1 // SPDX-License-Identifier: GPL-2.0
3 * Functions related to setting various queue properties from drivers
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/init.h>
9 #include <linux/blkdev.h>
10 #include <linux/memblock.h> /* for max_pfn/max_low_pfn */
11 #include <linux/gcd.h>
12 #include <linux/lcm.h>
13 #include <linux/jiffies.h>
14 #include <linux/gfp.h>
15 #include <linux/dma-mapping.h>
20 unsigned long blk_max_low_pfn;
21 EXPORT_SYMBOL(blk_max_low_pfn);
23 unsigned long blk_max_pfn;
25 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
27 q->rq_timeout = timeout;
29 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
32 * blk_set_default_limits - reset limits to default values
33 * @lim: the queue_limits structure to reset
36 * Returns a queue_limit struct to its default state.
38 void blk_set_default_limits(struct queue_limits *lim)
40 lim->max_segments = BLK_MAX_SEGMENTS;
41 lim->max_discard_segments = 1;
42 lim->max_integrity_segments = 0;
43 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
44 lim->virt_boundary_mask = 0;
45 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
46 lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
47 lim->max_dev_sectors = 0;
48 lim->chunk_sectors = 0;
49 lim->max_write_same_sectors = 0;
50 lim->max_write_zeroes_sectors = 0;
51 lim->max_discard_sectors = 0;
52 lim->max_hw_discard_sectors = 0;
53 lim->discard_granularity = 0;
54 lim->discard_alignment = 0;
55 lim->discard_misaligned = 0;
56 lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
57 lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
58 lim->alignment_offset = 0;
61 lim->zoned = BLK_ZONED_NONE;
63 EXPORT_SYMBOL(blk_set_default_limits);
66 * blk_set_stacking_limits - set default limits for stacking devices
67 * @lim: the queue_limits structure to reset
70 * Returns a queue_limit struct to its default state. Should be used
71 * by stacking drivers like DM that have no internal limits.
73 void blk_set_stacking_limits(struct queue_limits *lim)
75 blk_set_default_limits(lim);
77 /* Inherit limits from component devices */
78 lim->max_segments = USHRT_MAX;
79 lim->max_discard_segments = USHRT_MAX;
80 lim->max_hw_sectors = UINT_MAX;
81 lim->max_segment_size = UINT_MAX;
82 lim->max_sectors = UINT_MAX;
83 lim->max_dev_sectors = UINT_MAX;
84 lim->max_write_same_sectors = UINT_MAX;
85 lim->max_write_zeroes_sectors = UINT_MAX;
87 EXPORT_SYMBOL(blk_set_stacking_limits);
90 * blk_queue_bounce_limit - set bounce buffer limit for queue
91 * @q: the request queue for the device
92 * @max_addr: the maximum address the device can handle
95 * Different hardware can have different requirements as to what pages
96 * it can do I/O directly to. A low level driver can call
97 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
98 * buffers for doing I/O to pages residing above @max_addr.
100 void blk_queue_bounce_limit(struct request_queue *q, u64 max_addr)
102 unsigned long b_pfn = max_addr >> PAGE_SHIFT;
105 q->bounce_gfp = GFP_NOIO;
106 #if BITS_PER_LONG == 64
108 * Assume anything <= 4GB can be handled by IOMMU. Actually
109 * some IOMMUs can handle everything, but I don't know of a
110 * way to test this here.
112 if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
114 q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
116 if (b_pfn < blk_max_low_pfn)
118 q->limits.bounce_pfn = b_pfn;
121 init_emergency_isa_pool();
122 q->bounce_gfp = GFP_NOIO | GFP_DMA;
123 q->limits.bounce_pfn = b_pfn;
126 EXPORT_SYMBOL(blk_queue_bounce_limit);
129 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
130 * @q: the request queue for the device
131 * @max_hw_sectors: max hardware sectors in the usual 512b unit
134 * Enables a low level driver to set a hard upper limit,
135 * max_hw_sectors, on the size of requests. max_hw_sectors is set by
136 * the device driver based upon the capabilities of the I/O
139 * max_dev_sectors is a hard limit imposed by the storage device for
140 * READ/WRITE requests. It is set by the disk driver.
142 * max_sectors is a soft limit imposed by the block layer for
143 * filesystem type requests. This value can be overridden on a
144 * per-device basis in /sys/block/<device>/queue/max_sectors_kb.
145 * The soft limit can not exceed max_hw_sectors.
147 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
149 struct queue_limits *limits = &q->limits;
150 unsigned int max_sectors;
152 if ((max_hw_sectors << 9) < PAGE_SIZE) {
153 max_hw_sectors = 1 << (PAGE_SHIFT - 9);
154 printk(KERN_INFO "%s: set to minimum %d\n",
155 __func__, max_hw_sectors);
158 limits->max_hw_sectors = max_hw_sectors;
159 max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
160 max_sectors = min_t(unsigned int, max_sectors, BLK_DEF_MAX_SECTORS);
161 limits->max_sectors = max_sectors;
162 q->backing_dev_info->io_pages = max_sectors >> (PAGE_SHIFT - 9);
164 EXPORT_SYMBOL(blk_queue_max_hw_sectors);
167 * blk_queue_chunk_sectors - set size of the chunk for this queue
168 * @q: the request queue for the device
169 * @chunk_sectors: chunk sectors in the usual 512b unit
172 * If a driver doesn't want IOs to cross a given chunk size, it can set
173 * this limit and prevent merging across chunks. Note that the chunk size
174 * must currently be a power-of-2 in sectors. Also note that the block
175 * layer must accept a page worth of data at any offset. So if the
176 * crossing of chunks is a hard limitation in the driver, it must still be
177 * prepared to split single page bios.
179 void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
181 BUG_ON(!is_power_of_2(chunk_sectors));
182 q->limits.chunk_sectors = chunk_sectors;
184 EXPORT_SYMBOL(blk_queue_chunk_sectors);
187 * blk_queue_max_discard_sectors - set max sectors for a single discard
188 * @q: the request queue for the device
189 * @max_discard_sectors: maximum number of sectors to discard
191 void blk_queue_max_discard_sectors(struct request_queue *q,
192 unsigned int max_discard_sectors)
194 q->limits.max_hw_discard_sectors = max_discard_sectors;
195 q->limits.max_discard_sectors = max_discard_sectors;
197 EXPORT_SYMBOL(blk_queue_max_discard_sectors);
200 * blk_queue_max_write_same_sectors - set max sectors for a single write same
201 * @q: the request queue for the device
202 * @max_write_same_sectors: maximum number of sectors to write per command
204 void blk_queue_max_write_same_sectors(struct request_queue *q,
205 unsigned int max_write_same_sectors)
207 q->limits.max_write_same_sectors = max_write_same_sectors;
209 EXPORT_SYMBOL(blk_queue_max_write_same_sectors);
212 * blk_queue_max_write_zeroes_sectors - set max sectors for a single
214 * @q: the request queue for the device
215 * @max_write_zeroes_sectors: maximum number of sectors to write per command
217 void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
218 unsigned int max_write_zeroes_sectors)
220 q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors;
222 EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors);
225 * blk_queue_max_segments - set max hw segments for a request for this queue
226 * @q: the request queue for the device
227 * @max_segments: max number of segments
230 * Enables a low level driver to set an upper limit on the number of
231 * hw data segments in a request.
233 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
237 printk(KERN_INFO "%s: set to minimum %d\n",
238 __func__, max_segments);
241 q->limits.max_segments = max_segments;
243 EXPORT_SYMBOL(blk_queue_max_segments);
246 * blk_queue_max_discard_segments - set max segments for discard requests
247 * @q: the request queue for the device
248 * @max_segments: max number of segments
251 * Enables a low level driver to set an upper limit on the number of
252 * segments in a discard request.
254 void blk_queue_max_discard_segments(struct request_queue *q,
255 unsigned short max_segments)
257 q->limits.max_discard_segments = max_segments;
259 EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments);
262 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
263 * @q: the request queue for the device
264 * @max_size: max size of segment in bytes
267 * Enables a low level driver to set an upper limit on the size of a
270 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
272 if (max_size < PAGE_SIZE) {
273 max_size = PAGE_SIZE;
274 printk(KERN_INFO "%s: set to minimum %d\n",
278 /* see blk_queue_virt_boundary() for the explanation */
279 WARN_ON_ONCE(q->limits.virt_boundary_mask);
281 q->limits.max_segment_size = max_size;
283 EXPORT_SYMBOL(blk_queue_max_segment_size);
286 * blk_queue_logical_block_size - set logical block size for the queue
287 * @q: the request queue for the device
288 * @size: the logical block size, in bytes
291 * This should be set to the lowest possible block size that the
292 * storage device can address. The default of 512 covers most
295 void blk_queue_logical_block_size(struct request_queue *q, unsigned int size)
297 q->limits.logical_block_size = size;
299 if (q->limits.physical_block_size < size)
300 q->limits.physical_block_size = size;
302 if (q->limits.io_min < q->limits.physical_block_size)
303 q->limits.io_min = q->limits.physical_block_size;
305 EXPORT_SYMBOL(blk_queue_logical_block_size);
308 * blk_queue_physical_block_size - set physical block size for the queue
309 * @q: the request queue for the device
310 * @size: the physical block size, in bytes
313 * This should be set to the lowest possible sector size that the
314 * hardware can operate on without reverting to read-modify-write
317 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
319 q->limits.physical_block_size = size;
321 if (q->limits.physical_block_size < q->limits.logical_block_size)
322 q->limits.physical_block_size = q->limits.logical_block_size;
324 if (q->limits.io_min < q->limits.physical_block_size)
325 q->limits.io_min = q->limits.physical_block_size;
327 EXPORT_SYMBOL(blk_queue_physical_block_size);
330 * blk_queue_alignment_offset - set physical block alignment offset
331 * @q: the request queue for the device
332 * @offset: alignment offset in bytes
335 * Some devices are naturally misaligned to compensate for things like
336 * the legacy DOS partition table 63-sector offset. Low-level drivers
337 * should call this function for devices whose first sector is not
340 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
342 q->limits.alignment_offset =
343 offset & (q->limits.physical_block_size - 1);
344 q->limits.misaligned = 0;
346 EXPORT_SYMBOL(blk_queue_alignment_offset);
349 * blk_limits_io_min - set minimum request size for a device
350 * @limits: the queue limits
351 * @min: smallest I/O size in bytes
354 * Some devices have an internal block size bigger than the reported
355 * hardware sector size. This function can be used to signal the
356 * smallest I/O the device can perform without incurring a performance
359 void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
361 limits->io_min = min;
363 if (limits->io_min < limits->logical_block_size)
364 limits->io_min = limits->logical_block_size;
366 if (limits->io_min < limits->physical_block_size)
367 limits->io_min = limits->physical_block_size;
369 EXPORT_SYMBOL(blk_limits_io_min);
372 * blk_queue_io_min - set minimum request size for the queue
373 * @q: the request queue for the device
374 * @min: smallest I/O size in bytes
377 * Storage devices may report a granularity or preferred minimum I/O
378 * size which is the smallest request the device can perform without
379 * incurring a performance penalty. For disk drives this is often the
380 * physical block size. For RAID arrays it is often the stripe chunk
381 * size. A properly aligned multiple of minimum_io_size is the
382 * preferred request size for workloads where a high number of I/O
383 * operations is desired.
385 void blk_queue_io_min(struct request_queue *q, unsigned int min)
387 blk_limits_io_min(&q->limits, min);
389 EXPORT_SYMBOL(blk_queue_io_min);
392 * blk_limits_io_opt - set optimal request size for a device
393 * @limits: the queue limits
394 * @opt: smallest I/O size in bytes
397 * Storage devices may report an optimal I/O size, which is the
398 * device's preferred unit for sustained I/O. This is rarely reported
399 * for disk drives. For RAID arrays it is usually the stripe width or
400 * the internal track size. A properly aligned multiple of
401 * optimal_io_size is the preferred request size for workloads where
402 * sustained throughput is desired.
404 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
406 limits->io_opt = opt;
408 EXPORT_SYMBOL(blk_limits_io_opt);
411 * blk_queue_io_opt - set optimal request size for the queue
412 * @q: the request queue for the device
413 * @opt: optimal request size in bytes
416 * Storage devices may report an optimal I/O size, which is the
417 * device's preferred unit for sustained I/O. This is rarely reported
418 * for disk drives. For RAID arrays it is usually the stripe width or
419 * the internal track size. A properly aligned multiple of
420 * optimal_io_size is the preferred request size for workloads where
421 * sustained throughput is desired.
423 void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
425 blk_limits_io_opt(&q->limits, opt);
427 EXPORT_SYMBOL(blk_queue_io_opt);
430 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
431 * @t: the stacking driver (top)
432 * @b: the underlying device (bottom)
434 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
436 blk_stack_limits(&t->limits, &b->limits, 0);
438 EXPORT_SYMBOL(blk_queue_stack_limits);
441 * blk_stack_limits - adjust queue_limits for stacked devices
442 * @t: the stacking driver limits (top device)
443 * @b: the underlying queue limits (bottom, component device)
444 * @start: first data sector within component device
447 * This function is used by stacking drivers like MD and DM to ensure
448 * that all component devices have compatible block sizes and
449 * alignments. The stacking driver must provide a queue_limits
450 * struct (top) and then iteratively call the stacking function for
451 * all component (bottom) devices. The stacking function will
452 * attempt to combine the values and ensure proper alignment.
454 * Returns 0 if the top and bottom queue_limits are compatible. The
455 * top device's block sizes and alignment offsets may be adjusted to
456 * ensure alignment with the bottom device. If no compatible sizes
457 * and alignments exist, -1 is returned and the resulting top
458 * queue_limits will have the misaligned flag set to indicate that
459 * the alignment_offset is undefined.
461 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
464 unsigned int top, bottom, alignment, ret = 0;
466 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
467 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
468 t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
469 t->max_write_same_sectors = min(t->max_write_same_sectors,
470 b->max_write_same_sectors);
471 t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
472 b->max_write_zeroes_sectors);
473 t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
475 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
476 b->seg_boundary_mask);
477 t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
478 b->virt_boundary_mask);
480 t->max_segments = min_not_zero(t->max_segments, b->max_segments);
481 t->max_discard_segments = min_not_zero(t->max_discard_segments,
482 b->max_discard_segments);
483 t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
484 b->max_integrity_segments);
486 t->max_segment_size = min_not_zero(t->max_segment_size,
487 b->max_segment_size);
489 t->misaligned |= b->misaligned;
491 alignment = queue_limit_alignment_offset(b, start);
493 /* Bottom device has different alignment. Check that it is
494 * compatible with the current top alignment.
496 if (t->alignment_offset != alignment) {
498 top = max(t->physical_block_size, t->io_min)
499 + t->alignment_offset;
500 bottom = max(b->physical_block_size, b->io_min) + alignment;
502 /* Verify that top and bottom intervals line up */
503 if (max(top, bottom) % min(top, bottom)) {
509 t->logical_block_size = max(t->logical_block_size,
510 b->logical_block_size);
512 t->physical_block_size = max(t->physical_block_size,
513 b->physical_block_size);
515 t->io_min = max(t->io_min, b->io_min);
516 t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
518 /* Physical block size a multiple of the logical block size? */
519 if (t->physical_block_size & (t->logical_block_size - 1)) {
520 t->physical_block_size = t->logical_block_size;
525 /* Minimum I/O a multiple of the physical block size? */
526 if (t->io_min & (t->physical_block_size - 1)) {
527 t->io_min = t->physical_block_size;
532 /* Optimal I/O a multiple of the physical block size? */
533 if (t->io_opt & (t->physical_block_size - 1)) {
539 t->raid_partial_stripes_expensive =
540 max(t->raid_partial_stripes_expensive,
541 b->raid_partial_stripes_expensive);
543 /* Find lowest common alignment_offset */
544 t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
545 % max(t->physical_block_size, t->io_min);
547 /* Verify that new alignment_offset is on a logical block boundary */
548 if (t->alignment_offset & (t->logical_block_size - 1)) {
553 /* Discard alignment and granularity */
554 if (b->discard_granularity) {
555 alignment = queue_limit_discard_alignment(b, start);
557 if (t->discard_granularity != 0 &&
558 t->discard_alignment != alignment) {
559 top = t->discard_granularity + t->discard_alignment;
560 bottom = b->discard_granularity + alignment;
562 /* Verify that top and bottom intervals line up */
563 if ((max(top, bottom) % min(top, bottom)) != 0)
564 t->discard_misaligned = 1;
567 t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
568 b->max_discard_sectors);
569 t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
570 b->max_hw_discard_sectors);
571 t->discard_granularity = max(t->discard_granularity,
572 b->discard_granularity);
573 t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
574 t->discard_granularity;
577 if (b->chunk_sectors)
578 t->chunk_sectors = min_not_zero(t->chunk_sectors,
583 EXPORT_SYMBOL(blk_stack_limits);
586 * bdev_stack_limits - adjust queue limits for stacked drivers
587 * @t: the stacking driver limits (top device)
588 * @bdev: the component block_device (bottom)
589 * @start: first data sector within component device
592 * Merges queue limits for a top device and a block_device. Returns
593 * 0 if alignment didn't change. Returns -1 if adding the bottom
594 * device caused misalignment.
596 int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
599 struct request_queue *bq = bdev_get_queue(bdev);
601 start += get_start_sect(bdev);
603 return blk_stack_limits(t, &bq->limits, start);
605 EXPORT_SYMBOL(bdev_stack_limits);
608 * disk_stack_limits - adjust queue limits for stacked drivers
609 * @disk: MD/DM gendisk (top)
610 * @bdev: the underlying block device (bottom)
611 * @offset: offset to beginning of data within component device
614 * Merges the limits for a top level gendisk and a bottom level
617 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
620 struct request_queue *t = disk->queue;
622 if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
623 char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
625 disk_name(disk, 0, top);
626 bdevname(bdev, bottom);
628 printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
632 t->backing_dev_info->io_pages =
633 t->limits.max_sectors >> (PAGE_SHIFT - 9);
635 EXPORT_SYMBOL(disk_stack_limits);
638 * blk_queue_update_dma_pad - update pad mask
639 * @q: the request queue for the device
642 * Update dma pad mask.
644 * Appending pad buffer to a request modifies the last entry of a
645 * scatter list such that it includes the pad buffer.
647 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
649 if (mask > q->dma_pad_mask)
650 q->dma_pad_mask = mask;
652 EXPORT_SYMBOL(blk_queue_update_dma_pad);
655 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
656 * @q: the request queue for the device
657 * @dma_drain_needed: fn which returns non-zero if drain is necessary
658 * @buf: physically contiguous buffer
659 * @size: size of the buffer in bytes
661 * Some devices have excess DMA problems and can't simply discard (or
662 * zero fill) the unwanted piece of the transfer. They have to have a
663 * real area of memory to transfer it into. The use case for this is
664 * ATAPI devices in DMA mode. If the packet command causes a transfer
665 * bigger than the transfer size some HBAs will lock up if there
666 * aren't DMA elements to contain the excess transfer. What this API
667 * does is adjust the queue so that the buf is always appended
668 * silently to the scatterlist.
670 * Note: This routine adjusts max_hw_segments to make room for appending
671 * the drain buffer. If you call blk_queue_max_segments() after calling
672 * this routine, you must set the limit to one fewer than your device
673 * can support otherwise there won't be room for the drain buffer.
675 int blk_queue_dma_drain(struct request_queue *q,
676 dma_drain_needed_fn *dma_drain_needed,
677 void *buf, unsigned int size)
679 if (queue_max_segments(q) < 2)
681 /* make room for appending the drain */
682 blk_queue_max_segments(q, queue_max_segments(q) - 1);
683 q->dma_drain_needed = dma_drain_needed;
684 q->dma_drain_buffer = buf;
685 q->dma_drain_size = size;
689 EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
692 * blk_queue_segment_boundary - set boundary rules for segment merging
693 * @q: the request queue for the device
694 * @mask: the memory boundary mask
696 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
698 if (mask < PAGE_SIZE - 1) {
699 mask = PAGE_SIZE - 1;
700 printk(KERN_INFO "%s: set to minimum %lx\n",
704 q->limits.seg_boundary_mask = mask;
706 EXPORT_SYMBOL(blk_queue_segment_boundary);
709 * blk_queue_virt_boundary - set boundary rules for bio merging
710 * @q: the request queue for the device
711 * @mask: the memory boundary mask
713 void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
715 q->limits.virt_boundary_mask = mask;
718 * Devices that require a virtual boundary do not support scatter/gather
719 * I/O natively, but instead require a descriptor list entry for each
720 * page (which might not be idential to the Linux PAGE_SIZE). Because
721 * of that they are not limited by our notion of "segment size".
724 q->limits.max_segment_size = UINT_MAX;
726 EXPORT_SYMBOL(blk_queue_virt_boundary);
729 * blk_queue_dma_alignment - set dma length and memory alignment
730 * @q: the request queue for the device
731 * @mask: alignment mask
734 * set required memory and length alignment for direct dma transactions.
735 * this is used when building direct io requests for the queue.
738 void blk_queue_dma_alignment(struct request_queue *q, int mask)
740 q->dma_alignment = mask;
742 EXPORT_SYMBOL(blk_queue_dma_alignment);
745 * blk_queue_update_dma_alignment - update dma length and memory alignment
746 * @q: the request queue for the device
747 * @mask: alignment mask
750 * update required memory and length alignment for direct dma transactions.
751 * If the requested alignment is larger than the current alignment, then
752 * the current queue alignment is updated to the new value, otherwise it
753 * is left alone. The design of this is to allow multiple objects
754 * (driver, device, transport etc) to set their respective
755 * alignments without having them interfere.
758 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
760 BUG_ON(mask > PAGE_SIZE);
762 if (mask > q->dma_alignment)
763 q->dma_alignment = mask;
765 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
768 * blk_set_queue_depth - tell the block layer about the device queue depth
769 * @q: the request queue for the device
770 * @depth: queue depth
773 void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
775 q->queue_depth = depth;
776 rq_qos_queue_depth_changed(q);
778 EXPORT_SYMBOL(blk_set_queue_depth);
781 * blk_queue_write_cache - configure queue's write cache
782 * @q: the request queue for the device
783 * @wc: write back cache on or off
784 * @fua: device supports FUA writes, if true
786 * Tell the block layer about the write cache of @q.
788 void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
791 blk_queue_flag_set(QUEUE_FLAG_WC, q);
793 blk_queue_flag_clear(QUEUE_FLAG_WC, q);
795 blk_queue_flag_set(QUEUE_FLAG_FUA, q);
797 blk_queue_flag_clear(QUEUE_FLAG_FUA, q);
799 wbt_set_write_cache(q, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
801 EXPORT_SYMBOL_GPL(blk_queue_write_cache);
804 * blk_queue_required_elevator_features - Set a queue required elevator features
805 * @q: the request queue for the target device
806 * @features: Required elevator features OR'ed together
808 * Tell the block layer that for the device controlled through @q, only the
809 * only elevators that can be used are those that implement at least the set of
810 * features specified by @features.
812 void blk_queue_required_elevator_features(struct request_queue *q,
813 unsigned int features)
815 q->required_elevator_features = features;
817 EXPORT_SYMBOL_GPL(blk_queue_required_elevator_features);
820 * blk_queue_can_use_dma_map_merging - configure queue for merging segments.
821 * @q: the request queue for the device
822 * @dev: the device pointer for dma
824 * Tell the block layer about merging the segments by dma map of @q.
826 bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
829 unsigned long boundary = dma_get_merge_boundary(dev);
834 /* No need to update max_segment_size. see blk_queue_virt_boundary() */
835 blk_queue_virt_boundary(q, boundary);
839 EXPORT_SYMBOL_GPL(blk_queue_can_use_dma_map_merging);
841 static int __init blk_settings_init(void)
843 blk_max_low_pfn = max_low_pfn - 1;
844 blk_max_pfn = max_pfn - 1;
847 subsys_initcall(blk_settings_init);