit_valid[LIMIT_LOW])
2073 if (time_before(jiffies, td->last_calculate_time + HZ))
2075 td->last_calculate_time = jiffies;
2077 memset(avg_latency, 0, sizeof(avg_latency));
2078 for (rw = READ; rw <= WRITE; rw++) {
2079 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2080 struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
2082 for_each_possible_cpu(cpu) {
2083 struct latency_bucket *bucket;
2085 /* this isn't race free, but ok in practice */
2086 bucket = per_cpu_ptr(td->latency_buckets[rw],
2088 tmp->total_latency += bucket[i].total_latency;
2089 tmp->samples += bucket[i].samples;
2090 bucket[i].total_latency = 0;
2091 bucket[i].samples = 0;
2094 if (tmp->samples >= 32) {
2095 int samples = tmp->samples;
2097 latency[rw] = tmp->total_latency;
2099 tmp->total_latency = 0;
2101 latency[rw] /= samples;
2102 if (latency[rw] == 0)
2104 avg_latency[rw][i].latency = latency[rw];
2109 for (rw = READ; rw <= WRITE; rw++) {
2110 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2111 if (!avg_latency[rw][i].latency) {
2112 if (td->avg_buckets[rw][i].latency < last_latency[rw])
2113 td->avg_buckets[rw][i].latency =
2118 if (!td->avg_buckets[rw][i].valid)
2119 latency[rw] = avg_latency[rw][i].latency;
2121 latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2122 avg_latency[rw][i].latency) >> 3;
2124 td->avg_buckets[rw][i].latency = max(latency[rw],
2126 td->avg_buckets[rw][i].valid = true;
2127 last_latency[rw] = td->avg_buckets[rw][i].latency;
2131 for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2132 throtl_log(&td->service_queue,
2133 "Latency bucket %d: read latency=%ld, read valid=%d, "
2134 "write latency=%ld, write valid=%d", i,
2135 td->avg_buckets[READ][i].latency,
2136 td->avg_buckets[READ][i].valid,
2137 td->avg_buckets[WRITE][i].latency,
2138 td->avg_buckets[WRITE][i].valid);
2141 static inline void throtl_update_latency_buckets(struct throtl_data *td)
2145 static void blk_throtl_update_idletime(struct throtl_grp *tg)
2149 static void throtl_downgrade_check(struct throtl_grp *tg)
2153 static void throtl_upgrade_check(struct throtl_grp *tg)
2157 static bool throtl_can_upgrade(struct throtl_data *td,
2158 struct throtl_grp *this_tg)
2163 static void throtl_upgrade_state(struct throtl_data *td)
2168 bool __blk_throtl_bio(struct bio *bio)
2170 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2171 struct blkcg_gq *blkg = bio->bi_blkg;
2172 struct throtl_qnode *qn = NULL;
2173 struct throtl_grp *tg = blkg_to_tg(blkg);
2174 struct throtl_service_queue *sq;
2175 bool rw = bio_data_dir(bio);
2176 bool throttled = false;
2177 struct throtl_data *td = tg->td;
2181 spin_lock_irq(&q->queue_lock);
2183 throtl_update_latency_buckets(td);
2185 blk_throtl_update_idletime(tg);
2187 sq = &tg->service_queue;
2191 if (tg->last_low_overflow_time[rw] == 0)
2192 tg->last_low_overflow_time[rw] = jiffies;
2193 throtl_downgrade_check(tg);
2194 throtl_upgrade_check(tg);
2195 /* throtl is FIFO - if bios are already queued, should queue */
2196 if (sq->nr_queued[rw])
2199 /* if above limits, break to queue */
2200 if (!tg_may_dispatch(tg, bio, NULL)) {
2201 tg->last_low_overflow_time[rw] = jiffies;
2202 if (throtl_can_upgrade(td, tg)) {
2203 throtl_upgrade_state(td);
2209 /* within limits, let's charge and dispatch directly */
2210 throtl_charge_bio(tg, bio);
2213 * We need to trim slice even when bios are not being queued
2214 * otherwise it might happen that a bio is not queued for
2215 * a long time and slice keeps on extending and trim is not
2216 * called for a long time. Now if limits are reduced suddenly
2217 * we take into account all the IO dispatched so far at new
2218 * low rate and * newly queued IO gets a really long dispatch
2221 * So keep on trimming slice even if bio is not queued.
2223 throtl_trim_slice(tg, rw);
2226 * @bio passed through this layer without being throttled.
2227 * Climb up the ladder. If we're already at the top, it
2228 * can be executed directly.
2230 qn = &tg->qnode_on_parent[rw];
2234 bio_set_flag(bio, BIO_BPS_THROTTLED);
2239 /* out-of-limit, queue to @tg */
2240 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2241 rw == READ ? 'R' : 'W',
2242 tg->bytes_disp[rw], bio->bi_iter.bi_size,
2243 tg_bps_limit(tg, rw),
2244 tg->io_disp[rw], tg_iops_limit(tg, rw),
2245 sq->nr_queued[READ], sq->nr_queued[WRITE]);
2247 tg->last_low_overflow_time[rw] = jiffies;
2249 td->nr_queued[rw]++;
2250 throtl_add_bio_tg(bio, qn, tg);
2254 * Update @tg's dispatch time and force schedule dispatch if @tg
2255 * was empty before @bio. The forced scheduling isn't likely to
2256 * cause undue delay as @bio is likely to be dispatched directly if
2257 * its @tg's disptime is not in the future.
2259 if (tg->flags & THROTL_TG_WAS_EMPTY) {
2260 tg_update_disptime(tg);
2261 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2265 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2266 if (throttled || !td->track_bio_latency)
2267 bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
2269 spin_unlock_irq(&q->queue_lock);
2275 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2276 static void throtl_track_latency(struct throtl_data *td, sector_t size,
2277 enum req_op op, unsigned long time)
2279 const bool rw = op_is_write(op);
2280 struct latency_bucket *latency;
2283 if (!td || td->limit_index != LIMIT_LOW ||
2284 !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
2285 !blk_queue_nonrot(td->queue))
2288 index = request_bucket_index(size);
2290 latency = get_cpu_ptr(td->latency_buckets[rw]);
2291 latency[index].total_latency += time;
2292 latency[index].samples++;
2293 put_cpu_ptr(td->latency_buckets[rw]);
2296 void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2298 struct request_queue *q = rq->q;
2299 struct throtl_data *td = q->td;
2301 throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq),
2305 void blk_throtl_bio_endio(struct bio *bio)
2307 struct blkcg_gq *blkg;
2308 struct throtl_grp *tg;
2310 unsigned long finish_time;
2311 unsigned long start_time;
2313 int rw = bio_data_dir(bio);
2315 blkg = bio->bi_blkg;
2318 tg = blkg_to_tg(blkg);
2319 if (!tg->td->limit_valid[LIMIT_LOW])
2322 finish_time_ns = ktime_get_ns();
2323 tg->last_finish_time = finish_time_ns >> 10;
2325 start_time = bio_issue_time(&bio->bi_issue) >> 10;
2326 finish_time = __bio_issue_time(finish_time_ns) >> 10;
2327 if (!start_time || finish_time <= start_time)
2330 lat = finish_time - start_time;
2331 /* this is only for bio based driver */
2332 if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
2333 throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
2336 if (tg->latency_target && lat >= tg->td->filtered_latency) {
2338 unsigned int threshold;
2340 bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
2341 threshold = tg->td->avg_buckets[rw][bucket].latency +
2343 if (lat > threshold)
2346 * Not race free, could get wrong count, which means cgroups
2352 if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2353 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2355 tg->bad_bio_cnt /= 2;
2360 int blk_throtl_init(struct gendisk *disk)
2362 struct request_queue *q = disk->queue;
2363 struct throtl_data *td;
2366 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2369 td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
2370 LATENCY_BUCKET_SIZE, __alignof__(u64));
2371 if (!td->latency_buckets[READ]) {
2375 td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
2376 LATENCY_BUCKET_SIZE, __alignof__(u64));
2377 if (!td->latency_buckets[WRITE]) {
2378 free_percpu(td->latency_buckets[READ]);
2383 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2384 throtl_service_queue_init(&td->service_queue);
2389 td->limit_valid[LIMIT_MAX] = true;
2390 td->limit_index = LIMIT_MAX;
2391 td->low_upgrade_time = jiffies;
2392 td->low_downgrade_time = jiffies;
2394 /* activate policy */
2395 ret = blkcg_activate_policy(disk, &blkcg_policy_throtl);
2397 free_percpu(td->latency_buckets[READ]);
2398 free_percpu(td->latency_buckets[WRITE]);
2404 void blk_throtl_exit(struct gendisk *disk)
2406 struct request_queue *q = disk->queue;
2409 del_timer_sync(&q->td->service_queue.pending_timer);
2410 throtl_shutdown_wq(q);
2411 blkcg_deactivate_policy(disk, &blkcg_policy_throtl);
2412 free_percpu(q->td->latency_buckets[READ]);
2413 free_percpu(q->td->latency_buckets[WRITE]);
2417 void blk_throtl_register(struct gendisk *disk)
2419 struct request_queue *q = disk->queue;
2420 struct throtl_data *td;
2426 if (blk_queue_nonrot(q)) {
2427 td->throtl_slice = DFL_THROTL_SLICE_SSD;
2428 td->filtered_latency = LATENCY_FILTERED_SSD;
2430 td->throtl_slice = DFL_THROTL_SLICE_HD;
2431 td->filtered_latency = LATENCY_FILTERED_HD;
2432 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2433 td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2434 td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2437 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2438 /* if no low limit, use previous default */
2439 td->throtl_slice = DFL_THROTL_SLICE_HD;
2442 td->track_bio_latency = !queue_is_mq(q);
2443 if (!td->track_bio_latency)
2444 blk_stat_enable_accounting(q);
2448 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2449 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2453 return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2456 ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2457 const char *page, size_t count)
2464 if (kstrtoul(page, 10, &v))
2466 t = msecs_to_jiffies(v);
2467 if (t == 0 || t > MAX_THROTL_SLICE)
2469 q->td->throtl_slice = t;
2474 static int __init throtl_init(void)
2476 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2477 if (!kthrotld_workqueue)
2478 panic("Failed to create kthrotld\n");
2480 return blkcg_policy_register(&blkcg_policy_throtl);
2483 module_init(throtl_init);