1 // SPDX-License-Identifier: GPL-2.0
3 * Interface for controlling IO bandwidth on a request queue
5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
8 #include <linux/module.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/bio.h>
12 #include <linux/blktrace_api.h>
14 #include "blk-cgroup-rwstat.h"
16 #include "blk-throttle.h"
18 /* Max dispatch from a group in 1 round */
19 #define THROTL_GRP_QUANTUM 8
21 /* Total max dispatch from all groups in one round */
22 #define THROTL_QUANTUM 32
24 /* Throttling is performed over a slice and after that slice is renewed */
25 #define DFL_THROTL_SLICE_HD (HZ / 10)
26 #define DFL_THROTL_SLICE_SSD (HZ / 50)
27 #define MAX_THROTL_SLICE (HZ)
28 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
29 #define MIN_THROTL_BPS (320 * 1024)
30 #define MIN_THROTL_IOPS (10)
31 #define DFL_LATENCY_TARGET (-1L)
32 #define DFL_IDLE_THRESHOLD (0)
33 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
34 #define LATENCY_FILTERED_SSD (0)
36 * For HD, very small latency comes from sequential IO. Such IO is helpless to
37 * help determine if its IO is impacted by others, hence we ignore the IO
39 #define LATENCY_FILTERED_HD (1000L) /* 1ms */
41 /* A workqueue to queue throttle related work */
42 static struct workqueue_struct *kthrotld_workqueue;
44 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
46 /* We measure latency for request size from <= 4k to >= 1M */
47 #define LATENCY_BUCKET_SIZE 9
49 struct latency_bucket {
50 unsigned long total_latency; /* ns / 1024 */
54 struct avg_latency_bucket {
55 unsigned long latency; /* ns / 1024 */
61 /* service tree for active throtl groups */
62 struct throtl_service_queue service_queue;
64 struct request_queue *queue;
66 /* Total Number of queued bios on READ and WRITE lists */
67 unsigned int nr_queued[2];
69 unsigned int throtl_slice;
71 /* Work for dispatching throttled bios */
72 struct work_struct dispatch_work;
73 unsigned int limit_index;
74 bool limit_valid[LIMIT_CNT];
76 unsigned long low_upgrade_time;
77 unsigned long low_downgrade_time;
81 struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
82 struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
83 struct latency_bucket __percpu *latency_buckets[2];
84 unsigned long last_calculate_time;
85 unsigned long filtered_latency;
87 bool track_bio_latency;
90 static void throtl_pending_timer_fn(struct timer_list *t);
92 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
94 return pd_to_blkg(&tg->pd);
98 * sq_to_tg - return the throl_grp the specified service queue belongs to
99 * @sq: the throtl_service_queue of interest
101 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
102 * embedded in throtl_data, %NULL is returned.
104 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
106 if (sq && sq->parent_sq)
107 return container_of(sq, struct throtl_grp, service_queue);
113 * sq_to_td - return throtl_data the specified service queue belongs to
114 * @sq: the throtl_service_queue of interest
116 * A service_queue can be embedded in either a throtl_grp or throtl_data.
117 * Determine the associated throtl_data accordingly and return it.
119 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
121 struct throtl_grp *tg = sq_to_tg(sq);
126 return container_of(sq, struct throtl_data, service_queue);
130 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
131 * make the IO dispatch more smooth.
132 * Scale up: linearly scale up according to elapsed time since upgrade. For
133 * every throtl_slice, the limit scales up 1/2 .low limit till the
134 * limit hits .max limit
135 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
137 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
139 /* arbitrary value to avoid too big scale */
140 if (td->scale < 4096 && time_after_eq(jiffies,
141 td->low_upgrade_time + td->scale * td->throtl_slice))
142 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
144 return low + (low >> 1) * td->scale;
147 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
149 struct blkcg_gq *blkg = tg_to_blkg(tg);
150 struct throtl_data *td;
153 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
157 ret = tg->bps[rw][td->limit_index];
158 if (ret == 0 && td->limit_index == LIMIT_LOW) {
159 /* intermediate node or iops isn't 0 */
160 if (!list_empty(&blkg->blkcg->css.children) ||
161 tg->iops[rw][td->limit_index])
164 return MIN_THROTL_BPS;
167 if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
168 tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
171 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
172 ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
177 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
179 struct blkcg_gq *blkg = tg_to_blkg(tg);
180 struct throtl_data *td;
183 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
187 ret = tg->iops[rw][td->limit_index];
188 if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
189 /* intermediate node or bps isn't 0 */
190 if (!list_empty(&blkg->blkcg->css.children) ||
191 tg->bps[rw][td->limit_index])
194 return MIN_THROTL_IOPS;
197 if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
198 tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
201 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
202 if (adjusted > UINT_MAX)
204 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
209 #define request_bucket_index(sectors) \
210 clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
213 * throtl_log - log debug message via blktrace
214 * @sq: the service_queue being reported
215 * @fmt: printf format string
218 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
219 * throtl_grp; otherwise, just "throtl".
221 #define throtl_log(sq, fmt, args...) do { \
222 struct throtl_grp *__tg = sq_to_tg((sq)); \
223 struct throtl_data *__td = sq_to_td((sq)); \
226 if (likely(!blk_trace_note_message_enabled(__td->queue))) \
229 blk_add_cgroup_trace_msg(__td->queue, \
230 &tg_to_blkg(__tg)->blkcg->css, "throtl " fmt, ##args);\
232 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
236 static inline unsigned int throtl_bio_data_size(struct bio *bio)
238 /* assume it's one sector */
239 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
241 return bio->bi_iter.bi_size;
244 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
246 INIT_LIST_HEAD(&qn->node);
247 bio_list_init(&qn->bios);
252 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
253 * @bio: bio being added
254 * @qn: qnode to add bio to
255 * @queued: the service_queue->queued[] list @qn belongs to
257 * Add @bio to @qn and put @qn on @queued if it's not already on.
258 * @qn->tg's reference count is bumped when @qn is activated. See the
259 * comment on top of throtl_qnode definition for details.
261 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
262 struct list_head *queued)
264 bio_list_add(&qn->bios, bio);
265 if (list_empty(&qn->node)) {
266 list_add_tail(&qn->node, queued);
267 blkg_get(tg_to_blkg(qn->tg));
272 * throtl_peek_queued - peek the first bio on a qnode list
273 * @queued: the qnode list to peek
275 static struct bio *throtl_peek_queued(struct list_head *queued)
277 struct throtl_qnode *qn;
280 if (list_empty(queued))
283 qn = list_first_entry(queued, struct throtl_qnode, node);
284 bio = bio_list_peek(&qn->bios);
290 * throtl_pop_queued - pop the first bio form a qnode list
291 * @queued: the qnode list to pop a bio from
292 * @tg_to_put: optional out argument for throtl_grp to put
294 * Pop the first bio from the qnode list @queued. After popping, the first
295 * qnode is removed from @queued if empty or moved to the end of @queued so
296 * that the popping order is round-robin.
298 * When the first qnode is removed, its associated throtl_grp should be put
299 * too. If @tg_to_put is NULL, this function automatically puts it;
300 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
301 * responsible for putting it.
303 static struct bio *throtl_pop_queued(struct list_head *queued,
304 struct throtl_grp **tg_to_put)
306 struct throtl_qnode *qn;
309 if (list_empty(queued))
312 qn = list_first_entry(queued, struct throtl_qnode, node);
313 bio = bio_list_pop(&qn->bios);
316 if (bio_list_empty(&qn->bios)) {
317 list_del_init(&qn->node);
321 blkg_put(tg_to_blkg(qn->tg));
323 list_move_tail(&qn->node, queued);
329 /* init a service_queue, assumes the caller zeroed it */
330 static void throtl_service_queue_init(struct throtl_service_queue *sq)
332 INIT_LIST_HEAD(&sq->queued[READ]);
333 INIT_LIST_HEAD(&sq->queued[WRITE]);
334 sq->pending_tree = RB_ROOT_CACHED;
335 timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
338 static struct blkg_policy_data *throtl_pd_alloc(struct gendisk *disk,
339 struct blkcg *blkcg, gfp_t gfp)
341 struct throtl_grp *tg;
344 tg = kzalloc_node(sizeof(*tg), gfp, disk->node_id);
348 if (blkg_rwstat_init(&tg->stat_bytes, gfp))
351 if (blkg_rwstat_init(&tg->stat_ios, gfp))
352 goto err_exit_stat_bytes;
354 throtl_service_queue_init(&tg->service_queue);
356 for (rw = READ; rw <= WRITE; rw++) {
357 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
358 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
361 RB_CLEAR_NODE(&tg->rb_node);
362 tg->bps[READ][LIMIT_MAX] = U64_MAX;
363 tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
364 tg->iops[READ][LIMIT_MAX] = UINT_MAX;
365 tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
366 tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
367 tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
368 tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
369 tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
370 /* LIMIT_LOW will have default value 0 */
372 tg->latency_target = DFL_LATENCY_TARGET;
373 tg->latency_target_conf = DFL_LATENCY_TARGET;
374 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
375 tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
380 blkg_rwstat_exit(&tg->stat_bytes);
386 static void throtl_pd_init(struct blkg_policy_data *pd)
388 struct throtl_grp *tg = pd_to_tg(pd);
389 struct blkcg_gq *blkg = tg_to_blkg(tg);
390 struct throtl_data *td = blkg->q->td;
391 struct throtl_service_queue *sq = &tg->service_queue;
394 * If on the default hierarchy, we switch to properly hierarchical
395 * behavior where limits on a given throtl_grp are applied to the
396 * whole subtree rather than just the group itself. e.g. If 16M
397 * read_bps limit is set on a parent group, summary bps of
398 * parent group and its subtree groups can't exceed 16M for the
401 * If not on the default hierarchy, the broken flat hierarchy
402 * behavior is retained where all throtl_grps are treated as if
403 * they're all separate root groups right below throtl_data.
404 * Limits of a group don't interact with limits of other groups
405 * regardless of the position of the group in the hierarchy.
407 sq->parent_sq = &td->service_queue;
408 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
409 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
414 * Set has_rules[] if @tg or any of its parents have limits configured.
415 * This doesn't require walking up to the top of the hierarchy as the
416 * parent's has_rules[] is guaranteed to be correct.
418 static void tg_update_has_rules(struct throtl_grp *tg)
420 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
421 struct throtl_data *td = tg->td;
424 for (rw = READ; rw <= WRITE; rw++) {
425 tg->has_rules_iops[rw] =
426 (parent_tg && parent_tg->has_rules_iops[rw]) ||
427 (td->limit_valid[td->limit_index] &&
428 tg_iops_limit(tg, rw) != UINT_MAX);
429 tg->has_rules_bps[rw] =
430 (parent_tg && parent_tg->has_rules_bps[rw]) ||
431 (td->limit_valid[td->limit_index] &&
432 (tg_bps_limit(tg, rw) != U64_MAX));
436 static void throtl_pd_online(struct blkg_policy_data *pd)
438 struct throtl_grp *tg = pd_to_tg(pd);
440 * We don't want new groups to escape the limits of its ancestors.
441 * Update has_rules[] after a new group is brought online.
443 tg_update_has_rules(tg);
446 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
447 static void blk_throtl_update_limit_valid(struct throtl_data *td)
449 struct cgroup_subsys_state *pos_css;
450 struct blkcg_gq *blkg;
451 bool low_valid = false;
454 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
455 struct throtl_grp *tg = blkg_to_tg(blkg);
457 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
458 tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
465 td->limit_valid[LIMIT_LOW] = low_valid;
468 static inline void blk_throtl_update_limit_valid(struct throtl_data *td)
473 static void throtl_upgrade_state(struct throtl_data *td);
474 static void throtl_pd_offline(struct blkg_policy_data *pd)
476 struct throtl_grp *tg = pd_to_tg(pd);
478 tg->bps[READ][LIMIT_LOW] = 0;
479 tg->bps[WRITE][LIMIT_LOW] = 0;
480 tg->iops[READ][LIMIT_LOW] = 0;
481 tg->iops[WRITE][LIMIT_LOW] = 0;
483 blk_throtl_update_limit_valid(tg->td);
485 if (!tg->td->limit_valid[tg->td->limit_index])
486 throtl_upgrade_state(tg->td);
489 static void throtl_pd_free(struct blkg_policy_data *pd)
491 struct throtl_grp *tg = pd_to_tg(pd);
493 del_timer_sync(&tg->service_queue.pending_timer);
494 blkg_rwstat_exit(&tg->stat_bytes);
495 blkg_rwstat_exit(&tg->stat_ios);
499 static struct throtl_grp *
500 throtl_rb_first(struct throtl_service_queue *parent_sq)
504 n = rb_first_cached(&parent_sq->pending_tree);
508 return rb_entry_tg(n);
511 static void throtl_rb_erase(struct rb_node *n,
512 struct throtl_service_queue *parent_sq)
514 rb_erase_cached(n, &parent_sq->pending_tree);
518 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
520 struct throtl_grp *tg;
522 tg = throtl_rb_first(parent_sq);
526 parent_sq->first_pending_disptime = tg->disptime;
529 static void tg_service_queue_add(struct throtl_grp *tg)
531 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
532 struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node;
533 struct rb_node *parent = NULL;
534 struct throtl_grp *__tg;
535 unsigned long key = tg->disptime;
536 bool leftmost = true;
538 while (*node != NULL) {
540 __tg = rb_entry_tg(parent);
542 if (time_before(key, __tg->disptime))
543 node = &parent->rb_left;
545 node = &parent->rb_right;
550 rb_link_node(&tg->rb_node, parent, node);
551 rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree,
555 static void throtl_enqueue_tg(struct throtl_grp *tg)
557 if (!(tg->flags & THROTL_TG_PENDING)) {
558 tg_service_queue_add(tg);
559 tg->flags |= THROTL_TG_PENDING;
560 tg->service_queue.parent_sq->nr_pending++;
564 static void throtl_dequeue_tg(struct throtl_grp *tg)
566 if (tg->flags & THROTL_TG_PENDING) {
567 struct throtl_service_queue *parent_sq =
568 tg->service_queue.parent_sq;
570 throtl_rb_erase(&tg->rb_node, parent_sq);
571 --parent_sq->nr_pending;
572 tg->flags &= ~THROTL_TG_PENDING;
576 /* Call with queue lock held */
577 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
578 unsigned long expires)
580 unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
583 * Since we are adjusting the throttle limit dynamically, the sleep
584 * time calculated according to previous limit might be invalid. It's
585 * possible the cgroup sleep time is very long and no other cgroups
586 * have IO running so notify the limit changes. Make sure the cgroup
587 * doesn't sleep too long to avoid the missed notification.
589 if (time_after(expires, max_expire))
590 expires = max_expire;
591 mod_timer(&sq->pending_timer, expires);
592 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
593 expires - jiffies, jiffies);
597 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
598 * @sq: the service_queue to schedule dispatch for
599 * @force: force scheduling
601 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
602 * dispatch time of the first pending child. Returns %true if either timer
603 * is armed or there's no pending child left. %false if the current
604 * dispatch window is still open and the caller should continue
607 * If @force is %true, the dispatch timer is always scheduled and this
608 * function is guaranteed to return %true. This is to be used when the
609 * caller can't dispatch itself and needs to invoke pending_timer
610 * unconditionally. Note that forced scheduling is likely to induce short
611 * delay before dispatch starts even if @sq->first_pending_disptime is not
612 * in the future and thus shouldn't be used in hot paths.
614 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
617 /* any pending children left? */
621 update_min_dispatch_time(sq);
623 /* is the next dispatch time in the future? */
624 if (force || time_after(sq->first_pending_disptime, jiffies)) {
625 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
629 /* tell the caller to continue dispatching */
633 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
634 bool rw, unsigned long start)
636 tg->bytes_disp[rw] = 0;
638 tg->carryover_bytes[rw] = 0;
639 tg->carryover_ios[rw] = 0;
642 * Previous slice has expired. We must have trimmed it after last
643 * bio dispatch. That means since start of last slice, we never used
644 * that bandwidth. Do try to make use of that bandwidth while giving
647 if (time_after(start, tg->slice_start[rw]))
648 tg->slice_start[rw] = start;
650 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
651 throtl_log(&tg->service_queue,
652 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
653 rw == READ ? 'R' : 'W', tg->slice_start[rw],
654 tg->slice_end[rw], jiffies);
657 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw,
658 bool clear_carryover)
660 tg->bytes_disp[rw] = 0;
662 tg->slice_start[rw] = jiffies;
663 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
664 if (clear_carryover) {
665 tg->carryover_bytes[rw] = 0;
666 tg->carryover_ios[rw] = 0;
669 throtl_log(&tg->service_queue,
670 "[%c] new slice start=%lu end=%lu jiffies=%lu",
671 rw == READ ? 'R' : 'W', tg->slice_start[rw],
672 tg->slice_end[rw], jiffies);
675 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
676 unsigned long jiffy_end)
678 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
681 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
682 unsigned long jiffy_end)
684 throtl_set_slice_end(tg, rw, jiffy_end);
685 throtl_log(&tg->service_queue,
686 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
687 rw == READ ? 'R' : 'W', tg->slice_start[rw],
688 tg->slice_end[rw], jiffies);
691 /* Determine if previously allocated or extended slice is complete or not */
692 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
694 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
700 static unsigned int calculate_io_allowed(u32 iops_limit,
701 unsigned long jiffy_elapsed)
703 unsigned int io_allowed;
707 * jiffy_elapsed should not be a big value as minimum iops can be
708 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
709 * will allow dispatch after 1 second and after that slice should
713 tmp = (u64)iops_limit * jiffy_elapsed;
717 io_allowed = UINT_MAX;
724 static u64 calculate_bytes_allowed(u64 bps_limit, unsigned long jiffy_elapsed)
727 * Can result be wider than 64 bits?
728 * We check against 62, not 64, due to ilog2 truncation.
730 if (ilog2(bps_limit) + ilog2(jiffy_elapsed) - ilog2(HZ) > 62)
732 return mul_u64_u64_div_u64(bps_limit, (u64)jiffy_elapsed, (u64)HZ);
735 /* Trim the used slices and adjust slice start accordingly */
736 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
738 unsigned long time_elapsed;
739 long long bytes_trim;
742 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
745 * If bps are unlimited (-1), then time slice don't get
746 * renewed. Don't try to trim the slice if slice is used. A new
747 * slice will start when appropriate.
749 if (throtl_slice_used(tg, rw))
753 * A bio has been dispatched. Also adjust slice_end. It might happen
754 * that initially cgroup limit was very low resulting in high
755 * slice_end, but later limit was bumped up and bio was dispatched
756 * sooner, then we need to reduce slice_end. A high bogus slice_end
757 * is bad because it does not allow new slice to start.
760 throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
762 time_elapsed = rounddown(jiffies - tg->slice_start[rw],
763 tg->td->throtl_slice);
767 bytes_trim = calculate_bytes_allowed(tg_bps_limit(tg, rw),
769 tg->carryover_bytes[rw];
770 io_trim = calculate_io_allowed(tg_iops_limit(tg, rw), time_elapsed) +
771 tg->carryover_ios[rw];
772 if (bytes_trim <= 0 && io_trim <= 0)
775 tg->carryover_bytes[rw] = 0;
776 if ((long long)tg->bytes_disp[rw] >= bytes_trim)
777 tg->bytes_disp[rw] -= bytes_trim;
779 tg->bytes_disp[rw] = 0;
781 tg->carryover_ios[rw] = 0;
782 if ((int)tg->io_disp[rw] >= io_trim)
783 tg->io_disp[rw] -= io_trim;
787 tg->slice_start[rw] += time_elapsed;
789 throtl_log(&tg->service_queue,
790 "[%c] trim slice nr=%lu bytes=%lld io=%d start=%lu end=%lu jiffies=%lu",
791 rw == READ ? 'R' : 'W', time_elapsed / tg->td->throtl_slice,
792 bytes_trim, io_trim, tg->slice_start[rw], tg->slice_end[rw],
796 static void __tg_update_carryover(struct throtl_grp *tg, bool rw)
798 unsigned long jiffy_elapsed = jiffies - tg->slice_start[rw];
799 u64 bps_limit = tg_bps_limit(tg, rw);
800 u32 iops_limit = tg_iops_limit(tg, rw);
803 * If config is updated while bios are still throttled, calculate and
804 * accumulate how many bytes/ios are waited across changes. And
805 * carryover_bytes/ios will be used to calculate new wait time under new
808 if (bps_limit != U64_MAX)
809 tg->carryover_bytes[rw] +=
810 calculate_bytes_allowed(bps_limit, jiffy_elapsed) -
812 if (iops_limit != UINT_MAX)
813 tg->carryover_ios[rw] +=
814 calculate_io_allowed(iops_limit, jiffy_elapsed) -
818 static void tg_update_carryover(struct throtl_grp *tg)
820 if (tg->service_queue.nr_queued[READ])
821 __tg_update_carryover(tg, READ);
822 if (tg->service_queue.nr_queued[WRITE])
823 __tg_update_carryover(tg, WRITE);
825 /* see comments in struct throtl_grp for meaning of these fields. */
826 throtl_log(&tg->service_queue, "%s: %lld %lld %d %d\n", __func__,
827 tg->carryover_bytes[READ], tg->carryover_bytes[WRITE],
828 tg->carryover_ios[READ], tg->carryover_ios[WRITE]);
831 static unsigned long tg_within_iops_limit(struct throtl_grp *tg, struct bio *bio,
834 bool rw = bio_data_dir(bio);
836 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
838 if (iops_limit == UINT_MAX) {
842 jiffy_elapsed = jiffies - tg->slice_start[rw];
844 /* Round up to the next throttle slice, wait time must be nonzero */
845 jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
846 io_allowed = calculate_io_allowed(iops_limit, jiffy_elapsed_rnd) +
847 tg->carryover_ios[rw];
848 if (io_allowed > 0 && tg->io_disp[rw] + 1 <= io_allowed)
851 /* Calc approx time to dispatch */
852 jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
856 static unsigned long tg_within_bps_limit(struct throtl_grp *tg, struct bio *bio,
859 bool rw = bio_data_dir(bio);
860 long long bytes_allowed;
862 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
863 unsigned int bio_size = throtl_bio_data_size(bio);
865 /* no need to throttle if this bio's bytes have been accounted */
866 if (bps_limit == U64_MAX || bio_flagged(bio, BIO_BPS_THROTTLED)) {
870 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
872 /* Slice has just started. Consider one slice interval */
874 jiffy_elapsed_rnd = tg->td->throtl_slice;
876 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
877 bytes_allowed = calculate_bytes_allowed(bps_limit, jiffy_elapsed_rnd) +
878 tg->carryover_bytes[rw];
879 if (bytes_allowed > 0 && tg->bytes_disp[rw] + bio_size <= bytes_allowed)
882 /* Calc approx time to dispatch */
883 extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
884 jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit);
890 * This wait time is without taking into consideration the rounding
891 * up we did. Add that time also.
893 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
898 * Returns whether one can dispatch a bio or not. Also returns approx number
899 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
901 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
904 bool rw = bio_data_dir(bio);
905 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
906 u64 bps_limit = tg_bps_limit(tg, rw);
907 u32 iops_limit = tg_iops_limit(tg, rw);
910 * Currently whole state machine of group depends on first bio
911 * queued in the group bio list. So one should not be calling
912 * this function with a different bio if there are other bios
915 BUG_ON(tg->service_queue.nr_queued[rw] &&
916 bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
918 /* If tg->bps = -1, then BW is unlimited */
919 if ((bps_limit == U64_MAX && iops_limit == UINT_MAX) ||
920 tg->flags & THROTL_TG_CANCELING) {
927 * If previous slice expired, start a new one otherwise renew/extend
928 * existing slice to make sure it is at least throtl_slice interval
929 * long since now. New slice is started only for empty throttle group.
930 * If there is queued bio, that means there should be an active
931 * slice and it should be extended instead.
933 if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
934 throtl_start_new_slice(tg, rw, true);
936 if (time_before(tg->slice_end[rw],
937 jiffies + tg->td->throtl_slice))
938 throtl_extend_slice(tg, rw,
939 jiffies + tg->td->throtl_slice);
942 bps_wait = tg_within_bps_limit(tg, bio, bps_limit);
943 iops_wait = tg_within_iops_limit(tg, bio, iops_limit);
944 if (bps_wait + iops_wait == 0) {
950 max_wait = max(bps_wait, iops_wait);
955 if (time_before(tg->slice_end[rw], jiffies + max_wait))
956 throtl_extend_slice(tg, rw, jiffies + max_wait);
961 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
963 bool rw = bio_data_dir(bio);
964 unsigned int bio_size = throtl_bio_data_size(bio);
966 /* Charge the bio to the group */
967 if (!bio_flagged(bio, BIO_BPS_THROTTLED)) {
968 tg->bytes_disp[rw] += bio_size;
969 tg->last_bytes_disp[rw] += bio_size;
973 tg->last_io_disp[rw]++;
977 * throtl_add_bio_tg - add a bio to the specified throtl_grp
980 * @tg: the target throtl_grp
982 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
983 * tg->qnode_on_self[] is used.
985 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
986 struct throtl_grp *tg)
988 struct throtl_service_queue *sq = &tg->service_queue;
989 bool rw = bio_data_dir(bio);
992 qn = &tg->qnode_on_self[rw];
995 * If @tg doesn't currently have any bios queued in the same
996 * direction, queueing @bio can change when @tg should be
997 * dispatched. Mark that @tg was empty. This is automatically
998 * cleared on the next tg_update_disptime().
1000 if (!sq->nr_queued[rw])
1001 tg->flags |= THROTL_TG_WAS_EMPTY;
1003 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1005 sq->nr_queued[rw]++;
1006 throtl_enqueue_tg(tg);
1009 static void tg_update_disptime(struct throtl_grp *tg)
1011 struct throtl_service_queue *sq = &tg->service_queue;
1012 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1015 bio = throtl_peek_queued(&sq->queued[READ]);
1017 tg_may_dispatch(tg, bio, &read_wait);
1019 bio = throtl_peek_queued(&sq->queued[WRITE]);
1021 tg_may_dispatch(tg, bio, &write_wait);
1023 min_wait = min(read_wait, write_wait);
1024 disptime = jiffies + min_wait;
1026 /* Update dispatch time */
1027 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
1028 tg->disptime = disptime;
1029 tg_service_queue_add(tg);
1031 /* see throtl_add_bio_tg() */
1032 tg->flags &= ~THROTL_TG_WAS_EMPTY;
1035 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1036 struct throtl_grp *parent_tg, bool rw)
1038 if (throtl_slice_used(parent_tg, rw)) {
1039 throtl_start_new_slice_with_credit(parent_tg, rw,
1040 child_tg->slice_start[rw]);
1045 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1047 struct throtl_service_queue *sq = &tg->service_queue;
1048 struct throtl_service_queue *parent_sq = sq->parent_sq;
1049 struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1050 struct throtl_grp *tg_to_put = NULL;
1054 * @bio is being transferred from @tg to @parent_sq. Popping a bio
1055 * from @tg may put its reference and @parent_sq might end up
1056 * getting released prematurely. Remember the tg to put and put it
1057 * after @bio is transferred to @parent_sq.
1059 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1060 sq->nr_queued[rw]--;
1062 throtl_charge_bio(tg, bio);
1065 * If our parent is another tg, we just need to transfer @bio to
1066 * the parent using throtl_add_bio_tg(). If our parent is
1067 * @td->service_queue, @bio is ready to be issued. Put it on its
1068 * bio_lists[] and decrease total number queued. The caller is
1069 * responsible for issuing these bios.
1072 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1073 start_parent_slice_with_credit(tg, parent_tg, rw);
1075 bio_set_flag(bio, BIO_BPS_THROTTLED);
1076 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1077 &parent_sq->queued[rw]);
1078 BUG_ON(tg->td->nr_queued[rw] <= 0);
1079 tg->td->nr_queued[rw]--;
1082 throtl_trim_slice(tg, rw);
1085 blkg_put(tg_to_blkg(tg_to_put));
1088 static int throtl_dispatch_tg(struct throtl_grp *tg)
1090 struct throtl_service_queue *sq = &tg->service_queue;
1091 unsigned int nr_reads = 0, nr_writes = 0;
1092 unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4;
1093 unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads;
1096 /* Try to dispatch 75% READS and 25% WRITES */
1098 while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1099 tg_may_dispatch(tg, bio, NULL)) {
1101 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1104 if (nr_reads >= max_nr_reads)
1108 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1109 tg_may_dispatch(tg, bio, NULL)) {
1111 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1114 if (nr_writes >= max_nr_writes)
1118 return nr_reads + nr_writes;
1121 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1123 unsigned int nr_disp = 0;
1126 struct throtl_grp *tg;
1127 struct throtl_service_queue *sq;
1129 if (!parent_sq->nr_pending)
1132 tg = throtl_rb_first(parent_sq);
1136 if (time_before(jiffies, tg->disptime))
1139 nr_disp += throtl_dispatch_tg(tg);
1141 sq = &tg->service_queue;
1142 if (sq->nr_queued[READ] || sq->nr_queued[WRITE])
1143 tg_update_disptime(tg);
1145 throtl_dequeue_tg(tg);
1147 if (nr_disp >= THROTL_QUANTUM)
1154 static bool throtl_can_upgrade(struct throtl_data *td,
1155 struct throtl_grp *this_tg);
1157 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1158 * @t: the pending_timer member of the throtl_service_queue being serviced
1160 * This timer is armed when a child throtl_grp with active bio's become
1161 * pending and queued on the service_queue's pending_tree and expires when
1162 * the first child throtl_grp should be dispatched. This function
1163 * dispatches bio's from the children throtl_grps to the parent
1166 * If the parent's parent is another throtl_grp, dispatching is propagated
1167 * by either arming its pending_timer or repeating dispatch directly. If
1168 * the top-level service_tree is reached, throtl_data->dispatch_work is
1169 * kicked so that the ready bio's are issued.
1171 static void throtl_pending_timer_fn(struct timer_list *t)
1173 struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1174 struct throtl_grp *tg = sq_to_tg(sq);
1175 struct throtl_data *td = sq_to_td(sq);
1176 struct throtl_service_queue *parent_sq;
1177 struct request_queue *q;
1181 /* throtl_data may be gone, so figure out request queue by blkg */
1187 spin_lock_irq(&q->queue_lock);
1192 if (throtl_can_upgrade(td, NULL))
1193 throtl_upgrade_state(td);
1196 parent_sq = sq->parent_sq;
1200 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1201 sq->nr_queued[READ] + sq->nr_queued[WRITE],
1202 sq->nr_queued[READ], sq->nr_queued[WRITE]);
1204 ret = throtl_select_dispatch(sq);
1206 throtl_log(sq, "bios disp=%u", ret);
1210 if (throtl_schedule_next_dispatch(sq, false))
1213 /* this dispatch windows is still open, relax and repeat */
1214 spin_unlock_irq(&q->queue_lock);
1216 spin_lock_irq(&q->queue_lock);
1223 /* @parent_sq is another throl_grp, propagate dispatch */
1224 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1225 tg_update_disptime(tg);
1226 if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1227 /* window is already open, repeat dispatching */
1234 /* reached the top-level, queue issuing */
1235 queue_work(kthrotld_workqueue, &td->dispatch_work);
1238 spin_unlock_irq(&q->queue_lock);
1242 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1243 * @work: work item being executed
1245 * This function is queued for execution when bios reach the bio_lists[]
1246 * of throtl_data->service_queue. Those bios are ready and issued by this
1249 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1251 struct throtl_data *td = container_of(work, struct throtl_data,
1253 struct throtl_service_queue *td_sq = &td->service_queue;
1254 struct request_queue *q = td->queue;
1255 struct bio_list bio_list_on_stack;
1257 struct blk_plug plug;
1260 bio_list_init(&bio_list_on_stack);
1262 spin_lock_irq(&q->queue_lock);
1263 for (rw = READ; rw <= WRITE; rw++)
1264 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1265 bio_list_add(&bio_list_on_stack, bio);
1266 spin_unlock_irq(&q->queue_lock);
1268 if (!bio_list_empty(&bio_list_on_stack)) {
1269 blk_start_plug(&plug);
1270 while ((bio = bio_list_pop(&bio_list_on_stack)))
1271 submit_bio_noacct_nocheck(bio);
1272 blk_finish_plug(&plug);
1276 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1279 struct throtl_grp *tg = pd_to_tg(pd);
1280 u64 v = *(u64 *)((void *)tg + off);
1284 return __blkg_prfill_u64(sf, pd, v);
1287 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1290 struct throtl_grp *tg = pd_to_tg(pd);
1291 unsigned int v = *(unsigned int *)((void *)tg + off);
1295 return __blkg_prfill_u64(sf, pd, v);
1298 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1300 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1301 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1305 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1307 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1308 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1312 static void tg_conf_updated(struct throtl_grp *tg, bool global)
1314 struct throtl_service_queue *sq = &tg->service_queue;
1315 struct cgroup_subsys_state *pos_css;
1316 struct blkcg_gq *blkg;
1318 throtl_log(&tg->service_queue,
1319 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1320 tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1321 tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1325 * Update has_rules[] flags for the updated tg's subtree. A tg is
1326 * considered to have rules if either the tg itself or any of its
1327 * ancestors has rules. This identifies groups without any
1328 * restrictions in the whole hierarchy and allows them to bypass
1331 blkg_for_each_descendant_pre(blkg, pos_css,
1332 global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1333 struct throtl_grp *this_tg = blkg_to_tg(blkg);
1334 struct throtl_grp *parent_tg;
1336 tg_update_has_rules(this_tg);
1337 /* ignore root/second level */
1338 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1339 !blkg->parent->parent)
1341 parent_tg = blkg_to_tg(blkg->parent);
1343 * make sure all children has lower idle time threshold and
1344 * higher latency target
1346 this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1347 parent_tg->idletime_threshold);
1348 this_tg->latency_target = max(this_tg->latency_target,
1349 parent_tg->latency_target);
1354 * We're already holding queue_lock and know @tg is valid. Let's
1355 * apply the new config directly.
1357 * Restart the slices for both READ and WRITES. It might happen
1358 * that a group's limit are dropped suddenly and we don't want to
1359 * account recently dispatched IO with new low rate.
1361 throtl_start_new_slice(tg, READ, false);
1362 throtl_start_new_slice(tg, WRITE, false);
1364 if (tg->flags & THROTL_TG_PENDING) {
1365 tg_update_disptime(tg);
1366 throtl_schedule_next_dispatch(sq->parent_sq, true);
1370 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1371 char *buf, size_t nbytes, loff_t off, bool is_u64)
1373 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1374 struct blkg_conf_ctx ctx;
1375 struct throtl_grp *tg;
1379 blkg_conf_init(&ctx, buf);
1381 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, &ctx);
1386 if (sscanf(ctx.body, "%llu", &v) != 1)
1391 tg = blkg_to_tg(ctx.blkg);
1392 tg_update_carryover(tg);
1395 *(u64 *)((void *)tg + of_cft(of)->private) = v;
1397 *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1399 tg_conf_updated(tg, false);
1402 blkg_conf_exit(&ctx);
1403 return ret ?: nbytes;
1406 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1407 char *buf, size_t nbytes, loff_t off)
1409 return tg_set_conf(of, buf, nbytes, off, true);
1412 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1413 char *buf, size_t nbytes, loff_t off)
1415 return tg_set_conf(of, buf, nbytes, off, false);
1418 static int tg_print_rwstat(struct seq_file *sf, void *v)
1420 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1421 blkg_prfill_rwstat, &blkcg_policy_throtl,
1422 seq_cft(sf)->private, true);
1426 static u64 tg_prfill_rwstat_recursive(struct seq_file *sf,
1427 struct blkg_policy_data *pd, int off)
1429 struct blkg_rwstat_sample sum;
1431 blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off,
1433 return __blkg_prfill_rwstat(sf, pd, &sum);
1436 static int tg_print_rwstat_recursive(struct seq_file *sf, void *v)
1438 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1439 tg_prfill_rwstat_recursive, &blkcg_policy_throtl,
1440 seq_cft(sf)->private, true);
1444 static struct cftype throtl_legacy_files[] = {
1446 .name = "throttle.read_bps_device",
1447 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1448 .seq_show = tg_print_conf_u64,
1449 .write = tg_set_conf_u64,
1452 .name = "throttle.write_bps_device",
1453 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1454 .seq_show = tg_print_conf_u64,
1455 .write = tg_set_conf_u64,
1458 .name = "throttle.read_iops_device",
1459 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1460 .seq_show = tg_print_conf_uint,
1461 .write = tg_set_conf_uint,
1464 .name = "throttle.write_iops_device",
1465 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1466 .seq_show = tg_print_conf_uint,
1467 .write = tg_set_conf_uint,
1470 .name = "throttle.io_service_bytes",
1471 .private = offsetof(struct throtl_grp, stat_bytes),
1472 .seq_show = tg_print_rwstat,
1475 .name = "throttle.io_service_bytes_recursive",
1476 .private = offsetof(struct throtl_grp, stat_bytes),
1477 .seq_show = tg_print_rwstat_recursive,
1480 .name = "throttle.io_serviced",
1481 .private = offsetof(struct throtl_grp, stat_ios),
1482 .seq_show = tg_print_rwstat,
1485 .name = "throttle.io_serviced_recursive",
1486 .private = offsetof(struct throtl_grp, stat_ios),
1487 .seq_show = tg_print_rwstat_recursive,
1492 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1495 struct throtl_grp *tg = pd_to_tg(pd);
1496 const char *dname = blkg_dev_name(pd->blkg);
1497 char bufs[4][21] = { "max", "max", "max", "max" };
1499 unsigned int iops_dft;
1500 char idle_time[26] = "";
1501 char latency_time[26] = "";
1506 if (off == LIMIT_LOW) {
1511 iops_dft = UINT_MAX;
1514 if (tg->bps_conf[READ][off] == bps_dft &&
1515 tg->bps_conf[WRITE][off] == bps_dft &&
1516 tg->iops_conf[READ][off] == iops_dft &&
1517 tg->iops_conf[WRITE][off] == iops_dft &&
1518 (off != LIMIT_LOW ||
1519 (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1520 tg->latency_target_conf == DFL_LATENCY_TARGET)))
1523 if (tg->bps_conf[READ][off] != U64_MAX)
1524 snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1525 tg->bps_conf[READ][off]);
1526 if (tg->bps_conf[WRITE][off] != U64_MAX)
1527 snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1528 tg->bps_conf[WRITE][off]);
1529 if (tg->iops_conf[READ][off] != UINT_MAX)
1530 snprintf(bufs[2], sizeof(bufs[2]), "%u",
1531 tg->iops_conf[READ][off]);
1532 if (tg->iops_conf[WRITE][off] != UINT_MAX)
1533 snprintf(bufs[3], sizeof(bufs[3]), "%u",
1534 tg->iops_conf[WRITE][off]);
1535 if (off == LIMIT_LOW) {
1536 if (tg->idletime_threshold_conf == ULONG_MAX)
1537 strcpy(idle_time, " idle=max");
1539 snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1540 tg->idletime_threshold_conf);
1542 if (tg->latency_target_conf == ULONG_MAX)
1543 strcpy(latency_time, " latency=max");
1545 snprintf(latency_time, sizeof(latency_time),
1546 " latency=%lu", tg->latency_target_conf);
1549 seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1550 dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1555 static int tg_print_limit(struct seq_file *sf, void *v)
1557 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1558 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1562 static ssize_t tg_set_limit(struct kernfs_open_file *of,
1563 char *buf, size_t nbytes, loff_t off)
1565 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1566 struct blkg_conf_ctx ctx;
1567 struct throtl_grp *tg;
1569 unsigned long idle_time;
1570 unsigned long latency_time;
1572 int index = of_cft(of)->private;
1574 blkg_conf_init(&ctx, buf);
1576 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, &ctx);
1580 tg = blkg_to_tg(ctx.blkg);
1581 tg_update_carryover(tg);
1583 v[0] = tg->bps_conf[READ][index];
1584 v[1] = tg->bps_conf[WRITE][index];
1585 v[2] = tg->iops_conf[READ][index];
1586 v[3] = tg->iops_conf[WRITE][index];
1588 idle_time = tg->idletime_threshold_conf;
1589 latency_time = tg->latency_target_conf;
1591 char tok[27]; /* wiops=18446744073709551616 */
1596 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1605 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1613 if (!strcmp(tok, "rbps") && val > 1)
1615 else if (!strcmp(tok, "wbps") && val > 1)
1617 else if (!strcmp(tok, "riops") && val > 1)
1618 v[2] = min_t(u64, val, UINT_MAX);
1619 else if (!strcmp(tok, "wiops") && val > 1)
1620 v[3] = min_t(u64, val, UINT_MAX);
1621 else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1623 else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1629 tg->bps_conf[READ][index] = v[0];
1630 tg->bps_conf[WRITE][index] = v[1];
1631 tg->iops_conf[READ][index] = v[2];
1632 tg->iops_conf[WRITE][index] = v[3];
1634 if (index == LIMIT_MAX) {
1635 tg->bps[READ][index] = v[0];
1636 tg->bps[WRITE][index] = v[1];
1637 tg->iops[READ][index] = v[2];
1638 tg->iops[WRITE][index] = v[3];
1640 tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1641 tg->bps_conf[READ][LIMIT_MAX]);
1642 tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1643 tg->bps_conf[WRITE][LIMIT_MAX]);
1644 tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1645 tg->iops_conf[READ][LIMIT_MAX]);
1646 tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1647 tg->iops_conf[WRITE][LIMIT_MAX]);
1648 tg->idletime_threshold_conf = idle_time;
1649 tg->latency_target_conf = latency_time;
1651 /* force user to configure all settings for low limit */
1652 if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1653 tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1654 tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1655 tg->latency_target_conf == DFL_LATENCY_TARGET) {
1656 tg->bps[READ][LIMIT_LOW] = 0;
1657 tg->bps[WRITE][LIMIT_LOW] = 0;
1658 tg->iops[READ][LIMIT_LOW] = 0;
1659 tg->iops[WRITE][LIMIT_LOW] = 0;
1660 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1661 tg->latency_target = DFL_LATENCY_TARGET;
1662 } else if (index == LIMIT_LOW) {
1663 tg->idletime_threshold = tg->idletime_threshold_conf;
1664 tg->latency_target = tg->latency_target_conf;
1667 blk_throtl_update_limit_valid(tg->td);
1668 if (tg->td->limit_valid[LIMIT_LOW]) {
1669 if (index == LIMIT_LOW)
1670 tg->td->limit_index = LIMIT_LOW;
1672 tg->td->limit_index = LIMIT_MAX;
1673 tg_conf_updated(tg, index == LIMIT_LOW &&
1674 tg->td->limit_valid[LIMIT_LOW]);
1677 blkg_conf_exit(&ctx);
1678 return ret ?: nbytes;
1681 static struct cftype throtl_files[] = {
1682 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1685 .flags = CFTYPE_NOT_ON_ROOT,
1686 .seq_show = tg_print_limit,
1687 .write = tg_set_limit,
1688 .private = LIMIT_LOW,
1693 .flags = CFTYPE_NOT_ON_ROOT,
1694 .seq_show = tg_print_limit,
1695 .write = tg_set_limit,
1696 .private = LIMIT_MAX,
1701 static void throtl_shutdown_wq(struct request_queue *q)
1703 struct throtl_data *td = q->td;
1705 cancel_work_sync(&td->dispatch_work);
1708 struct blkcg_policy blkcg_policy_throtl = {
1709 .dfl_cftypes = throtl_files,
1710 .legacy_cftypes = throtl_legacy_files,
1712 .pd_alloc_fn = throtl_pd_alloc,
1713 .pd_init_fn = throtl_pd_init,
1714 .pd_online_fn = throtl_pd_online,
1715 .pd_offline_fn = throtl_pd_offline,
1716 .pd_free_fn = throtl_pd_free,
1719 void blk_throtl_cancel_bios(struct gendisk *disk)
1721 struct request_queue *q = disk->queue;
1722 struct cgroup_subsys_state *pos_css;
1723 struct blkcg_gq *blkg;
1725 spin_lock_irq(&q->queue_lock);
1727 * queue_lock is held, rcu lock is not needed here technically.
1728 * However, rcu lock is still held to emphasize that following
1729 * path need RCU protection and to prevent warning from lockdep.
1732 blkg_for_each_descendant_post(blkg, pos_css, q->root_blkg) {
1733 struct throtl_grp *tg = blkg_to_tg(blkg);
1734 struct throtl_service_queue *sq = &tg->service_queue;
1737 * Set the flag to make sure throtl_pending_timer_fn() won't
1738 * stop until all throttled bios are dispatched.
1740 tg->flags |= THROTL_TG_CANCELING;
1743 * Do not dispatch cgroup without THROTL_TG_PENDING or cgroup
1744 * will be inserted to service queue without THROTL_TG_PENDING
1745 * set in tg_update_disptime below. Then IO dispatched from
1746 * child in tg_dispatch_one_bio will trigger double insertion
1747 * and corrupt the tree.
1749 if (!(tg->flags & THROTL_TG_PENDING))
1753 * Update disptime after setting the above flag to make sure
1754 * throtl_select_dispatch() won't exit without dispatching.
1756 tg_update_disptime(tg);
1758 throtl_schedule_pending_timer(sq, jiffies + 1);
1761 spin_unlock_irq(&q->queue_lock);
1764 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1765 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1767 unsigned long rtime = jiffies, wtime = jiffies;
1769 if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1770 rtime = tg->last_low_overflow_time[READ];
1771 if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1772 wtime = tg->last_low_overflow_time[WRITE];
1773 return min(rtime, wtime);
1776 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1778 struct throtl_service_queue *parent_sq;
1779 struct throtl_grp *parent = tg;
1780 unsigned long ret = __tg_last_low_overflow_time(tg);
1783 parent_sq = parent->service_queue.parent_sq;
1784 parent = sq_to_tg(parent_sq);
1789 * The parent doesn't have low limit, it always reaches low
1790 * limit. Its overflow time is useless for children
1792 if (!parent->bps[READ][LIMIT_LOW] &&
1793 !parent->iops[READ][LIMIT_LOW] &&
1794 !parent->bps[WRITE][LIMIT_LOW] &&
1795 !parent->iops[WRITE][LIMIT_LOW])
1797 if (time_after(__tg_last_low_overflow_time(parent), ret))
1798 ret = __tg_last_low_overflow_time(parent);
1803 static bool throtl_tg_is_idle(struct throtl_grp *tg)
1806 * cgroup is idle if:
1807 * - single idle is too long, longer than a fixed value (in case user
1808 * configure a too big threshold) or 4 times of idletime threshold
1809 * - average think time is more than threshold
1810 * - IO latency is largely below threshold
1815 time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1816 ret = tg->latency_target == DFL_LATENCY_TARGET ||
1817 tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1818 (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1819 tg->avg_idletime > tg->idletime_threshold ||
1820 (tg->latency_target && tg->bio_cnt &&
1821 tg->bad_bio_cnt * 5 < tg->bio_cnt);
1822 throtl_log(&tg->service_queue,
1823 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1824 tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1825 tg->bio_cnt, ret, tg->td->scale);
1829 static bool throtl_low_limit_reached(struct throtl_grp *tg, int rw)
1831 struct throtl_service_queue *sq = &tg->service_queue;
1832 bool limit = tg->bps[rw][LIMIT_LOW] || tg->iops[rw][LIMIT_LOW];
1835 * if low limit is zero, low limit is always reached.
1836 * if low limit is non-zero, we can check if there is any request
1837 * is queued to determine if low limit is reached as we throttle
1838 * request according to limit.
1840 return !limit || sq->nr_queued[rw];
1843 static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1846 * cgroup reaches low limit when low limit of READ and WRITE are
1847 * both reached, it's ok to upgrade to next limit if cgroup reaches
1850 if (throtl_low_limit_reached(tg, READ) &&
1851 throtl_low_limit_reached(tg, WRITE))
1854 if (time_after_eq(jiffies,
1855 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1856 throtl_tg_is_idle(tg))
1861 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1864 if (throtl_tg_can_upgrade(tg))
1866 tg = sq_to_tg(tg->service_queue.parent_sq);
1867 if (!tg || !tg_to_blkg(tg)->parent)
1873 static bool throtl_can_upgrade(struct throtl_data *td,
1874 struct throtl_grp *this_tg)
1876 struct cgroup_subsys_state *pos_css;
1877 struct blkcg_gq *blkg;
1879 if (td->limit_index != LIMIT_LOW)
1882 if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1886 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1887 struct throtl_grp *tg = blkg_to_tg(blkg);
1891 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1893 if (!throtl_hierarchy_can_upgrade(tg)) {
1902 static void throtl_upgrade_check(struct throtl_grp *tg)
1904 unsigned long now = jiffies;
1906 if (tg->td->limit_index != LIMIT_LOW)
1909 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1912 tg->last_check_time = now;
1914 if (!time_after_eq(now,
1915 __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1918 if (throtl_can_upgrade(tg->td, NULL))
1919 throtl_upgrade_state(tg->td);
1922 static void throtl_upgrade_state(struct throtl_data *td)
1924 struct cgroup_subsys_state *pos_css;
1925 struct blkcg_gq *blkg;
1927 throtl_log(&td->service_queue, "upgrade to max");
1928 td->limit_index = LIMIT_MAX;
1929 td->low_upgrade_time = jiffies;
1932 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1933 struct throtl_grp *tg = blkg_to_tg(blkg);
1934 struct throtl_service_queue *sq = &tg->service_queue;
1936 tg->disptime = jiffies - 1;
1937 throtl_select_dispatch(sq);
1938 throtl_schedule_next_dispatch(sq, true);
1941 throtl_select_dispatch(&td->service_queue);
1942 throtl_schedule_next_dispatch(&td->service_queue, true);
1943 queue_work(kthrotld_workqueue, &td->dispatch_work);
1946 static void throtl_downgrade_state(struct throtl_data *td)
1950 throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1952 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1956 td->limit_index = LIMIT_LOW;
1957 td->low_downgrade_time = jiffies;
1960 static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1962 struct throtl_data *td = tg->td;
1963 unsigned long now = jiffies;
1966 * If cgroup is below low limit, consider downgrade and throttle other
1969 if (time_after_eq(now, tg_last_low_overflow_time(tg) +
1970 td->throtl_slice) &&
1971 (!throtl_tg_is_idle(tg) ||
1972 !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
1977 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
1979 struct throtl_data *td = tg->td;
1981 if (time_before(jiffies, td->low_upgrade_time + td->throtl_slice))
1985 if (!throtl_tg_can_downgrade(tg))
1987 tg = sq_to_tg(tg->service_queue.parent_sq);
1988 if (!tg || !tg_to_blkg(tg)->parent)
1994 static void throtl_downgrade_check(struct throtl_grp *tg)
1998 unsigned long elapsed_time;
1999 unsigned long now = jiffies;
2001 if (tg->td->limit_index != LIMIT_MAX ||
2002 !tg->td->limit_valid[LIMIT_LOW])
2004 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
2006 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
2009 elapsed_time = now - tg->last_check_time;
2010 tg->last_check_time = now;
2012 if (time_before(now, tg_last_low_overflow_time(tg) +
2013 tg->td->throtl_slice))
2016 if (tg->bps[READ][LIMIT_LOW]) {
2017 bps = tg->last_bytes_disp[READ] * HZ;
2018 do_div(bps, elapsed_time);
2019 if (bps >= tg->bps[READ][LIMIT_LOW])
2020 tg->last_low_overflow_time[READ] = now;
2023 if (tg->bps[WRITE][LIMIT_LOW]) {
2024 bps = tg->last_bytes_disp[WRITE] * HZ;
2025 do_div(bps, elapsed_time);
2026 if (bps >= tg->bps[WRITE][LIMIT_LOW])
2027 tg->last_low_overflow_time[WRITE] = now;
2030 if (tg->iops[READ][LIMIT_LOW]) {
2031 iops = tg->last_io_disp[READ] * HZ / elapsed_time;
2032 if (iops >= tg->iops[READ][LIMIT_LOW])
2033 tg->last_low_overflow_time[READ] = now;
2036 if (tg->iops[WRITE][LIMIT_LOW]) {
2037 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
2038 if (iops >= tg->iops[WRITE][LIMIT_LOW])
2039 tg->last_low_overflow_time[WRITE] = now;
2043 * If cgroup is below low limit, consider downgrade and throttle other
2046 if (throtl_hierarchy_can_downgrade(tg))
2047 throtl_downgrade_state(tg->td);
2049 tg->last_bytes_disp[READ] = 0;
2050 tg->last_bytes_disp[WRITE] = 0;
2051 tg->last_io_disp[READ] = 0;
2052 tg->last_io_disp[WRITE] = 0;
2055 static void blk_throtl_update_idletime(struct throtl_grp *tg)
2058 unsigned long last_finish_time = tg->last_finish_time;
2060 if (last_finish_time == 0)
2063 now = ktime_get_ns() >> 10;
2064 if (now <= last_finish_time ||
2065 last_finish_time == tg->checked_last_finish_time)
2068 tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2069 tg->checked_last_finish_time = last_finish_time;
2072 static void throtl_update_latency_buckets(struct throtl_data *td)
2074 struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
2076 unsigned long last_latency[2] = { 0 };
2077 unsigned long latency[2];
2079 if (!blk_queue_nonrot(td->queue) || !td->limit_valid[LIMIT_LOW])
2081 if (time_before(jiffies, td->last_calculate_time + HZ))
2083 td->last_calculate_time = jiffies;
2085 memset(avg_latency, 0, sizeof(avg_latency));
2086 for (rw = READ; rw <= WRITE; rw++) {
2087 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2088 struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
2090 for_each_possible_cpu(cpu) {
2091 struct latency_bucket *bucket;
2093 /* this isn't race free, but ok in practice */
2094 bucket = per_cpu_ptr(td->latency_buckets[rw],
2096 tmp->total_latency += bucket[i].total_latency;
2097 tmp->samples += bucket[i].samples;
2098 bucket[i].total_latency = 0;
2099 bucket[i].samples = 0;
2102 if (tmp->samples >= 32) {
2103 int samples = tmp->samples;
2105 latency[rw] = tmp->total_latency;
2107 tmp->total_latency = 0;
2109 latency[rw] /= samples;
2110 if (latency[rw] == 0)
2112 avg_latency[rw][i].latency = latency[rw];
2117 for (rw = READ; rw <= WRITE; rw++) {
2118 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2119 if (!avg_latency[rw][i].latency) {
2120 if (td->avg_buckets[rw][i].latency < last_latency[rw])
2121 td->avg_buckets[rw][i].latency =
2126 if (!td->avg_buckets[rw][i].valid)
2127 latency[rw] = avg_latency[rw][i].latency;
2129 latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2130 avg_latency[rw][i].latency) >> 3;
2132 td->avg_buckets[rw][i].latency = max(latency[rw],
2134 td->avg_buckets[rw][i].valid = true;
2135 last_latency[rw] = td->avg_buckets[rw][i].latency;
2139 for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2140 throtl_log(&td->service_queue,
2141 "Latency bucket %d: read latency=%ld, read valid=%d, "
2142 "write latency=%ld, write valid=%d", i,
2143 td->avg_buckets[READ][i].latency,
2144 td->avg_buckets[READ][i].valid,
2145 td->avg_buckets[WRITE][i].latency,
2146 td->avg_buckets[WRITE][i].valid);
2149 static inline void throtl_update_latency_buckets(struct throtl_data *td)
2153 static void blk_throtl_update_idletime(struct throtl_grp *tg)
2157 static void throtl_downgrade_check(struct throtl_grp *tg)
2161 static void throtl_upgrade_check(struct throtl_grp *tg)
2165 static bool throtl_can_upgrade(struct throtl_data *td,
2166 struct throtl_grp *this_tg)
2171 static void throtl_upgrade_state(struct throtl_data *td)
2176 bool __blk_throtl_bio(struct bio *bio)
2178 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2179 struct blkcg_gq *blkg = bio->bi_blkg;
2180 struct throtl_qnode *qn = NULL;
2181 struct throtl_grp *tg = blkg_to_tg(blkg);
2182 struct throtl_service_queue *sq;
2183 bool rw = bio_data_dir(bio);
2184 bool throttled = false;
2185 struct throtl_data *td = tg->td;
2189 spin_lock_irq(&q->queue_lock);
2191 throtl_update_latency_buckets(td);
2193 blk_throtl_update_idletime(tg);
2195 sq = &tg->service_queue;
2199 if (tg->last_low_overflow_time[rw] == 0)
2200 tg->last_low_overflow_time[rw] = jiffies;
2201 throtl_downgrade_check(tg);
2202 throtl_upgrade_check(tg);
2203 /* throtl is FIFO - if bios are already queued, should queue */
2204 if (sq->nr_queued[rw])
2207 /* if above limits, break to queue */
2208 if (!tg_may_dispatch(tg, bio, NULL)) {
2209 tg->last_low_overflow_time[rw] = jiffies;
2210 if (throtl_can_upgrade(td, tg)) {
2211 throtl_upgrade_state(td);
2217 /* within limits, let's charge and dispatch directly */
2218 throtl_charge_bio(tg, bio);
2221 * We need to trim slice even when bios are not being queued
2222 * otherwise it might happen that a bio is not queued for
2223 * a long time and slice keeps on extending and trim is not
2224 * called for a long time. Now if limits are reduced suddenly
2225 * we take into account all the IO dispatched so far at new
2226 * low rate and * newly queued IO gets a really long dispatch
2229 * So keep on trimming slice even if bio is not queued.
2231 throtl_trim_slice(tg, rw);
2234 * @bio passed through this layer without being throttled.
2235 * Climb up the ladder. If we're already at the top, it
2236 * can be executed directly.
2238 qn = &tg->qnode_on_parent[rw];
2242 bio_set_flag(bio, BIO_BPS_THROTTLED);
2247 /* out-of-limit, queue to @tg */
2248 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2249 rw == READ ? 'R' : 'W',
2250 tg->bytes_disp[rw], bio->bi_iter.bi_size,
2251 tg_bps_limit(tg, rw),
2252 tg->io_disp[rw], tg_iops_limit(tg, rw),
2253 sq->nr_queued[READ], sq->nr_queued[WRITE]);
2255 tg->last_low_overflow_time[rw] = jiffies;
2257 td->nr_queued[rw]++;
2258 throtl_add_bio_tg(bio, qn, tg);
2262 * Update @tg's dispatch time and force schedule dispatch if @tg
2263 * was empty before @bio. The forced scheduling isn't likely to
2264 * cause undue delay as @bio is likely to be dispatched directly if
2265 * its @tg's disptime is not in the future.
2267 if (tg->flags & THROTL_TG_WAS_EMPTY) {
2268 tg_update_disptime(tg);
2269 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2273 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2274 if (throttled || !td->track_bio_latency)
2275 bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
2277 spin_unlock_irq(&q->queue_lock);
2283 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2284 static void throtl_track_latency(struct throtl_data *td, sector_t size,
2285 enum req_op op, unsigned long time)
2287 const bool rw = op_is_write(op);
2288 struct latency_bucket *latency;
2291 if (!td || td->limit_index != LIMIT_LOW ||
2292 !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
2293 !blk_queue_nonrot(td->queue))
2296 index = request_bucket_index(size);
2298 latency = get_cpu_ptr(td->latency_buckets[rw]);
2299 latency[index].total_latency += time;
2300 latency[index].samples++;
2301 put_cpu_ptr(td->latency_buckets[rw]);
2304 void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2306 struct request_queue *q = rq->q;
2307 struct throtl_data *td = q->td;
2309 throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq),
2313 void blk_throtl_bio_endio(struct bio *bio)
2315 struct blkcg_gq *blkg;
2316 struct throtl_grp *tg;
2318 unsigned long finish_time;
2319 unsigned long start_time;
2321 int rw = bio_data_dir(bio);
2323 blkg = bio->bi_blkg;
2326 tg = blkg_to_tg(blkg);
2327 if (!tg->td->limit_valid[LIMIT_LOW])
2330 finish_time_ns = ktime_get_ns();
2331 tg->last_finish_time = finish_time_ns >> 10;
2333 start_time = bio_issue_time(&bio->bi_issue) >> 10;
2334 finish_time = __bio_issue_time(finish_time_ns) >> 10;
2335 if (!start_time || finish_time <= start_time)
2338 lat = finish_time - start_time;
2339 /* this is only for bio based driver */
2340 if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
2341 throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
2344 if (tg->latency_target && lat >= tg->td->filtered_latency) {
2346 unsigned int threshold;
2348 bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
2349 threshold = tg->td->avg_buckets[rw][bucket].latency +
2351 if (lat > threshold)
2354 * Not race free, could get wrong count, which means cgroups
2360 if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2361 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2363 tg->bad_bio_cnt /= 2;
2368 int blk_throtl_init(struct gendisk *disk)
2370 struct request_queue *q = disk->queue;
2371 struct throtl_data *td;
2374 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2377 td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
2378 LATENCY_BUCKET_SIZE, __alignof__(u64));
2379 if (!td->latency_buckets[READ]) {
2383 td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
2384 LATENCY_BUCKET_SIZE, __alignof__(u64));
2385 if (!td->latency_buckets[WRITE]) {
2386 free_percpu(td->latency_buckets[READ]);
2391 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2392 throtl_service_queue_init(&td->service_queue);
2397 td->limit_valid[LIMIT_MAX] = true;
2398 td->limit_index = LIMIT_MAX;
2399 td->low_upgrade_time = jiffies;
2400 td->low_downgrade_time = jiffies;
2402 /* activate policy */
2403 ret = blkcg_activate_policy(disk, &blkcg_policy_throtl);
2405 free_percpu(td->latency_buckets[READ]);
2406 free_percpu(td->latency_buckets[WRITE]);
2412 void blk_throtl_exit(struct gendisk *disk)
2414 struct request_queue *q = disk->queue;
2417 del_timer_sync(&q->td->service_queue.pending_timer);
2418 throtl_shutdown_wq(q);
2419 blkcg_deactivate_policy(disk, &blkcg_policy_throtl);
2420 free_percpu(q->td->latency_buckets[READ]);
2421 free_percpu(q->td->latency_buckets[WRITE]);
2425 void blk_throtl_register(struct gendisk *disk)
2427 struct request_queue *q = disk->queue;
2428 struct throtl_data *td;
2434 if (blk_queue_nonrot(q)) {
2435 td->throtl_slice = DFL_THROTL_SLICE_SSD;
2436 td->filtered_latency = LATENCY_FILTERED_SSD;
2438 td->throtl_slice = DFL_THROTL_SLICE_HD;
2439 td->filtered_latency = LATENCY_FILTERED_HD;
2440 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2441 td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2442 td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2445 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2446 /* if no low limit, use previous default */
2447 td->throtl_slice = DFL_THROTL_SLICE_HD;
2450 td->track_bio_latency = !queue_is_mq(q);
2451 if (!td->track_bio_latency)
2452 blk_stat_enable_accounting(q);
2456 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2457 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2461 return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2464 ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2465 const char *page, size_t count)
2472 if (kstrtoul(page, 10, &v))
2474 t = msecs_to_jiffies(v);
2475 if (t == 0 || t > MAX_THROTL_SLICE)
2477 q->td->throtl_slice = t;
2482 static int __init throtl_init(void)
2484 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2485 if (!kthrotld_workqueue)
2486 panic("Failed to create kthrotld\n");
2488 return blkcg_policy_register(&blkcg_policy_throtl);
2491 module_init(throtl_init);