1 // SPDX-License-Identifier: GPL-2.0
3 * Functions related to setting various queue properties from drivers
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/init.h>
9 #include <linux/blkdev.h>
10 #include <linux/pagemap.h>
11 #include <linux/backing-dev-defs.h>
12 #include <linux/gcd.h>
13 #include <linux/lcm.h>
14 #include <linux/jiffies.h>
15 #include <linux/gfp.h>
16 #include <linux/dma-mapping.h>
21 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
23 q->rq_timeout = timeout;
25 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
28 * blk_set_default_limits - reset limits to default values
29 * @lim: the queue_limits structure to reset
32 * Returns a queue_limit struct to its default state.
34 void blk_set_default_limits(struct queue_limits *lim)
36 lim->max_segments = BLK_MAX_SEGMENTS;
37 lim->max_discard_segments = 1;
38 lim->max_integrity_segments = 0;
39 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
40 lim->virt_boundary_mask = 0;
41 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
42 lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
43 lim->max_dev_sectors = 0;
44 lim->chunk_sectors = 0;
45 lim->max_write_zeroes_sectors = 0;
46 lim->max_zone_append_sectors = 0;
47 lim->max_discard_sectors = 0;
48 lim->max_hw_discard_sectors = 0;
49 lim->discard_granularity = 0;
50 lim->discard_alignment = 0;
51 lim->discard_misaligned = 0;
52 lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
53 lim->bounce = BLK_BOUNCE_NONE;
54 lim->alignment_offset = 0;
57 lim->zoned = BLK_ZONED_NONE;
58 lim->zone_write_granularity = 0;
60 EXPORT_SYMBOL(blk_set_default_limits);
63 * blk_set_stacking_limits - set default limits for stacking devices
64 * @lim: the queue_limits structure to reset
67 * Returns a queue_limit struct to its default state. Should be used
68 * by stacking drivers like DM that have no internal limits.
70 void blk_set_stacking_limits(struct queue_limits *lim)
72 blk_set_default_limits(lim);
74 /* Inherit limits from component devices */
75 lim->max_segments = USHRT_MAX;
76 lim->max_discard_segments = USHRT_MAX;
77 lim->max_hw_sectors = UINT_MAX;
78 lim->max_segment_size = UINT_MAX;
79 lim->max_sectors = UINT_MAX;
80 lim->max_dev_sectors = UINT_MAX;
81 lim->max_write_zeroes_sectors = UINT_MAX;
82 lim->max_zone_append_sectors = UINT_MAX;
84 EXPORT_SYMBOL(blk_set_stacking_limits);
87 * blk_queue_bounce_limit - set bounce buffer limit for queue
88 * @q: the request queue for the device
89 * @bounce: bounce limit to enforce
92 * Force bouncing for ISA DMA ranges or highmem.
94 * DEPRECATED, don't use in new code.
96 void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce bounce)
98 q->limits.bounce = bounce;
100 EXPORT_SYMBOL(blk_queue_bounce_limit);
103 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
104 * @q: the request queue for the device
105 * @max_hw_sectors: max hardware sectors in the usual 512b unit
108 * Enables a low level driver to set a hard upper limit,
109 * max_hw_sectors, on the size of requests. max_hw_sectors is set by
110 * the device driver based upon the capabilities of the I/O
113 * max_dev_sectors is a hard limit imposed by the storage device for
114 * READ/WRITE requests. It is set by the disk driver.
116 * max_sectors is a soft limit imposed by the block layer for
117 * filesystem type requests. This value can be overridden on a
118 * per-device basis in /sys/block/<device>/queue/max_sectors_kb.
119 * The soft limit can not exceed max_hw_sectors.
121 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
123 struct queue_limits *limits = &q->limits;
124 unsigned int max_sectors;
126 if ((max_hw_sectors << 9) < PAGE_SIZE) {
127 max_hw_sectors = 1 << (PAGE_SHIFT - 9);
128 printk(KERN_INFO "%s: set to minimum %d\n",
129 __func__, max_hw_sectors);
132 max_hw_sectors = round_down(max_hw_sectors,
133 limits->logical_block_size >> SECTOR_SHIFT);
134 limits->max_hw_sectors = max_hw_sectors;
136 max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
137 max_sectors = min_t(unsigned int, max_sectors, BLK_DEF_MAX_SECTORS);
138 max_sectors = round_down(max_sectors,
139 limits->logical_block_size >> SECTOR_SHIFT);
140 limits->max_sectors = max_sectors;
144 q->disk->bdi->io_pages = max_sectors >> (PAGE_SHIFT - 9);
146 EXPORT_SYMBOL(blk_queue_max_hw_sectors);
149 * blk_queue_chunk_sectors - set size of the chunk for this queue
150 * @q: the request queue for the device
151 * @chunk_sectors: chunk sectors in the usual 512b unit
154 * If a driver doesn't want IOs to cross a given chunk size, it can set
155 * this limit and prevent merging across chunks. Note that the block layer
156 * must accept a page worth of data at any offset. So if the crossing of
157 * chunks is a hard limitation in the driver, it must still be prepared
158 * to split single page bios.
160 void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
162 q->limits.chunk_sectors = chunk_sectors;
164 EXPORT_SYMBOL(blk_queue_chunk_sectors);
167 * blk_queue_max_discard_sectors - set max sectors for a single discard
168 * @q: the request queue for the device
169 * @max_discard_sectors: maximum number of sectors to discard
171 void blk_queue_max_discard_sectors(struct request_queue *q,
172 unsigned int max_discard_sectors)
174 q->limits.max_hw_discard_sectors = max_discard_sectors;
175 q->limits.max_discard_sectors = max_discard_sectors;
177 EXPORT_SYMBOL(blk_queue_max_discard_sectors);
180 * blk_queue_max_write_zeroes_sectors - set max sectors for a single
182 * @q: the request queue for the device
183 * @max_write_zeroes_sectors: maximum number of sectors to write per command
185 void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
186 unsigned int max_write_zeroes_sectors)
188 q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors;
190 EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors);
193 * blk_queue_max_zone_append_sectors - set max sectors for a single zone append
194 * @q: the request queue for the device
195 * @max_zone_append_sectors: maximum number of sectors to write per command
197 void blk_queue_max_zone_append_sectors(struct request_queue *q,
198 unsigned int max_zone_append_sectors)
200 unsigned int max_sectors;
202 if (WARN_ON(!blk_queue_is_zoned(q)))
205 max_sectors = min(q->limits.max_hw_sectors, max_zone_append_sectors);
206 max_sectors = min(q->limits.chunk_sectors, max_sectors);
209 * Signal eventual driver bugs resulting in the max_zone_append sectors limit
210 * being 0 due to a 0 argument, the chunk_sectors limit (zone size) not set,
211 * or the max_hw_sectors limit not set.
213 WARN_ON(!max_sectors);
215 q->limits.max_zone_append_sectors = max_sectors;
217 EXPORT_SYMBOL_GPL(blk_queue_max_zone_append_sectors);
220 * blk_queue_max_segments - set max hw segments for a request for this queue
221 * @q: the request queue for the device
222 * @max_segments: max number of segments
225 * Enables a low level driver to set an upper limit on the number of
226 * hw data segments in a request.
228 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
232 printk(KERN_INFO "%s: set to minimum %d\n",
233 __func__, max_segments);
236 q->limits.max_segments = max_segments;
238 EXPORT_SYMBOL(blk_queue_max_segments);
241 * blk_queue_max_discard_segments - set max segments for discard requests
242 * @q: the request queue for the device
243 * @max_segments: max number of segments
246 * Enables a low level driver to set an upper limit on the number of
247 * segments in a discard request.
249 void blk_queue_max_discard_segments(struct request_queue *q,
250 unsigned short max_segments)
252 q->limits.max_discard_segments = max_segments;
254 EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments);
257 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
258 * @q: the request queue for the device
259 * @max_size: max size of segment in bytes
262 * Enables a low level driver to set an upper limit on the size of a
265 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
267 if (max_size < PAGE_SIZE) {
268 max_size = PAGE_SIZE;
269 printk(KERN_INFO "%s: set to minimum %d\n",
273 /* see blk_queue_virt_boundary() for the explanation */
274 WARN_ON_ONCE(q->limits.virt_boundary_mask);
276 q->limits.max_segment_size = max_size;
278 EXPORT_SYMBOL(blk_queue_max_segment_size);
281 * blk_queue_logical_block_size - set logical block size for the queue
282 * @q: the request queue for the device
283 * @size: the logical block size, in bytes
286 * This should be set to the lowest possible block size that the
287 * storage device can address. The default of 512 covers most
290 void blk_queue_logical_block_size(struct request_queue *q, unsigned int size)
292 struct queue_limits *limits = &q->limits;
294 limits->logical_block_size = size;
296 if (limits->physical_block_size < size)
297 limits->physical_block_size = size;
299 if (limits->io_min < limits->physical_block_size)
300 limits->io_min = limits->physical_block_size;
302 limits->max_hw_sectors =
303 round_down(limits->max_hw_sectors, size >> SECTOR_SHIFT);
304 limits->max_sectors =
305 round_down(limits->max_sectors, size >> SECTOR_SHIFT);
307 EXPORT_SYMBOL(blk_queue_logical_block_size);
310 * blk_queue_physical_block_size - set physical block size for the queue
311 * @q: the request queue for the device
312 * @size: the physical block size, in bytes
315 * This should be set to the lowest possible sector size that the
316 * hardware can operate on without reverting to read-modify-write
319 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
321 q->limits.physical_block_size = size;
323 if (q->limits.physical_block_size < q->limits.logical_block_size)
324 q->limits.physical_block_size = q->limits.logical_block_size;
326 if (q->limits.io_min < q->limits.physical_block_size)
327 q->limits.io_min = q->limits.physical_block_size;
329 EXPORT_SYMBOL(blk_queue_physical_block_size);
332 * blk_queue_zone_write_granularity - set zone write granularity for the queue
333 * @q: the request queue for the zoned device
334 * @size: the zone write granularity size, in bytes
337 * This should be set to the lowest possible size allowing to write in
338 * sequential zones of a zoned block device.
340 void blk_queue_zone_write_granularity(struct request_queue *q,
343 if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
346 q->limits.zone_write_granularity = size;
348 if (q->limits.zone_write_granularity < q->limits.logical_block_size)
349 q->limits.zone_write_granularity = q->limits.logical_block_size;
351 EXPORT_SYMBOL_GPL(blk_queue_zone_write_granularity);
354 * blk_queue_alignment_offset - set physical block alignment offset
355 * @q: the request queue for the device
356 * @offset: alignment offset in bytes
359 * Some devices are naturally misaligned to compensate for things like
360 * the legacy DOS partition table 63-sector offset. Low-level drivers
361 * should call this function for devices whose first sector is not
364 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
366 q->limits.alignment_offset =
367 offset & (q->limits.physical_block_size - 1);
368 q->limits.misaligned = 0;
370 EXPORT_SYMBOL(blk_queue_alignment_offset);
372 void disk_update_readahead(struct gendisk *disk)
374 struct request_queue *q = disk->queue;
377 * For read-ahead of large files to be effective, we need to read ahead
378 * at least twice the optimal I/O size.
380 disk->bdi->ra_pages =
381 max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
382 disk->bdi->io_pages = queue_max_sectors(q) >> (PAGE_SHIFT - 9);
384 EXPORT_SYMBOL_GPL(disk_update_readahead);
387 * blk_limits_io_min - set minimum request size for a device
388 * @limits: the queue limits
389 * @min: smallest I/O size in bytes
392 * Some devices have an internal block size bigger than the reported
393 * hardware sector size. This function can be used to signal the
394 * smallest I/O the device can perform without incurring a performance
397 void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
399 limits->io_min = min;
401 if (limits->io_min < limits->logical_block_size)
402 limits->io_min = limits->logical_block_size;
404 if (limits->io_min < limits->physical_block_size)
405 limits->io_min = limits->physical_block_size;
407 EXPORT_SYMBOL(blk_limits_io_min);
410 * blk_queue_io_min - set minimum request size for the queue
411 * @q: the request queue for the device
412 * @min: smallest I/O size in bytes
415 * Storage devices may report a granularity or preferred minimum I/O
416 * size which is the smallest request the device can perform without
417 * incurring a performance penalty. For disk drives this is often the
418 * physical block size. For RAID arrays it is often the stripe chunk
419 * size. A properly aligned multiple of minimum_io_size is the
420 * preferred request size for workloads where a high number of I/O
421 * operations is desired.
423 void blk_queue_io_min(struct request_queue *q, unsigned int min)
425 blk_limits_io_min(&q->limits, min);
427 EXPORT_SYMBOL(blk_queue_io_min);
430 * blk_limits_io_opt - set optimal request size for a device
431 * @limits: the queue limits
432 * @opt: smallest I/O size in bytes
435 * Storage devices may report an optimal I/O size, which is the
436 * device's preferred unit for sustained I/O. This is rarely reported
437 * for disk drives. For RAID arrays it is usually the stripe width or
438 * the internal track size. A properly aligned multiple of
439 * optimal_io_size is the preferred request size for workloads where
440 * sustained throughput is desired.
442 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
444 limits->io_opt = opt;
446 EXPORT_SYMBOL(blk_limits_io_opt);
449 * blk_queue_io_opt - set optimal request size for the queue
450 * @q: the request queue for the device
451 * @opt: optimal request size in bytes
454 * Storage devices may report an optimal I/O size, which is the
455 * device's preferred unit for sustained I/O. This is rarely reported
456 * for disk drives. For RAID arrays it is usually the stripe width or
457 * the internal track size. A properly aligned multiple of
458 * optimal_io_size is the preferred request size for workloads where
459 * sustained throughput is desired.
461 void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
463 blk_limits_io_opt(&q->limits, opt);
466 q->disk->bdi->ra_pages =
467 max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
469 EXPORT_SYMBOL(blk_queue_io_opt);
471 static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs)
473 sectors = round_down(sectors, lbs >> SECTOR_SHIFT);
474 if (sectors < PAGE_SIZE >> SECTOR_SHIFT)
475 sectors = PAGE_SIZE >> SECTOR_SHIFT;
480 * blk_stack_limits - adjust queue_limits for stacked devices
481 * @t: the stacking driver limits (top device)
482 * @b: the underlying queue limits (bottom, component device)
483 * @start: first data sector within component device
486 * This function is used by stacking drivers like MD and DM to ensure
487 * that all component devices have compatible block sizes and
488 * alignments. The stacking driver must provide a queue_limits
489 * struct (top) and then iteratively call the stacking function for
490 * all component (bottom) devices. The stacking function will
491 * attempt to combine the values and ensure proper alignment.
493 * Returns 0 if the top and bottom queue_limits are compatible. The
494 * top device's block sizes and alignment offsets may be adjusted to
495 * ensure alignment with the bottom device. If no compatible sizes
496 * and alignments exist, -1 is returned and the resulting top
497 * queue_limits will have the misaligned flag set to indicate that
498 * the alignment_offset is undefined.
500 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
503 unsigned int top, bottom, alignment, ret = 0;
505 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
506 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
507 t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
508 t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
509 b->max_write_zeroes_sectors);
510 t->max_zone_append_sectors = min(t->max_zone_append_sectors,
511 b->max_zone_append_sectors);
512 t->bounce = max(t->bounce, b->bounce);
514 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
515 b->seg_boundary_mask);
516 t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
517 b->virt_boundary_mask);
519 t->max_segments = min_not_zero(t->max_segments, b->max_segments);
520 t->max_discard_segments = min_not_zero(t->max_discard_segments,
521 b->max_discard_segments);
522 t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
523 b->max_integrity_segments);
525 t->max_segment_size = min_not_zero(t->max_segment_size,
526 b->max_segment_size);
528 t->misaligned |= b->misaligned;
530 alignment = queue_limit_alignment_offset(b, start);
532 /* Bottom device has different alignment. Check that it is
533 * compatible with the current top alignment.
535 if (t->alignment_offset != alignment) {
537 top = max(t->physical_block_size, t->io_min)
538 + t->alignment_offset;
539 bottom = max(b->physical_block_size, b->io_min) + alignment;
541 /* Verify that top and bottom intervals line up */
542 if (max(top, bottom) % min(top, bottom)) {
548 t->logical_block_size = max(t->logical_block_size,
549 b->logical_block_size);
551 t->physical_block_size = max(t->physical_block_size,
552 b->physical_block_size);
554 t->io_min = max(t->io_min, b->io_min);
555 t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
557 /* Set non-power-of-2 compatible chunk_sectors boundary */
558 if (b->chunk_sectors)
559 t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors);
561 /* Physical block size a multiple of the logical block size? */
562 if (t->physical_block_size & (t->logical_block_size - 1)) {
563 t->physical_block_size = t->logical_block_size;
568 /* Minimum I/O a multiple of the physical block size? */
569 if (t->io_min & (t->physical_block_size - 1)) {
570 t->io_min = t->physical_block_size;
575 /* Optimal I/O a multiple of the physical block size? */
576 if (t->io_opt & (t->physical_block_size - 1)) {
582 /* chunk_sectors a multiple of the physical block size? */
583 if ((t->chunk_sectors << 9) & (t->physical_block_size - 1)) {
584 t->chunk_sectors = 0;
589 t->raid_partial_stripes_expensive =
590 max(t->raid_partial_stripes_expensive,
591 b->raid_partial_stripes_expensive);
593 /* Find lowest common alignment_offset */
594 t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
595 % max(t->physical_block_size, t->io_min);
597 /* Verify that new alignment_offset is on a logical block boundary */
598 if (t->alignment_offset & (t->logical_block_size - 1)) {
603 t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size);
604 t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size);
605 t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size);
607 /* Discard alignment and granularity */
608 if (b->discard_granularity) {
609 alignment = queue_limit_discard_alignment(b, start);
611 if (t->discard_granularity != 0 &&
612 t->discard_alignment != alignment) {
613 top = t->discard_granularity + t->discard_alignment;
614 bottom = b->discard_granularity + alignment;
616 /* Verify that top and bottom intervals line up */
617 if ((max(top, bottom) % min(top, bottom)) != 0)
618 t->discard_misaligned = 1;
621 t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
622 b->max_discard_sectors);
623 t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
624 b->max_hw_discard_sectors);
625 t->discard_granularity = max(t->discard_granularity,
626 b->discard_granularity);
627 t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
628 t->discard_granularity;
631 t->zone_write_granularity = max(t->zone_write_granularity,
632 b->zone_write_granularity);
633 t->zoned = max(t->zoned, b->zoned);
636 EXPORT_SYMBOL(blk_stack_limits);
639 * disk_stack_limits - adjust queue limits for stacked drivers
640 * @disk: MD/DM gendisk (top)
641 * @bdev: the underlying block device (bottom)
642 * @offset: offset to beginning of data within component device
645 * Merges the limits for a top level gendisk and a bottom level
648 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
651 struct request_queue *t = disk->queue;
653 if (blk_stack_limits(&t->limits, &bdev_get_queue(bdev)->limits,
654 get_start_sect(bdev) + (offset >> 9)) < 0)
655 pr_notice("%s: Warning: Device %pg is misaligned\n",
656 disk->disk_name, bdev);
658 disk_update_readahead(disk);
660 EXPORT_SYMBOL(disk_stack_limits);
663 * blk_queue_update_dma_pad - update pad mask
664 * @q: the request queue for the device
667 * Update dma pad mask.
669 * Appending pad buffer to a request modifies the last entry of a
670 * scatter list such that it includes the pad buffer.
672 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
674 if (mask > q->dma_pad_mask)
675 q->dma_pad_mask = mask;
677 EXPORT_SYMBOL(blk_queue_update_dma_pad);
680 * blk_queue_segment_boundary - set boundary rules for segment merging
681 * @q: the request queue for the device
682 * @mask: the memory boundary mask
684 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
686 if (mask < PAGE_SIZE - 1) {
687 mask = PAGE_SIZE - 1;
688 printk(KERN_INFO "%s: set to minimum %lx\n",
692 q->limits.seg_boundary_mask = mask;
694 EXPORT_SYMBOL(blk_queue_segment_boundary);
697 * blk_queue_virt_boundary - set boundary rules for bio merging
698 * @q: the request queue for the device
699 * @mask: the memory boundary mask
701 void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
703 q->limits.virt_boundary_mask = mask;
706 * Devices that require a virtual boundary do not support scatter/gather
707 * I/O natively, but instead require a descriptor list entry for each
708 * page (which might not be idential to the Linux PAGE_SIZE). Because
709 * of that they are not limited by our notion of "segment size".
712 q->limits.max_segment_size = UINT_MAX;
714 EXPORT_SYMBOL(blk_queue_virt_boundary);
717 * blk_queue_dma_alignment - set dma length and memory alignment
718 * @q: the request queue for the device
719 * @mask: alignment mask
722 * set required memory and length alignment for direct dma transactions.
723 * this is used when building direct io requests for the queue.
726 void blk_queue_dma_alignment(struct request_queue *q, int mask)
728 q->dma_alignment = mask;
730 EXPORT_SYMBOL(blk_queue_dma_alignment);
733 * blk_queue_update_dma_alignment - update dma length and memory alignment
734 * @q: the request queue for the device
735 * @mask: alignment mask
738 * update required memory and length alignment for direct dma transactions.
739 * If the requested alignment is larger than the current alignment, then
740 * the current queue alignment is updated to the new value, otherwise it
741 * is left alone. The design of this is to allow multiple objects
742 * (driver, device, transport etc) to set their respective
743 * alignments without having them interfere.
746 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
748 BUG_ON(mask > PAGE_SIZE);
750 if (mask > q->dma_alignment)
751 q->dma_alignment = mask;
753 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
756 * blk_set_queue_depth - tell the block layer about the device queue depth
757 * @q: the request queue for the device
758 * @depth: queue depth
761 void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
763 q->queue_depth = depth;
764 rq_qos_queue_depth_changed(q);
766 EXPORT_SYMBOL(blk_set_queue_depth);
769 * blk_queue_write_cache - configure queue's write cache
770 * @q: the request queue for the device
771 * @wc: write back cache on or off
772 * @fua: device supports FUA writes, if true
774 * Tell the block layer about the write cache of @q.
776 void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
779 blk_queue_flag_set(QUEUE_FLAG_WC, q);
781 blk_queue_flag_clear(QUEUE_FLAG_WC, q);
783 blk_queue_flag_set(QUEUE_FLAG_FUA, q);
785 blk_queue_flag_clear(QUEUE_FLAG_FUA, q);
787 wbt_set_write_cache(q, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
789 EXPORT_SYMBOL_GPL(blk_queue_write_cache);
792 * blk_queue_required_elevator_features - Set a queue required elevator features
793 * @q: the request queue for the target device
794 * @features: Required elevator features OR'ed together
796 * Tell the block layer that for the device controlled through @q, only the
797 * only elevators that can be used are those that implement at least the set of
798 * features specified by @features.
800 void blk_queue_required_elevator_features(struct request_queue *q,
801 unsigned int features)
803 q->required_elevator_features = features;
805 EXPORT_SYMBOL_GPL(blk_queue_required_elevator_features);
808 * blk_queue_can_use_dma_map_merging - configure queue for merging segments.
809 * @q: the request queue for the device
810 * @dev: the device pointer for dma
812 * Tell the block layer about merging the segments by dma map of @q.
814 bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
817 unsigned long boundary = dma_get_merge_boundary(dev);
822 /* No need to update max_segment_size. see blk_queue_virt_boundary() */
823 blk_queue_virt_boundary(q, boundary);
827 EXPORT_SYMBOL_GPL(blk_queue_can_use_dma_map_merging);
829 static bool disk_has_partitions(struct gendisk *disk)
832 struct block_device *part;
836 xa_for_each(&disk->part_tbl, idx, part) {
837 if (bdev_is_partition(part)) {
848 * blk_queue_set_zoned - configure a disk queue zoned model.
849 * @disk: the gendisk of the queue to configure
850 * @model: the zoned model to set
852 * Set the zoned model of the request queue of @disk according to @model.
853 * When @model is BLK_ZONED_HM (host managed), this should be called only
854 * if zoned block device support is enabled (CONFIG_BLK_DEV_ZONED option).
855 * If @model specifies BLK_ZONED_HA (host aware), the effective model used
856 * depends on CONFIG_BLK_DEV_ZONED settings and on the existence of partitions
859 void blk_queue_set_zoned(struct gendisk *disk, enum blk_zoned_model model)
861 struct request_queue *q = disk->queue;
866 * Host managed devices are supported only if
867 * CONFIG_BLK_DEV_ZONED is enabled.
869 WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED));
873 * Host aware devices can be treated either as regular block
874 * devices (similar to drive managed devices) or as zoned block
875 * devices to take advantage of the zone command set, similarly
876 * to host managed devices. We try the latter if there are no
877 * partitions and zoned block device support is enabled, else
878 * we do nothing special as far as the block layer is concerned.
880 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) ||
881 disk_has_partitions(disk))
882 model = BLK_ZONED_NONE;
886 if (WARN_ON_ONCE(model != BLK_ZONED_NONE))
887 model = BLK_ZONED_NONE;
891 q->limits.zoned = model;
892 if (model != BLK_ZONED_NONE) {
894 * Set the zone write granularity to the device logical block
895 * size by default. The driver can change this value if needed.
897 blk_queue_zone_write_granularity(q,
898 queue_logical_block_size(q));
900 blk_queue_clear_zone_settings(q);
903 EXPORT_SYMBOL_GPL(blk_queue_set_zoned);