2 * Functions related to setting various queue properties from drivers
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
8 #include <linux/blkdev.h>
9 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
10 #include <linux/gcd.h>
11 #include <linux/lcm.h>
12 #include <linux/jiffies.h>
13 #include <linux/gfp.h>
18 unsigned long blk_max_low_pfn;
19 EXPORT_SYMBOL(blk_max_low_pfn);
21 unsigned long blk_max_pfn;
24 * blk_queue_prep_rq - set a prepare_request function for queue
26 * @pfn: prepare_request function
28 * It's possible for a queue to register a prepare_request callback which
29 * is invoked before the request is handed to the request_fn. The goal of
30 * the function is to prepare a request for I/O, it can be used to build a
31 * cdb from the request data for instance.
34 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
38 EXPORT_SYMBOL(blk_queue_prep_rq);
41 * blk_queue_unprep_rq - set an unprepare_request function for queue
43 * @ufn: unprepare_request function
45 * It's possible for a queue to register an unprepare_request callback
46 * which is invoked before the request is finally completed. The goal
47 * of the function is to deallocate any data that was allocated in the
48 * prepare_request callback.
51 void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn)
53 q->unprep_rq_fn = ufn;
55 EXPORT_SYMBOL(blk_queue_unprep_rq);
57 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
59 q->softirq_done_fn = fn;
61 EXPORT_SYMBOL(blk_queue_softirq_done);
63 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
65 q->rq_timeout = timeout;
67 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
69 void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
71 q->rq_timed_out_fn = fn;
73 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
75 void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
79 EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
82 * blk_set_default_limits - reset limits to default values
83 * @lim: the queue_limits structure to reset
86 * Returns a queue_limit struct to its default state.
88 void blk_set_default_limits(struct queue_limits *lim)
90 lim->max_segments = BLK_MAX_SEGMENTS;
91 lim->max_integrity_segments = 0;
92 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
93 lim->virt_boundary_mask = 0;
94 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
95 lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
96 lim->max_dev_sectors = 0;
97 lim->chunk_sectors = 0;
98 lim->max_write_same_sectors = 0;
99 lim->max_write_zeroes_sectors = 0;
100 lim->max_discard_sectors = 0;
101 lim->max_hw_discard_sectors = 0;
102 lim->discard_granularity = 0;
103 lim->discard_alignment = 0;
104 lim->discard_misaligned = 0;
105 lim->discard_zeroes_data = 0;
106 lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
107 lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
108 lim->alignment_offset = 0;
112 lim->zoned = BLK_ZONED_NONE;
114 EXPORT_SYMBOL(blk_set_default_limits);
117 * blk_set_stacking_limits - set default limits for stacking devices
118 * @lim: the queue_limits structure to reset
121 * Returns a queue_limit struct to its default state. Should be used
122 * by stacking drivers like DM that have no internal limits.
124 void blk_set_stacking_limits(struct queue_limits *lim)
126 blk_set_default_limits(lim);
128 /* Inherit limits from component devices */
129 lim->discard_zeroes_data = 1;
130 lim->max_segments = USHRT_MAX;
131 lim->max_hw_sectors = UINT_MAX;
132 lim->max_segment_size = UINT_MAX;
133 lim->max_sectors = UINT_MAX;
134 lim->max_dev_sectors = UINT_MAX;
135 lim->max_write_same_sectors = UINT_MAX;
136 lim->max_write_zeroes_sectors = UINT_MAX;
138 EXPORT_SYMBOL(blk_set_stacking_limits);
141 * blk_queue_make_request - define an alternate make_request function for a device
142 * @q: the request queue for the device to be affected
143 * @mfn: the alternate make_request function
146 * The normal way for &struct bios to be passed to a device
147 * driver is for them to be collected into requests on a request
148 * queue, and then to allow the device driver to select requests
149 * off that queue when it is ready. This works well for many block
150 * devices. However some block devices (typically virtual devices
151 * such as md or lvm) do not benefit from the processing on the
152 * request queue, and are served best by having the requests passed
153 * directly to them. This can be achieved by providing a function
154 * to blk_queue_make_request().
157 * The driver that does this *must* be able to deal appropriately
158 * with buffers in "highmemory". This can be accomplished by either calling
159 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
160 * blk_queue_bounce() to create a buffer in normal memory.
162 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
167 q->nr_requests = BLKDEV_MAX_RQ;
169 q->make_request_fn = mfn;
170 blk_queue_dma_alignment(q, 511);
171 blk_queue_congestion_threshold(q);
172 q->nr_batching = BLK_BATCH_REQ;
174 blk_set_default_limits(&q->limits);
177 * by default assume old behaviour and bounce for any highmem page
179 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
181 EXPORT_SYMBOL(blk_queue_make_request);
184 * blk_queue_bounce_limit - set bounce buffer limit for queue
185 * @q: the request queue for the device
186 * @max_addr: the maximum address the device can handle
189 * Different hardware can have different requirements as to what pages
190 * it can do I/O directly to. A low level driver can call
191 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
192 * buffers for doing I/O to pages residing above @max_addr.
194 void blk_queue_bounce_limit(struct request_queue *q, u64 max_addr)
196 unsigned long b_pfn = max_addr >> PAGE_SHIFT;
199 q->bounce_gfp = GFP_NOIO;
200 #if BITS_PER_LONG == 64
202 * Assume anything <= 4GB can be handled by IOMMU. Actually
203 * some IOMMUs can handle everything, but I don't know of a
204 * way to test this here.
206 if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
208 q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
210 if (b_pfn < blk_max_low_pfn)
212 q->limits.bounce_pfn = b_pfn;
215 init_emergency_isa_pool();
216 q->bounce_gfp = GFP_NOIO | GFP_DMA;
217 q->limits.bounce_pfn = b_pfn;
220 EXPORT_SYMBOL(blk_queue_bounce_limit);
223 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
224 * @q: the request queue for the device
225 * @max_hw_sectors: max hardware sectors in the usual 512b unit
228 * Enables a low level driver to set a hard upper limit,
229 * max_hw_sectors, on the size of requests. max_hw_sectors is set by
230 * the device driver based upon the capabilities of the I/O
233 * max_dev_sectors is a hard limit imposed by the storage device for
234 * READ/WRITE requests. It is set by the disk driver.
236 * max_sectors is a soft limit imposed by the block layer for
237 * filesystem type requests. This value can be overridden on a
238 * per-device basis in /sys/block/<device>/queue/max_sectors_kb.
239 * The soft limit can not exceed max_hw_sectors.
241 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
243 struct queue_limits *limits = &q->limits;
244 unsigned int max_sectors;
246 if ((max_hw_sectors << 9) < PAGE_SIZE) {
247 max_hw_sectors = 1 << (PAGE_SHIFT - 9);
248 printk(KERN_INFO "%s: set to minimum %d\n",
249 __func__, max_hw_sectors);
252 limits->max_hw_sectors = max_hw_sectors;
253 max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
254 max_sectors = min_t(unsigned int, max_sectors, BLK_DEF_MAX_SECTORS);
255 limits->max_sectors = max_sectors;
256 q->backing_dev_info.io_pages = max_sectors >> (PAGE_SHIFT - 9);
258 EXPORT_SYMBOL(blk_queue_max_hw_sectors);
261 * blk_queue_chunk_sectors - set size of the chunk for this queue
262 * @q: the request queue for the device
263 * @chunk_sectors: chunk sectors in the usual 512b unit
266 * If a driver doesn't want IOs to cross a given chunk size, it can set
267 * this limit and prevent merging across chunks. Note that the chunk size
268 * must currently be a power-of-2 in sectors. Also note that the block
269 * layer must accept a page worth of data at any offset. So if the
270 * crossing of chunks is a hard limitation in the driver, it must still be
271 * prepared to split single page bios.
273 void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
275 BUG_ON(!is_power_of_2(chunk_sectors));
276 q->limits.chunk_sectors = chunk_sectors;
278 EXPORT_SYMBOL(blk_queue_chunk_sectors);
281 * blk_queue_max_discard_sectors - set max sectors for a single discard
282 * @q: the request queue for the device
283 * @max_discard_sectors: maximum number of sectors to discard
285 void blk_queue_max_discard_sectors(struct request_queue *q,
286 unsigned int max_discard_sectors)
288 q->limits.max_hw_discard_sectors = max_discard_sectors;
289 q->limits.max_discard_sectors = max_discard_sectors;
291 EXPORT_SYMBOL(blk_queue_max_discard_sectors);
294 * blk_queue_max_write_same_sectors - set max sectors for a single write same
295 * @q: the request queue for the device
296 * @max_write_same_sectors: maximum number of sectors to write per command
298 void blk_queue_max_write_same_sectors(struct request_queue *q,
299 unsigned int max_write_same_sectors)
301 q->limits.max_write_same_sectors = max_write_same_sectors;
303 EXPORT_SYMBOL(blk_queue_max_write_same_sectors);
306 * blk_queue_max_write_zeroes_sectors - set max sectors for a single
308 * @q: the request queue for the device
309 * @max_write_zeroes_sectors: maximum number of sectors to write per command
311 void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
312 unsigned int max_write_zeroes_sectors)
314 q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors;
316 EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors);
319 * blk_queue_max_segments - set max hw segments for a request for this queue
320 * @q: the request queue for the device
321 * @max_segments: max number of segments
324 * Enables a low level driver to set an upper limit on the number of
325 * hw data segments in a request.
327 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
331 printk(KERN_INFO "%s: set to minimum %d\n",
332 __func__, max_segments);
335 q->limits.max_segments = max_segments;
337 EXPORT_SYMBOL(blk_queue_max_segments);
340 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
341 * @q: the request queue for the device
342 * @max_size: max size of segment in bytes
345 * Enables a low level driver to set an upper limit on the size of a
348 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
350 if (max_size < PAGE_SIZE) {
351 max_size = PAGE_SIZE;
352 printk(KERN_INFO "%s: set to minimum %d\n",
356 q->limits.max_segment_size = max_size;
358 EXPORT_SYMBOL(blk_queue_max_segment_size);
361 * blk_queue_logical_block_size - set logical block size for the queue
362 * @q: the request queue for the device
363 * @size: the logical block size, in bytes
366 * This should be set to the lowest possible block size that the
367 * storage device can address. The default of 512 covers most
370 void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
372 q->limits.logical_block_size = size;
374 if (q->limits.physical_block_size < size)
375 q->limits.physical_block_size = size;
377 if (q->limits.io_min < q->limits.physical_block_size)
378 q->limits.io_min = q->limits.physical_block_size;
380 EXPORT_SYMBOL(blk_queue_logical_block_size);
383 * blk_queue_physical_block_size - set physical block size for the queue
384 * @q: the request queue for the device
385 * @size: the physical block size, in bytes
388 * This should be set to the lowest possible sector size that the
389 * hardware can operate on without reverting to read-modify-write
392 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
394 q->limits.physical_block_size = size;
396 if (q->limits.physical_block_size < q->limits.logical_block_size)
397 q->limits.physical_block_size = q->limits.logical_block_size;
399 if (q->limits.io_min < q->limits.physical_block_size)
400 q->limits.io_min = q->limits.physical_block_size;
402 EXPORT_SYMBOL(blk_queue_physical_block_size);
405 * blk_queue_alignment_offset - set physical block alignment offset
406 * @q: the request queue for the device
407 * @offset: alignment offset in bytes
410 * Some devices are naturally misaligned to compensate for things like
411 * the legacy DOS partition table 63-sector offset. Low-level drivers
412 * should call this function for devices whose first sector is not
415 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
417 q->limits.alignment_offset =
418 offset & (q->limits.physical_block_size - 1);
419 q->limits.misaligned = 0;
421 EXPORT_SYMBOL(blk_queue_alignment_offset);
424 * blk_limits_io_min - set minimum request size for a device
425 * @limits: the queue limits
426 * @min: smallest I/O size in bytes
429 * Some devices have an internal block size bigger than the reported
430 * hardware sector size. This function can be used to signal the
431 * smallest I/O the device can perform without incurring a performance
434 void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
436 limits->io_min = min;
438 if (limits->io_min < limits->logical_block_size)
439 limits->io_min = limits->logical_block_size;
441 if (limits->io_min < limits->physical_block_size)
442 limits->io_min = limits->physical_block_size;
444 EXPORT_SYMBOL(blk_limits_io_min);
447 * blk_queue_io_min - set minimum request size for the queue
448 * @q: the request queue for the device
449 * @min: smallest I/O size in bytes
452 * Storage devices may report a granularity or preferred minimum I/O
453 * size which is the smallest request the device can perform without
454 * incurring a performance penalty. For disk drives this is often the
455 * physical block size. For RAID arrays it is often the stripe chunk
456 * size. A properly aligned multiple of minimum_io_size is the
457 * preferred request size for workloads where a high number of I/O
458 * operations is desired.
460 void blk_queue_io_min(struct request_queue *q, unsigned int min)
462 blk_limits_io_min(&q->limits, min);
464 EXPORT_SYMBOL(blk_queue_io_min);
467 * blk_limits_io_opt - set optimal request size for a device
468 * @limits: the queue limits
469 * @opt: smallest I/O size in bytes
472 * Storage devices may report an optimal I/O size, which is the
473 * device's preferred unit for sustained I/O. This is rarely reported
474 * for disk drives. For RAID arrays it is usually the stripe width or
475 * the internal track size. A properly aligned multiple of
476 * optimal_io_size is the preferred request size for workloads where
477 * sustained throughput is desired.
479 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
481 limits->io_opt = opt;
483 EXPORT_SYMBOL(blk_limits_io_opt);
486 * blk_queue_io_opt - set optimal request size for the queue
487 * @q: the request queue for the device
488 * @opt: optimal request size in bytes
491 * Storage devices may report an optimal I/O size, which is the
492 * device's preferred unit for sustained I/O. This is rarely reported
493 * for disk drives. For RAID arrays it is usually the stripe width or
494 * the internal track size. A properly aligned multiple of
495 * optimal_io_size is the preferred request size for workloads where
496 * sustained throughput is desired.
498 void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
500 blk_limits_io_opt(&q->limits, opt);
502 EXPORT_SYMBOL(blk_queue_io_opt);
505 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
506 * @t: the stacking driver (top)
507 * @b: the underlying device (bottom)
509 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
511 blk_stack_limits(&t->limits, &b->limits, 0);
513 EXPORT_SYMBOL(blk_queue_stack_limits);
516 * blk_stack_limits - adjust queue_limits for stacked devices
517 * @t: the stacking driver limits (top device)
518 * @b: the underlying queue limits (bottom, component device)
519 * @start: first data sector within component device
522 * This function is used by stacking drivers like MD and DM to ensure
523 * that all component devices have compatible block sizes and
524 * alignments. The stacking driver must provide a queue_limits
525 * struct (top) and then iteratively call the stacking function for
526 * all component (bottom) devices. The stacking function will
527 * attempt to combine the values and ensure proper alignment.
529 * Returns 0 if the top and bottom queue_limits are compatible. The
530 * top device's block sizes and alignment offsets may be adjusted to
531 * ensure alignment with the bottom device. If no compatible sizes
532 * and alignments exist, -1 is returned and the resulting top
533 * queue_limits will have the misaligned flag set to indicate that
534 * the alignment_offset is undefined.
536 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
539 unsigned int top, bottom, alignment, ret = 0;
541 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
542 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
543 t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
544 t->max_write_same_sectors = min(t->max_write_same_sectors,
545 b->max_write_same_sectors);
546 t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
547 b->max_write_zeroes_sectors);
548 t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
550 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
551 b->seg_boundary_mask);
552 t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
553 b->virt_boundary_mask);
555 t->max_segments = min_not_zero(t->max_segments, b->max_segments);
556 t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
557 b->max_integrity_segments);
559 t->max_segment_size = min_not_zero(t->max_segment_size,
560 b->max_segment_size);
562 t->misaligned |= b->misaligned;
564 alignment = queue_limit_alignment_offset(b, start);
566 /* Bottom device has different alignment. Check that it is
567 * compatible with the current top alignment.
569 if (t->alignment_offset != alignment) {
571 top = max(t->physical_block_size, t->io_min)
572 + t->alignment_offset;
573 bottom = max(b->physical_block_size, b->io_min) + alignment;
575 /* Verify that top and bottom intervals line up */
576 if (max(top, bottom) % min(top, bottom)) {
582 t->logical_block_size = max(t->logical_block_size,
583 b->logical_block_size);
585 t->physical_block_size = max(t->physical_block_size,
586 b->physical_block_size);
588 t->io_min = max(t->io_min, b->io_min);
589 t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
591 t->cluster &= b->cluster;
592 t->discard_zeroes_data &= b->discard_zeroes_data;
594 /* Physical block size a multiple of the logical block size? */
595 if (t->physical_block_size & (t->logical_block_size - 1)) {
596 t->physical_block_size = t->logical_block_size;
601 /* Minimum I/O a multiple of the physical block size? */
602 if (t->io_min & (t->physical_block_size - 1)) {
603 t->io_min = t->physical_block_size;
608 /* Optimal I/O a multiple of the physical block size? */
609 if (t->io_opt & (t->physical_block_size - 1)) {
615 t->raid_partial_stripes_expensive =
616 max(t->raid_partial_stripes_expensive,
617 b->raid_partial_stripes_expensive);
619 /* Find lowest common alignment_offset */
620 t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
621 % max(t->physical_block_size, t->io_min);
623 /* Verify that new alignment_offset is on a logical block boundary */
624 if (t->alignment_offset & (t->logical_block_size - 1)) {
629 /* Discard alignment and granularity */
630 if (b->discard_granularity) {
631 alignment = queue_limit_discard_alignment(b, start);
633 if (t->discard_granularity != 0 &&
634 t->discard_alignment != alignment) {
635 top = t->discard_granularity + t->discard_alignment;
636 bottom = b->discard_granularity + alignment;
638 /* Verify that top and bottom intervals line up */
639 if ((max(top, bottom) % min(top, bottom)) != 0)
640 t->discard_misaligned = 1;
643 t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
644 b->max_discard_sectors);
645 t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
646 b->max_hw_discard_sectors);
647 t->discard_granularity = max(t->discard_granularity,
648 b->discard_granularity);
649 t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
650 t->discard_granularity;
653 if (b->chunk_sectors)
654 t->chunk_sectors = min_not_zero(t->chunk_sectors,
659 EXPORT_SYMBOL(blk_stack_limits);
662 * bdev_stack_limits - adjust queue limits for stacked drivers
663 * @t: the stacking driver limits (top device)
664 * @bdev: the component block_device (bottom)
665 * @start: first data sector within component device
668 * Merges queue limits for a top device and a block_device. Returns
669 * 0 if alignment didn't change. Returns -1 if adding the bottom
670 * device caused misalignment.
672 int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
675 struct request_queue *bq = bdev_get_queue(bdev);
677 start += get_start_sect(bdev);
679 return blk_stack_limits(t, &bq->limits, start);
681 EXPORT_SYMBOL(bdev_stack_limits);
684 * disk_stack_limits - adjust queue limits for stacked drivers
685 * @disk: MD/DM gendisk (top)
686 * @bdev: the underlying block device (bottom)
687 * @offset: offset to beginning of data within component device
690 * Merges the limits for a top level gendisk and a bottom level
693 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
696 struct request_queue *t = disk->queue;
698 if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
699 char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
701 disk_name(disk, 0, top);
702 bdevname(bdev, bottom);
704 printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
708 EXPORT_SYMBOL(disk_stack_limits);
711 * blk_queue_dma_pad - set pad mask
712 * @q: the request queue for the device
717 * Appending pad buffer to a request modifies the last entry of a
718 * scatter list such that it includes the pad buffer.
720 void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
722 q->dma_pad_mask = mask;
724 EXPORT_SYMBOL(blk_queue_dma_pad);
727 * blk_queue_update_dma_pad - update pad mask
728 * @q: the request queue for the device
731 * Update dma pad mask.
733 * Appending pad buffer to a request modifies the last entry of a
734 * scatter list such that it includes the pad buffer.
736 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
738 if (mask > q->dma_pad_mask)
739 q->dma_pad_mask = mask;
741 EXPORT_SYMBOL(blk_queue_update_dma_pad);
744 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
745 * @q: the request queue for the device
746 * @dma_drain_needed: fn which returns non-zero if drain is necessary
747 * @buf: physically contiguous buffer
748 * @size: size of the buffer in bytes
750 * Some devices have excess DMA problems and can't simply discard (or
751 * zero fill) the unwanted piece of the transfer. They have to have a
752 * real area of memory to transfer it into. The use case for this is
753 * ATAPI devices in DMA mode. If the packet command causes a transfer
754 * bigger than the transfer size some HBAs will lock up if there
755 * aren't DMA elements to contain the excess transfer. What this API
756 * does is adjust the queue so that the buf is always appended
757 * silently to the scatterlist.
759 * Note: This routine adjusts max_hw_segments to make room for appending
760 * the drain buffer. If you call blk_queue_max_segments() after calling
761 * this routine, you must set the limit to one fewer than your device
762 * can support otherwise there won't be room for the drain buffer.
764 int blk_queue_dma_drain(struct request_queue *q,
765 dma_drain_needed_fn *dma_drain_needed,
766 void *buf, unsigned int size)
768 if (queue_max_segments(q) < 2)
770 /* make room for appending the drain */
771 blk_queue_max_segments(q, queue_max_segments(q) - 1);
772 q->dma_drain_needed = dma_drain_needed;
773 q->dma_drain_buffer = buf;
774 q->dma_drain_size = size;
778 EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
781 * blk_queue_segment_boundary - set boundary rules for segment merging
782 * @q: the request queue for the device
783 * @mask: the memory boundary mask
785 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
787 if (mask < PAGE_SIZE - 1) {
788 mask = PAGE_SIZE - 1;
789 printk(KERN_INFO "%s: set to minimum %lx\n",
793 q->limits.seg_boundary_mask = mask;
795 EXPORT_SYMBOL(blk_queue_segment_boundary);
798 * blk_queue_virt_boundary - set boundary rules for bio merging
799 * @q: the request queue for the device
800 * @mask: the memory boundary mask
802 void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
804 q->limits.virt_boundary_mask = mask;
806 EXPORT_SYMBOL(blk_queue_virt_boundary);
809 * blk_queue_dma_alignment - set dma length and memory alignment
810 * @q: the request queue for the device
811 * @mask: alignment mask
814 * set required memory and length alignment for direct dma transactions.
815 * this is used when building direct io requests for the queue.
818 void blk_queue_dma_alignment(struct request_queue *q, int mask)
820 q->dma_alignment = mask;
822 EXPORT_SYMBOL(blk_queue_dma_alignment);
825 * blk_queue_update_dma_alignment - update dma length and memory alignment
826 * @q: the request queue for the device
827 * @mask: alignment mask
830 * update required memory and length alignment for direct dma transactions.
831 * If the requested alignment is larger than the current alignment, then
832 * the current queue alignment is updated to the new value, otherwise it
833 * is left alone. The design of this is to allow multiple objects
834 * (driver, device, transport etc) to set their respective
835 * alignments without having them interfere.
838 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
840 BUG_ON(mask > PAGE_SIZE);
842 if (mask > q->dma_alignment)
843 q->dma_alignment = mask;
845 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
847 void blk_queue_flush_queueable(struct request_queue *q, bool queueable)
849 spin_lock_irq(q->queue_lock);
851 clear_bit(QUEUE_FLAG_FLUSH_NQ, &q->queue_flags);
853 set_bit(QUEUE_FLAG_FLUSH_NQ, &q->queue_flags);
854 spin_unlock_irq(q->queue_lock);
856 EXPORT_SYMBOL_GPL(blk_queue_flush_queueable);
859 * blk_set_queue_depth - tell the block layer about the device queue depth
860 * @q: the request queue for the device
861 * @depth: queue depth
864 void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
866 q->queue_depth = depth;
867 wbt_set_queue_depth(q->rq_wb, depth);
869 EXPORT_SYMBOL(blk_set_queue_depth);
872 * blk_queue_write_cache - configure queue's write cache
873 * @q: the request queue for the device
874 * @wc: write back cache on or off
875 * @fua: device supports FUA writes, if true
877 * Tell the block layer about the write cache of @q.
879 void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
881 spin_lock_irq(q->queue_lock);
883 queue_flag_set(QUEUE_FLAG_WC, q);
885 queue_flag_clear(QUEUE_FLAG_WC, q);
887 queue_flag_set(QUEUE_FLAG_FUA, q);
889 queue_flag_clear(QUEUE_FLAG_FUA, q);
890 spin_unlock_irq(q->queue_lock);
892 wbt_set_write_cache(q->rq_wb, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
894 EXPORT_SYMBOL_GPL(blk_queue_write_cache);
896 static int __init blk_settings_init(void)
898 blk_max_low_pfn = max_low_pfn - 1;
899 blk_max_pfn = max_pfn - 1;
902 subsys_initcall(blk_settings_init);