1 // SPDX-License-Identifier: GPL-2.0
3 * Functions related to setting various queue properties from drivers
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/init.h>
9 #include <linux/blkdev.h>
10 #include <linux/memblock.h> /* for max_pfn/max_low_pfn */
11 #include <linux/gcd.h>
12 #include <linux/lcm.h>
13 #include <linux/jiffies.h>
14 #include <linux/gfp.h>
15 #include <linux/dma-mapping.h>
20 unsigned long blk_max_low_pfn;
21 EXPORT_SYMBOL(blk_max_low_pfn);
23 unsigned long blk_max_pfn;
25 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
27 q->rq_timeout = timeout;
29 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
32 * blk_set_default_limits - reset limits to default values
33 * @lim: the queue_limits structure to reset
36 * Returns a queue_limit struct to its default state.
38 void blk_set_default_limits(struct queue_limits *lim)
40 lim->max_segments = BLK_MAX_SEGMENTS;
41 lim->max_discard_segments = 1;
42 lim->max_integrity_segments = 0;
43 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
44 lim->virt_boundary_mask = 0;
45 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
46 lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
47 lim->max_dev_sectors = 0;
48 lim->chunk_sectors = 0;
49 lim->max_write_same_sectors = 0;
50 lim->max_write_zeroes_sectors = 0;
51 lim->max_zone_append_sectors = 0;
52 lim->max_discard_sectors = 0;
53 lim->max_hw_discard_sectors = 0;
54 lim->discard_granularity = 0;
55 lim->discard_alignment = 0;
56 lim->discard_misaligned = 0;
57 lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
58 lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
59 lim->alignment_offset = 0;
62 lim->zoned = BLK_ZONED_NONE;
64 EXPORT_SYMBOL(blk_set_default_limits);
67 * blk_set_stacking_limits - set default limits for stacking devices
68 * @lim: the queue_limits structure to reset
71 * Returns a queue_limit struct to its default state. Should be used
72 * by stacking drivers like DM that have no internal limits.
74 void blk_set_stacking_limits(struct queue_limits *lim)
76 blk_set_default_limits(lim);
78 /* Inherit limits from component devices */
79 lim->max_segments = USHRT_MAX;
80 lim->max_discard_segments = USHRT_MAX;
81 lim->max_hw_sectors = UINT_MAX;
82 lim->max_segment_size = UINT_MAX;
83 lim->max_sectors = UINT_MAX;
84 lim->max_dev_sectors = UINT_MAX;
85 lim->max_write_same_sectors = UINT_MAX;
86 lim->max_write_zeroes_sectors = UINT_MAX;
87 lim->max_zone_append_sectors = UINT_MAX;
89 EXPORT_SYMBOL(blk_set_stacking_limits);
92 * blk_queue_bounce_limit - set bounce buffer limit for queue
93 * @q: the request queue for the device
94 * @max_addr: the maximum address the device can handle
97 * Different hardware can have different requirements as to what pages
98 * it can do I/O directly to. A low level driver can call
99 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
100 * buffers for doing I/O to pages residing above @max_addr.
102 void blk_queue_bounce_limit(struct request_queue *q, u64 max_addr)
104 unsigned long b_pfn = max_addr >> PAGE_SHIFT;
107 q->bounce_gfp = GFP_NOIO;
108 #if BITS_PER_LONG == 64
110 * Assume anything <= 4GB can be handled by IOMMU. Actually
111 * some IOMMUs can handle everything, but I don't know of a
112 * way to test this here.
114 if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
116 q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
118 if (b_pfn < blk_max_low_pfn)
120 q->limits.bounce_pfn = b_pfn;
123 init_emergency_isa_pool();
124 q->bounce_gfp = GFP_NOIO | GFP_DMA;
125 q->limits.bounce_pfn = b_pfn;
128 EXPORT_SYMBOL(blk_queue_bounce_limit);
131 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
132 * @q: the request queue for the device
133 * @max_hw_sectors: max hardware sectors in the usual 512b unit
136 * Enables a low level driver to set a hard upper limit,
137 * max_hw_sectors, on the size of requests. max_hw_sectors is set by
138 * the device driver based upon the capabilities of the I/O
141 * max_dev_sectors is a hard limit imposed by the storage device for
142 * READ/WRITE requests. It is set by the disk driver.
144 * max_sectors is a soft limit imposed by the block layer for
145 * filesystem type requests. This value can be overridden on a
146 * per-device basis in /sys/block/<device>/queue/max_sectors_kb.
147 * The soft limit can not exceed max_hw_sectors.
149 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
151 struct queue_limits *limits = &q->limits;
152 unsigned int max_sectors;
154 if ((max_hw_sectors << 9) < PAGE_SIZE) {
155 max_hw_sectors = 1 << (PAGE_SHIFT - 9);
156 printk(KERN_INFO "%s: set to minimum %d\n",
157 __func__, max_hw_sectors);
160 limits->max_hw_sectors = max_hw_sectors;
161 max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
162 max_sectors = min_t(unsigned int, max_sectors, BLK_DEF_MAX_SECTORS);
163 limits->max_sectors = max_sectors;
164 q->backing_dev_info->io_pages = max_sectors >> (PAGE_SHIFT - 9);
166 EXPORT_SYMBOL(blk_queue_max_hw_sectors);
169 * blk_queue_chunk_sectors - set size of the chunk for this queue
170 * @q: the request queue for the device
171 * @chunk_sectors: chunk sectors in the usual 512b unit
174 * If a driver doesn't want IOs to cross a given chunk size, it can set
175 * this limit and prevent merging across chunks. Note that the block layer
176 * must accept a page worth of data at any offset. So if the crossing of
177 * chunks is a hard limitation in the driver, it must still be prepared
178 * to split single page bios.
180 void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
182 q->limits.chunk_sectors = chunk_sectors;
184 EXPORT_SYMBOL(blk_queue_chunk_sectors);
187 * blk_queue_max_discard_sectors - set max sectors for a single discard
188 * @q: the request queue for the device
189 * @max_discard_sectors: maximum number of sectors to discard
191 void blk_queue_max_discard_sectors(struct request_queue *q,
192 unsigned int max_discard_sectors)
194 q->limits.max_hw_discard_sectors = max_discard_sectors;
195 q->limits.max_discard_sectors = max_discard_sectors;
197 EXPORT_SYMBOL(blk_queue_max_discard_sectors);
200 * blk_queue_max_write_same_sectors - set max sectors for a single write same
201 * @q: the request queue for the device
202 * @max_write_same_sectors: maximum number of sectors to write per command
204 void blk_queue_max_write_same_sectors(struct request_queue *q,
205 unsigned int max_write_same_sectors)
207 q->limits.max_write_same_sectors = max_write_same_sectors;
209 EXPORT_SYMBOL(blk_queue_max_write_same_sectors);
212 * blk_queue_max_write_zeroes_sectors - set max sectors for a single
214 * @q: the request queue for the device
215 * @max_write_zeroes_sectors: maximum number of sectors to write per command
217 void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
218 unsigned int max_write_zeroes_sectors)
220 q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors;
222 EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors);
225 * blk_queue_max_zone_append_sectors - set max sectors for a single zone append
226 * @q: the request queue for the device
227 * @max_zone_append_sectors: maximum number of sectors to write per command
229 void blk_queue_max_zone_append_sectors(struct request_queue *q,
230 unsigned int max_zone_append_sectors)
232 unsigned int max_sectors;
234 if (WARN_ON(!blk_queue_is_zoned(q)))
237 max_sectors = min(q->limits.max_hw_sectors, max_zone_append_sectors);
238 max_sectors = min(q->limits.chunk_sectors, max_sectors);
241 * Signal eventual driver bugs resulting in the max_zone_append sectors limit
242 * being 0 due to a 0 argument, the chunk_sectors limit (zone size) not set,
243 * or the max_hw_sectors limit not set.
245 WARN_ON(!max_sectors);
247 q->limits.max_zone_append_sectors = max_sectors;
249 EXPORT_SYMBOL_GPL(blk_queue_max_zone_append_sectors);
252 * blk_queue_max_segments - set max hw segments for a request for this queue
253 * @q: the request queue for the device
254 * @max_segments: max number of segments
257 * Enables a low level driver to set an upper limit on the number of
258 * hw data segments in a request.
260 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
264 printk(KERN_INFO "%s: set to minimum %d\n",
265 __func__, max_segments);
268 q->limits.max_segments = max_segments;
270 EXPORT_SYMBOL(blk_queue_max_segments);
273 * blk_queue_max_discard_segments - set max segments for discard requests
274 * @q: the request queue for the device
275 * @max_segments: max number of segments
278 * Enables a low level driver to set an upper limit on the number of
279 * segments in a discard request.
281 void blk_queue_max_discard_segments(struct request_queue *q,
282 unsigned short max_segments)
284 q->limits.max_discard_segments = max_segments;
286 EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments);
289 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
290 * @q: the request queue for the device
291 * @max_size: max size of segment in bytes
294 * Enables a low level driver to set an upper limit on the size of a
297 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
299 if (max_size < PAGE_SIZE) {
300 max_size = PAGE_SIZE;
301 printk(KERN_INFO "%s: set to minimum %d\n",
305 /* see blk_queue_virt_boundary() for the explanation */
306 WARN_ON_ONCE(q->limits.virt_boundary_mask);
308 q->limits.max_segment_size = max_size;
310 EXPORT_SYMBOL(blk_queue_max_segment_size);
313 * blk_queue_logical_block_size - set logical block size for the queue
314 * @q: the request queue for the device
315 * @size: the logical block size, in bytes
318 * This should be set to the lowest possible block size that the
319 * storage device can address. The default of 512 covers most
322 void blk_queue_logical_block_size(struct request_queue *q, unsigned int size)
324 q->limits.logical_block_size = size;
326 if (q->limits.physical_block_size < size)
327 q->limits.physical_block_size = size;
329 if (q->limits.io_min < q->limits.physical_block_size)
330 q->limits.io_min = q->limits.physical_block_size;
332 EXPORT_SYMBOL(blk_queue_logical_block_size);
335 * blk_queue_physical_block_size - set physical block size for the queue
336 * @q: the request queue for the device
337 * @size: the physical block size, in bytes
340 * This should be set to the lowest possible sector size that the
341 * hardware can operate on without reverting to read-modify-write
344 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
346 q->limits.physical_block_size = size;
348 if (q->limits.physical_block_size < q->limits.logical_block_size)
349 q->limits.physical_block_size = q->limits.logical_block_size;
351 if (q->limits.io_min < q->limits.physical_block_size)
352 q->limits.io_min = q->limits.physical_block_size;
354 EXPORT_SYMBOL(blk_queue_physical_block_size);
357 * blk_queue_alignment_offset - set physical block alignment offset
358 * @q: the request queue for the device
359 * @offset: alignment offset in bytes
362 * Some devices are naturally misaligned to compensate for things like
363 * the legacy DOS partition table 63-sector offset. Low-level drivers
364 * should call this function for devices whose first sector is not
367 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
369 q->limits.alignment_offset =
370 offset & (q->limits.physical_block_size - 1);
371 q->limits.misaligned = 0;
373 EXPORT_SYMBOL(blk_queue_alignment_offset);
375 void blk_queue_update_readahead(struct request_queue *q)
378 * For read-ahead of large files to be effective, we need to read ahead
379 * at least twice the optimal I/O size.
381 q->backing_dev_info->ra_pages =
382 max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
383 q->backing_dev_info->io_pages =
384 queue_max_sectors(q) >> (PAGE_SHIFT - 9);
386 EXPORT_SYMBOL_GPL(blk_queue_update_readahead);
389 * blk_limits_io_min - set minimum request size for a device
390 * @limits: the queue limits
391 * @min: smallest I/O size in bytes
394 * Some devices have an internal block size bigger than the reported
395 * hardware sector size. This function can be used to signal the
396 * smallest I/O the device can perform without incurring a performance
399 void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
401 limits->io_min = min;
403 if (limits->io_min < limits->logical_block_size)
404 limits->io_min = limits->logical_block_size;
406 if (limits->io_min < limits->physical_block_size)
407 limits->io_min = limits->physical_block_size;
409 EXPORT_SYMBOL(blk_limits_io_min);
412 * blk_queue_io_min - set minimum request size for the queue
413 * @q: the request queue for the device
414 * @min: smallest I/O size in bytes
417 * Storage devices may report a granularity or preferred minimum I/O
418 * size which is the smallest request the device can perform without
419 * incurring a performance penalty. For disk drives this is often the
420 * physical block size. For RAID arrays it is often the stripe chunk
421 * size. A properly aligned multiple of minimum_io_size is the
422 * preferred request size for workloads where a high number of I/O
423 * operations is desired.
425 void blk_queue_io_min(struct request_queue *q, unsigned int min)
427 blk_limits_io_min(&q->limits, min);
429 EXPORT_SYMBOL(blk_queue_io_min);
432 * blk_limits_io_opt - set optimal request size for a device
433 * @limits: the queue limits
434 * @opt: smallest I/O size in bytes
437 * Storage devices may report an optimal I/O size, which is the
438 * device's preferred unit for sustained I/O. This is rarely reported
439 * for disk drives. For RAID arrays it is usually the stripe width or
440 * the internal track size. A properly aligned multiple of
441 * optimal_io_size is the preferred request size for workloads where
442 * sustained throughput is desired.
444 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
446 limits->io_opt = opt;
448 EXPORT_SYMBOL(blk_limits_io_opt);
451 * blk_queue_io_opt - set optimal request size for the queue
452 * @q: the request queue for the device
453 * @opt: optimal request size in bytes
456 * Storage devices may report an optimal I/O size, which is the
457 * device's preferred unit for sustained I/O. This is rarely reported
458 * for disk drives. For RAID arrays it is usually the stripe width or
459 * the internal track size. A properly aligned multiple of
460 * optimal_io_size is the preferred request size for workloads where
461 * sustained throughput is desired.
463 void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
465 blk_limits_io_opt(&q->limits, opt);
466 q->backing_dev_info->ra_pages =
467 max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
469 EXPORT_SYMBOL(blk_queue_io_opt);
472 * blk_stack_limits - adjust queue_limits for stacked devices
473 * @t: the stacking driver limits (top device)
474 * @b: the underlying queue limits (bottom, component device)
475 * @start: first data sector within component device
478 * This function is used by stacking drivers like MD and DM to ensure
479 * that all component devices have compatible block sizes and
480 * alignments. The stacking driver must provide a queue_limits
481 * struct (top) and then iteratively call the stacking function for
482 * all component (bottom) devices. The stacking function will
483 * attempt to combine the values and ensure proper alignment.
485 * Returns 0 if the top and bottom queue_limits are compatible. The
486 * top device's block sizes and alignment offsets may be adjusted to
487 * ensure alignment with the bottom device. If no compatible sizes
488 * and alignments exist, -1 is returned and the resulting top
489 * queue_limits will have the misaligned flag set to indicate that
490 * the alignment_offset is undefined.
492 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
495 unsigned int top, bottom, alignment, ret = 0;
497 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
498 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
499 t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
500 t->max_write_same_sectors = min(t->max_write_same_sectors,
501 b->max_write_same_sectors);
502 t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
503 b->max_write_zeroes_sectors);
504 t->max_zone_append_sectors = min(t->max_zone_append_sectors,
505 b->max_zone_append_sectors);
506 t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
508 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
509 b->seg_boundary_mask);
510 t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
511 b->virt_boundary_mask);
513 t->max_segments = min_not_zero(t->max_segments, b->max_segments);
514 t->max_discard_segments = min_not_zero(t->max_discard_segments,
515 b->max_discard_segments);
516 t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
517 b->max_integrity_segments);
519 t->max_segment_size = min_not_zero(t->max_segment_size,
520 b->max_segment_size);
522 t->misaligned |= b->misaligned;
524 alignment = queue_limit_alignment_offset(b, start);
526 /* Bottom device has different alignment. Check that it is
527 * compatible with the current top alignment.
529 if (t->alignment_offset != alignment) {
531 top = max(t->physical_block_size, t->io_min)
532 + t->alignment_offset;
533 bottom = max(b->physical_block_size, b->io_min) + alignment;
535 /* Verify that top and bottom intervals line up */
536 if (max(top, bottom) % min(top, bottom)) {
542 t->logical_block_size = max(t->logical_block_size,
543 b->logical_block_size);
545 t->physical_block_size = max(t->physical_block_size,
546 b->physical_block_size);
548 t->io_min = max(t->io_min, b->io_min);
549 t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
550 t->chunk_sectors = lcm_not_zero(t->chunk_sectors, b->chunk_sectors);
552 /* Physical block size a multiple of the logical block size? */
553 if (t->physical_block_size & (t->logical_block_size - 1)) {
554 t->physical_block_size = t->logical_block_size;
559 /* Minimum I/O a multiple of the physical block size? */
560 if (t->io_min & (t->physical_block_size - 1)) {
561 t->io_min = t->physical_block_size;
566 /* Optimal I/O a multiple of the physical block size? */
567 if (t->io_opt & (t->physical_block_size - 1)) {
573 /* chunk_sectors a multiple of the physical block size? */
574 if ((t->chunk_sectors << 9) & (t->physical_block_size - 1)) {
575 t->chunk_sectors = 0;
580 t->raid_partial_stripes_expensive =
581 max(t->raid_partial_stripes_expensive,
582 b->raid_partial_stripes_expensive);
584 /* Find lowest common alignment_offset */
585 t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
586 % max(t->physical_block_size, t->io_min);
588 /* Verify that new alignment_offset is on a logical block boundary */
589 if (t->alignment_offset & (t->logical_block_size - 1)) {
594 /* Discard alignment and granularity */
595 if (b->discard_granularity) {
596 alignment = queue_limit_discard_alignment(b, start);
598 if (t->discard_granularity != 0 &&
599 t->discard_alignment != alignment) {
600 top = t->discard_granularity + t->discard_alignment;
601 bottom = b->discard_granularity + alignment;
603 /* Verify that top and bottom intervals line up */
604 if ((max(top, bottom) % min(top, bottom)) != 0)
605 t->discard_misaligned = 1;
608 t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
609 b->max_discard_sectors);
610 t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
611 b->max_hw_discard_sectors);
612 t->discard_granularity = max(t->discard_granularity,
613 b->discard_granularity);
614 t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
615 t->discard_granularity;
618 t->zoned = max(t->zoned, b->zoned);
621 EXPORT_SYMBOL(blk_stack_limits);
624 * disk_stack_limits - adjust queue limits for stacked drivers
625 * @disk: MD/DM gendisk (top)
626 * @bdev: the underlying block device (bottom)
627 * @offset: offset to beginning of data within component device
630 * Merges the limits for a top level gendisk and a bottom level
633 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
636 struct request_queue *t = disk->queue;
638 if (blk_stack_limits(&t->limits, &bdev_get_queue(bdev)->limits,
639 get_start_sect(bdev) + (offset >> 9)) < 0) {
640 char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
642 disk_name(disk, 0, top);
643 bdevname(bdev, bottom);
645 printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
649 blk_queue_update_readahead(disk->queue);
651 EXPORT_SYMBOL(disk_stack_limits);
654 * blk_queue_update_dma_pad - update pad mask
655 * @q: the request queue for the device
658 * Update dma pad mask.
660 * Appending pad buffer to a request modifies the last entry of a
661 * scatter list such that it includes the pad buffer.
663 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
665 if (mask > q->dma_pad_mask)
666 q->dma_pad_mask = mask;
668 EXPORT_SYMBOL(blk_queue_update_dma_pad);
671 * blk_queue_segment_boundary - set boundary rules for segment merging
672 * @q: the request queue for the device
673 * @mask: the memory boundary mask
675 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
677 if (mask < PAGE_SIZE - 1) {
678 mask = PAGE_SIZE - 1;
679 printk(KERN_INFO "%s: set to minimum %lx\n",
683 q->limits.seg_boundary_mask = mask;
685 EXPORT_SYMBOL(blk_queue_segment_boundary);
688 * blk_queue_virt_boundary - set boundary rules for bio merging
689 * @q: the request queue for the device
690 * @mask: the memory boundary mask
692 void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
694 q->limits.virt_boundary_mask = mask;
697 * Devices that require a virtual boundary do not support scatter/gather
698 * I/O natively, but instead require a descriptor list entry for each
699 * page (which might not be idential to the Linux PAGE_SIZE). Because
700 * of that they are not limited by our notion of "segment size".
703 q->limits.max_segment_size = UINT_MAX;
705 EXPORT_SYMBOL(blk_queue_virt_boundary);
708 * blk_queue_dma_alignment - set dma length and memory alignment
709 * @q: the request queue for the device
710 * @mask: alignment mask
713 * set required memory and length alignment for direct dma transactions.
714 * this is used when building direct io requests for the queue.
717 void blk_queue_dma_alignment(struct request_queue *q, int mask)
719 q->dma_alignment = mask;
721 EXPORT_SYMBOL(blk_queue_dma_alignment);
724 * blk_queue_update_dma_alignment - update dma length and memory alignment
725 * @q: the request queue for the device
726 * @mask: alignment mask
729 * update required memory and length alignment for direct dma transactions.
730 * If the requested alignment is larger than the current alignment, then
731 * the current queue alignment is updated to the new value, otherwise it
732 * is left alone. The design of this is to allow multiple objects
733 * (driver, device, transport etc) to set their respective
734 * alignments without having them interfere.
737 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
739 BUG_ON(mask > PAGE_SIZE);
741 if (mask > q->dma_alignment)
742 q->dma_alignment = mask;
744 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
747 * blk_set_queue_depth - tell the block layer about the device queue depth
748 * @q: the request queue for the device
749 * @depth: queue depth
752 void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
754 q->queue_depth = depth;
755 rq_qos_queue_depth_changed(q);
757 EXPORT_SYMBOL(blk_set_queue_depth);
760 * blk_queue_write_cache - configure queue's write cache
761 * @q: the request queue for the device
762 * @wc: write back cache on or off
763 * @fua: device supports FUA writes, if true
765 * Tell the block layer about the write cache of @q.
767 void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
770 blk_queue_flag_set(QUEUE_FLAG_WC, q);
772 blk_queue_flag_clear(QUEUE_FLAG_WC, q);
774 blk_queue_flag_set(QUEUE_FLAG_FUA, q);
776 blk_queue_flag_clear(QUEUE_FLAG_FUA, q);
778 wbt_set_write_cache(q, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
780 EXPORT_SYMBOL_GPL(blk_queue_write_cache);
783 * blk_queue_required_elevator_features - Set a queue required elevator features
784 * @q: the request queue for the target device
785 * @features: Required elevator features OR'ed together
787 * Tell the block layer that for the device controlled through @q, only the
788 * only elevators that can be used are those that implement at least the set of
789 * features specified by @features.
791 void blk_queue_required_elevator_features(struct request_queue *q,
792 unsigned int features)
794 q->required_elevator_features = features;
796 EXPORT_SYMBOL_GPL(blk_queue_required_elevator_features);
799 * blk_queue_can_use_dma_map_merging - configure queue for merging segments.
800 * @q: the request queue for the device
801 * @dev: the device pointer for dma
803 * Tell the block layer about merging the segments by dma map of @q.
805 bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
808 unsigned long boundary = dma_get_merge_boundary(dev);
813 /* No need to update max_segment_size. see blk_queue_virt_boundary() */
814 blk_queue_virt_boundary(q, boundary);
818 EXPORT_SYMBOL_GPL(blk_queue_can_use_dma_map_merging);
821 * blk_queue_set_zoned - configure a disk queue zoned model.
822 * @disk: the gendisk of the queue to configure
823 * @model: the zoned model to set
825 * Set the zoned model of the request queue of @disk according to @model.
826 * When @model is BLK_ZONED_HM (host managed), this should be called only
827 * if zoned block device support is enabled (CONFIG_BLK_DEV_ZONED option).
828 * If @model specifies BLK_ZONED_HA (host aware), the effective model used
829 * depends on CONFIG_BLK_DEV_ZONED settings and on the existence of partitions
832 void blk_queue_set_zoned(struct gendisk *disk, enum blk_zoned_model model)
837 * Host managed devices are supported only if
838 * CONFIG_BLK_DEV_ZONED is enabled.
840 WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED));
844 * Host aware devices can be treated either as regular block
845 * devices (similar to drive managed devices) or as zoned block
846 * devices to take advantage of the zone command set, similarly
847 * to host managed devices. We try the latter if there are no
848 * partitions and zoned block device support is enabled, else
849 * we do nothing special as far as the block layer is concerned.
851 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) ||
852 disk_has_partitions(disk))
853 model = BLK_ZONED_NONE;
857 if (WARN_ON_ONCE(model != BLK_ZONED_NONE))
858 model = BLK_ZONED_NONE;
862 disk->queue->limits.zoned = model;
864 EXPORT_SYMBOL_GPL(blk_queue_set_zoned);
866 static int __init blk_settings_init(void)
868 blk_max_low_pfn = max_low_pfn - 1;
869 blk_max_pfn = max_pfn - 1;
872 subsys_initcall(blk_settings_init);