1 // SPDX-License-Identifier: GPL-2.0
3 * Functions related to setting various queue properties from drivers
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/init.h>
9 #include <linux/blkdev.h>
10 #include <linux/pagemap.h>
11 #include <linux/backing-dev-defs.h>
12 #include <linux/gcd.h>
13 #include <linux/lcm.h>
14 #include <linux/jiffies.h>
15 #include <linux/gfp.h>
16 #include <linux/dma-mapping.h>
21 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
23 q->rq_timeout = timeout;
25 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
28 * blk_set_default_limits - reset limits to default values
29 * @lim: the queue_limits structure to reset
32 * Returns a queue_limit struct to its default state.
34 void blk_set_default_limits(struct queue_limits *lim)
36 lim->max_segments = BLK_MAX_SEGMENTS;
37 lim->max_discard_segments = 1;
38 lim->max_integrity_segments = 0;
39 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
40 lim->virt_boundary_mask = 0;
41 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
42 lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
43 lim->max_dev_sectors = 0;
44 lim->chunk_sectors = 0;
45 lim->max_write_same_sectors = 0;
46 lim->max_write_zeroes_sectors = 0;
47 lim->max_zone_append_sectors = 0;
48 lim->max_discard_sectors = 0;
49 lim->max_hw_discard_sectors = 0;
50 lim->discard_granularity = 0;
51 lim->discard_alignment = 0;
52 lim->discard_misaligned = 0;
53 lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
54 lim->bounce = BLK_BOUNCE_NONE;
55 lim->alignment_offset = 0;
58 lim->zoned = BLK_ZONED_NONE;
59 lim->zone_write_granularity = 0;
61 EXPORT_SYMBOL(blk_set_default_limits);
64 * blk_set_stacking_limits - set default limits for stacking devices
65 * @lim: the queue_limits structure to reset
68 * Returns a queue_limit struct to its default state. Should be used
69 * by stacking drivers like DM that have no internal limits.
71 void blk_set_stacking_limits(struct queue_limits *lim)
73 blk_set_default_limits(lim);
75 /* Inherit limits from component devices */
76 lim->max_segments = USHRT_MAX;
77 lim->max_discard_segments = USHRT_MAX;
78 lim->max_hw_sectors = UINT_MAX;
79 lim->max_segment_size = UINT_MAX;
80 lim->max_sectors = UINT_MAX;
81 lim->max_dev_sectors = UINT_MAX;
82 lim->max_write_same_sectors = UINT_MAX;
83 lim->max_write_zeroes_sectors = UINT_MAX;
84 lim->max_zone_append_sectors = UINT_MAX;
86 EXPORT_SYMBOL(blk_set_stacking_limits);
89 * blk_queue_bounce_limit - set bounce buffer limit for queue
90 * @q: the request queue for the device
91 * @bounce: bounce limit to enforce
94 * Force bouncing for ISA DMA ranges or highmem.
96 * DEPRECATED, don't use in new code.
98 void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce bounce)
100 q->limits.bounce = bounce;
102 EXPORT_SYMBOL(blk_queue_bounce_limit);
105 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
106 * @q: the request queue for the device
107 * @max_hw_sectors: max hardware sectors in the usual 512b unit
110 * Enables a low level driver to set a hard upper limit,
111 * max_hw_sectors, on the size of requests. max_hw_sectors is set by
112 * the device driver based upon the capabilities of the I/O
115 * max_dev_sectors is a hard limit imposed by the storage device for
116 * READ/WRITE requests. It is set by the disk driver.
118 * max_sectors is a soft limit imposed by the block layer for
119 * filesystem type requests. This value can be overridden on a
120 * per-device basis in /sys/block/<device>/queue/max_sectors_kb.
121 * The soft limit can not exceed max_hw_sectors.
123 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
125 struct queue_limits *limits = &q->limits;
126 unsigned int max_sectors;
128 if ((max_hw_sectors << 9) < PAGE_SIZE) {
129 max_hw_sectors = 1 << (PAGE_SHIFT - 9);
130 printk(KERN_INFO "%s: set to minimum %d\n",
131 __func__, max_hw_sectors);
134 max_hw_sectors = round_down(max_hw_sectors,
135 limits->logical_block_size >> SECTOR_SHIFT);
136 limits->max_hw_sectors = max_hw_sectors;
138 max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
139 max_sectors = min_t(unsigned int, max_sectors, BLK_DEF_MAX_SECTORS);
140 max_sectors = round_down(max_sectors,
141 limits->logical_block_size >> SECTOR_SHIFT);
142 limits->max_sectors = max_sectors;
146 q->disk->bdi->io_pages = max_sectors >> (PAGE_SHIFT - 9);
148 EXPORT_SYMBOL(blk_queue_max_hw_sectors);
151 * blk_queue_chunk_sectors - set size of the chunk for this queue
152 * @q: the request queue for the device
153 * @chunk_sectors: chunk sectors in the usual 512b unit
156 * If a driver doesn't want IOs to cross a given chunk size, it can set
157 * this limit and prevent merging across chunks. Note that the block layer
158 * must accept a page worth of data at any offset. So if the crossing of
159 * chunks is a hard limitation in the driver, it must still be prepared
160 * to split single page bios.
162 void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
164 q->limits.chunk_sectors = chunk_sectors;
166 EXPORT_SYMBOL(blk_queue_chunk_sectors);
169 * blk_queue_max_discard_sectors - set max sectors for a single discard
170 * @q: the request queue for the device
171 * @max_discard_sectors: maximum number of sectors to discard
173 void blk_queue_max_discard_sectors(struct request_queue *q,
174 unsigned int max_discard_sectors)
176 q->limits.max_hw_discard_sectors = max_discard_sectors;
177 q->limits.max_discard_sectors = max_discard_sectors;
179 EXPORT_SYMBOL(blk_queue_max_discard_sectors);
182 * blk_queue_max_write_same_sectors - set max sectors for a single write same
183 * @q: the request queue for the device
184 * @max_write_same_sectors: maximum number of sectors to write per command
186 void blk_queue_max_write_same_sectors(struct request_queue *q,
187 unsigned int max_write_same_sectors)
189 q->limits.max_write_same_sectors = max_write_same_sectors;
191 EXPORT_SYMBOL(blk_queue_max_write_same_sectors);
194 * blk_queue_max_write_zeroes_sectors - set max sectors for a single
196 * @q: the request queue for the device
197 * @max_write_zeroes_sectors: maximum number of sectors to write per command
199 void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
200 unsigned int max_write_zeroes_sectors)
202 q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors;
204 EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors);
207 * blk_queue_max_zone_append_sectors - set max sectors for a single zone append
208 * @q: the request queue for the device
209 * @max_zone_append_sectors: maximum number of sectors to write per command
211 void blk_queue_max_zone_append_sectors(struct request_queue *q,
212 unsigned int max_zone_append_sectors)
214 unsigned int max_sectors;
216 if (WARN_ON(!blk_queue_is_zoned(q)))
219 max_sectors = min(q->limits.max_hw_sectors, max_zone_append_sectors);
220 max_sectors = min(q->limits.chunk_sectors, max_sectors);
223 * Signal eventual driver bugs resulting in the max_zone_append sectors limit
224 * being 0 due to a 0 argument, the chunk_sectors limit (zone size) not set,
225 * or the max_hw_sectors limit not set.
227 WARN_ON(!max_sectors);
229 q->limits.max_zone_append_sectors = max_sectors;
231 EXPORT_SYMBOL_GPL(blk_queue_max_zone_append_sectors);
234 * blk_queue_max_segments - set max hw segments for a request for this queue
235 * @q: the request queue for the device
236 * @max_segments: max number of segments
239 * Enables a low level driver to set an upper limit on the number of
240 * hw data segments in a request.
242 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
246 printk(KERN_INFO "%s: set to minimum %d\n",
247 __func__, max_segments);
250 q->limits.max_segments = max_segments;
252 EXPORT_SYMBOL(blk_queue_max_segments);
255 * blk_queue_max_discard_segments - set max segments for discard requests
256 * @q: the request queue for the device
257 * @max_segments: max number of segments
260 * Enables a low level driver to set an upper limit on the number of
261 * segments in a discard request.
263 void blk_queue_max_discard_segments(struct request_queue *q,
264 unsigned short max_segments)
266 q->limits.max_discard_segments = max_segments;
268 EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments);
271 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
272 * @q: the request queue for the device
273 * @max_size: max size of segment in bytes
276 * Enables a low level driver to set an upper limit on the size of a
279 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
281 if (max_size < PAGE_SIZE) {
282 max_size = PAGE_SIZE;
283 printk(KERN_INFO "%s: set to minimum %d\n",
287 /* see blk_queue_virt_boundary() for the explanation */
288 WARN_ON_ONCE(q->limits.virt_boundary_mask);
290 q->limits.max_segment_size = max_size;
292 EXPORT_SYMBOL(blk_queue_max_segment_size);
295 * blk_queue_logical_block_size - set logical block size for the queue
296 * @q: the request queue for the device
297 * @size: the logical block size, in bytes
300 * This should be set to the lowest possible block size that the
301 * storage device can address. The default of 512 covers most
304 void blk_queue_logical_block_size(struct request_queue *q, unsigned int size)
306 struct queue_limits *limits = &q->limits;
308 limits->logical_block_size = size;
310 if (limits->physical_block_size < size)
311 limits->physical_block_size = size;
313 if (limits->io_min < limits->physical_block_size)
314 limits->io_min = limits->physical_block_size;
316 limits->max_hw_sectors =
317 round_down(limits->max_hw_sectors, size >> SECTOR_SHIFT);
318 limits->max_sectors =
319 round_down(limits->max_sectors, size >> SECTOR_SHIFT);
321 EXPORT_SYMBOL(blk_queue_logical_block_size);
324 * blk_queue_physical_block_size - set physical block size for the queue
325 * @q: the request queue for the device
326 * @size: the physical block size, in bytes
329 * This should be set to the lowest possible sector size that the
330 * hardware can operate on without reverting to read-modify-write
333 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
335 q->limits.physical_block_size = size;
337 if (q->limits.physical_block_size < q->limits.logical_block_size)
338 q->limits.physical_block_size = q->limits.logical_block_size;
340 if (q->limits.io_min < q->limits.physical_block_size)
341 q->limits.io_min = q->limits.physical_block_size;
343 EXPORT_SYMBOL(blk_queue_physical_block_size);
346 * blk_queue_zone_write_granularity - set zone write granularity for the queue
347 * @q: the request queue for the zoned device
348 * @size: the zone write granularity size, in bytes
351 * This should be set to the lowest possible size allowing to write in
352 * sequential zones of a zoned block device.
354 void blk_queue_zone_write_granularity(struct request_queue *q,
357 if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
360 q->limits.zone_write_granularity = size;
362 if (q->limits.zone_write_granularity < q->limits.logical_block_size)
363 q->limits.zone_write_granularity = q->limits.logical_block_size;
365 EXPORT_SYMBOL_GPL(blk_queue_zone_write_granularity);
368 * blk_queue_alignment_offset - set physical block alignment offset
369 * @q: the request queue for the device
370 * @offset: alignment offset in bytes
373 * Some devices are naturally misaligned to compensate for things like
374 * the legacy DOS partition table 63-sector offset. Low-level drivers
375 * should call this function for devices whose first sector is not
378 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
380 q->limits.alignment_offset =
381 offset & (q->limits.physical_block_size - 1);
382 q->limits.misaligned = 0;
384 EXPORT_SYMBOL(blk_queue_alignment_offset);
386 void disk_update_readahead(struct gendisk *disk)
388 struct request_queue *q = disk->queue;
391 * For read-ahead of large files to be effective, we need to read ahead
392 * at least twice the optimal I/O size.
394 disk->bdi->ra_pages =
395 max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
396 disk->bdi->io_pages = queue_max_sectors(q) >> (PAGE_SHIFT - 9);
398 EXPORT_SYMBOL_GPL(disk_update_readahead);
401 * blk_limits_io_min - set minimum request size for a device
402 * @limits: the queue limits
403 * @min: smallest I/O size in bytes
406 * Some devices have an internal block size bigger than the reported
407 * hardware sector size. This function can be used to signal the
408 * smallest I/O the device can perform without incurring a performance
411 void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
413 limits->io_min = min;
415 if (limits->io_min < limits->logical_block_size)
416 limits->io_min = limits->logical_block_size;
418 if (limits->io_min < limits->physical_block_size)
419 limits->io_min = limits->physical_block_size;
421 EXPORT_SYMBOL(blk_limits_io_min);
424 * blk_queue_io_min - set minimum request size for the queue
425 * @q: the request queue for the device
426 * @min: smallest I/O size in bytes
429 * Storage devices may report a granularity or preferred minimum I/O
430 * size which is the smallest request the device can perform without
431 * incurring a performance penalty. For disk drives this is often the
432 * physical block size. For RAID arrays it is often the stripe chunk
433 * size. A properly aligned multiple of minimum_io_size is the
434 * preferred request size for workloads where a high number of I/O
435 * operations is desired.
437 void blk_queue_io_min(struct request_queue *q, unsigned int min)
439 blk_limits_io_min(&q->limits, min);
441 EXPORT_SYMBOL(blk_queue_io_min);
444 * blk_limits_io_opt - set optimal request size for a device
445 * @limits: the queue limits
446 * @opt: smallest I/O size in bytes
449 * Storage devices may report an optimal I/O size, which is the
450 * device's preferred unit for sustained I/O. This is rarely reported
451 * for disk drives. For RAID arrays it is usually the stripe width or
452 * the internal track size. A properly aligned multiple of
453 * optimal_io_size is the preferred request size for workloads where
454 * sustained throughput is desired.
456 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
458 limits->io_opt = opt;
460 EXPORT_SYMBOL(blk_limits_io_opt);
463 * blk_queue_io_opt - set optimal request size for the queue
464 * @q: the request queue for the device
465 * @opt: optimal request size in bytes
468 * Storage devices may report an optimal I/O size, which is the
469 * device's preferred unit for sustained I/O. This is rarely reported
470 * for disk drives. For RAID arrays it is usually the stripe width or
471 * the internal track size. A properly aligned multiple of
472 * optimal_io_size is the preferred request size for workloads where
473 * sustained throughput is desired.
475 void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
477 blk_limits_io_opt(&q->limits, opt);
480 q->disk->bdi->ra_pages =
481 max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
483 EXPORT_SYMBOL(blk_queue_io_opt);
485 static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs)
487 sectors = round_down(sectors, lbs >> SECTOR_SHIFT);
488 if (sectors < PAGE_SIZE >> SECTOR_SHIFT)
489 sectors = PAGE_SIZE >> SECTOR_SHIFT;
494 * blk_stack_limits - adjust queue_limits for stacked devices
495 * @t: the stacking driver limits (top device)
496 * @b: the underlying queue limits (bottom, component device)
497 * @start: first data sector within component device
500 * This function is used by stacking drivers like MD and DM to ensure
501 * that all component devices have compatible block sizes and
502 * alignments. The stacking driver must provide a queue_limits
503 * struct (top) and then iteratively call the stacking function for
504 * all component (bottom) devices. The stacking function will
505 * attempt to combine the values and ensure proper alignment.
507 * Returns 0 if the top and bottom queue_limits are compatible. The
508 * top device's block sizes and alignment offsets may be adjusted to
509 * ensure alignment with the bottom device. If no compatible sizes
510 * and alignments exist, -1 is returned and the resulting top
511 * queue_limits will have the misaligned flag set to indicate that
512 * the alignment_offset is undefined.
514 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
517 unsigned int top, bottom, alignment, ret = 0;
519 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
520 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
521 t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
522 t->max_write_same_sectors = min(t->max_write_same_sectors,
523 b->max_write_same_sectors);
524 t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
525 b->max_write_zeroes_sectors);
526 t->max_zone_append_sectors = min(t->max_zone_append_sectors,
527 b->max_zone_append_sectors);
528 t->bounce = max(t->bounce, b->bounce);
530 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
531 b->seg_boundary_mask);
532 t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
533 b->virt_boundary_mask);
535 t->max_segments = min_not_zero(t->max_segments, b->max_segments);
536 t->max_discard_segments = min_not_zero(t->max_discard_segments,
537 b->max_discard_segments);
538 t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
539 b->max_integrity_segments);
541 t->max_segment_size = min_not_zero(t->max_segment_size,
542 b->max_segment_size);
544 t->misaligned |= b->misaligned;
546 alignment = queue_limit_alignment_offset(b, start);
548 /* Bottom device has different alignment. Check that it is
549 * compatible with the current top alignment.
551 if (t->alignment_offset != alignment) {
553 top = max(t->physical_block_size, t->io_min)
554 + t->alignment_offset;
555 bottom = max(b->physical_block_size, b->io_min) + alignment;
557 /* Verify that top and bottom intervals line up */
558 if (max(top, bottom) % min(top, bottom)) {
564 t->logical_block_size = max(t->logical_block_size,
565 b->logical_block_size);
567 t->physical_block_size = max(t->physical_block_size,
568 b->physical_block_size);
570 t->io_min = max(t->io_min, b->io_min);
571 t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
573 /* Set non-power-of-2 compatible chunk_sectors boundary */
574 if (b->chunk_sectors)
575 t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors);
577 /* Physical block size a multiple of the logical block size? */
578 if (t->physical_block_size & (t->logical_block_size - 1)) {
579 t->physical_block_size = t->logical_block_size;
584 /* Minimum I/O a multiple of the physical block size? */
585 if (t->io_min & (t->physical_block_size - 1)) {
586 t->io_min = t->physical_block_size;
591 /* Optimal I/O a multiple of the physical block size? */
592 if (t->io_opt & (t->physical_block_size - 1)) {
598 /* chunk_sectors a multiple of the physical block size? */
599 if ((t->chunk_sectors << 9) & (t->physical_block_size - 1)) {
600 t->chunk_sectors = 0;
605 t->raid_partial_stripes_expensive =
606 max(t->raid_partial_stripes_expensive,
607 b->raid_partial_stripes_expensive);
609 /* Find lowest common alignment_offset */
610 t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
611 % max(t->physical_block_size, t->io_min);
613 /* Verify that new alignment_offset is on a logical block boundary */
614 if (t->alignment_offset & (t->logical_block_size - 1)) {
619 t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size);
620 t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size);
621 t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size);
623 /* Discard alignment and granularity */
624 if (b->discard_granularity) {
625 alignment = queue_limit_discard_alignment(b, start);
627 if (t->discard_granularity != 0 &&
628 t->discard_alignment != alignment) {
629 top = t->discard_granularity + t->discard_alignment;
630 bottom = b->discard_granularity + alignment;
632 /* Verify that top and bottom intervals line up */
633 if ((max(top, bottom) % min(top, bottom)) != 0)
634 t->discard_misaligned = 1;
637 t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
638 b->max_discard_sectors);
639 t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
640 b->max_hw_discard_sectors);
641 t->discard_granularity = max(t->discard_granularity,
642 b->discard_granularity);
643 t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
644 t->discard_granularity;
647 t->zone_write_granularity = max(t->zone_write_granularity,
648 b->zone_write_granularity);
649 t->zoned = max(t->zoned, b->zoned);
652 EXPORT_SYMBOL(blk_stack_limits);
655 * disk_stack_limits - adjust queue limits for stacked drivers
656 * @disk: MD/DM gendisk (top)
657 * @bdev: the underlying block device (bottom)
658 * @offset: offset to beginning of data within component device
661 * Merges the limits for a top level gendisk and a bottom level
664 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
667 struct request_queue *t = disk->queue;
669 if (blk_stack_limits(&t->limits, &bdev_get_queue(bdev)->limits,
670 get_start_sect(bdev) + (offset >> 9)) < 0)
671 pr_notice("%s: Warning: Device %pg is misaligned\n",
672 disk->disk_name, bdev);
674 disk_update_readahead(disk);
676 EXPORT_SYMBOL(disk_stack_limits);
679 * blk_queue_update_dma_pad - update pad mask
680 * @q: the request queue for the device
683 * Update dma pad mask.
685 * Appending pad buffer to a request modifies the last entry of a
686 * scatter list such that it includes the pad buffer.
688 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
690 if (mask > q->dma_pad_mask)
691 q->dma_pad_mask = mask;
693 EXPORT_SYMBOL(blk_queue_update_dma_pad);
696 * blk_queue_segment_boundary - set boundary rules for segment merging
697 * @q: the request queue for the device
698 * @mask: the memory boundary mask
700 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
702 if (mask < PAGE_SIZE - 1) {
703 mask = PAGE_SIZE - 1;
704 printk(KERN_INFO "%s: set to minimum %lx\n",
708 q->limits.seg_boundary_mask = mask;
710 EXPORT_SYMBOL(blk_queue_segment_boundary);
713 * blk_queue_virt_boundary - set boundary rules for bio merging
714 * @q: the request queue for the device
715 * @mask: the memory boundary mask
717 void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
719 q->limits.virt_boundary_mask = mask;
722 * Devices that require a virtual boundary do not support scatter/gather
723 * I/O natively, but instead require a descriptor list entry for each
724 * page (which might not be idential to the Linux PAGE_SIZE). Because
725 * of that they are not limited by our notion of "segment size".
728 q->limits.max_segment_size = UINT_MAX;
730 EXPORT_SYMBOL(blk_queue_virt_boundary);
733 * blk_queue_dma_alignment - set dma length and memory alignment
734 * @q: the request queue for the device
735 * @mask: alignment mask
738 * set required memory and length alignment for direct dma transactions.
739 * this is used when building direct io requests for the queue.
742 void blk_queue_dma_alignment(struct request_queue *q, int mask)
744 q->dma_alignment = mask;
746 EXPORT_SYMBOL(blk_queue_dma_alignment);
749 * blk_queue_update_dma_alignment - update dma length and memory alignment
750 * @q: the request queue for the device
751 * @mask: alignment mask
754 * update required memory and length alignment for direct dma transactions.
755 * If the requested alignment is larger than the current alignment, then
756 * the current queue alignment is updated to the new value, otherwise it
757 * is left alone. The design of this is to allow multiple objects
758 * (driver, device, transport etc) to set their respective
759 * alignments without having them interfere.
762 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
764 BUG_ON(mask > PAGE_SIZE);
766 if (mask > q->dma_alignment)
767 q->dma_alignment = mask;
769 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
772 * blk_set_queue_depth - tell the block layer about the device queue depth
773 * @q: the request queue for the device
774 * @depth: queue depth
777 void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
779 q->queue_depth = depth;
780 rq_qos_queue_depth_changed(q);
782 EXPORT_SYMBOL(blk_set_queue_depth);
785 * blk_queue_write_cache - configure queue's write cache
786 * @q: the request queue for the device
787 * @wc: write back cache on or off
788 * @fua: device supports FUA writes, if true
790 * Tell the block layer about the write cache of @q.
792 void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
795 blk_queue_flag_set(QUEUE_FLAG_WC, q);
797 blk_queue_flag_clear(QUEUE_FLAG_WC, q);
799 blk_queue_flag_set(QUEUE_FLAG_FUA, q);
801 blk_queue_flag_clear(QUEUE_FLAG_FUA, q);
803 wbt_set_write_cache(q, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
805 EXPORT_SYMBOL_GPL(blk_queue_write_cache);
808 * blk_queue_required_elevator_features - Set a queue required elevator features
809 * @q: the request queue for the target device
810 * @features: Required elevator features OR'ed together
812 * Tell the block layer that for the device controlled through @q, only the
813 * only elevators that can be used are those that implement at least the set of
814 * features specified by @features.
816 void blk_queue_required_elevator_features(struct request_queue *q,
817 unsigned int features)
819 q->required_elevator_features = features;
821 EXPORT_SYMBOL_GPL(blk_queue_required_elevator_features);
824 * blk_queue_can_use_dma_map_merging - configure queue for merging segments.
825 * @q: the request queue for the device
826 * @dev: the device pointer for dma
828 * Tell the block layer about merging the segments by dma map of @q.
830 bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
833 unsigned long boundary = dma_get_merge_boundary(dev);
838 /* No need to update max_segment_size. see blk_queue_virt_boundary() */
839 blk_queue_virt_boundary(q, boundary);
843 EXPORT_SYMBOL_GPL(blk_queue_can_use_dma_map_merging);
845 static bool disk_has_partitions(struct gendisk *disk)
848 struct block_device *part;
852 xa_for_each(&disk->part_tbl, idx, part) {
853 if (bdev_is_partition(part)) {
864 * blk_queue_set_zoned - configure a disk queue zoned model.
865 * @disk: the gendisk of the queue to configure
866 * @model: the zoned model to set
868 * Set the zoned model of the request queue of @disk according to @model.
869 * When @model is BLK_ZONED_HM (host managed), this should be called only
870 * if zoned block device support is enabled (CONFIG_BLK_DEV_ZONED option).
871 * If @model specifies BLK_ZONED_HA (host aware), the effective model used
872 * depends on CONFIG_BLK_DEV_ZONED settings and on the existence of partitions
875 void blk_queue_set_zoned(struct gendisk *disk, enum blk_zoned_model model)
877 struct request_queue *q = disk->queue;
882 * Host managed devices are supported only if
883 * CONFIG_BLK_DEV_ZONED is enabled.
885 WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED));
889 * Host aware devices can be treated either as regular block
890 * devices (similar to drive managed devices) or as zoned block
891 * devices to take advantage of the zone command set, similarly
892 * to host managed devices. We try the latter if there are no
893 * partitions and zoned block device support is enabled, else
894 * we do nothing special as far as the block layer is concerned.
896 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) ||
897 disk_has_partitions(disk))
898 model = BLK_ZONED_NONE;
902 if (WARN_ON_ONCE(model != BLK_ZONED_NONE))
903 model = BLK_ZONED_NONE;
907 q->limits.zoned = model;
908 if (model != BLK_ZONED_NONE) {
910 * Set the zone write granularity to the device logical block
911 * size by default. The driver can change this value if needed.
913 blk_queue_zone_write_granularity(q,
914 queue_logical_block_size(q));
916 blk_queue_clear_zone_settings(q);
919 EXPORT_SYMBOL_GPL(blk_queue_set_zoned);