11 struct list_head rq_list;
12 } ____cacheline_aligned_in_smp;
15 unsigned int index_hw;
17 /* incremented at dispatch time */
18 unsigned long rq_dispatched[2];
19 unsigned long rq_merged;
21 /* incremented at completion time */
22 unsigned long ____cacheline_aligned_in_smp rq_completed[2];
24 struct request_queue *queue;
26 } ____cacheline_aligned_in_smp;
28 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
29 void blk_mq_freeze_queue(struct request_queue *q);
30 void blk_mq_free_queue(struct request_queue *q);
31 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr);
32 void blk_mq_wake_waiters(struct request_queue *q);
33 bool blk_mq_dispatch_rq_list(struct request_queue *, struct list_head *);
34 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list);
35 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx);
36 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
40 * Internal helpers for allocating/freeing the request map
42 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
43 unsigned int hctx_idx);
44 void blk_mq_free_rq_map(struct blk_mq_tags *tags);
45 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
46 unsigned int hctx_idx,
48 unsigned int reserved_tags);
49 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
50 unsigned int hctx_idx, unsigned int depth);
53 * Internal helpers for request insertion into sw queues
55 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
57 void blk_mq_request_bypass_insert(struct request *rq);
58 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
59 struct list_head *list);
62 * CPU -> queue mappings
64 extern int blk_mq_hw_queue_to_node(unsigned int *map, unsigned int);
66 static inline struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q,
69 return q->queue_hw_ctx[q->mq_map[cpu]];
75 extern void blk_mq_sysfs_init(struct request_queue *q);
76 extern void blk_mq_sysfs_deinit(struct request_queue *q);
77 extern int __blk_mq_register_dev(struct device *dev, struct request_queue *q);
78 extern int blk_mq_sysfs_register(struct request_queue *q);
79 extern void blk_mq_sysfs_unregister(struct request_queue *q);
80 extern void blk_mq_hctx_kobj_init(struct blk_mq_hw_ctx *hctx);
82 extern void blk_mq_rq_timed_out(struct request *req, bool reserved);
84 void blk_mq_release(struct request_queue *q);
86 static inline struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
89 return per_cpu_ptr(q->queue_ctx, cpu);
93 * This assumes per-cpu software queueing queues. They could be per-node
94 * as well, for instance. For now this is hardcoded as-is. Note that we don't
95 * care about preemption, since we know the ctx's are persistent. This does
96 * mean that we can't rely on ctx always matching the currently running CPU.
98 static inline struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
100 return __blk_mq_get_ctx(q, get_cpu());
103 static inline void blk_mq_put_ctx(struct blk_mq_ctx *ctx)
108 struct blk_mq_alloc_data {
109 /* input parameter */
110 struct request_queue *q;
112 unsigned int shallow_depth;
114 /* input & output parameter */
115 struct blk_mq_ctx *ctx;
116 struct blk_mq_hw_ctx *hctx;
119 static inline struct blk_mq_tags *blk_mq_tags_from_data(struct blk_mq_alloc_data *data)
121 if (data->flags & BLK_MQ_REQ_INTERNAL)
122 return data->hctx->sched_tags;
124 return data->hctx->tags;
127 static inline bool blk_mq_hctx_stopped(struct blk_mq_hw_ctx *hctx)
129 return test_bit(BLK_MQ_S_STOPPED, &hctx->state);
132 static inline bool blk_mq_hw_queue_mapped(struct blk_mq_hw_ctx *hctx)
134 return hctx->nr_ctx && hctx->tags;
137 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
138 unsigned int inflight[2]);