dts: bcm2712-rpi-5-b: Create some dummy nodes
[platform/kernel/linux-rpi.git] / block / blk-throttle.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Interface for controlling IO bandwidth on a request queue
4  *
5  * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
6  */
7
8 #include <linux/module.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/bio.h>
12 #include <linux/blktrace_api.h>
13 #include "blk.h"
14 #include "blk-cgroup-rwstat.h"
15 #include "blk-stat.h"
16 #include "blk-throttle.h"
17
18 /* Max dispatch from a group in 1 round */
19 #define THROTL_GRP_QUANTUM 8
20
21 /* Total max dispatch from all groups in one round */
22 #define THROTL_QUANTUM 32
23
24 /* Throttling is performed over a slice and after that slice is renewed */
25 #define DFL_THROTL_SLICE_HD (HZ / 10)
26 #define DFL_THROTL_SLICE_SSD (HZ / 50)
27 #define MAX_THROTL_SLICE (HZ)
28 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
29 #define MIN_THROTL_BPS (320 * 1024)
30 #define MIN_THROTL_IOPS (10)
31 #define DFL_LATENCY_TARGET (-1L)
32 #define DFL_IDLE_THRESHOLD (0)
33 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
34 #define LATENCY_FILTERED_SSD (0)
35 /*
36  * For HD, very small latency comes from sequential IO. Such IO is helpless to
37  * help determine if its IO is impacted by others, hence we ignore the IO
38  */
39 #define LATENCY_FILTERED_HD (1000L) /* 1ms */
40
41 /* A workqueue to queue throttle related work */
42 static struct workqueue_struct *kthrotld_workqueue;
43
44 #define rb_entry_tg(node)       rb_entry((node), struct throtl_grp, rb_node)
45
46 /* We measure latency for request size from <= 4k to >= 1M */
47 #define LATENCY_BUCKET_SIZE 9
48
49 struct latency_bucket {
50         unsigned long total_latency; /* ns / 1024 */
51         int samples;
52 };
53
54 struct avg_latency_bucket {
55         unsigned long latency; /* ns / 1024 */
56         bool valid;
57 };
58
59 struct throtl_data
60 {
61         /* service tree for active throtl groups */
62         struct throtl_service_queue service_queue;
63
64         struct request_queue *queue;
65
66         /* Total Number of queued bios on READ and WRITE lists */
67         unsigned int nr_queued[2];
68
69         unsigned int throtl_slice;
70
71         /* Work for dispatching throttled bios */
72         struct work_struct dispatch_work;
73         unsigned int limit_index;
74         bool limit_valid[LIMIT_CNT];
75
76         unsigned long low_upgrade_time;
77         unsigned long low_downgrade_time;
78
79         unsigned int scale;
80
81         struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
82         struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
83         struct latency_bucket __percpu *latency_buckets[2];
84         unsigned long last_calculate_time;
85         unsigned long filtered_latency;
86
87         bool track_bio_latency;
88 };
89
90 static void throtl_pending_timer_fn(struct timer_list *t);
91
92 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
93 {
94         return pd_to_blkg(&tg->pd);
95 }
96
97 /**
98  * sq_to_tg - return the throl_grp the specified service queue belongs to
99  * @sq: the throtl_service_queue of interest
100  *
101  * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
102  * embedded in throtl_data, %NULL is returned.
103  */
104 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
105 {
106         if (sq && sq->parent_sq)
107                 return container_of(sq, struct throtl_grp, service_queue);
108         else
109                 return NULL;
110 }
111
112 /**
113  * sq_to_td - return throtl_data the specified service queue belongs to
114  * @sq: the throtl_service_queue of interest
115  *
116  * A service_queue can be embedded in either a throtl_grp or throtl_data.
117  * Determine the associated throtl_data accordingly and return it.
118  */
119 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
120 {
121         struct throtl_grp *tg = sq_to_tg(sq);
122
123         if (tg)
124                 return tg->td;
125         else
126                 return container_of(sq, struct throtl_data, service_queue);
127 }
128
129 /*
130  * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
131  * make the IO dispatch more smooth.
132  * Scale up: linearly scale up according to elapsed time since upgrade. For
133  *           every throtl_slice, the limit scales up 1/2 .low limit till the
134  *           limit hits .max limit
135  * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
136  */
137 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
138 {
139         /* arbitrary value to avoid too big scale */
140         if (td->scale < 4096 && time_after_eq(jiffies,
141             td->low_upgrade_time + td->scale * td->throtl_slice))
142                 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
143
144         return low + (low >> 1) * td->scale;
145 }
146
147 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
148 {
149         struct blkcg_gq *blkg = tg_to_blkg(tg);
150         struct throtl_data *td;
151         uint64_t ret;
152
153         if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
154                 return U64_MAX;
155
156         td = tg->td;
157         ret = tg->bps[rw][td->limit_index];
158         if (ret == 0 && td->limit_index == LIMIT_LOW) {
159                 /* intermediate node or iops isn't 0 */
160                 if (!list_empty(&blkg->blkcg->css.children) ||
161                     tg->iops[rw][td->limit_index])
162                         return U64_MAX;
163                 else
164                         return MIN_THROTL_BPS;
165         }
166
167         if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
168             tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
169                 uint64_t adjusted;
170
171                 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
172                 ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
173         }
174         return ret;
175 }
176
177 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
178 {
179         struct blkcg_gq *blkg = tg_to_blkg(tg);
180         struct throtl_data *td;
181         unsigned int ret;
182
183         if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
184                 return UINT_MAX;
185
186         td = tg->td;
187         ret = tg->iops[rw][td->limit_index];
188         if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
189                 /* intermediate node or bps isn't 0 */
190                 if (!list_empty(&blkg->blkcg->css.children) ||
191                     tg->bps[rw][td->limit_index])
192                         return UINT_MAX;
193                 else
194                         return MIN_THROTL_IOPS;
195         }
196
197         if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
198             tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
199                 uint64_t adjusted;
200
201                 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
202                 if (adjusted > UINT_MAX)
203                         adjusted = UINT_MAX;
204                 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
205         }
206         return ret;
207 }
208
209 #define request_bucket_index(sectors) \
210         clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
211
212 /**
213  * throtl_log - log debug message via blktrace
214  * @sq: the service_queue being reported
215  * @fmt: printf format string
216  * @args: printf args
217  *
218  * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
219  * throtl_grp; otherwise, just "throtl".
220  */
221 #define throtl_log(sq, fmt, args...)    do {                            \
222         struct throtl_grp *__tg = sq_to_tg((sq));                       \
223         struct throtl_data *__td = sq_to_td((sq));                      \
224                                                                         \
225         (void)__td;                                                     \
226         if (likely(!blk_trace_note_message_enabled(__td->queue)))       \
227                 break;                                                  \
228         if ((__tg)) {                                                   \
229                 blk_add_cgroup_trace_msg(__td->queue,                   \
230                         &tg_to_blkg(__tg)->blkcg->css, "throtl " fmt, ##args);\
231         } else {                                                        \
232                 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);  \
233         }                                                               \
234 } while (0)
235
236 static inline unsigned int throtl_bio_data_size(struct bio *bio)
237 {
238         /* assume it's one sector */
239         if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
240                 return 512;
241         return bio->bi_iter.bi_size;
242 }
243
244 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
245 {
246         INIT_LIST_HEAD(&qn->node);
247         bio_list_init(&qn->bios);
248         qn->tg = tg;
249 }
250
251 /**
252  * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
253  * @bio: bio being added
254  * @qn: qnode to add bio to
255  * @queued: the service_queue->queued[] list @qn belongs to
256  *
257  * Add @bio to @qn and put @qn on @queued if it's not already on.
258  * @qn->tg's reference count is bumped when @qn is activated.  See the
259  * comment on top of throtl_qnode definition for details.
260  */
261 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
262                                  struct list_head *queued)
263 {
264         bio_list_add(&qn->bios, bio);
265         if (list_empty(&qn->node)) {
266                 list_add_tail(&qn->node, queued);
267                 blkg_get(tg_to_blkg(qn->tg));
268         }
269 }
270
271 /**
272  * throtl_peek_queued - peek the first bio on a qnode list
273  * @queued: the qnode list to peek
274  */
275 static struct bio *throtl_peek_queued(struct list_head *queued)
276 {
277         struct throtl_qnode *qn;
278         struct bio *bio;
279
280         if (list_empty(queued))
281                 return NULL;
282
283         qn = list_first_entry(queued, struct throtl_qnode, node);
284         bio = bio_list_peek(&qn->bios);
285         WARN_ON_ONCE(!bio);
286         return bio;
287 }
288
289 /**
290  * throtl_pop_queued - pop the first bio form a qnode list
291  * @queued: the qnode list to pop a bio from
292  * @tg_to_put: optional out argument for throtl_grp to put
293  *
294  * Pop the first bio from the qnode list @queued.  After popping, the first
295  * qnode is removed from @queued if empty or moved to the end of @queued so
296  * that the popping order is round-robin.
297  *
298  * When the first qnode is removed, its associated throtl_grp should be put
299  * too.  If @tg_to_put is NULL, this function automatically puts it;
300  * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
301  * responsible for putting it.
302  */
303 static struct bio *throtl_pop_queued(struct list_head *queued,
304                                      struct throtl_grp **tg_to_put)
305 {
306         struct throtl_qnode *qn;
307         struct bio *bio;
308
309         if (list_empty(queued))
310                 return NULL;
311
312         qn = list_first_entry(queued, struct throtl_qnode, node);
313         bio = bio_list_pop(&qn->bios);
314         WARN_ON_ONCE(!bio);
315
316         if (bio_list_empty(&qn->bios)) {
317                 list_del_init(&qn->node);
318                 if (tg_to_put)
319                         *tg_to_put = qn->tg;
320                 else
321                         blkg_put(tg_to_blkg(qn->tg));
322         } else {
323                 list_move_tail(&qn->node, queued);
324         }
325
326         return bio;
327 }
328
329 /* init a service_queue, assumes the caller zeroed it */
330 static void throtl_service_queue_init(struct throtl_service_queue *sq)
331 {
332         INIT_LIST_HEAD(&sq->queued[READ]);
333         INIT_LIST_HEAD(&sq->queued[WRITE]);
334         sq->pending_tree = RB_ROOT_CACHED;
335         timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
336 }
337
338 static struct blkg_policy_data *throtl_pd_alloc(struct gendisk *disk,
339                 struct blkcg *blkcg, gfp_t gfp)
340 {
341         struct throtl_grp *tg;
342         int rw;
343
344         tg = kzalloc_node(sizeof(*tg), gfp, disk->node_id);
345         if (!tg)
346                 return NULL;
347
348         if (blkg_rwstat_init(&tg->stat_bytes, gfp))
349                 goto err_free_tg;
350
351         if (blkg_rwstat_init(&tg->stat_ios, gfp))
352                 goto err_exit_stat_bytes;
353
354         throtl_service_queue_init(&tg->service_queue);
355
356         for (rw = READ; rw <= WRITE; rw++) {
357                 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
358                 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
359         }
360
361         RB_CLEAR_NODE(&tg->rb_node);
362         tg->bps[READ][LIMIT_MAX] = U64_MAX;
363         tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
364         tg->iops[READ][LIMIT_MAX] = UINT_MAX;
365         tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
366         tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
367         tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
368         tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
369         tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
370         /* LIMIT_LOW will have default value 0 */
371
372         tg->latency_target = DFL_LATENCY_TARGET;
373         tg->latency_target_conf = DFL_LATENCY_TARGET;
374         tg->idletime_threshold = DFL_IDLE_THRESHOLD;
375         tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
376
377         return &tg->pd;
378
379 err_exit_stat_bytes:
380         blkg_rwstat_exit(&tg->stat_bytes);
381 err_free_tg:
382         kfree(tg);
383         return NULL;
384 }
385
386 static void throtl_pd_init(struct blkg_policy_data *pd)
387 {
388         struct throtl_grp *tg = pd_to_tg(pd);
389         struct blkcg_gq *blkg = tg_to_blkg(tg);
390         struct throtl_data *td = blkg->q->td;
391         struct throtl_service_queue *sq = &tg->service_queue;
392
393         /*
394          * If on the default hierarchy, we switch to properly hierarchical
395          * behavior where limits on a given throtl_grp are applied to the
396          * whole subtree rather than just the group itself.  e.g. If 16M
397          * read_bps limit is set on a parent group, summary bps of
398          * parent group and its subtree groups can't exceed 16M for the
399          * device.
400          *
401          * If not on the default hierarchy, the broken flat hierarchy
402          * behavior is retained where all throtl_grps are treated as if
403          * they're all separate root groups right below throtl_data.
404          * Limits of a group don't interact with limits of other groups
405          * regardless of the position of the group in the hierarchy.
406          */
407         sq->parent_sq = &td->service_queue;
408         if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
409                 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
410         tg->td = td;
411 }
412
413 /*
414  * Set has_rules[] if @tg or any of its parents have limits configured.
415  * This doesn't require walking up to the top of the hierarchy as the
416  * parent's has_rules[] is guaranteed to be correct.
417  */
418 static void tg_update_has_rules(struct throtl_grp *tg)
419 {
420         struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
421         struct throtl_data *td = tg->td;
422         int rw;
423
424         for (rw = READ; rw <= WRITE; rw++) {
425                 tg->has_rules_iops[rw] =
426                         (parent_tg && parent_tg->has_rules_iops[rw]) ||
427                         (td->limit_valid[td->limit_index] &&
428                           tg_iops_limit(tg, rw) != UINT_MAX);
429                 tg->has_rules_bps[rw] =
430                         (parent_tg && parent_tg->has_rules_bps[rw]) ||
431                         (td->limit_valid[td->limit_index] &&
432                          (tg_bps_limit(tg, rw) != U64_MAX));
433         }
434 }
435
436 static void throtl_pd_online(struct blkg_policy_data *pd)
437 {
438         struct throtl_grp *tg = pd_to_tg(pd);
439         /*
440          * We don't want new groups to escape the limits of its ancestors.
441          * Update has_rules[] after a new group is brought online.
442          */
443         tg_update_has_rules(tg);
444 }
445
446 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
447 static void blk_throtl_update_limit_valid(struct throtl_data *td)
448 {
449         struct cgroup_subsys_state *pos_css;
450         struct blkcg_gq *blkg;
451         bool low_valid = false;
452
453         rcu_read_lock();
454         blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
455                 struct throtl_grp *tg = blkg_to_tg(blkg);
456
457                 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
458                     tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
459                         low_valid = true;
460                         break;
461                 }
462         }
463         rcu_read_unlock();
464
465         td->limit_valid[LIMIT_LOW] = low_valid;
466 }
467 #else
468 static inline void blk_throtl_update_limit_valid(struct throtl_data *td)
469 {
470 }
471 #endif
472
473 static void throtl_upgrade_state(struct throtl_data *td);
474 static void throtl_pd_offline(struct blkg_policy_data *pd)
475 {
476         struct throtl_grp *tg = pd_to_tg(pd);
477
478         tg->bps[READ][LIMIT_LOW] = 0;
479         tg->bps[WRITE][LIMIT_LOW] = 0;
480         tg->iops[READ][LIMIT_LOW] = 0;
481         tg->iops[WRITE][LIMIT_LOW] = 0;
482
483         blk_throtl_update_limit_valid(tg->td);
484
485         if (!tg->td->limit_valid[tg->td->limit_index])
486                 throtl_upgrade_state(tg->td);
487 }
488
489 static void throtl_pd_free(struct blkg_policy_data *pd)
490 {
491         struct throtl_grp *tg = pd_to_tg(pd);
492
493         del_timer_sync(&tg->service_queue.pending_timer);
494         blkg_rwstat_exit(&tg->stat_bytes);
495         blkg_rwstat_exit(&tg->stat_ios);
496         kfree(tg);
497 }
498
499 static struct throtl_grp *
500 throtl_rb_first(struct throtl_service_queue *parent_sq)
501 {
502         struct rb_node *n;
503
504         n = rb_first_cached(&parent_sq->pending_tree);
505         WARN_ON_ONCE(!n);
506         if (!n)
507                 return NULL;
508         return rb_entry_tg(n);
509 }
510
511 static void throtl_rb_erase(struct rb_node *n,
512                             struct throtl_service_queue *parent_sq)
513 {
514         rb_erase_cached(n, &parent_sq->pending_tree);
515         RB_CLEAR_NODE(n);
516 }
517
518 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
519 {
520         struct throtl_grp *tg;
521
522         tg = throtl_rb_first(parent_sq);
523         if (!tg)
524                 return;
525
526         parent_sq->first_pending_disptime = tg->disptime;
527 }
528
529 static void tg_service_queue_add(struct throtl_grp *tg)
530 {
531         struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
532         struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node;
533         struct rb_node *parent = NULL;
534         struct throtl_grp *__tg;
535         unsigned long key = tg->disptime;
536         bool leftmost = true;
537
538         while (*node != NULL) {
539                 parent = *node;
540                 __tg = rb_entry_tg(parent);
541
542                 if (time_before(key, __tg->disptime))
543                         node = &parent->rb_left;
544                 else {
545                         node = &parent->rb_right;
546                         leftmost = false;
547                 }
548         }
549
550         rb_link_node(&tg->rb_node, parent, node);
551         rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree,
552                                leftmost);
553 }
554
555 static void throtl_enqueue_tg(struct throtl_grp *tg)
556 {
557         if (!(tg->flags & THROTL_TG_PENDING)) {
558                 tg_service_queue_add(tg);
559                 tg->flags |= THROTL_TG_PENDING;
560                 tg->service_queue.parent_sq->nr_pending++;
561         }
562 }
563
564 static void throtl_dequeue_tg(struct throtl_grp *tg)
565 {
566         if (tg->flags & THROTL_TG_PENDING) {
567                 struct throtl_service_queue *parent_sq =
568                         tg->service_queue.parent_sq;
569
570                 throtl_rb_erase(&tg->rb_node, parent_sq);
571                 --parent_sq->nr_pending;
572                 tg->flags &= ~THROTL_TG_PENDING;
573         }
574 }
575
576 /* Call with queue lock held */
577 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
578                                           unsigned long expires)
579 {
580         unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
581
582         /*
583          * Since we are adjusting the throttle limit dynamically, the sleep
584          * time calculated according to previous limit might be invalid. It's
585          * possible the cgroup sleep time is very long and no other cgroups
586          * have IO running so notify the limit changes. Make sure the cgroup
587          * doesn't sleep too long to avoid the missed notification.
588          */
589         if (time_after(expires, max_expire))
590                 expires = max_expire;
591         mod_timer(&sq->pending_timer, expires);
592         throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
593                    expires - jiffies, jiffies);
594 }
595
596 /**
597  * throtl_schedule_next_dispatch - schedule the next dispatch cycle
598  * @sq: the service_queue to schedule dispatch for
599  * @force: force scheduling
600  *
601  * Arm @sq->pending_timer so that the next dispatch cycle starts on the
602  * dispatch time of the first pending child.  Returns %true if either timer
603  * is armed or there's no pending child left.  %false if the current
604  * dispatch window is still open and the caller should continue
605  * dispatching.
606  *
607  * If @force is %true, the dispatch timer is always scheduled and this
608  * function is guaranteed to return %true.  This is to be used when the
609  * caller can't dispatch itself and needs to invoke pending_timer
610  * unconditionally.  Note that forced scheduling is likely to induce short
611  * delay before dispatch starts even if @sq->first_pending_disptime is not
612  * in the future and thus shouldn't be used in hot paths.
613  */
614 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
615                                           bool force)
616 {
617         /* any pending children left? */
618         if (!sq->nr_pending)
619                 return true;
620
621         update_min_dispatch_time(sq);
622
623         /* is the next dispatch time in the future? */
624         if (force || time_after(sq->first_pending_disptime, jiffies)) {
625                 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
626                 return true;
627         }
628
629         /* tell the caller to continue dispatching */
630         return false;
631 }
632
633 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
634                 bool rw, unsigned long start)
635 {
636         tg->bytes_disp[rw] = 0;
637         tg->io_disp[rw] = 0;
638         tg->carryover_bytes[rw] = 0;
639         tg->carryover_ios[rw] = 0;
640
641         /*
642          * Previous slice has expired. We must have trimmed it after last
643          * bio dispatch. That means since start of last slice, we never used
644          * that bandwidth. Do try to make use of that bandwidth while giving
645          * credit.
646          */
647         if (time_after(start, tg->slice_start[rw]))
648                 tg->slice_start[rw] = start;
649
650         tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
651         throtl_log(&tg->service_queue,
652                    "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
653                    rw == READ ? 'R' : 'W', tg->slice_start[rw],
654                    tg->slice_end[rw], jiffies);
655 }
656
657 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw,
658                                           bool clear_carryover)
659 {
660         tg->bytes_disp[rw] = 0;
661         tg->io_disp[rw] = 0;
662         tg->slice_start[rw] = jiffies;
663         tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
664         if (clear_carryover) {
665                 tg->carryover_bytes[rw] = 0;
666                 tg->carryover_ios[rw] = 0;
667         }
668
669         throtl_log(&tg->service_queue,
670                    "[%c] new slice start=%lu end=%lu jiffies=%lu",
671                    rw == READ ? 'R' : 'W', tg->slice_start[rw],
672                    tg->slice_end[rw], jiffies);
673 }
674
675 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
676                                         unsigned long jiffy_end)
677 {
678         tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
679 }
680
681 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
682                                        unsigned long jiffy_end)
683 {
684         throtl_set_slice_end(tg, rw, jiffy_end);
685         throtl_log(&tg->service_queue,
686                    "[%c] extend slice start=%lu end=%lu jiffies=%lu",
687                    rw == READ ? 'R' : 'W', tg->slice_start[rw],
688                    tg->slice_end[rw], jiffies);
689 }
690
691 /* Determine if previously allocated or extended slice is complete or not */
692 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
693 {
694         if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
695                 return false;
696
697         return true;
698 }
699
700 static unsigned int calculate_io_allowed(u32 iops_limit,
701                                          unsigned long jiffy_elapsed)
702 {
703         unsigned int io_allowed;
704         u64 tmp;
705
706         /*
707          * jiffy_elapsed should not be a big value as minimum iops can be
708          * 1 then at max jiffy elapsed should be equivalent of 1 second as we
709          * will allow dispatch after 1 second and after that slice should
710          * have been trimmed.
711          */
712
713         tmp = (u64)iops_limit * jiffy_elapsed;
714         do_div(tmp, HZ);
715
716         if (tmp > UINT_MAX)
717                 io_allowed = UINT_MAX;
718         else
719                 io_allowed = tmp;
720
721         return io_allowed;
722 }
723
724 static u64 calculate_bytes_allowed(u64 bps_limit, unsigned long jiffy_elapsed)
725 {
726         /*
727          * Can result be wider than 64 bits?
728          * We check against 62, not 64, due to ilog2 truncation.
729          */
730         if (ilog2(bps_limit) + ilog2(jiffy_elapsed) - ilog2(HZ) > 62)
731                 return U64_MAX;
732         return mul_u64_u64_div_u64(bps_limit, (u64)jiffy_elapsed, (u64)HZ);
733 }
734
735 /* Trim the used slices and adjust slice start accordingly */
736 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
737 {
738         unsigned long time_elapsed;
739         long long bytes_trim;
740         int io_trim;
741
742         BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
743
744         /*
745          * If bps are unlimited (-1), then time slice don't get
746          * renewed. Don't try to trim the slice if slice is used. A new
747          * slice will start when appropriate.
748          */
749         if (throtl_slice_used(tg, rw))
750                 return;
751
752         /*
753          * A bio has been dispatched. Also adjust slice_end. It might happen
754          * that initially cgroup limit was very low resulting in high
755          * slice_end, but later limit was bumped up and bio was dispatched
756          * sooner, then we need to reduce slice_end. A high bogus slice_end
757          * is bad because it does not allow new slice to start.
758          */
759
760         throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
761
762         time_elapsed = rounddown(jiffies - tg->slice_start[rw],
763                                  tg->td->throtl_slice);
764         if (!time_elapsed)
765                 return;
766
767         bytes_trim = calculate_bytes_allowed(tg_bps_limit(tg, rw),
768                                              time_elapsed) +
769                      tg->carryover_bytes[rw];
770         io_trim = calculate_io_allowed(tg_iops_limit(tg, rw), time_elapsed) +
771                   tg->carryover_ios[rw];
772         if (bytes_trim <= 0 && io_trim <= 0)
773                 return;
774
775         tg->carryover_bytes[rw] = 0;
776         if ((long long)tg->bytes_disp[rw] >= bytes_trim)
777                 tg->bytes_disp[rw] -= bytes_trim;
778         else
779                 tg->bytes_disp[rw] = 0;
780
781         tg->carryover_ios[rw] = 0;
782         if ((int)tg->io_disp[rw] >= io_trim)
783                 tg->io_disp[rw] -= io_trim;
784         else
785                 tg->io_disp[rw] = 0;
786
787         tg->slice_start[rw] += time_elapsed;
788
789         throtl_log(&tg->service_queue,
790                    "[%c] trim slice nr=%lu bytes=%lld io=%d start=%lu end=%lu jiffies=%lu",
791                    rw == READ ? 'R' : 'W', time_elapsed / tg->td->throtl_slice,
792                    bytes_trim, io_trim, tg->slice_start[rw], tg->slice_end[rw],
793                    jiffies);
794 }
795
796 static void __tg_update_carryover(struct throtl_grp *tg, bool rw)
797 {
798         unsigned long jiffy_elapsed = jiffies - tg->slice_start[rw];
799         u64 bps_limit = tg_bps_limit(tg, rw);
800         u32 iops_limit = tg_iops_limit(tg, rw);
801
802         /*
803          * If config is updated while bios are still throttled, calculate and
804          * accumulate how many bytes/ios are waited across changes. And
805          * carryover_bytes/ios will be used to calculate new wait time under new
806          * configuration.
807          */
808         if (bps_limit != U64_MAX)
809                 tg->carryover_bytes[rw] +=
810                         calculate_bytes_allowed(bps_limit, jiffy_elapsed) -
811                         tg->bytes_disp[rw];
812         if (iops_limit != UINT_MAX)
813                 tg->carryover_ios[rw] +=
814                         calculate_io_allowed(iops_limit, jiffy_elapsed) -
815                         tg->io_disp[rw];
816 }
817
818 static void tg_update_carryover(struct throtl_grp *tg)
819 {
820         if (tg->service_queue.nr_queued[READ])
821                 __tg_update_carryover(tg, READ);
822         if (tg->service_queue.nr_queued[WRITE])
823                 __tg_update_carryover(tg, WRITE);
824
825         /* see comments in struct throtl_grp for meaning of these fields. */
826         throtl_log(&tg->service_queue, "%s: %lld %lld %d %d\n", __func__,
827                    tg->carryover_bytes[READ], tg->carryover_bytes[WRITE],
828                    tg->carryover_ios[READ], tg->carryover_ios[WRITE]);
829 }
830
831 static unsigned long tg_within_iops_limit(struct throtl_grp *tg, struct bio *bio,
832                                  u32 iops_limit)
833 {
834         bool rw = bio_data_dir(bio);
835         int io_allowed;
836         unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
837
838         if (iops_limit == UINT_MAX) {
839                 return 0;
840         }
841
842         jiffy_elapsed = jiffies - tg->slice_start[rw];
843
844         /* Round up to the next throttle slice, wait time must be nonzero */
845         jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
846         io_allowed = calculate_io_allowed(iops_limit, jiffy_elapsed_rnd) +
847                      tg->carryover_ios[rw];
848         if (io_allowed > 0 && tg->io_disp[rw] + 1 <= io_allowed)
849                 return 0;
850
851         /* Calc approx time to dispatch */
852         jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
853         return jiffy_wait;
854 }
855
856 static unsigned long tg_within_bps_limit(struct throtl_grp *tg, struct bio *bio,
857                                 u64 bps_limit)
858 {
859         bool rw = bio_data_dir(bio);
860         long long bytes_allowed;
861         u64 extra_bytes;
862         unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
863         unsigned int bio_size = throtl_bio_data_size(bio);
864
865         /* no need to throttle if this bio's bytes have been accounted */
866         if (bps_limit == U64_MAX || bio_flagged(bio, BIO_BPS_THROTTLED)) {
867                 return 0;
868         }
869
870         jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
871
872         /* Slice has just started. Consider one slice interval */
873         if (!jiffy_elapsed)
874                 jiffy_elapsed_rnd = tg->td->throtl_slice;
875
876         jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
877         bytes_allowed = calculate_bytes_allowed(bps_limit, jiffy_elapsed_rnd) +
878                         tg->carryover_bytes[rw];
879         if (bytes_allowed > 0 && tg->bytes_disp[rw] + bio_size <= bytes_allowed)
880                 return 0;
881
882         /* Calc approx time to dispatch */
883         extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
884         jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit);
885
886         if (!jiffy_wait)
887                 jiffy_wait = 1;
888
889         /*
890          * This wait time is without taking into consideration the rounding
891          * up we did. Add that time also.
892          */
893         jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
894         return jiffy_wait;
895 }
896
897 /*
898  * Returns whether one can dispatch a bio or not. Also returns approx number
899  * of jiffies to wait before this bio is with-in IO rate and can be dispatched
900  */
901 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
902                             unsigned long *wait)
903 {
904         bool rw = bio_data_dir(bio);
905         unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
906         u64 bps_limit = tg_bps_limit(tg, rw);
907         u32 iops_limit = tg_iops_limit(tg, rw);
908
909         /*
910          * Currently whole state machine of group depends on first bio
911          * queued in the group bio list. So one should not be calling
912          * this function with a different bio if there are other bios
913          * queued.
914          */
915         BUG_ON(tg->service_queue.nr_queued[rw] &&
916                bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
917
918         /* If tg->bps = -1, then BW is unlimited */
919         if ((bps_limit == U64_MAX && iops_limit == UINT_MAX) ||
920             tg->flags & THROTL_TG_CANCELING) {
921                 if (wait)
922                         *wait = 0;
923                 return true;
924         }
925
926         /*
927          * If previous slice expired, start a new one otherwise renew/extend
928          * existing slice to make sure it is at least throtl_slice interval
929          * long since now. New slice is started only for empty throttle group.
930          * If there is queued bio, that means there should be an active
931          * slice and it should be extended instead.
932          */
933         if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
934                 throtl_start_new_slice(tg, rw, true);
935         else {
936                 if (time_before(tg->slice_end[rw],
937                     jiffies + tg->td->throtl_slice))
938                         throtl_extend_slice(tg, rw,
939                                 jiffies + tg->td->throtl_slice);
940         }
941
942         bps_wait = tg_within_bps_limit(tg, bio, bps_limit);
943         iops_wait = tg_within_iops_limit(tg, bio, iops_limit);
944         if (bps_wait + iops_wait == 0) {
945                 if (wait)
946                         *wait = 0;
947                 return true;
948         }
949
950         max_wait = max(bps_wait, iops_wait);
951
952         if (wait)
953                 *wait = max_wait;
954
955         if (time_before(tg->slice_end[rw], jiffies + max_wait))
956                 throtl_extend_slice(tg, rw, jiffies + max_wait);
957
958         return false;
959 }
960
961 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
962 {
963         bool rw = bio_data_dir(bio);
964         unsigned int bio_size = throtl_bio_data_size(bio);
965
966         /* Charge the bio to the group */
967         if (!bio_flagged(bio, BIO_BPS_THROTTLED)) {
968                 tg->bytes_disp[rw] += bio_size;
969                 tg->last_bytes_disp[rw] += bio_size;
970         }
971
972         tg->io_disp[rw]++;
973         tg->last_io_disp[rw]++;
974 }
975
976 /**
977  * throtl_add_bio_tg - add a bio to the specified throtl_grp
978  * @bio: bio to add
979  * @qn: qnode to use
980  * @tg: the target throtl_grp
981  *
982  * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
983  * tg->qnode_on_self[] is used.
984  */
985 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
986                               struct throtl_grp *tg)
987 {
988         struct throtl_service_queue *sq = &tg->service_queue;
989         bool rw = bio_data_dir(bio);
990
991         if (!qn)
992                 qn = &tg->qnode_on_self[rw];
993
994         /*
995          * If @tg doesn't currently have any bios queued in the same
996          * direction, queueing @bio can change when @tg should be
997          * dispatched.  Mark that @tg was empty.  This is automatically
998          * cleared on the next tg_update_disptime().
999          */
1000         if (!sq->nr_queued[rw])
1001                 tg->flags |= THROTL_TG_WAS_EMPTY;
1002
1003         throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1004
1005         sq->nr_queued[rw]++;
1006         throtl_enqueue_tg(tg);
1007 }
1008
1009 static void tg_update_disptime(struct throtl_grp *tg)
1010 {
1011         struct throtl_service_queue *sq = &tg->service_queue;
1012         unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1013         struct bio *bio;
1014
1015         bio = throtl_peek_queued(&sq->queued[READ]);
1016         if (bio)
1017                 tg_may_dispatch(tg, bio, &read_wait);
1018
1019         bio = throtl_peek_queued(&sq->queued[WRITE]);
1020         if (bio)
1021                 tg_may_dispatch(tg, bio, &write_wait);
1022
1023         min_wait = min(read_wait, write_wait);
1024         disptime = jiffies + min_wait;
1025
1026         /* Update dispatch time */
1027         throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
1028         tg->disptime = disptime;
1029         tg_service_queue_add(tg);
1030
1031         /* see throtl_add_bio_tg() */
1032         tg->flags &= ~THROTL_TG_WAS_EMPTY;
1033 }
1034
1035 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1036                                         struct throtl_grp *parent_tg, bool rw)
1037 {
1038         if (throtl_slice_used(parent_tg, rw)) {
1039                 throtl_start_new_slice_with_credit(parent_tg, rw,
1040                                 child_tg->slice_start[rw]);
1041         }
1042
1043 }
1044
1045 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1046 {
1047         struct throtl_service_queue *sq = &tg->service_queue;
1048         struct throtl_service_queue *parent_sq = sq->parent_sq;
1049         struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1050         struct throtl_grp *tg_to_put = NULL;
1051         struct bio *bio;
1052
1053         /*
1054          * @bio is being transferred from @tg to @parent_sq.  Popping a bio
1055          * from @tg may put its reference and @parent_sq might end up
1056          * getting released prematurely.  Remember the tg to put and put it
1057          * after @bio is transferred to @parent_sq.
1058          */
1059         bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1060         sq->nr_queued[rw]--;
1061
1062         throtl_charge_bio(tg, bio);
1063
1064         /*
1065          * If our parent is another tg, we just need to transfer @bio to
1066          * the parent using throtl_add_bio_tg().  If our parent is
1067          * @td->service_queue, @bio is ready to be issued.  Put it on its
1068          * bio_lists[] and decrease total number queued.  The caller is
1069          * responsible for issuing these bios.
1070          */
1071         if (parent_tg) {
1072                 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1073                 start_parent_slice_with_credit(tg, parent_tg, rw);
1074         } else {
1075                 bio_set_flag(bio, BIO_BPS_THROTTLED);
1076                 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1077                                      &parent_sq->queued[rw]);
1078                 BUG_ON(tg->td->nr_queued[rw] <= 0);
1079                 tg->td->nr_queued[rw]--;
1080         }
1081
1082         throtl_trim_slice(tg, rw);
1083
1084         if (tg_to_put)
1085                 blkg_put(tg_to_blkg(tg_to_put));
1086 }
1087
1088 static int throtl_dispatch_tg(struct throtl_grp *tg)
1089 {
1090         struct throtl_service_queue *sq = &tg->service_queue;
1091         unsigned int nr_reads = 0, nr_writes = 0;
1092         unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4;
1093         unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads;
1094         struct bio *bio;
1095
1096         /* Try to dispatch 75% READS and 25% WRITES */
1097
1098         while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1099                tg_may_dispatch(tg, bio, NULL)) {
1100
1101                 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1102                 nr_reads++;
1103
1104                 if (nr_reads >= max_nr_reads)
1105                         break;
1106         }
1107
1108         while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1109                tg_may_dispatch(tg, bio, NULL)) {
1110
1111                 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1112                 nr_writes++;
1113
1114                 if (nr_writes >= max_nr_writes)
1115                         break;
1116         }
1117
1118         return nr_reads + nr_writes;
1119 }
1120
1121 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1122 {
1123         unsigned int nr_disp = 0;
1124
1125         while (1) {
1126                 struct throtl_grp *tg;
1127                 struct throtl_service_queue *sq;
1128
1129                 if (!parent_sq->nr_pending)
1130                         break;
1131
1132                 tg = throtl_rb_first(parent_sq);
1133                 if (!tg)
1134                         break;
1135
1136                 if (time_before(jiffies, tg->disptime))
1137                         break;
1138
1139                 nr_disp += throtl_dispatch_tg(tg);
1140
1141                 sq = &tg->service_queue;
1142                 if (sq->nr_queued[READ] || sq->nr_queued[WRITE])
1143                         tg_update_disptime(tg);
1144                 else
1145                         throtl_dequeue_tg(tg);
1146
1147                 if (nr_disp >= THROTL_QUANTUM)
1148                         break;
1149         }
1150
1151         return nr_disp;
1152 }
1153
1154 static bool throtl_can_upgrade(struct throtl_data *td,
1155         struct throtl_grp *this_tg);
1156 /**
1157  * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1158  * @t: the pending_timer member of the throtl_service_queue being serviced
1159  *
1160  * This timer is armed when a child throtl_grp with active bio's become
1161  * pending and queued on the service_queue's pending_tree and expires when
1162  * the first child throtl_grp should be dispatched.  This function
1163  * dispatches bio's from the children throtl_grps to the parent
1164  * service_queue.
1165  *
1166  * If the parent's parent is another throtl_grp, dispatching is propagated
1167  * by either arming its pending_timer or repeating dispatch directly.  If
1168  * the top-level service_tree is reached, throtl_data->dispatch_work is
1169  * kicked so that the ready bio's are issued.
1170  */
1171 static void throtl_pending_timer_fn(struct timer_list *t)
1172 {
1173         struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1174         struct throtl_grp *tg = sq_to_tg(sq);
1175         struct throtl_data *td = sq_to_td(sq);
1176         struct throtl_service_queue *parent_sq;
1177         struct request_queue *q;
1178         bool dispatched;
1179         int ret;
1180
1181         /* throtl_data may be gone, so figure out request queue by blkg */
1182         if (tg)
1183                 q = tg->pd.blkg->q;
1184         else
1185                 q = td->queue;
1186
1187         spin_lock_irq(&q->queue_lock);
1188
1189         if (!q->root_blkg)
1190                 goto out_unlock;
1191
1192         if (throtl_can_upgrade(td, NULL))
1193                 throtl_upgrade_state(td);
1194
1195 again:
1196         parent_sq = sq->parent_sq;
1197         dispatched = false;
1198
1199         while (true) {
1200                 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1201                            sq->nr_queued[READ] + sq->nr_queued[WRITE],
1202                            sq->nr_queued[READ], sq->nr_queued[WRITE]);
1203
1204                 ret = throtl_select_dispatch(sq);
1205                 if (ret) {
1206                         throtl_log(sq, "bios disp=%u", ret);
1207                         dispatched = true;
1208                 }
1209
1210                 if (throtl_schedule_next_dispatch(sq, false))
1211                         break;
1212
1213                 /* this dispatch windows is still open, relax and repeat */
1214                 spin_unlock_irq(&q->queue_lock);
1215                 cpu_relax();
1216                 spin_lock_irq(&q->queue_lock);
1217         }
1218
1219         if (!dispatched)
1220                 goto out_unlock;
1221
1222         if (parent_sq) {
1223                 /* @parent_sq is another throl_grp, propagate dispatch */
1224                 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1225                         tg_update_disptime(tg);
1226                         if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1227                                 /* window is already open, repeat dispatching */
1228                                 sq = parent_sq;
1229                                 tg = sq_to_tg(sq);
1230                                 goto again;
1231                         }
1232                 }
1233         } else {
1234                 /* reached the top-level, queue issuing */
1235                 queue_work(kthrotld_workqueue, &td->dispatch_work);
1236         }
1237 out_unlock:
1238         spin_unlock_irq(&q->queue_lock);
1239 }
1240
1241 /**
1242  * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1243  * @work: work item being executed
1244  *
1245  * This function is queued for execution when bios reach the bio_lists[]
1246  * of throtl_data->service_queue.  Those bios are ready and issued by this
1247  * function.
1248  */
1249 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1250 {
1251         struct throtl_data *td = container_of(work, struct throtl_data,
1252                                               dispatch_work);
1253         struct throtl_service_queue *td_sq = &td->service_queue;
1254         struct request_queue *q = td->queue;
1255         struct bio_list bio_list_on_stack;
1256         struct bio *bio;
1257         struct blk_plug plug;
1258         int rw;
1259
1260         bio_list_init(&bio_list_on_stack);
1261
1262         spin_lock_irq(&q->queue_lock);
1263         for (rw = READ; rw <= WRITE; rw++)
1264                 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1265                         bio_list_add(&bio_list_on_stack, bio);
1266         spin_unlock_irq(&q->queue_lock);
1267
1268         if (!bio_list_empty(&bio_list_on_stack)) {
1269                 blk_start_plug(&plug);
1270                 while ((bio = bio_list_pop(&bio_list_on_stack)))
1271                         submit_bio_noacct_nocheck(bio);
1272                 blk_finish_plug(&plug);
1273         }
1274 }
1275
1276 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1277                               int off)
1278 {
1279         struct throtl_grp *tg = pd_to_tg(pd);
1280         u64 v = *(u64 *)((void *)tg + off);
1281
1282         if (v == U64_MAX)
1283                 return 0;
1284         return __blkg_prfill_u64(sf, pd, v);
1285 }
1286
1287 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1288                                int off)
1289 {
1290         struct throtl_grp *tg = pd_to_tg(pd);
1291         unsigned int v = *(unsigned int *)((void *)tg + off);
1292
1293         if (v == UINT_MAX)
1294                 return 0;
1295         return __blkg_prfill_u64(sf, pd, v);
1296 }
1297
1298 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1299 {
1300         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1301                           &blkcg_policy_throtl, seq_cft(sf)->private, false);
1302         return 0;
1303 }
1304
1305 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1306 {
1307         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1308                           &blkcg_policy_throtl, seq_cft(sf)->private, false);
1309         return 0;
1310 }
1311
1312 static void tg_conf_updated(struct throtl_grp *tg, bool global)
1313 {
1314         struct throtl_service_queue *sq = &tg->service_queue;
1315         struct cgroup_subsys_state *pos_css;
1316         struct blkcg_gq *blkg;
1317
1318         throtl_log(&tg->service_queue,
1319                    "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1320                    tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1321                    tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1322
1323         rcu_read_lock();
1324         /*
1325          * Update has_rules[] flags for the updated tg's subtree.  A tg is
1326          * considered to have rules if either the tg itself or any of its
1327          * ancestors has rules.  This identifies groups without any
1328          * restrictions in the whole hierarchy and allows them to bypass
1329          * blk-throttle.
1330          */
1331         blkg_for_each_descendant_pre(blkg, pos_css,
1332                         global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1333                 struct throtl_grp *this_tg = blkg_to_tg(blkg);
1334                 struct throtl_grp *parent_tg;
1335
1336                 tg_update_has_rules(this_tg);
1337                 /* ignore root/second level */
1338                 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1339                     !blkg->parent->parent)
1340                         continue;
1341                 parent_tg = blkg_to_tg(blkg->parent);
1342                 /*
1343                  * make sure all children has lower idle time threshold and
1344                  * higher latency target
1345                  */
1346                 this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1347                                 parent_tg->idletime_threshold);
1348                 this_tg->latency_target = max(this_tg->latency_target,
1349                                 parent_tg->latency_target);
1350         }
1351         rcu_read_unlock();
1352
1353         /*
1354          * We're already holding queue_lock and know @tg is valid.  Let's
1355          * apply the new config directly.
1356          *
1357          * Restart the slices for both READ and WRITES. It might happen
1358          * that a group's limit are dropped suddenly and we don't want to
1359          * account recently dispatched IO with new low rate.
1360          */
1361         throtl_start_new_slice(tg, READ, false);
1362         throtl_start_new_slice(tg, WRITE, false);
1363
1364         if (tg->flags & THROTL_TG_PENDING) {
1365                 tg_update_disptime(tg);
1366                 throtl_schedule_next_dispatch(sq->parent_sq, true);
1367         }
1368 }
1369
1370 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1371                            char *buf, size_t nbytes, loff_t off, bool is_u64)
1372 {
1373         struct blkcg *blkcg = css_to_blkcg(of_css(of));
1374         struct blkg_conf_ctx ctx;
1375         struct throtl_grp *tg;
1376         int ret;
1377         u64 v;
1378
1379         blkg_conf_init(&ctx, buf);
1380
1381         ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, &ctx);
1382         if (ret)
1383                 goto out_finish;
1384
1385         ret = -EINVAL;
1386         if (sscanf(ctx.body, "%llu", &v) != 1)
1387                 goto out_finish;
1388         if (!v)
1389                 v = U64_MAX;
1390
1391         tg = blkg_to_tg(ctx.blkg);
1392         tg_update_carryover(tg);
1393
1394         if (is_u64)
1395                 *(u64 *)((void *)tg + of_cft(of)->private) = v;
1396         else
1397                 *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1398
1399         tg_conf_updated(tg, false);
1400         ret = 0;
1401 out_finish:
1402         blkg_conf_exit(&ctx);
1403         return ret ?: nbytes;
1404 }
1405
1406 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1407                                char *buf, size_t nbytes, loff_t off)
1408 {
1409         return tg_set_conf(of, buf, nbytes, off, true);
1410 }
1411
1412 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1413                                 char *buf, size_t nbytes, loff_t off)
1414 {
1415         return tg_set_conf(of, buf, nbytes, off, false);
1416 }
1417
1418 static int tg_print_rwstat(struct seq_file *sf, void *v)
1419 {
1420         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1421                           blkg_prfill_rwstat, &blkcg_policy_throtl,
1422                           seq_cft(sf)->private, true);
1423         return 0;
1424 }
1425
1426 static u64 tg_prfill_rwstat_recursive(struct seq_file *sf,
1427                                       struct blkg_policy_data *pd, int off)
1428 {
1429         struct blkg_rwstat_sample sum;
1430
1431         blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off,
1432                                   &sum);
1433         return __blkg_prfill_rwstat(sf, pd, &sum);
1434 }
1435
1436 static int tg_print_rwstat_recursive(struct seq_file *sf, void *v)
1437 {
1438         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1439                           tg_prfill_rwstat_recursive, &blkcg_policy_throtl,
1440                           seq_cft(sf)->private, true);
1441         return 0;
1442 }
1443
1444 static struct cftype throtl_legacy_files[] = {
1445         {
1446                 .name = "throttle.read_bps_device",
1447                 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1448                 .seq_show = tg_print_conf_u64,
1449                 .write = tg_set_conf_u64,
1450         },
1451         {
1452                 .name = "throttle.write_bps_device",
1453                 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1454                 .seq_show = tg_print_conf_u64,
1455                 .write = tg_set_conf_u64,
1456         },
1457         {
1458                 .name = "throttle.read_iops_device",
1459                 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1460                 .seq_show = tg_print_conf_uint,
1461                 .write = tg_set_conf_uint,
1462         },
1463         {
1464                 .name = "throttle.write_iops_device",
1465                 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1466                 .seq_show = tg_print_conf_uint,
1467                 .write = tg_set_conf_uint,
1468         },
1469         {
1470                 .name = "throttle.io_service_bytes",
1471                 .private = offsetof(struct throtl_grp, stat_bytes),
1472                 .seq_show = tg_print_rwstat,
1473         },
1474         {
1475                 .name = "throttle.io_service_bytes_recursive",
1476                 .private = offsetof(struct throtl_grp, stat_bytes),
1477                 .seq_show = tg_print_rwstat_recursive,
1478         },
1479         {
1480                 .name = "throttle.io_serviced",
1481                 .private = offsetof(struct throtl_grp, stat_ios),
1482                 .seq_show = tg_print_rwstat,
1483         },
1484         {
1485                 .name = "throttle.io_serviced_recursive",
1486                 .private = offsetof(struct throtl_grp, stat_ios),
1487                 .seq_show = tg_print_rwstat_recursive,
1488         },
1489         { }     /* terminate */
1490 };
1491
1492 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1493                          int off)
1494 {
1495         struct throtl_grp *tg = pd_to_tg(pd);
1496         const char *dname = blkg_dev_name(pd->blkg);
1497         char bufs[4][21] = { "max", "max", "max", "max" };
1498         u64 bps_dft;
1499         unsigned int iops_dft;
1500         char idle_time[26] = "";
1501         char latency_time[26] = "";
1502
1503         if (!dname)
1504                 return 0;
1505
1506         if (off == LIMIT_LOW) {
1507                 bps_dft = 0;
1508                 iops_dft = 0;
1509         } else {
1510                 bps_dft = U64_MAX;
1511                 iops_dft = UINT_MAX;
1512         }
1513
1514         if (tg->bps_conf[READ][off] == bps_dft &&
1515             tg->bps_conf[WRITE][off] == bps_dft &&
1516             tg->iops_conf[READ][off] == iops_dft &&
1517             tg->iops_conf[WRITE][off] == iops_dft &&
1518             (off != LIMIT_LOW ||
1519              (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1520               tg->latency_target_conf == DFL_LATENCY_TARGET)))
1521                 return 0;
1522
1523         if (tg->bps_conf[READ][off] != U64_MAX)
1524                 snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1525                         tg->bps_conf[READ][off]);
1526         if (tg->bps_conf[WRITE][off] != U64_MAX)
1527                 snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1528                         tg->bps_conf[WRITE][off]);
1529         if (tg->iops_conf[READ][off] != UINT_MAX)
1530                 snprintf(bufs[2], sizeof(bufs[2]), "%u",
1531                         tg->iops_conf[READ][off]);
1532         if (tg->iops_conf[WRITE][off] != UINT_MAX)
1533                 snprintf(bufs[3], sizeof(bufs[3]), "%u",
1534                         tg->iops_conf[WRITE][off]);
1535         if (off == LIMIT_LOW) {
1536                 if (tg->idletime_threshold_conf == ULONG_MAX)
1537                         strcpy(idle_time, " idle=max");
1538                 else
1539                         snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1540                                 tg->idletime_threshold_conf);
1541
1542                 if (tg->latency_target_conf == ULONG_MAX)
1543                         strcpy(latency_time, " latency=max");
1544                 else
1545                         snprintf(latency_time, sizeof(latency_time),
1546                                 " latency=%lu", tg->latency_target_conf);
1547         }
1548
1549         seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1550                    dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1551                    latency_time);
1552         return 0;
1553 }
1554
1555 static int tg_print_limit(struct seq_file *sf, void *v)
1556 {
1557         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1558                           &blkcg_policy_throtl, seq_cft(sf)->private, false);
1559         return 0;
1560 }
1561
1562 static ssize_t tg_set_limit(struct kernfs_open_file *of,
1563                           char *buf, size_t nbytes, loff_t off)
1564 {
1565         struct blkcg *blkcg = css_to_blkcg(of_css(of));
1566         struct blkg_conf_ctx ctx;
1567         struct throtl_grp *tg;
1568         u64 v[4];
1569         unsigned long idle_time;
1570         unsigned long latency_time;
1571         int ret;
1572         int index = of_cft(of)->private;
1573
1574         blkg_conf_init(&ctx, buf);
1575
1576         ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, &ctx);
1577         if (ret)
1578                 goto out_finish;
1579
1580         tg = blkg_to_tg(ctx.blkg);
1581         tg_update_carryover(tg);
1582
1583         v[0] = tg->bps_conf[READ][index];
1584         v[1] = tg->bps_conf[WRITE][index];
1585         v[2] = tg->iops_conf[READ][index];
1586         v[3] = tg->iops_conf[WRITE][index];
1587
1588         idle_time = tg->idletime_threshold_conf;
1589         latency_time = tg->latency_target_conf;
1590         while (true) {
1591                 char tok[27];   /* wiops=18446744073709551616 */
1592                 char *p;
1593                 u64 val = U64_MAX;
1594                 int len;
1595
1596                 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1597                         break;
1598                 if (tok[0] == '\0')
1599                         break;
1600                 ctx.body += len;
1601
1602                 ret = -EINVAL;
1603                 p = tok;
1604                 strsep(&p, "=");
1605                 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1606                         goto out_finish;
1607
1608                 ret = -ERANGE;
1609                 if (!val)
1610                         goto out_finish;
1611
1612                 ret = -EINVAL;
1613                 if (!strcmp(tok, "rbps") && val > 1)
1614                         v[0] = val;
1615                 else if (!strcmp(tok, "wbps") && val > 1)
1616                         v[1] = val;
1617                 else if (!strcmp(tok, "riops") && val > 1)
1618                         v[2] = min_t(u64, val, UINT_MAX);
1619                 else if (!strcmp(tok, "wiops") && val > 1)
1620                         v[3] = min_t(u64, val, UINT_MAX);
1621                 else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1622                         idle_time = val;
1623                 else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1624                         latency_time = val;
1625                 else
1626                         goto out_finish;
1627         }
1628
1629         tg->bps_conf[READ][index] = v[0];
1630         tg->bps_conf[WRITE][index] = v[1];
1631         tg->iops_conf[READ][index] = v[2];
1632         tg->iops_conf[WRITE][index] = v[3];
1633
1634         if (index == LIMIT_MAX) {
1635                 tg->bps[READ][index] = v[0];
1636                 tg->bps[WRITE][index] = v[1];
1637                 tg->iops[READ][index] = v[2];
1638                 tg->iops[WRITE][index] = v[3];
1639         }
1640         tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1641                 tg->bps_conf[READ][LIMIT_MAX]);
1642         tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1643                 tg->bps_conf[WRITE][LIMIT_MAX]);
1644         tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1645                 tg->iops_conf[READ][LIMIT_MAX]);
1646         tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1647                 tg->iops_conf[WRITE][LIMIT_MAX]);
1648         tg->idletime_threshold_conf = idle_time;
1649         tg->latency_target_conf = latency_time;
1650
1651         /* force user to configure all settings for low limit  */
1652         if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1653               tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1654             tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1655             tg->latency_target_conf == DFL_LATENCY_TARGET) {
1656                 tg->bps[READ][LIMIT_LOW] = 0;
1657                 tg->bps[WRITE][LIMIT_LOW] = 0;
1658                 tg->iops[READ][LIMIT_LOW] = 0;
1659                 tg->iops[WRITE][LIMIT_LOW] = 0;
1660                 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1661                 tg->latency_target = DFL_LATENCY_TARGET;
1662         } else if (index == LIMIT_LOW) {
1663                 tg->idletime_threshold = tg->idletime_threshold_conf;
1664                 tg->latency_target = tg->latency_target_conf;
1665         }
1666
1667         blk_throtl_update_limit_valid(tg->td);
1668         if (tg->td->limit_valid[LIMIT_LOW]) {
1669                 if (index == LIMIT_LOW)
1670                         tg->td->limit_index = LIMIT_LOW;
1671         } else
1672                 tg->td->limit_index = LIMIT_MAX;
1673         tg_conf_updated(tg, index == LIMIT_LOW &&
1674                 tg->td->limit_valid[LIMIT_LOW]);
1675         ret = 0;
1676 out_finish:
1677         blkg_conf_exit(&ctx);
1678         return ret ?: nbytes;
1679 }
1680
1681 static struct cftype throtl_files[] = {
1682 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1683         {
1684                 .name = "low",
1685                 .flags = CFTYPE_NOT_ON_ROOT,
1686                 .seq_show = tg_print_limit,
1687                 .write = tg_set_limit,
1688                 .private = LIMIT_LOW,
1689         },
1690 #endif
1691         {
1692                 .name = "max",
1693                 .flags = CFTYPE_NOT_ON_ROOT,
1694                 .seq_show = tg_print_limit,
1695                 .write = tg_set_limit,
1696                 .private = LIMIT_MAX,
1697         },
1698         { }     /* terminate */
1699 };
1700
1701 static void throtl_shutdown_wq(struct request_queue *q)
1702 {
1703         struct throtl_data *td = q->td;
1704
1705         cancel_work_sync(&td->dispatch_work);
1706 }
1707
1708 struct blkcg_policy blkcg_policy_throtl = {
1709         .dfl_cftypes            = throtl_files,
1710         .legacy_cftypes         = throtl_legacy_files,
1711
1712         .pd_alloc_fn            = throtl_pd_alloc,
1713         .pd_init_fn             = throtl_pd_init,
1714         .pd_online_fn           = throtl_pd_online,
1715         .pd_offline_fn          = throtl_pd_offline,
1716         .pd_free_fn             = throtl_pd_free,
1717 };
1718
1719 void blk_throtl_cancel_bios(struct gendisk *disk)
1720 {
1721         struct request_queue *q = disk->queue;
1722         struct cgroup_subsys_state *pos_css;
1723         struct blkcg_gq *blkg;
1724
1725         spin_lock_irq(&q->queue_lock);
1726         /*
1727          * queue_lock is held, rcu lock is not needed here technically.
1728          * However, rcu lock is still held to emphasize that following
1729          * path need RCU protection and to prevent warning from lockdep.
1730          */
1731         rcu_read_lock();
1732         blkg_for_each_descendant_post(blkg, pos_css, q->root_blkg) {
1733                 struct throtl_grp *tg = blkg_to_tg(blkg);
1734                 struct throtl_service_queue *sq = &tg->service_queue;
1735
1736                 /*
1737                  * Set the flag to make sure throtl_pending_timer_fn() won't
1738                  * stop until all throttled bios are dispatched.
1739                  */
1740                 tg->flags |= THROTL_TG_CANCELING;
1741
1742                 /*
1743                  * Do not dispatch cgroup without THROTL_TG_PENDING or cgroup
1744                  * will be inserted to service queue without THROTL_TG_PENDING
1745                  * set in tg_update_disptime below. Then IO dispatched from
1746                  * child in tg_dispatch_one_bio will trigger double insertion
1747                  * and corrupt the tree.
1748                  */
1749                 if (!(tg->flags & THROTL_TG_PENDING))
1750                         continue;
1751
1752                 /*
1753                  * Update disptime after setting the above flag to make sure
1754                  * throtl_select_dispatch() won't exit without dispatching.
1755                  */
1756                 tg_update_disptime(tg);
1757
1758                 throtl_schedule_pending_timer(sq, jiffies + 1);
1759         }
1760         rcu_read_unlock();
1761         spin_unlock_irq(&q->queue_lock);
1762 }
1763
1764 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1765 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1766 {
1767         unsigned long rtime = jiffies, wtime = jiffies;
1768
1769         if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1770                 rtime = tg->last_low_overflow_time[READ];
1771         if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1772                 wtime = tg->last_low_overflow_time[WRITE];
1773         return min(rtime, wtime);
1774 }
1775
1776 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1777 {
1778         struct throtl_service_queue *parent_sq;
1779         struct throtl_grp *parent = tg;
1780         unsigned long ret = __tg_last_low_overflow_time(tg);
1781
1782         while (true) {
1783                 parent_sq = parent->service_queue.parent_sq;
1784                 parent = sq_to_tg(parent_sq);
1785                 if (!parent)
1786                         break;
1787
1788                 /*
1789                  * The parent doesn't have low limit, it always reaches low
1790                  * limit. Its overflow time is useless for children
1791                  */
1792                 if (!parent->bps[READ][LIMIT_LOW] &&
1793                     !parent->iops[READ][LIMIT_LOW] &&
1794                     !parent->bps[WRITE][LIMIT_LOW] &&
1795                     !parent->iops[WRITE][LIMIT_LOW])
1796                         continue;
1797                 if (time_after(__tg_last_low_overflow_time(parent), ret))
1798                         ret = __tg_last_low_overflow_time(parent);
1799         }
1800         return ret;
1801 }
1802
1803 static bool throtl_tg_is_idle(struct throtl_grp *tg)
1804 {
1805         /*
1806          * cgroup is idle if:
1807          * - single idle is too long, longer than a fixed value (in case user
1808          *   configure a too big threshold) or 4 times of idletime threshold
1809          * - average think time is more than threshold
1810          * - IO latency is largely below threshold
1811          */
1812         unsigned long time;
1813         bool ret;
1814
1815         time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1816         ret = tg->latency_target == DFL_LATENCY_TARGET ||
1817               tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1818               (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1819               tg->avg_idletime > tg->idletime_threshold ||
1820               (tg->latency_target && tg->bio_cnt &&
1821                 tg->bad_bio_cnt * 5 < tg->bio_cnt);
1822         throtl_log(&tg->service_queue,
1823                 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1824                 tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1825                 tg->bio_cnt, ret, tg->td->scale);
1826         return ret;
1827 }
1828
1829 static bool throtl_low_limit_reached(struct throtl_grp *tg, int rw)
1830 {
1831         struct throtl_service_queue *sq = &tg->service_queue;
1832         bool limit = tg->bps[rw][LIMIT_LOW] || tg->iops[rw][LIMIT_LOW];
1833
1834         /*
1835          * if low limit is zero, low limit is always reached.
1836          * if low limit is non-zero, we can check if there is any request
1837          * is queued to determine if low limit is reached as we throttle
1838          * request according to limit.
1839          */
1840         return !limit || sq->nr_queued[rw];
1841 }
1842
1843 static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1844 {
1845         /*
1846          * cgroup reaches low limit when low limit of READ and WRITE are
1847          * both reached, it's ok to upgrade to next limit if cgroup reaches
1848          * low limit
1849          */
1850         if (throtl_low_limit_reached(tg, READ) &&
1851             throtl_low_limit_reached(tg, WRITE))
1852                 return true;
1853
1854         if (time_after_eq(jiffies,
1855                 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1856             throtl_tg_is_idle(tg))
1857                 return true;
1858         return false;
1859 }
1860
1861 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1862 {
1863         while (true) {
1864                 if (throtl_tg_can_upgrade(tg))
1865                         return true;
1866                 tg = sq_to_tg(tg->service_queue.parent_sq);
1867                 if (!tg || !tg_to_blkg(tg)->parent)
1868                         return false;
1869         }
1870         return false;
1871 }
1872
1873 static bool throtl_can_upgrade(struct throtl_data *td,
1874         struct throtl_grp *this_tg)
1875 {
1876         struct cgroup_subsys_state *pos_css;
1877         struct blkcg_gq *blkg;
1878
1879         if (td->limit_index != LIMIT_LOW)
1880                 return false;
1881
1882         if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1883                 return false;
1884
1885         rcu_read_lock();
1886         blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1887                 struct throtl_grp *tg = blkg_to_tg(blkg);
1888
1889                 if (tg == this_tg)
1890                         continue;
1891                 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1892                         continue;
1893                 if (!throtl_hierarchy_can_upgrade(tg)) {
1894                         rcu_read_unlock();
1895                         return false;
1896                 }
1897         }
1898         rcu_read_unlock();
1899         return true;
1900 }
1901
1902 static void throtl_upgrade_check(struct throtl_grp *tg)
1903 {
1904         unsigned long now = jiffies;
1905
1906         if (tg->td->limit_index != LIMIT_LOW)
1907                 return;
1908
1909         if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1910                 return;
1911
1912         tg->last_check_time = now;
1913
1914         if (!time_after_eq(now,
1915              __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1916                 return;
1917
1918         if (throtl_can_upgrade(tg->td, NULL))
1919                 throtl_upgrade_state(tg->td);
1920 }
1921
1922 static void throtl_upgrade_state(struct throtl_data *td)
1923 {
1924         struct cgroup_subsys_state *pos_css;
1925         struct blkcg_gq *blkg;
1926
1927         throtl_log(&td->service_queue, "upgrade to max");
1928         td->limit_index = LIMIT_MAX;
1929         td->low_upgrade_time = jiffies;
1930         td->scale = 0;
1931         rcu_read_lock();
1932         blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1933                 struct throtl_grp *tg = blkg_to_tg(blkg);
1934                 struct throtl_service_queue *sq = &tg->service_queue;
1935
1936                 tg->disptime = jiffies - 1;
1937                 throtl_select_dispatch(sq);
1938                 throtl_schedule_next_dispatch(sq, true);
1939         }
1940         rcu_read_unlock();
1941         throtl_select_dispatch(&td->service_queue);
1942         throtl_schedule_next_dispatch(&td->service_queue, true);
1943         queue_work(kthrotld_workqueue, &td->dispatch_work);
1944 }
1945
1946 static void throtl_downgrade_state(struct throtl_data *td)
1947 {
1948         td->scale /= 2;
1949
1950         throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1951         if (td->scale) {
1952                 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1953                 return;
1954         }
1955
1956         td->limit_index = LIMIT_LOW;
1957         td->low_downgrade_time = jiffies;
1958 }
1959
1960 static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1961 {
1962         struct throtl_data *td = tg->td;
1963         unsigned long now = jiffies;
1964
1965         /*
1966          * If cgroup is below low limit, consider downgrade and throttle other
1967          * cgroups
1968          */
1969         if (time_after_eq(now, tg_last_low_overflow_time(tg) +
1970                                         td->throtl_slice) &&
1971             (!throtl_tg_is_idle(tg) ||
1972              !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
1973                 return true;
1974         return false;
1975 }
1976
1977 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
1978 {
1979         struct throtl_data *td = tg->td;
1980
1981         if (time_before(jiffies, td->low_upgrade_time + td->throtl_slice))
1982                 return false;
1983
1984         while (true) {
1985                 if (!throtl_tg_can_downgrade(tg))
1986                         return false;
1987                 tg = sq_to_tg(tg->service_queue.parent_sq);
1988                 if (!tg || !tg_to_blkg(tg)->parent)
1989                         break;
1990         }
1991         return true;
1992 }
1993
1994 static void throtl_downgrade_check(struct throtl_grp *tg)
1995 {
1996         uint64_t bps;
1997         unsigned int iops;
1998         unsigned long elapsed_time;
1999         unsigned long now = jiffies;
2000
2001         if (tg->td->limit_index != LIMIT_MAX ||
2002             !tg->td->limit_valid[LIMIT_LOW])
2003                 return;
2004         if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
2005                 return;
2006         if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
2007                 return;
2008
2009         elapsed_time = now - tg->last_check_time;
2010         tg->last_check_time = now;
2011
2012         if (time_before(now, tg_last_low_overflow_time(tg) +
2013                         tg->td->throtl_slice))
2014                 return;
2015
2016         if (tg->bps[READ][LIMIT_LOW]) {
2017                 bps = tg->last_bytes_disp[READ] * HZ;
2018                 do_div(bps, elapsed_time);
2019                 if (bps >= tg->bps[READ][LIMIT_LOW])
2020                         tg->last_low_overflow_time[READ] = now;
2021         }
2022
2023         if (tg->bps[WRITE][LIMIT_LOW]) {
2024                 bps = tg->last_bytes_disp[WRITE] * HZ;
2025                 do_div(bps, elapsed_time);
2026                 if (bps >= tg->bps[WRITE][LIMIT_LOW])
2027                         tg->last_low_overflow_time[WRITE] = now;
2028         }
2029
2030         if (tg->iops[READ][LIMIT_LOW]) {
2031                 iops = tg->last_io_disp[READ] * HZ / elapsed_time;
2032                 if (iops >= tg->iops[READ][LIMIT_LOW])
2033                         tg->last_low_overflow_time[READ] = now;
2034         }
2035
2036         if (tg->iops[WRITE][LIMIT_LOW]) {
2037                 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
2038                 if (iops >= tg->iops[WRITE][LIMIT_LOW])
2039                         tg->last_low_overflow_time[WRITE] = now;
2040         }
2041
2042         /*
2043          * If cgroup is below low limit, consider downgrade and throttle other
2044          * cgroups
2045          */
2046         if (throtl_hierarchy_can_downgrade(tg))
2047                 throtl_downgrade_state(tg->td);
2048
2049         tg->last_bytes_disp[READ] = 0;
2050         tg->last_bytes_disp[WRITE] = 0;
2051         tg->last_io_disp[READ] = 0;
2052         tg->last_io_disp[WRITE] = 0;
2053 }
2054
2055 static void blk_throtl_update_idletime(struct throtl_grp *tg)
2056 {
2057         unsigned long now;
2058         unsigned long last_finish_time = tg->last_finish_time;
2059
2060         if (last_finish_time == 0)
2061                 return;
2062
2063         now = ktime_get_ns() >> 10;
2064         if (now <= last_finish_time ||
2065             last_finish_time == tg->checked_last_finish_time)
2066                 return;
2067
2068         tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2069         tg->checked_last_finish_time = last_finish_time;
2070 }
2071
2072 static void throtl_update_latency_buckets(struct throtl_data *td)
2073 {
2074         struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
2075         int i, cpu, rw;
2076         unsigned long last_latency[2] = { 0 };
2077         unsigned long latency[2];
2078
2079         if (!blk_queue_nonrot(td->queue) || !td->limit_valid[LIMIT_LOW])
2080                 return;
2081         if (time_before(jiffies, td->last_calculate_time + HZ))
2082                 return;
2083         td->last_calculate_time = jiffies;
2084
2085         memset(avg_latency, 0, sizeof(avg_latency));
2086         for (rw = READ; rw <= WRITE; rw++) {
2087                 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2088                         struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
2089
2090                         for_each_possible_cpu(cpu) {
2091                                 struct latency_bucket *bucket;
2092
2093                                 /* this isn't race free, but ok in practice */
2094                                 bucket = per_cpu_ptr(td->latency_buckets[rw],
2095                                         cpu);
2096                                 tmp->total_latency += bucket[i].total_latency;
2097                                 tmp->samples += bucket[i].samples;
2098                                 bucket[i].total_latency = 0;
2099                                 bucket[i].samples = 0;
2100                         }
2101
2102                         if (tmp->samples >= 32) {
2103                                 int samples = tmp->samples;
2104
2105                                 latency[rw] = tmp->total_latency;
2106
2107                                 tmp->total_latency = 0;
2108                                 tmp->samples = 0;
2109                                 latency[rw] /= samples;
2110                                 if (latency[rw] == 0)
2111                                         continue;
2112                                 avg_latency[rw][i].latency = latency[rw];
2113                         }
2114                 }
2115         }
2116
2117         for (rw = READ; rw <= WRITE; rw++) {
2118                 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2119                         if (!avg_latency[rw][i].latency) {
2120                                 if (td->avg_buckets[rw][i].latency < last_latency[rw])
2121                                         td->avg_buckets[rw][i].latency =
2122                                                 last_latency[rw];
2123                                 continue;
2124                         }
2125
2126                         if (!td->avg_buckets[rw][i].valid)
2127                                 latency[rw] = avg_latency[rw][i].latency;
2128                         else
2129                                 latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2130                                         avg_latency[rw][i].latency) >> 3;
2131
2132                         td->avg_buckets[rw][i].latency = max(latency[rw],
2133                                 last_latency[rw]);
2134                         td->avg_buckets[rw][i].valid = true;
2135                         last_latency[rw] = td->avg_buckets[rw][i].latency;
2136                 }
2137         }
2138
2139         for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2140                 throtl_log(&td->service_queue,
2141                         "Latency bucket %d: read latency=%ld, read valid=%d, "
2142                         "write latency=%ld, write valid=%d", i,
2143                         td->avg_buckets[READ][i].latency,
2144                         td->avg_buckets[READ][i].valid,
2145                         td->avg_buckets[WRITE][i].latency,
2146                         td->avg_buckets[WRITE][i].valid);
2147 }
2148 #else
2149 static inline void throtl_update_latency_buckets(struct throtl_data *td)
2150 {
2151 }
2152
2153 static void blk_throtl_update_idletime(struct throtl_grp *tg)
2154 {
2155 }
2156
2157 static void throtl_downgrade_check(struct throtl_grp *tg)
2158 {
2159 }
2160
2161 static void throtl_upgrade_check(struct throtl_grp *tg)
2162 {
2163 }
2164
2165 static bool throtl_can_upgrade(struct throtl_data *td,
2166         struct throtl_grp *this_tg)
2167 {
2168         return false;
2169 }
2170
2171 static void throtl_upgrade_state(struct throtl_data *td)
2172 {
2173 }
2174 #endif
2175
2176 bool __blk_throtl_bio(struct bio *bio)
2177 {
2178         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2179         struct blkcg_gq *blkg = bio->bi_blkg;
2180         struct throtl_qnode *qn = NULL;
2181         struct throtl_grp *tg = blkg_to_tg(blkg);
2182         struct throtl_service_queue *sq;
2183         bool rw = bio_data_dir(bio);
2184         bool throttled = false;
2185         struct throtl_data *td = tg->td;
2186
2187         rcu_read_lock();
2188
2189         spin_lock_irq(&q->queue_lock);
2190
2191         throtl_update_latency_buckets(td);
2192
2193         blk_throtl_update_idletime(tg);
2194
2195         sq = &tg->service_queue;
2196
2197 again:
2198         while (true) {
2199                 if (tg->last_low_overflow_time[rw] == 0)
2200                         tg->last_low_overflow_time[rw] = jiffies;
2201                 throtl_downgrade_check(tg);
2202                 throtl_upgrade_check(tg);
2203                 /* throtl is FIFO - if bios are already queued, should queue */
2204                 if (sq->nr_queued[rw])
2205                         break;
2206
2207                 /* if above limits, break to queue */
2208                 if (!tg_may_dispatch(tg, bio, NULL)) {
2209                         tg->last_low_overflow_time[rw] = jiffies;
2210                         if (throtl_can_upgrade(td, tg)) {
2211                                 throtl_upgrade_state(td);
2212                                 goto again;
2213                         }
2214                         break;
2215                 }
2216
2217                 /* within limits, let's charge and dispatch directly */
2218                 throtl_charge_bio(tg, bio);
2219
2220                 /*
2221                  * We need to trim slice even when bios are not being queued
2222                  * otherwise it might happen that a bio is not queued for
2223                  * a long time and slice keeps on extending and trim is not
2224                  * called for a long time. Now if limits are reduced suddenly
2225                  * we take into account all the IO dispatched so far at new
2226                  * low rate and * newly queued IO gets a really long dispatch
2227                  * time.
2228                  *
2229                  * So keep on trimming slice even if bio is not queued.
2230                  */
2231                 throtl_trim_slice(tg, rw);
2232
2233                 /*
2234                  * @bio passed through this layer without being throttled.
2235                  * Climb up the ladder.  If we're already at the top, it
2236                  * can be executed directly.
2237                  */
2238                 qn = &tg->qnode_on_parent[rw];
2239                 sq = sq->parent_sq;
2240                 tg = sq_to_tg(sq);
2241                 if (!tg) {
2242                         bio_set_flag(bio, BIO_BPS_THROTTLED);
2243                         goto out_unlock;
2244                 }
2245         }
2246
2247         /* out-of-limit, queue to @tg */
2248         throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2249                    rw == READ ? 'R' : 'W',
2250                    tg->bytes_disp[rw], bio->bi_iter.bi_size,
2251                    tg_bps_limit(tg, rw),
2252                    tg->io_disp[rw], tg_iops_limit(tg, rw),
2253                    sq->nr_queued[READ], sq->nr_queued[WRITE]);
2254
2255         tg->last_low_overflow_time[rw] = jiffies;
2256
2257         td->nr_queued[rw]++;
2258         throtl_add_bio_tg(bio, qn, tg);
2259         throttled = true;
2260
2261         /*
2262          * Update @tg's dispatch time and force schedule dispatch if @tg
2263          * was empty before @bio.  The forced scheduling isn't likely to
2264          * cause undue delay as @bio is likely to be dispatched directly if
2265          * its @tg's disptime is not in the future.
2266          */
2267         if (tg->flags & THROTL_TG_WAS_EMPTY) {
2268                 tg_update_disptime(tg);
2269                 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2270         }
2271
2272 out_unlock:
2273 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2274         if (throttled || !td->track_bio_latency)
2275                 bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
2276 #endif
2277         spin_unlock_irq(&q->queue_lock);
2278
2279         rcu_read_unlock();
2280         return throttled;
2281 }
2282
2283 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2284 static void throtl_track_latency(struct throtl_data *td, sector_t size,
2285                                  enum req_op op, unsigned long time)
2286 {
2287         const bool rw = op_is_write(op);
2288         struct latency_bucket *latency;
2289         int index;
2290
2291         if (!td || td->limit_index != LIMIT_LOW ||
2292             !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
2293             !blk_queue_nonrot(td->queue))
2294                 return;
2295
2296         index = request_bucket_index(size);
2297
2298         latency = get_cpu_ptr(td->latency_buckets[rw]);
2299         latency[index].total_latency += time;
2300         latency[index].samples++;
2301         put_cpu_ptr(td->latency_buckets[rw]);
2302 }
2303
2304 void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2305 {
2306         struct request_queue *q = rq->q;
2307         struct throtl_data *td = q->td;
2308
2309         throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq),
2310                              time_ns >> 10);
2311 }
2312
2313 void blk_throtl_bio_endio(struct bio *bio)
2314 {
2315         struct blkcg_gq *blkg;
2316         struct throtl_grp *tg;
2317         u64 finish_time_ns;
2318         unsigned long finish_time;
2319         unsigned long start_time;
2320         unsigned long lat;
2321         int rw = bio_data_dir(bio);
2322
2323         blkg = bio->bi_blkg;
2324         if (!blkg)
2325                 return;
2326         tg = blkg_to_tg(blkg);
2327         if (!tg->td->limit_valid[LIMIT_LOW])
2328                 return;
2329
2330         finish_time_ns = ktime_get_ns();
2331         tg->last_finish_time = finish_time_ns >> 10;
2332
2333         start_time = bio_issue_time(&bio->bi_issue) >> 10;
2334         finish_time = __bio_issue_time(finish_time_ns) >> 10;
2335         if (!start_time || finish_time <= start_time)
2336                 return;
2337
2338         lat = finish_time - start_time;
2339         /* this is only for bio based driver */
2340         if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
2341                 throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
2342                                      bio_op(bio), lat);
2343
2344         if (tg->latency_target && lat >= tg->td->filtered_latency) {
2345                 int bucket;
2346                 unsigned int threshold;
2347
2348                 bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
2349                 threshold = tg->td->avg_buckets[rw][bucket].latency +
2350                         tg->latency_target;
2351                 if (lat > threshold)
2352                         tg->bad_bio_cnt++;
2353                 /*
2354                  * Not race free, could get wrong count, which means cgroups
2355                  * will be throttled
2356                  */
2357                 tg->bio_cnt++;
2358         }
2359
2360         if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2361                 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2362                 tg->bio_cnt /= 2;
2363                 tg->bad_bio_cnt /= 2;
2364         }
2365 }
2366 #endif
2367
2368 int blk_throtl_init(struct gendisk *disk)
2369 {
2370         struct request_queue *q = disk->queue;
2371         struct throtl_data *td;
2372         int ret;
2373
2374         td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2375         if (!td)
2376                 return -ENOMEM;
2377         td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
2378                 LATENCY_BUCKET_SIZE, __alignof__(u64));
2379         if (!td->latency_buckets[READ]) {
2380                 kfree(td);
2381                 return -ENOMEM;
2382         }
2383         td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
2384                 LATENCY_BUCKET_SIZE, __alignof__(u64));
2385         if (!td->latency_buckets[WRITE]) {
2386                 free_percpu(td->latency_buckets[READ]);
2387                 kfree(td);
2388                 return -ENOMEM;
2389         }
2390
2391         INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2392         throtl_service_queue_init(&td->service_queue);
2393
2394         q->td = td;
2395         td->queue = q;
2396
2397         td->limit_valid[LIMIT_MAX] = true;
2398         td->limit_index = LIMIT_MAX;
2399         td->low_upgrade_time = jiffies;
2400         td->low_downgrade_time = jiffies;
2401
2402         /* activate policy */
2403         ret = blkcg_activate_policy(disk, &blkcg_policy_throtl);
2404         if (ret) {
2405                 free_percpu(td->latency_buckets[READ]);
2406                 free_percpu(td->latency_buckets[WRITE]);
2407                 kfree(td);
2408         }
2409         return ret;
2410 }
2411
2412 void blk_throtl_exit(struct gendisk *disk)
2413 {
2414         struct request_queue *q = disk->queue;
2415
2416         BUG_ON(!q->td);
2417         del_timer_sync(&q->td->service_queue.pending_timer);
2418         throtl_shutdown_wq(q);
2419         blkcg_deactivate_policy(disk, &blkcg_policy_throtl);
2420         free_percpu(q->td->latency_buckets[READ]);
2421         free_percpu(q->td->latency_buckets[WRITE]);
2422         kfree(q->td);
2423 }
2424
2425 void blk_throtl_register(struct gendisk *disk)
2426 {
2427         struct request_queue *q = disk->queue;
2428         struct throtl_data *td;
2429         int i;
2430
2431         td = q->td;
2432         BUG_ON(!td);
2433
2434         if (blk_queue_nonrot(q)) {
2435                 td->throtl_slice = DFL_THROTL_SLICE_SSD;
2436                 td->filtered_latency = LATENCY_FILTERED_SSD;
2437         } else {
2438                 td->throtl_slice = DFL_THROTL_SLICE_HD;
2439                 td->filtered_latency = LATENCY_FILTERED_HD;
2440                 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2441                         td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2442                         td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2443                 }
2444         }
2445 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2446         /* if no low limit, use previous default */
2447         td->throtl_slice = DFL_THROTL_SLICE_HD;
2448
2449 #else
2450         td->track_bio_latency = !queue_is_mq(q);
2451         if (!td->track_bio_latency)
2452                 blk_stat_enable_accounting(q);
2453 #endif
2454 }
2455
2456 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2457 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2458 {
2459         if (!q->td)
2460                 return -EINVAL;
2461         return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2462 }
2463
2464 ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2465         const char *page, size_t count)
2466 {
2467         unsigned long v;
2468         unsigned long t;
2469
2470         if (!q->td)
2471                 return -EINVAL;
2472         if (kstrtoul(page, 10, &v))
2473                 return -EINVAL;
2474         t = msecs_to_jiffies(v);
2475         if (t == 0 || t > MAX_THROTL_SLICE)
2476                 return -EINVAL;
2477         q->td->throtl_slice = t;
2478         return count;
2479 }
2480 #endif
2481
2482 static int __init throtl_init(void)
2483 {
2484         kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2485         if (!kthrotld_workqueue)
2486                 panic("Failed to create kthrotld\n");
2487
2488         return blkcg_policy_register(&blkcg_policy_throtl);
2489 }
2490
2491 module_init(throtl_init);