2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
29 #include <trace/events/block.h>
31 #include <linux/blk-mq.h>
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
37 #include "blk-mq-sched.h"
38 #include "blk-rq-qos.h"
40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
46 int ddir, bytes, bucket;
48 ddir = rq_data_dir(rq);
49 bytes = blk_rq_bytes(rq);
51 bucket = ddir + 2*(ilog2(bytes) - 9);
55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
62 * Check if any of the ctx's have pending work in this hardware queue
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
66 return !list_empty_careful(&hctx->dispatch) ||
67 sbitmap_any_bit_set(&hctx->ctx_map) ||
68 blk_mq_sched_has_work(hctx);
72 * Mark this ctx as having pending work in this hardware queue
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 struct blk_mq_ctx *ctx)
77 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82 struct blk_mq_ctx *ctx)
84 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
88 struct hd_struct *part;
89 unsigned int *inflight;
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93 struct request *rq, void *priv,
96 struct mq_inflight *mi = priv;
99 * index[0] counts the specific partition that was asked for. index[1]
100 * counts the ones that are active on the whole device, so increment
101 * that if mi->part is indeed a partition, and not a whole device.
103 if (rq->part == mi->part)
105 if (mi->part->partno)
109 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
110 unsigned int inflight[2])
112 struct mq_inflight mi = { .part = part, .inflight = inflight, };
114 inflight[0] = inflight[1] = 0;
115 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
118 static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
119 struct request *rq, void *priv,
122 struct mq_inflight *mi = priv;
124 if (rq->part == mi->part)
125 mi->inflight[rq_data_dir(rq)]++;
128 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
129 unsigned int inflight[2])
131 struct mq_inflight mi = { .part = part, .inflight = inflight, };
133 inflight[0] = inflight[1] = 0;
134 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
137 void blk_freeze_queue_start(struct request_queue *q)
141 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
142 if (freeze_depth == 1) {
143 percpu_ref_kill(&q->q_usage_counter);
145 blk_mq_run_hw_queues(q, false);
148 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
150 void blk_mq_freeze_queue_wait(struct request_queue *q)
152 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
154 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
156 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
157 unsigned long timeout)
159 return wait_event_timeout(q->mq_freeze_wq,
160 percpu_ref_is_zero(&q->q_usage_counter),
163 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
166 * Guarantee no request is in use, so we can change any data structure of
167 * the queue afterward.
169 void blk_freeze_queue(struct request_queue *q)
172 * In the !blk_mq case we are only calling this to kill the
173 * q_usage_counter, otherwise this increases the freeze depth
174 * and waits for it to return to zero. For this reason there is
175 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
176 * exported to drivers as the only user for unfreeze is blk_mq.
178 blk_freeze_queue_start(q);
181 blk_mq_freeze_queue_wait(q);
184 void blk_mq_freeze_queue(struct request_queue *q)
187 * ...just an alias to keep freeze and unfreeze actions balanced
188 * in the blk_mq_* namespace
192 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
194 void blk_mq_unfreeze_queue(struct request_queue *q)
198 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
199 WARN_ON_ONCE(freeze_depth < 0);
201 percpu_ref_reinit(&q->q_usage_counter);
202 wake_up_all(&q->mq_freeze_wq);
205 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
208 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
209 * mpt3sas driver such that this function can be removed.
211 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
213 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
215 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
218 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
221 * Note: this function does not prevent that the struct request end_io()
222 * callback function is invoked. Once this function is returned, we make
223 * sure no dispatch can happen until the queue is unquiesced via
224 * blk_mq_unquiesce_queue().
226 void blk_mq_quiesce_queue(struct request_queue *q)
228 struct blk_mq_hw_ctx *hctx;
232 blk_mq_quiesce_queue_nowait(q);
234 queue_for_each_hw_ctx(q, hctx, i) {
235 if (hctx->flags & BLK_MQ_F_BLOCKING)
236 synchronize_srcu(hctx->srcu);
243 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
246 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
249 * This function recovers queue into the state before quiescing
250 * which is done by blk_mq_quiesce_queue.
252 void blk_mq_unquiesce_queue(struct request_queue *q)
254 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
256 /* dispatch requests which are inserted during quiescing */
257 blk_mq_run_hw_queues(q, true);
259 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
261 void blk_mq_wake_waiters(struct request_queue *q)
263 struct blk_mq_hw_ctx *hctx;
266 queue_for_each_hw_ctx(q, hctx, i)
267 if (blk_mq_hw_queue_mapped(hctx))
268 blk_mq_tag_wakeup_all(hctx->tags, true);
271 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
273 return blk_mq_has_free_tags(hctx->tags);
275 EXPORT_SYMBOL(blk_mq_can_queue);
277 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
278 unsigned int tag, unsigned int op)
280 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
281 struct request *rq = tags->static_rqs[tag];
282 req_flags_t rq_flags = 0;
284 if (data->flags & BLK_MQ_REQ_INTERNAL) {
286 rq->internal_tag = tag;
288 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
289 rq_flags = RQF_MQ_INFLIGHT;
290 atomic_inc(&data->hctx->nr_active);
293 rq->internal_tag = -1;
294 data->hctx->tags->rqs[rq->tag] = rq;
297 /* csd/requeue_work/fifo_time is initialized before use */
299 rq->mq_ctx = data->ctx;
300 rq->rq_flags = rq_flags;
303 if (data->flags & BLK_MQ_REQ_PREEMPT)
304 rq->rq_flags |= RQF_PREEMPT;
305 if (blk_queue_io_stat(data->q))
306 rq->rq_flags |= RQF_IO_STAT;
307 INIT_LIST_HEAD(&rq->queuelist);
308 INIT_HLIST_NODE(&rq->hash);
309 RB_CLEAR_NODE(&rq->rb_node);
312 rq->start_time_ns = ktime_get_ns();
313 rq->io_start_time_ns = 0;
314 rq->nr_phys_segments = 0;
315 #if defined(CONFIG_BLK_DEV_INTEGRITY)
316 rq->nr_integrity_segments = 0;
319 /* tag was already set */
323 INIT_LIST_HEAD(&rq->timeout_list);
327 rq->end_io_data = NULL;
330 #ifdef CONFIG_BLK_CGROUP
334 data->ctx->rq_dispatched[op_is_sync(op)]++;
335 refcount_set(&rq->ref, 1);
339 static struct request *blk_mq_get_request(struct request_queue *q,
340 struct bio *bio, unsigned int op,
341 struct blk_mq_alloc_data *data)
343 struct elevator_queue *e = q->elevator;
346 bool put_ctx_on_error = false;
348 blk_queue_enter_live(q);
350 if (likely(!data->ctx)) {
351 data->ctx = blk_mq_get_ctx(q);
352 put_ctx_on_error = true;
354 if (likely(!data->hctx))
355 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
357 data->flags |= BLK_MQ_REQ_NOWAIT;
360 data->flags |= BLK_MQ_REQ_INTERNAL;
363 * Flush requests are special and go directly to the
364 * dispatch list. Don't include reserved tags in the
365 * limiting, as it isn't useful.
367 if (!op_is_flush(op) && e->type->ops.mq.limit_depth &&
368 !(data->flags & BLK_MQ_REQ_RESERVED))
369 e->type->ops.mq.limit_depth(op, data);
371 blk_mq_tag_busy(data->hctx);
374 tag = blk_mq_get_tag(data);
375 if (tag == BLK_MQ_TAG_FAIL) {
376 if (put_ctx_on_error) {
377 blk_mq_put_ctx(data->ctx);
384 rq = blk_mq_rq_ctx_init(data, tag, op);
385 if (!op_is_flush(op)) {
387 if (e && e->type->ops.mq.prepare_request) {
388 if (e->type->icq_cache && rq_ioc(bio))
389 blk_mq_sched_assign_ioc(rq, bio);
391 e->type->ops.mq.prepare_request(rq, bio);
392 rq->rq_flags |= RQF_ELVPRIV;
395 data->hctx->queued++;
399 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
400 blk_mq_req_flags_t flags)
402 struct blk_mq_alloc_data alloc_data = { .flags = flags };
406 ret = blk_queue_enter(q, flags);
410 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
414 return ERR_PTR(-EWOULDBLOCK);
416 blk_mq_put_ctx(alloc_data.ctx);
419 rq->__sector = (sector_t) -1;
420 rq->bio = rq->biotail = NULL;
423 EXPORT_SYMBOL(blk_mq_alloc_request);
425 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
426 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
428 struct blk_mq_alloc_data alloc_data = { .flags = flags };
434 * If the tag allocator sleeps we could get an allocation for a
435 * different hardware context. No need to complicate the low level
436 * allocator for this for the rare use case of a command tied to
439 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
440 return ERR_PTR(-EINVAL);
442 if (hctx_idx >= q->nr_hw_queues)
443 return ERR_PTR(-EIO);
445 ret = blk_queue_enter(q, flags);
450 * Check if the hardware context is actually mapped to anything.
451 * If not tell the caller that it should skip this queue.
453 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
454 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
456 return ERR_PTR(-EXDEV);
458 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
459 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
461 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
465 return ERR_PTR(-EWOULDBLOCK);
469 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
471 static void __blk_mq_free_request(struct request *rq)
473 struct request_queue *q = rq->q;
474 struct blk_mq_ctx *ctx = rq->mq_ctx;
475 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
476 const int sched_tag = rq->internal_tag;
479 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
481 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
482 blk_mq_sched_restart(hctx);
486 void blk_mq_free_request(struct request *rq)
488 struct request_queue *q = rq->q;
489 struct elevator_queue *e = q->elevator;
490 struct blk_mq_ctx *ctx = rq->mq_ctx;
491 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
493 if (rq->rq_flags & RQF_ELVPRIV) {
494 if (e && e->type->ops.mq.finish_request)
495 e->type->ops.mq.finish_request(rq);
497 put_io_context(rq->elv.icq->ioc);
502 ctx->rq_completed[rq_is_sync(rq)]++;
503 if (rq->rq_flags & RQF_MQ_INFLIGHT)
504 atomic_dec(&hctx->nr_active);
506 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
507 laptop_io_completion(q->backing_dev_info);
512 blk_put_rl(blk_rq_rl(rq));
514 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
515 if (refcount_dec_and_test(&rq->ref))
516 __blk_mq_free_request(rq);
518 EXPORT_SYMBOL_GPL(blk_mq_free_request);
520 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
522 u64 now = ktime_get_ns();
524 if (rq->rq_flags & RQF_STATS) {
525 blk_mq_poll_stats_start(rq->q);
526 blk_stat_add(rq, now);
529 blk_account_io_done(rq, now);
532 rq_qos_done(rq->q, rq);
533 rq->end_io(rq, error);
535 if (unlikely(blk_bidi_rq(rq)))
536 blk_mq_free_request(rq->next_rq);
537 blk_mq_free_request(rq);
540 EXPORT_SYMBOL(__blk_mq_end_request);
542 void blk_mq_end_request(struct request *rq, blk_status_t error)
544 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
546 __blk_mq_end_request(rq, error);
548 EXPORT_SYMBOL(blk_mq_end_request);
550 static void __blk_mq_complete_request_remote(void *data)
552 struct request *rq = data;
554 rq->q->softirq_done_fn(rq);
557 static void __blk_mq_complete_request(struct request *rq)
559 struct blk_mq_ctx *ctx = rq->mq_ctx;
563 if (!blk_mq_mark_complete(rq))
565 if (rq->internal_tag != -1)
566 blk_mq_sched_completed_request(rq);
568 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
569 rq->q->softirq_done_fn(rq);
574 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
575 shared = cpus_share_cache(cpu, ctx->cpu);
577 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
578 rq->csd.func = __blk_mq_complete_request_remote;
581 smp_call_function_single_async(ctx->cpu, &rq->csd);
583 rq->q->softirq_done_fn(rq);
588 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
589 __releases(hctx->srcu)
591 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
594 srcu_read_unlock(hctx->srcu, srcu_idx);
597 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
598 __acquires(hctx->srcu)
600 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
601 /* shut up gcc false positive */
605 *srcu_idx = srcu_read_lock(hctx->srcu);
609 * blk_mq_complete_request - end I/O on a request
610 * @rq: the request being processed
613 * Ends all I/O on a request. It does not handle partial completions.
614 * The actual completion happens out-of-order, through a IPI handler.
616 void blk_mq_complete_request(struct request *rq)
618 if (unlikely(blk_should_fake_timeout(rq->q)))
620 __blk_mq_complete_request(rq);
622 EXPORT_SYMBOL(blk_mq_complete_request);
624 int blk_mq_request_started(struct request *rq)
626 return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
628 EXPORT_SYMBOL_GPL(blk_mq_request_started);
630 void blk_mq_start_request(struct request *rq)
632 struct request_queue *q = rq->q;
634 blk_mq_sched_started_request(rq);
636 trace_block_rq_issue(q, rq);
638 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
639 rq->io_start_time_ns = ktime_get_ns();
640 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
641 rq->throtl_size = blk_rq_sectors(rq);
643 rq->rq_flags |= RQF_STATS;
647 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
650 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
652 if (q->dma_drain_size && blk_rq_bytes(rq)) {
654 * Make sure space for the drain appears. We know we can do
655 * this because max_hw_segments has been adjusted to be one
656 * fewer than the device can handle.
658 rq->nr_phys_segments++;
661 EXPORT_SYMBOL(blk_mq_start_request);
663 static void __blk_mq_requeue_request(struct request *rq)
665 struct request_queue *q = rq->q;
667 blk_mq_put_driver_tag(rq);
669 trace_block_rq_requeue(q, rq);
670 rq_qos_requeue(q, rq);
672 if (blk_mq_request_started(rq)) {
673 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
674 rq->rq_flags &= ~RQF_TIMED_OUT;
675 if (q->dma_drain_size && blk_rq_bytes(rq))
676 rq->nr_phys_segments--;
680 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
682 __blk_mq_requeue_request(rq);
684 /* this request will be re-inserted to io scheduler queue */
685 blk_mq_sched_requeue_request(rq);
687 BUG_ON(blk_queued_rq(rq));
688 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
690 EXPORT_SYMBOL(blk_mq_requeue_request);
692 static void blk_mq_requeue_work(struct work_struct *work)
694 struct request_queue *q =
695 container_of(work, struct request_queue, requeue_work.work);
697 struct request *rq, *next;
699 spin_lock_irq(&q->requeue_lock);
700 list_splice_init(&q->requeue_list, &rq_list);
701 spin_unlock_irq(&q->requeue_lock);
703 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
704 if (!(rq->rq_flags & RQF_SOFTBARRIER))
707 rq->rq_flags &= ~RQF_SOFTBARRIER;
708 list_del_init(&rq->queuelist);
709 blk_mq_sched_insert_request(rq, true, false, false);
712 while (!list_empty(&rq_list)) {
713 rq = list_entry(rq_list.next, struct request, queuelist);
714 list_del_init(&rq->queuelist);
715 blk_mq_sched_insert_request(rq, false, false, false);
718 blk_mq_run_hw_queues(q, false);
721 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
722 bool kick_requeue_list)
724 struct request_queue *q = rq->q;
728 * We abuse this flag that is otherwise used by the I/O scheduler to
729 * request head insertion from the workqueue.
731 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
733 spin_lock_irqsave(&q->requeue_lock, flags);
735 rq->rq_flags |= RQF_SOFTBARRIER;
736 list_add(&rq->queuelist, &q->requeue_list);
738 list_add_tail(&rq->queuelist, &q->requeue_list);
740 spin_unlock_irqrestore(&q->requeue_lock, flags);
742 if (kick_requeue_list)
743 blk_mq_kick_requeue_list(q);
745 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
747 void blk_mq_kick_requeue_list(struct request_queue *q)
749 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
751 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
753 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
756 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
757 msecs_to_jiffies(msecs));
759 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
761 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
763 if (tag < tags->nr_tags) {
764 prefetch(tags->rqs[tag]);
765 return tags->rqs[tag];
770 EXPORT_SYMBOL(blk_mq_tag_to_rq);
772 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
774 req->rq_flags |= RQF_TIMED_OUT;
775 if (req->q->mq_ops->timeout) {
776 enum blk_eh_timer_return ret;
778 ret = req->q->mq_ops->timeout(req, reserved);
779 if (ret == BLK_EH_DONE)
781 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
787 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
789 unsigned long deadline;
791 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
793 if (rq->rq_flags & RQF_TIMED_OUT)
796 deadline = blk_rq_deadline(rq);
797 if (time_after_eq(jiffies, deadline))
802 else if (time_after(*next, deadline))
807 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
808 struct request *rq, void *priv, bool reserved)
810 unsigned long *next = priv;
813 * Just do a quick check if it is expired before locking the request in
814 * so we're not unnecessarilly synchronizing across CPUs.
816 if (!blk_mq_req_expired(rq, next))
820 * We have reason to believe the request may be expired. Take a
821 * reference on the request to lock this request lifetime into its
822 * currently allocated context to prevent it from being reallocated in
823 * the event the completion by-passes this timeout handler.
825 * If the reference was already released, then the driver beat the
826 * timeout handler to posting a natural completion.
828 if (!refcount_inc_not_zero(&rq->ref))
832 * The request is now locked and cannot be reallocated underneath the
833 * timeout handler's processing. Re-verify this exact request is truly
834 * expired; if it is not expired, then the request was completed and
835 * reallocated as a new request.
837 if (blk_mq_req_expired(rq, next))
838 blk_mq_rq_timed_out(rq, reserved);
839 if (refcount_dec_and_test(&rq->ref))
840 __blk_mq_free_request(rq);
843 static void blk_mq_timeout_work(struct work_struct *work)
845 struct request_queue *q =
846 container_of(work, struct request_queue, timeout_work);
847 unsigned long next = 0;
848 struct blk_mq_hw_ctx *hctx;
851 /* A deadlock might occur if a request is stuck requiring a
852 * timeout at the same time a queue freeze is waiting
853 * completion, since the timeout code would not be able to
854 * acquire the queue reference here.
856 * That's why we don't use blk_queue_enter here; instead, we use
857 * percpu_ref_tryget directly, because we need to be able to
858 * obtain a reference even in the short window between the queue
859 * starting to freeze, by dropping the first reference in
860 * blk_freeze_queue_start, and the moment the last request is
861 * consumed, marked by the instant q_usage_counter reaches
864 if (!percpu_ref_tryget(&q->q_usage_counter))
867 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
870 mod_timer(&q->timeout, next);
873 * Request timeouts are handled as a forward rolling timer. If
874 * we end up here it means that no requests are pending and
875 * also that no request has been pending for a while. Mark
878 queue_for_each_hw_ctx(q, hctx, i) {
879 /* the hctx may be unmapped, so check it here */
880 if (blk_mq_hw_queue_mapped(hctx))
881 blk_mq_tag_idle(hctx);
887 struct flush_busy_ctx_data {
888 struct blk_mq_hw_ctx *hctx;
889 struct list_head *list;
892 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
894 struct flush_busy_ctx_data *flush_data = data;
895 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
896 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
898 spin_lock(&ctx->lock);
899 list_splice_tail_init(&ctx->rq_list, flush_data->list);
900 sbitmap_clear_bit(sb, bitnr);
901 spin_unlock(&ctx->lock);
906 * Process software queues that have been marked busy, splicing them
907 * to the for-dispatch
909 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
911 struct flush_busy_ctx_data data = {
916 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
918 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
920 struct dispatch_rq_data {
921 struct blk_mq_hw_ctx *hctx;
925 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
928 struct dispatch_rq_data *dispatch_data = data;
929 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
930 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
932 spin_lock(&ctx->lock);
933 if (!list_empty(&ctx->rq_list)) {
934 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
935 list_del_init(&dispatch_data->rq->queuelist);
936 if (list_empty(&ctx->rq_list))
937 sbitmap_clear_bit(sb, bitnr);
939 spin_unlock(&ctx->lock);
941 return !dispatch_data->rq;
944 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
945 struct blk_mq_ctx *start)
947 unsigned off = start ? start->index_hw : 0;
948 struct dispatch_rq_data data = {
953 __sbitmap_for_each_set(&hctx->ctx_map, off,
954 dispatch_rq_from_ctx, &data);
959 static inline unsigned int queued_to_index(unsigned int queued)
964 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
967 bool blk_mq_get_driver_tag(struct request *rq)
969 struct blk_mq_alloc_data data = {
971 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
972 .flags = BLK_MQ_REQ_NOWAIT,
979 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
980 data.flags |= BLK_MQ_REQ_RESERVED;
982 shared = blk_mq_tag_busy(data.hctx);
983 rq->tag = blk_mq_get_tag(&data);
986 rq->rq_flags |= RQF_MQ_INFLIGHT;
987 atomic_inc(&data.hctx->nr_active);
989 data.hctx->tags->rqs[rq->tag] = rq;
993 return rq->tag != -1;
996 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
997 int flags, void *key)
999 struct blk_mq_hw_ctx *hctx;
1001 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1003 spin_lock(&hctx->dispatch_wait_lock);
1004 list_del_init(&wait->entry);
1005 spin_unlock(&hctx->dispatch_wait_lock);
1007 blk_mq_run_hw_queue(hctx, true);
1012 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1013 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1014 * restart. For both cases, take care to check the condition again after
1015 * marking us as waiting.
1017 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1020 struct wait_queue_head *wq;
1021 wait_queue_entry_t *wait;
1024 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1025 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
1026 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
1029 * It's possible that a tag was freed in the window between the
1030 * allocation failure and adding the hardware queue to the wait
1033 * Don't clear RESTART here, someone else could have set it.
1034 * At most this will cost an extra queue run.
1036 return blk_mq_get_driver_tag(rq);
1039 wait = &hctx->dispatch_wait;
1040 if (!list_empty_careful(&wait->entry))
1043 wq = &bt_wait_ptr(&hctx->tags->bitmap_tags, hctx)->wait;
1045 spin_lock_irq(&wq->lock);
1046 spin_lock(&hctx->dispatch_wait_lock);
1047 if (!list_empty(&wait->entry)) {
1048 spin_unlock(&hctx->dispatch_wait_lock);
1049 spin_unlock_irq(&wq->lock);
1053 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1054 __add_wait_queue(wq, wait);
1057 * It's possible that a tag was freed in the window between the
1058 * allocation failure and adding the hardware queue to the wait
1061 ret = blk_mq_get_driver_tag(rq);
1063 spin_unlock(&hctx->dispatch_wait_lock);
1064 spin_unlock_irq(&wq->lock);
1069 * We got a tag, remove ourselves from the wait queue to ensure
1070 * someone else gets the wakeup.
1072 list_del_init(&wait->entry);
1073 spin_unlock(&hctx->dispatch_wait_lock);
1074 spin_unlock_irq(&wq->lock);
1079 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1080 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1082 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1083 * - EWMA is one simple way to compute running average value
1084 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1085 * - take 4 as factor for avoiding to get too small(0) result, and this
1086 * factor doesn't matter because EWMA decreases exponentially
1088 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1092 if (hctx->queue->elevator)
1095 ewma = hctx->dispatch_busy;
1100 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1102 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1103 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1105 hctx->dispatch_busy = ewma;
1108 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1111 * Returns true if we did some work AND can potentially do more.
1113 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1116 struct blk_mq_hw_ctx *hctx;
1117 struct request *rq, *nxt;
1118 bool no_tag = false;
1120 blk_status_t ret = BLK_STS_OK;
1122 if (list_empty(list))
1125 WARN_ON(!list_is_singular(list) && got_budget);
1128 * Now process all the entries, sending them to the driver.
1130 errors = queued = 0;
1132 struct blk_mq_queue_data bd;
1134 rq = list_first_entry(list, struct request, queuelist);
1136 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
1137 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1140 if (!blk_mq_get_driver_tag(rq)) {
1142 * The initial allocation attempt failed, so we need to
1143 * rerun the hardware queue when a tag is freed. The
1144 * waitqueue takes care of that. If the queue is run
1145 * before we add this entry back on the dispatch list,
1146 * we'll re-run it below.
1148 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1149 blk_mq_put_dispatch_budget(hctx);
1151 * For non-shared tags, the RESTART check
1154 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1160 list_del_init(&rq->queuelist);
1165 * Flag last if we have no more requests, or if we have more
1166 * but can't assign a driver tag to it.
1168 if (list_empty(list))
1171 nxt = list_first_entry(list, struct request, queuelist);
1172 bd.last = !blk_mq_get_driver_tag(nxt);
1175 ret = q->mq_ops->queue_rq(hctx, &bd);
1176 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1178 * If an I/O scheduler has been configured and we got a
1179 * driver tag for the next request already, free it
1182 if (!list_empty(list)) {
1183 nxt = list_first_entry(list, struct request, queuelist);
1184 blk_mq_put_driver_tag(nxt);
1186 list_add(&rq->queuelist, list);
1187 __blk_mq_requeue_request(rq);
1191 if (unlikely(ret != BLK_STS_OK)) {
1193 blk_mq_end_request(rq, BLK_STS_IOERR);
1198 } while (!list_empty(list));
1200 hctx->dispatched[queued_to_index(queued)]++;
1203 * Any items that need requeuing? Stuff them into hctx->dispatch,
1204 * that is where we will continue on next queue run.
1206 if (!list_empty(list)) {
1209 spin_lock(&hctx->lock);
1210 list_splice_init(list, &hctx->dispatch);
1211 spin_unlock(&hctx->lock);
1214 * If SCHED_RESTART was set by the caller of this function and
1215 * it is no longer set that means that it was cleared by another
1216 * thread and hence that a queue rerun is needed.
1218 * If 'no_tag' is set, that means that we failed getting
1219 * a driver tag with an I/O scheduler attached. If our dispatch
1220 * waitqueue is no longer active, ensure that we run the queue
1221 * AFTER adding our entries back to the list.
1223 * If no I/O scheduler has been configured it is possible that
1224 * the hardware queue got stopped and restarted before requests
1225 * were pushed back onto the dispatch list. Rerun the queue to
1226 * avoid starvation. Notes:
1227 * - blk_mq_run_hw_queue() checks whether or not a queue has
1228 * been stopped before rerunning a queue.
1229 * - Some but not all block drivers stop a queue before
1230 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1233 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1234 * bit is set, run queue after a delay to avoid IO stalls
1235 * that could otherwise occur if the queue is idle.
1237 needs_restart = blk_mq_sched_needs_restart(hctx);
1238 if (!needs_restart ||
1239 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1240 blk_mq_run_hw_queue(hctx, true);
1241 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1242 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1244 blk_mq_update_dispatch_busy(hctx, true);
1247 blk_mq_update_dispatch_busy(hctx, false);
1250 * If the host/device is unable to accept more work, inform the
1253 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1256 return (queued + errors) != 0;
1259 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1264 * We should be running this queue from one of the CPUs that
1267 * There are at least two related races now between setting
1268 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1269 * __blk_mq_run_hw_queue():
1271 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1272 * but later it becomes online, then this warning is harmless
1275 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1276 * but later it becomes offline, then the warning can't be
1277 * triggered, and we depend on blk-mq timeout handler to
1278 * handle dispatched requests to this hctx
1280 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1281 cpu_online(hctx->next_cpu)) {
1282 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1283 raw_smp_processor_id(),
1284 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1289 * We can't run the queue inline with ints disabled. Ensure that
1290 * we catch bad users of this early.
1292 WARN_ON_ONCE(in_interrupt());
1294 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1296 hctx_lock(hctx, &srcu_idx);
1297 blk_mq_sched_dispatch_requests(hctx);
1298 hctx_unlock(hctx, srcu_idx);
1301 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1303 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1305 if (cpu >= nr_cpu_ids)
1306 cpu = cpumask_first(hctx->cpumask);
1311 * It'd be great if the workqueue API had a way to pass
1312 * in a mask and had some smarts for more clever placement.
1313 * For now we just round-robin here, switching for every
1314 * BLK_MQ_CPU_WORK_BATCH queued items.
1316 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1319 int next_cpu = hctx->next_cpu;
1321 if (hctx->queue->nr_hw_queues == 1)
1322 return WORK_CPU_UNBOUND;
1324 if (--hctx->next_cpu_batch <= 0) {
1326 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1328 if (next_cpu >= nr_cpu_ids)
1329 next_cpu = blk_mq_first_mapped_cpu(hctx);
1330 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1334 * Do unbound schedule if we can't find a online CPU for this hctx,
1335 * and it should only happen in the path of handling CPU DEAD.
1337 if (!cpu_online(next_cpu)) {
1344 * Make sure to re-select CPU next time once after CPUs
1345 * in hctx->cpumask become online again.
1347 hctx->next_cpu = next_cpu;
1348 hctx->next_cpu_batch = 1;
1349 return WORK_CPU_UNBOUND;
1352 hctx->next_cpu = next_cpu;
1356 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1357 unsigned long msecs)
1359 if (unlikely(blk_mq_hctx_stopped(hctx)))
1362 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1363 int cpu = get_cpu();
1364 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1365 __blk_mq_run_hw_queue(hctx);
1373 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1374 msecs_to_jiffies(msecs));
1377 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1379 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1381 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1383 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1389 * When queue is quiesced, we may be switching io scheduler, or
1390 * updating nr_hw_queues, or other things, and we can't run queue
1391 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1393 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1396 hctx_lock(hctx, &srcu_idx);
1397 need_run = !blk_queue_quiesced(hctx->queue) &&
1398 blk_mq_hctx_has_pending(hctx);
1399 hctx_unlock(hctx, srcu_idx);
1402 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1408 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1410 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1412 struct blk_mq_hw_ctx *hctx;
1415 queue_for_each_hw_ctx(q, hctx, i) {
1416 if (blk_mq_hctx_stopped(hctx))
1419 blk_mq_run_hw_queue(hctx, async);
1422 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1425 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1426 * @q: request queue.
1428 * The caller is responsible for serializing this function against
1429 * blk_mq_{start,stop}_hw_queue().
1431 bool blk_mq_queue_stopped(struct request_queue *q)
1433 struct blk_mq_hw_ctx *hctx;
1436 queue_for_each_hw_ctx(q, hctx, i)
1437 if (blk_mq_hctx_stopped(hctx))
1442 EXPORT_SYMBOL(blk_mq_queue_stopped);
1445 * This function is often used for pausing .queue_rq() by driver when
1446 * there isn't enough resource or some conditions aren't satisfied, and
1447 * BLK_STS_RESOURCE is usually returned.
1449 * We do not guarantee that dispatch can be drained or blocked
1450 * after blk_mq_stop_hw_queue() returns. Please use
1451 * blk_mq_quiesce_queue() for that requirement.
1453 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1455 cancel_delayed_work(&hctx->run_work);
1457 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1459 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1462 * This function is often used for pausing .queue_rq() by driver when
1463 * there isn't enough resource or some conditions aren't satisfied, and
1464 * BLK_STS_RESOURCE is usually returned.
1466 * We do not guarantee that dispatch can be drained or blocked
1467 * after blk_mq_stop_hw_queues() returns. Please use
1468 * blk_mq_quiesce_queue() for that requirement.
1470 void blk_mq_stop_hw_queues(struct request_queue *q)
1472 struct blk_mq_hw_ctx *hctx;
1475 queue_for_each_hw_ctx(q, hctx, i)
1476 blk_mq_stop_hw_queue(hctx);
1478 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1480 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1482 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1484 blk_mq_run_hw_queue(hctx, false);
1486 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1488 void blk_mq_start_hw_queues(struct request_queue *q)
1490 struct blk_mq_hw_ctx *hctx;
1493 queue_for_each_hw_ctx(q, hctx, i)
1494 blk_mq_start_hw_queue(hctx);
1496 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1498 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1500 if (!blk_mq_hctx_stopped(hctx))
1503 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1504 blk_mq_run_hw_queue(hctx, async);
1506 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1508 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1510 struct blk_mq_hw_ctx *hctx;
1513 queue_for_each_hw_ctx(q, hctx, i)
1514 blk_mq_start_stopped_hw_queue(hctx, async);
1516 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1518 static void blk_mq_run_work_fn(struct work_struct *work)
1520 struct blk_mq_hw_ctx *hctx;
1522 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1525 * If we are stopped, don't run the queue.
1527 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1530 __blk_mq_run_hw_queue(hctx);
1533 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1537 struct blk_mq_ctx *ctx = rq->mq_ctx;
1539 lockdep_assert_held(&ctx->lock);
1541 trace_block_rq_insert(hctx->queue, rq);
1544 list_add(&rq->queuelist, &ctx->rq_list);
1546 list_add_tail(&rq->queuelist, &ctx->rq_list);
1549 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1552 struct blk_mq_ctx *ctx = rq->mq_ctx;
1554 lockdep_assert_held(&ctx->lock);
1556 __blk_mq_insert_req_list(hctx, rq, at_head);
1557 blk_mq_hctx_mark_pending(hctx, ctx);
1561 * Should only be used carefully, when the caller knows we want to
1562 * bypass a potential IO scheduler on the target device.
1564 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1566 struct blk_mq_ctx *ctx = rq->mq_ctx;
1567 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1569 spin_lock(&hctx->lock);
1570 list_add_tail(&rq->queuelist, &hctx->dispatch);
1571 spin_unlock(&hctx->lock);
1574 blk_mq_run_hw_queue(hctx, false);
1577 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1578 struct list_head *list)
1584 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1587 list_for_each_entry(rq, list, queuelist) {
1588 BUG_ON(rq->mq_ctx != ctx);
1589 trace_block_rq_insert(hctx->queue, rq);
1592 spin_lock(&ctx->lock);
1593 list_splice_tail_init(list, &ctx->rq_list);
1594 blk_mq_hctx_mark_pending(hctx, ctx);
1595 spin_unlock(&ctx->lock);
1598 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1600 struct request *rqa = container_of(a, struct request, queuelist);
1601 struct request *rqb = container_of(b, struct request, queuelist);
1603 return !(rqa->mq_ctx < rqb->mq_ctx ||
1604 (rqa->mq_ctx == rqb->mq_ctx &&
1605 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1608 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1610 struct blk_mq_ctx *this_ctx;
1611 struct request_queue *this_q;
1614 LIST_HEAD(ctx_list);
1617 list_splice_init(&plug->mq_list, &list);
1619 list_sort(NULL, &list, plug_ctx_cmp);
1625 while (!list_empty(&list)) {
1626 rq = list_entry_rq(list.next);
1627 list_del_init(&rq->queuelist);
1629 if (rq->mq_ctx != this_ctx) {
1631 trace_block_unplug(this_q, depth, !from_schedule);
1632 blk_mq_sched_insert_requests(this_q, this_ctx,
1637 this_ctx = rq->mq_ctx;
1643 list_add_tail(&rq->queuelist, &ctx_list);
1647 * If 'this_ctx' is set, we know we have entries to complete
1648 * on 'ctx_list'. Do those.
1651 trace_block_unplug(this_q, depth, !from_schedule);
1652 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1657 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1659 blk_init_request_from_bio(rq, bio);
1661 blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1663 blk_account_io_start(rq, true);
1666 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1669 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1671 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1674 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1678 struct request_queue *q = rq->q;
1679 struct blk_mq_queue_data bd = {
1683 blk_qc_t new_cookie;
1686 new_cookie = request_to_qc_t(hctx, rq);
1689 * For OK queue, we are done. For error, caller may kill it.
1690 * Any other error (busy), just add it to our list as we
1691 * previously would have done.
1693 ret = q->mq_ops->queue_rq(hctx, &bd);
1696 blk_mq_update_dispatch_busy(hctx, false);
1697 *cookie = new_cookie;
1699 case BLK_STS_RESOURCE:
1700 case BLK_STS_DEV_RESOURCE:
1701 blk_mq_update_dispatch_busy(hctx, true);
1702 __blk_mq_requeue_request(rq);
1705 blk_mq_update_dispatch_busy(hctx, false);
1706 *cookie = BLK_QC_T_NONE;
1713 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1718 struct request_queue *q = rq->q;
1719 bool run_queue = true;
1722 * RCU or SRCU read lock is needed before checking quiesced flag.
1724 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1725 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1726 * and avoid driver to try to dispatch again.
1728 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1730 bypass_insert = false;
1734 if (q->elevator && !bypass_insert)
1737 if (!blk_mq_get_dispatch_budget(hctx))
1740 if (!blk_mq_get_driver_tag(rq)) {
1741 blk_mq_put_dispatch_budget(hctx);
1745 return __blk_mq_issue_directly(hctx, rq, cookie);
1748 return BLK_STS_RESOURCE;
1750 blk_mq_sched_insert_request(rq, false, run_queue, false);
1754 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1755 struct request *rq, blk_qc_t *cookie)
1760 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1762 hctx_lock(hctx, &srcu_idx);
1764 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1765 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1766 blk_mq_sched_insert_request(rq, false, true, false);
1767 else if (ret != BLK_STS_OK)
1768 blk_mq_end_request(rq, ret);
1770 hctx_unlock(hctx, srcu_idx);
1773 blk_status_t blk_mq_request_issue_directly(struct request *rq)
1777 blk_qc_t unused_cookie;
1778 struct blk_mq_ctx *ctx = rq->mq_ctx;
1779 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1781 hctx_lock(hctx, &srcu_idx);
1782 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
1783 hctx_unlock(hctx, srcu_idx);
1788 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1789 struct list_head *list)
1791 while (!list_empty(list)) {
1793 struct request *rq = list_first_entry(list, struct request,
1796 list_del_init(&rq->queuelist);
1797 ret = blk_mq_request_issue_directly(rq);
1798 if (ret != BLK_STS_OK) {
1799 if (ret == BLK_STS_RESOURCE ||
1800 ret == BLK_STS_DEV_RESOURCE) {
1801 list_add(&rq->queuelist, list);
1804 blk_mq_end_request(rq, ret);
1809 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1811 const int is_sync = op_is_sync(bio->bi_opf);
1812 const int is_flush_fua = op_is_flush(bio->bi_opf);
1813 struct blk_mq_alloc_data data = { .flags = 0 };
1815 unsigned int request_count = 0;
1816 struct blk_plug *plug;
1817 struct request *same_queue_rq = NULL;
1820 blk_queue_bounce(q, &bio);
1822 blk_queue_split(q, &bio);
1824 if (!bio_integrity_prep(bio))
1825 return BLK_QC_T_NONE;
1827 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1828 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1829 return BLK_QC_T_NONE;
1831 if (blk_mq_sched_bio_merge(q, bio))
1832 return BLK_QC_T_NONE;
1834 rq_qos_throttle(q, bio, NULL);
1836 trace_block_getrq(q, bio, bio->bi_opf);
1838 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1839 if (unlikely(!rq)) {
1840 rq_qos_cleanup(q, bio);
1841 if (bio->bi_opf & REQ_NOWAIT)
1842 bio_wouldblock_error(bio);
1843 return BLK_QC_T_NONE;
1846 rq_qos_track(q, rq, bio);
1848 cookie = request_to_qc_t(data.hctx, rq);
1850 plug = current->plug;
1851 if (unlikely(is_flush_fua)) {
1852 blk_mq_put_ctx(data.ctx);
1853 blk_mq_bio_to_request(rq, bio);
1855 /* bypass scheduler for flush rq */
1856 blk_insert_flush(rq);
1857 blk_mq_run_hw_queue(data.hctx, true);
1858 } else if (plug && q->nr_hw_queues == 1) {
1859 struct request *last = NULL;
1861 blk_mq_put_ctx(data.ctx);
1862 blk_mq_bio_to_request(rq, bio);
1865 * @request_count may become stale because of schedule
1866 * out, so check the list again.
1868 if (list_empty(&plug->mq_list))
1870 else if (blk_queue_nomerges(q))
1871 request_count = blk_plug_queued_count(q);
1874 trace_block_plug(q);
1876 last = list_entry_rq(plug->mq_list.prev);
1878 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1879 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1880 blk_flush_plug_list(plug, false);
1881 trace_block_plug(q);
1884 list_add_tail(&rq->queuelist, &plug->mq_list);
1885 } else if (plug && !blk_queue_nomerges(q)) {
1886 blk_mq_bio_to_request(rq, bio);
1889 * We do limited plugging. If the bio can be merged, do that.
1890 * Otherwise the existing request in the plug list will be
1891 * issued. So the plug list will have one request at most
1892 * The plug list might get flushed before this. If that happens,
1893 * the plug list is empty, and same_queue_rq is invalid.
1895 if (list_empty(&plug->mq_list))
1896 same_queue_rq = NULL;
1898 list_del_init(&same_queue_rq->queuelist);
1899 list_add_tail(&rq->queuelist, &plug->mq_list);
1901 blk_mq_put_ctx(data.ctx);
1903 if (same_queue_rq) {
1904 data.hctx = blk_mq_map_queue(q,
1905 same_queue_rq->mq_ctx->cpu);
1906 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1909 } else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
1910 !data.hctx->dispatch_busy)) {
1911 blk_mq_put_ctx(data.ctx);
1912 blk_mq_bio_to_request(rq, bio);
1913 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1915 blk_mq_put_ctx(data.ctx);
1916 blk_mq_bio_to_request(rq, bio);
1917 blk_mq_sched_insert_request(rq, false, true, true);
1923 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1924 unsigned int hctx_idx)
1928 if (tags->rqs && set->ops->exit_request) {
1931 for (i = 0; i < tags->nr_tags; i++) {
1932 struct request *rq = tags->static_rqs[i];
1936 set->ops->exit_request(set, rq, hctx_idx);
1937 tags->static_rqs[i] = NULL;
1941 while (!list_empty(&tags->page_list)) {
1942 page = list_first_entry(&tags->page_list, struct page, lru);
1943 list_del_init(&page->lru);
1945 * Remove kmemleak object previously allocated in
1946 * blk_mq_init_rq_map().
1948 kmemleak_free(page_address(page));
1949 __free_pages(page, page->private);
1953 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1957 kfree(tags->static_rqs);
1958 tags->static_rqs = NULL;
1960 blk_mq_free_tags(tags);
1963 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1964 unsigned int hctx_idx,
1965 unsigned int nr_tags,
1966 unsigned int reserved_tags)
1968 struct blk_mq_tags *tags;
1971 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1972 if (node == NUMA_NO_NODE)
1973 node = set->numa_node;
1975 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1976 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1980 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
1981 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1984 blk_mq_free_tags(tags);
1988 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
1989 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1991 if (!tags->static_rqs) {
1993 blk_mq_free_tags(tags);
2000 static size_t order_to_size(unsigned int order)
2002 return (size_t)PAGE_SIZE << order;
2005 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2006 unsigned int hctx_idx, int node)
2010 if (set->ops->init_request) {
2011 ret = set->ops->init_request(set, rq, hctx_idx, node);
2016 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2020 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2021 unsigned int hctx_idx, unsigned int depth)
2023 unsigned int i, j, entries_per_page, max_order = 4;
2024 size_t rq_size, left;
2027 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2028 if (node == NUMA_NO_NODE)
2029 node = set->numa_node;
2031 INIT_LIST_HEAD(&tags->page_list);
2034 * rq_size is the size of the request plus driver payload, rounded
2035 * to the cacheline size
2037 rq_size = round_up(sizeof(struct request) + set->cmd_size,
2039 left = rq_size * depth;
2041 for (i = 0; i < depth; ) {
2042 int this_order = max_order;
2047 while (this_order && left < order_to_size(this_order - 1))
2051 page = alloc_pages_node(node,
2052 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2058 if (order_to_size(this_order) < rq_size)
2065 page->private = this_order;
2066 list_add_tail(&page->lru, &tags->page_list);
2068 p = page_address(page);
2070 * Allow kmemleak to scan these pages as they contain pointers
2071 * to additional allocations like via ops->init_request().
2073 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2074 entries_per_page = order_to_size(this_order) / rq_size;
2075 to_do = min(entries_per_page, depth - i);
2076 left -= to_do * rq_size;
2077 for (j = 0; j < to_do; j++) {
2078 struct request *rq = p;
2080 tags->static_rqs[i] = rq;
2081 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2082 tags->static_rqs[i] = NULL;
2093 blk_mq_free_rqs(set, tags, hctx_idx);
2098 * 'cpu' is going away. splice any existing rq_list entries from this
2099 * software queue to the hw queue dispatch list, and ensure that it
2102 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2104 struct blk_mq_hw_ctx *hctx;
2105 struct blk_mq_ctx *ctx;
2108 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2109 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2111 spin_lock(&ctx->lock);
2112 if (!list_empty(&ctx->rq_list)) {
2113 list_splice_init(&ctx->rq_list, &tmp);
2114 blk_mq_hctx_clear_pending(hctx, ctx);
2116 spin_unlock(&ctx->lock);
2118 if (list_empty(&tmp))
2121 spin_lock(&hctx->lock);
2122 list_splice_tail_init(&tmp, &hctx->dispatch);
2123 spin_unlock(&hctx->lock);
2125 blk_mq_run_hw_queue(hctx, true);
2129 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2131 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2135 /* hctx->ctxs will be freed in queue's release handler */
2136 static void blk_mq_exit_hctx(struct request_queue *q,
2137 struct blk_mq_tag_set *set,
2138 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2140 blk_mq_debugfs_unregister_hctx(hctx);
2142 if (blk_mq_hw_queue_mapped(hctx))
2143 blk_mq_tag_idle(hctx);
2145 if (set->ops->exit_request)
2146 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2148 if (set->ops->exit_hctx)
2149 set->ops->exit_hctx(hctx, hctx_idx);
2151 if (hctx->flags & BLK_MQ_F_BLOCKING)
2152 cleanup_srcu_struct(hctx->srcu);
2154 blk_mq_remove_cpuhp(hctx);
2155 blk_free_flush_queue(hctx->fq);
2156 sbitmap_free(&hctx->ctx_map);
2159 static void blk_mq_exit_hw_queues(struct request_queue *q,
2160 struct blk_mq_tag_set *set, int nr_queue)
2162 struct blk_mq_hw_ctx *hctx;
2165 queue_for_each_hw_ctx(q, hctx, i) {
2168 blk_mq_exit_hctx(q, set, hctx, i);
2172 static int blk_mq_init_hctx(struct request_queue *q,
2173 struct blk_mq_tag_set *set,
2174 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2178 node = hctx->numa_node;
2179 if (node == NUMA_NO_NODE)
2180 node = hctx->numa_node = set->numa_node;
2182 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2183 spin_lock_init(&hctx->lock);
2184 INIT_LIST_HEAD(&hctx->dispatch);
2186 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2188 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2190 hctx->tags = set->tags[hctx_idx];
2193 * Allocate space for all possible cpus to avoid allocation at
2196 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2199 goto unregister_cpu_notifier;
2201 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2207 spin_lock_init(&hctx->dispatch_wait_lock);
2208 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2209 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2211 if (set->ops->init_hctx &&
2212 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2215 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2219 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2222 if (hctx->flags & BLK_MQ_F_BLOCKING)
2223 init_srcu_struct(hctx->srcu);
2225 blk_mq_debugfs_register_hctx(q, hctx);
2232 if (set->ops->exit_hctx)
2233 set->ops->exit_hctx(hctx, hctx_idx);
2235 sbitmap_free(&hctx->ctx_map);
2238 unregister_cpu_notifier:
2239 blk_mq_remove_cpuhp(hctx);
2243 static void blk_mq_init_cpu_queues(struct request_queue *q,
2244 unsigned int nr_hw_queues)
2248 for_each_possible_cpu(i) {
2249 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2250 struct blk_mq_hw_ctx *hctx;
2253 spin_lock_init(&__ctx->lock);
2254 INIT_LIST_HEAD(&__ctx->rq_list);
2258 * Set local node, IFF we have more than one hw queue. If
2259 * not, we remain on the home node of the device
2261 hctx = blk_mq_map_queue(q, i);
2262 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2263 hctx->numa_node = local_memory_node(cpu_to_node(i));
2267 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2271 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2272 set->queue_depth, set->reserved_tags);
2273 if (!set->tags[hctx_idx])
2276 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2281 blk_mq_free_rq_map(set->tags[hctx_idx]);
2282 set->tags[hctx_idx] = NULL;
2286 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2287 unsigned int hctx_idx)
2289 if (set->tags[hctx_idx]) {
2290 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2291 blk_mq_free_rq_map(set->tags[hctx_idx]);
2292 set->tags[hctx_idx] = NULL;
2296 static void blk_mq_map_swqueue(struct request_queue *q)
2298 unsigned int i, hctx_idx;
2299 struct blk_mq_hw_ctx *hctx;
2300 struct blk_mq_ctx *ctx;
2301 struct blk_mq_tag_set *set = q->tag_set;
2304 * Avoid others reading imcomplete hctx->cpumask through sysfs
2306 mutex_lock(&q->sysfs_lock);
2308 queue_for_each_hw_ctx(q, hctx, i) {
2309 cpumask_clear(hctx->cpumask);
2311 hctx->dispatch_from = NULL;
2315 * Map software to hardware queues.
2317 * If the cpu isn't present, the cpu is mapped to first hctx.
2319 for_each_possible_cpu(i) {
2320 hctx_idx = q->mq_map[i];
2321 /* unmapped hw queue can be remapped after CPU topo changed */
2322 if (!set->tags[hctx_idx] &&
2323 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2325 * If tags initialization fail for some hctx,
2326 * that hctx won't be brought online. In this
2327 * case, remap the current ctx to hctx[0] which
2328 * is guaranteed to always have tags allocated
2333 ctx = per_cpu_ptr(q->queue_ctx, i);
2334 hctx = blk_mq_map_queue(q, i);
2336 cpumask_set_cpu(i, hctx->cpumask);
2337 ctx->index_hw = hctx->nr_ctx;
2338 hctx->ctxs[hctx->nr_ctx++] = ctx;
2341 mutex_unlock(&q->sysfs_lock);
2343 queue_for_each_hw_ctx(q, hctx, i) {
2345 * If no software queues are mapped to this hardware queue,
2346 * disable it and free the request entries.
2348 if (!hctx->nr_ctx) {
2349 /* Never unmap queue 0. We need it as a
2350 * fallback in case of a new remap fails
2353 if (i && set->tags[i])
2354 blk_mq_free_map_and_requests(set, i);
2360 hctx->tags = set->tags[i];
2361 WARN_ON(!hctx->tags);
2364 * Set the map size to the number of mapped software queues.
2365 * This is more accurate and more efficient than looping
2366 * over all possibly mapped software queues.
2368 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2371 * Initialize batch roundrobin counts
2373 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2374 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2379 * Caller needs to ensure that we're either frozen/quiesced, or that
2380 * the queue isn't live yet.
2382 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2384 struct blk_mq_hw_ctx *hctx;
2387 queue_for_each_hw_ctx(q, hctx, i) {
2389 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2391 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2395 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2398 struct request_queue *q;
2400 lockdep_assert_held(&set->tag_list_lock);
2402 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2403 blk_mq_freeze_queue(q);
2404 queue_set_hctx_shared(q, shared);
2405 blk_mq_unfreeze_queue(q);
2409 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2411 struct blk_mq_tag_set *set = q->tag_set;
2413 mutex_lock(&set->tag_list_lock);
2414 list_del_rcu(&q->tag_set_list);
2415 if (list_is_singular(&set->tag_list)) {
2416 /* just transitioned to unshared */
2417 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2418 /* update existing queue */
2419 blk_mq_update_tag_set_depth(set, false);
2421 mutex_unlock(&set->tag_list_lock);
2422 INIT_LIST_HEAD(&q->tag_set_list);
2425 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2426 struct request_queue *q)
2430 mutex_lock(&set->tag_list_lock);
2433 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2435 if (!list_empty(&set->tag_list) &&
2436 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2437 set->flags |= BLK_MQ_F_TAG_SHARED;
2438 /* update existing queue */
2439 blk_mq_update_tag_set_depth(set, true);
2441 if (set->flags & BLK_MQ_F_TAG_SHARED)
2442 queue_set_hctx_shared(q, true);
2443 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2445 mutex_unlock(&set->tag_list_lock);
2449 * It is the actual release handler for mq, but we do it from
2450 * request queue's release handler for avoiding use-after-free
2451 * and headache because q->mq_kobj shouldn't have been introduced,
2452 * but we can't group ctx/kctx kobj without it.
2454 void blk_mq_release(struct request_queue *q)
2456 struct blk_mq_hw_ctx *hctx;
2459 /* hctx kobj stays in hctx */
2460 queue_for_each_hw_ctx(q, hctx, i) {
2463 kobject_put(&hctx->kobj);
2468 kfree(q->queue_hw_ctx);
2471 * release .mq_kobj and sw queue's kobject now because
2472 * both share lifetime with request queue.
2474 blk_mq_sysfs_deinit(q);
2476 free_percpu(q->queue_ctx);
2479 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2481 struct request_queue *uninit_q, *q;
2483 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
2485 return ERR_PTR(-ENOMEM);
2487 q = blk_mq_init_allocated_queue(set, uninit_q);
2489 blk_cleanup_queue(uninit_q);
2493 EXPORT_SYMBOL(blk_mq_init_queue);
2495 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2497 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2499 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2500 __alignof__(struct blk_mq_hw_ctx)) !=
2501 sizeof(struct blk_mq_hw_ctx));
2503 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2504 hw_ctx_size += sizeof(struct srcu_struct);
2509 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2510 struct request_queue *q)
2513 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2515 blk_mq_sysfs_unregister(q);
2517 /* protect against switching io scheduler */
2518 mutex_lock(&q->sysfs_lock);
2519 for (i = 0; i < set->nr_hw_queues; i++) {
2525 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2526 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2531 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2538 atomic_set(&hctxs[i]->nr_active, 0);
2539 hctxs[i]->numa_node = node;
2540 hctxs[i]->queue_num = i;
2542 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2543 free_cpumask_var(hctxs[i]->cpumask);
2548 blk_mq_hctx_kobj_init(hctxs[i]);
2550 for (j = i; j < q->nr_hw_queues; j++) {
2551 struct blk_mq_hw_ctx *hctx = hctxs[j];
2555 blk_mq_free_map_and_requests(set, j);
2556 blk_mq_exit_hctx(q, set, hctx, j);
2557 kobject_put(&hctx->kobj);
2562 q->nr_hw_queues = i;
2563 mutex_unlock(&q->sysfs_lock);
2564 blk_mq_sysfs_register(q);
2567 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2568 struct request_queue *q)
2570 /* mark the queue as mq asap */
2571 q->mq_ops = set->ops;
2573 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2574 blk_mq_poll_stats_bkt,
2575 BLK_MQ_POLL_STATS_BKTS, q);
2579 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2583 /* init q->mq_kobj and sw queues' kobjects */
2584 blk_mq_sysfs_init(q);
2586 q->queue_hw_ctx = kcalloc_node(nr_cpu_ids, sizeof(*(q->queue_hw_ctx)),
2587 GFP_KERNEL, set->numa_node);
2588 if (!q->queue_hw_ctx)
2591 q->mq_map = set->mq_map;
2593 blk_mq_realloc_hw_ctxs(set, q);
2594 if (!q->nr_hw_queues)
2597 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2598 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2600 q->nr_queues = nr_cpu_ids;
2602 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2604 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2605 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
2607 q->sg_reserved_size = INT_MAX;
2609 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2610 INIT_LIST_HEAD(&q->requeue_list);
2611 spin_lock_init(&q->requeue_lock);
2613 blk_queue_make_request(q, blk_mq_make_request);
2614 if (q->mq_ops->poll)
2615 q->poll_fn = blk_mq_poll;
2618 * Do this after blk_queue_make_request() overrides it...
2620 q->nr_requests = set->queue_depth;
2623 * Default to classic polling
2627 if (set->ops->complete)
2628 blk_queue_softirq_done(q, set->ops->complete);
2630 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2631 blk_mq_add_queue_tag_set(set, q);
2632 blk_mq_map_swqueue(q);
2634 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2637 ret = elevator_init_mq(q);
2639 return ERR_PTR(ret);
2645 kfree(q->queue_hw_ctx);
2647 free_percpu(q->queue_ctx);
2650 return ERR_PTR(-ENOMEM);
2652 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2654 void blk_mq_free_queue(struct request_queue *q)
2656 struct blk_mq_tag_set *set = q->tag_set;
2658 blk_mq_del_queue_tag_set(q);
2659 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2662 /* Basically redo blk_mq_init_queue with queue frozen */
2663 static void blk_mq_queue_reinit(struct request_queue *q)
2665 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2667 blk_mq_debugfs_unregister_hctxs(q);
2668 blk_mq_sysfs_unregister(q);
2671 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2672 * we should change hctx numa_node according to the new topology (this
2673 * involves freeing and re-allocating memory, worth doing?)
2675 blk_mq_map_swqueue(q);
2677 blk_mq_sysfs_register(q);
2678 blk_mq_debugfs_register_hctxs(q);
2681 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2685 for (i = 0; i < set->nr_hw_queues; i++)
2686 if (!__blk_mq_alloc_rq_map(set, i))
2693 blk_mq_free_rq_map(set->tags[i]);
2699 * Allocate the request maps associated with this tag_set. Note that this
2700 * may reduce the depth asked for, if memory is tight. set->queue_depth
2701 * will be updated to reflect the allocated depth.
2703 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2708 depth = set->queue_depth;
2710 err = __blk_mq_alloc_rq_maps(set);
2714 set->queue_depth >>= 1;
2715 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2719 } while (set->queue_depth);
2721 if (!set->queue_depth || err) {
2722 pr_err("blk-mq: failed to allocate request map\n");
2726 if (depth != set->queue_depth)
2727 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2728 depth, set->queue_depth);
2733 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2735 if (set->ops->map_queues) {
2737 * transport .map_queues is usually done in the following
2740 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2741 * mask = get_cpu_mask(queue)
2742 * for_each_cpu(cpu, mask)
2743 * set->mq_map[cpu] = queue;
2746 * When we need to remap, the table has to be cleared for
2747 * killing stale mapping since one CPU may not be mapped
2750 blk_mq_clear_mq_map(set);
2752 return set->ops->map_queues(set);
2754 return blk_mq_map_queues(set);
2758 * Alloc a tag set to be associated with one or more request queues.
2759 * May fail with EINVAL for various error conditions. May adjust the
2760 * requested depth down, if it's too large. In that case, the set
2761 * value will be stored in set->queue_depth.
2763 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2767 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2769 if (!set->nr_hw_queues)
2771 if (!set->queue_depth)
2773 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2776 if (!set->ops->queue_rq)
2779 if (!set->ops->get_budget ^ !set->ops->put_budget)
2782 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2783 pr_info("blk-mq: reduced tag depth to %u\n",
2785 set->queue_depth = BLK_MQ_MAX_DEPTH;
2789 * If a crashdump is active, then we are potentially in a very
2790 * memory constrained environment. Limit us to 1 queue and
2791 * 64 tags to prevent using too much memory.
2793 if (is_kdump_kernel()) {
2794 set->nr_hw_queues = 1;
2795 set->queue_depth = min(64U, set->queue_depth);
2798 * There is no use for more h/w queues than cpus.
2800 if (set->nr_hw_queues > nr_cpu_ids)
2801 set->nr_hw_queues = nr_cpu_ids;
2803 set->tags = kcalloc_node(nr_cpu_ids, sizeof(struct blk_mq_tags *),
2804 GFP_KERNEL, set->numa_node);
2809 set->mq_map = kcalloc_node(nr_cpu_ids, sizeof(*set->mq_map),
2810 GFP_KERNEL, set->numa_node);
2814 ret = blk_mq_update_queue_map(set);
2816 goto out_free_mq_map;
2818 ret = blk_mq_alloc_rq_maps(set);
2820 goto out_free_mq_map;
2822 mutex_init(&set->tag_list_lock);
2823 INIT_LIST_HEAD(&set->tag_list);
2835 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2837 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2841 for (i = 0; i < nr_cpu_ids; i++)
2842 blk_mq_free_map_and_requests(set, i);
2850 EXPORT_SYMBOL(blk_mq_free_tag_set);
2852 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2854 struct blk_mq_tag_set *set = q->tag_set;
2855 struct blk_mq_hw_ctx *hctx;
2861 blk_mq_freeze_queue(q);
2862 blk_mq_quiesce_queue(q);
2865 queue_for_each_hw_ctx(q, hctx, i) {
2869 * If we're using an MQ scheduler, just update the scheduler
2870 * queue depth. This is similar to what the old code would do.
2872 if (!hctx->sched_tags) {
2873 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2876 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2884 q->nr_requests = nr;
2886 blk_mq_unquiesce_queue(q);
2887 blk_mq_unfreeze_queue(q);
2893 * request_queue and elevator_type pair.
2894 * It is just used by __blk_mq_update_nr_hw_queues to cache
2895 * the elevator_type associated with a request_queue.
2897 struct blk_mq_qe_pair {
2898 struct list_head node;
2899 struct request_queue *q;
2900 struct elevator_type *type;
2904 * Cache the elevator_type in qe pair list and switch the
2905 * io scheduler to 'none'
2907 static bool blk_mq_elv_switch_none(struct list_head *head,
2908 struct request_queue *q)
2910 struct blk_mq_qe_pair *qe;
2915 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2919 INIT_LIST_HEAD(&qe->node);
2921 qe->type = q->elevator->type;
2922 list_add(&qe->node, head);
2924 mutex_lock(&q->sysfs_lock);
2926 * After elevator_switch_mq, the previous elevator_queue will be
2927 * released by elevator_release. The reference of the io scheduler
2928 * module get by elevator_get will also be put. So we need to get
2929 * a reference of the io scheduler module here to prevent it to be
2932 __module_get(qe->type->elevator_owner);
2933 elevator_switch_mq(q, NULL);
2934 mutex_unlock(&q->sysfs_lock);
2939 static void blk_mq_elv_switch_back(struct list_head *head,
2940 struct request_queue *q)
2942 struct blk_mq_qe_pair *qe;
2943 struct elevator_type *t = NULL;
2945 list_for_each_entry(qe, head, node)
2954 list_del(&qe->node);
2957 mutex_lock(&q->sysfs_lock);
2958 elevator_switch_mq(q, t);
2959 mutex_unlock(&q->sysfs_lock);
2962 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2965 struct request_queue *q;
2968 lockdep_assert_held(&set->tag_list_lock);
2970 if (nr_hw_queues > nr_cpu_ids)
2971 nr_hw_queues = nr_cpu_ids;
2972 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2975 list_for_each_entry(q, &set->tag_list, tag_set_list)
2976 blk_mq_freeze_queue(q);
2978 * Sync with blk_mq_queue_tag_busy_iter.
2982 * Switch IO scheduler to 'none', cleaning up the data associated
2983 * with the previous scheduler. We will switch back once we are done
2984 * updating the new sw to hw queue mappings.
2986 list_for_each_entry(q, &set->tag_list, tag_set_list)
2987 if (!blk_mq_elv_switch_none(&head, q))
2990 set->nr_hw_queues = nr_hw_queues;
2991 blk_mq_update_queue_map(set);
2992 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2993 blk_mq_realloc_hw_ctxs(set, q);
2994 blk_mq_queue_reinit(q);
2998 list_for_each_entry(q, &set->tag_list, tag_set_list)
2999 blk_mq_elv_switch_back(&head, q);
3001 list_for_each_entry(q, &set->tag_list, tag_set_list)
3002 blk_mq_unfreeze_queue(q);
3005 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3007 mutex_lock(&set->tag_list_lock);
3008 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3009 mutex_unlock(&set->tag_list_lock);
3011 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3013 /* Enable polling stats and return whether they were already enabled. */
3014 static bool blk_poll_stats_enable(struct request_queue *q)
3016 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3017 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3019 blk_stat_add_callback(q, q->poll_cb);
3023 static void blk_mq_poll_stats_start(struct request_queue *q)
3026 * We don't arm the callback if polling stats are not enabled or the
3027 * callback is already active.
3029 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3030 blk_stat_is_active(q->poll_cb))
3033 blk_stat_activate_msecs(q->poll_cb, 100);
3036 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3038 struct request_queue *q = cb->data;
3041 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3042 if (cb->stat[bucket].nr_samples)
3043 q->poll_stat[bucket] = cb->stat[bucket];
3047 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3048 struct blk_mq_hw_ctx *hctx,
3051 unsigned long ret = 0;
3055 * If stats collection isn't on, don't sleep but turn it on for
3058 if (!blk_poll_stats_enable(q))
3062 * As an optimistic guess, use half of the mean service time
3063 * for this type of request. We can (and should) make this smarter.
3064 * For instance, if the completion latencies are tight, we can
3065 * get closer than just half the mean. This is especially
3066 * important on devices where the completion latencies are longer
3067 * than ~10 usec. We do use the stats for the relevant IO size
3068 * if available which does lead to better estimates.
3070 bucket = blk_mq_poll_stats_bkt(rq);
3074 if (q->poll_stat[bucket].nr_samples)
3075 ret = (q->poll_stat[bucket].mean + 1) / 2;
3080 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3081 struct blk_mq_hw_ctx *hctx,
3084 struct hrtimer_sleeper hs;
3085 enum hrtimer_mode mode;
3089 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3095 * -1: don't ever hybrid sleep
3096 * 0: use half of prev avg
3097 * >0: use this specific value
3099 if (q->poll_nsec == -1)
3101 else if (q->poll_nsec > 0)
3102 nsecs = q->poll_nsec;
3104 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3109 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3112 * This will be replaced with the stats tracking code, using
3113 * 'avg_completion_time / 2' as the pre-sleep target.
3117 mode = HRTIMER_MODE_REL;
3118 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3119 hrtimer_set_expires(&hs.timer, kt);
3121 hrtimer_init_sleeper(&hs, current);
3123 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3125 set_current_state(TASK_UNINTERRUPTIBLE);
3126 hrtimer_start_expires(&hs.timer, mode);
3129 hrtimer_cancel(&hs.timer);
3130 mode = HRTIMER_MODE_ABS;
3131 } while (hs.task && !signal_pending(current));
3133 __set_current_state(TASK_RUNNING);
3134 destroy_hrtimer_on_stack(&hs.timer);
3138 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
3140 struct request_queue *q = hctx->queue;
3144 * If we sleep, have the caller restart the poll loop to reset
3145 * the state. Like for the other success return cases, the
3146 * caller is responsible for checking if the IO completed. If
3147 * the IO isn't complete, we'll get called again and will go
3148 * straight to the busy poll loop.
3150 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3153 hctx->poll_considered++;
3155 state = current->state;
3156 while (!need_resched()) {
3159 hctx->poll_invoked++;
3161 ret = q->mq_ops->poll(hctx, rq->tag);
3163 hctx->poll_success++;
3164 set_current_state(TASK_RUNNING);
3168 if (signal_pending_state(state, current))
3169 set_current_state(TASK_RUNNING);
3171 if (current->state == TASK_RUNNING)
3178 __set_current_state(TASK_RUNNING);
3182 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
3184 struct blk_mq_hw_ctx *hctx;
3187 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3190 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3191 if (!blk_qc_t_is_internal(cookie))
3192 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3194 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3196 * With scheduling, if the request has completed, we'll
3197 * get a NULL return here, as we clear the sched tag when
3198 * that happens. The request still remains valid, like always,
3199 * so we should be safe with just the NULL check.
3205 return __blk_mq_poll(hctx, rq);
3208 static int __init blk_mq_init(void)
3210 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3211 blk_mq_hctx_notify_dead);
3214 subsys_initcall(blk_mq_init);