1 // SPDX-License-Identifier: GPL-2.0
3 * Block multiqueue core code
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
33 #include <trace/events/block.h>
35 #include <linux/blk-mq.h>
36 #include <linux/t10-pi.h>
39 #include "blk-mq-debugfs.h"
40 #include "blk-mq-tag.h"
43 #include "blk-mq-sched.h"
44 #include "blk-rq-qos.h"
45 #include "blk-ioprio.h"
47 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
49 static void blk_mq_poll_stats_start(struct request_queue *q);
50 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
52 static int blk_mq_poll_stats_bkt(const struct request *rq)
54 int ddir, sectors, bucket;
56 ddir = rq_data_dir(rq);
57 sectors = blk_rq_stats_sectors(rq);
59 bucket = ddir + 2 * ilog2(sectors);
63 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
64 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
69 #define BLK_QC_T_SHIFT 16
70 #define BLK_QC_T_INTERNAL (1U << 31)
72 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
75 return xa_load(&q->hctx_table,
76 (qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT);
79 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
82 unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
84 if (qc & BLK_QC_T_INTERNAL)
85 return blk_mq_tag_to_rq(hctx->sched_tags, tag);
86 return blk_mq_tag_to_rq(hctx->tags, tag);
89 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
91 return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
93 rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
97 * Check if any of the ctx, dispatch list or elevator
98 * have pending work in this hardware queue.
100 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
102 return !list_empty_careful(&hctx->dispatch) ||
103 sbitmap_any_bit_set(&hctx->ctx_map) ||
104 blk_mq_sched_has_work(hctx);
108 * Mark this ctx as having pending work in this hardware queue
110 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
111 struct blk_mq_ctx *ctx)
113 const int bit = ctx->index_hw[hctx->type];
115 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
116 sbitmap_set_bit(&hctx->ctx_map, bit);
119 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
120 struct blk_mq_ctx *ctx)
122 const int bit = ctx->index_hw[hctx->type];
124 sbitmap_clear_bit(&hctx->ctx_map, bit);
128 struct block_device *part;
129 unsigned int inflight[2];
132 static bool blk_mq_check_inflight(struct request *rq, void *priv)
134 struct mq_inflight *mi = priv;
136 if (rq->part && blk_do_io_stat(rq) &&
137 (!mi->part->bd_partno || rq->part == mi->part) &&
138 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
139 mi->inflight[rq_data_dir(rq)]++;
144 unsigned int blk_mq_in_flight(struct request_queue *q,
145 struct block_device *part)
147 struct mq_inflight mi = { .part = part };
149 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
151 return mi.inflight[0] + mi.inflight[1];
154 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
155 unsigned int inflight[2])
157 struct mq_inflight mi = { .part = part };
159 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
160 inflight[0] = mi.inflight[0];
161 inflight[1] = mi.inflight[1];
164 void blk_freeze_queue_start(struct request_queue *q)
166 mutex_lock(&q->mq_freeze_lock);
167 if (++q->mq_freeze_depth == 1) {
168 percpu_ref_kill(&q->q_usage_counter);
169 mutex_unlock(&q->mq_freeze_lock);
171 blk_mq_run_hw_queues(q, false);
173 mutex_unlock(&q->mq_freeze_lock);
176 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
178 void blk_mq_freeze_queue_wait(struct request_queue *q)
180 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
182 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
184 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
185 unsigned long timeout)
187 return wait_event_timeout(q->mq_freeze_wq,
188 percpu_ref_is_zero(&q->q_usage_counter),
191 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
194 * Guarantee no request is in use, so we can change any data structure of
195 * the queue afterward.
197 void blk_freeze_queue(struct request_queue *q)
200 * In the !blk_mq case we are only calling this to kill the
201 * q_usage_counter, otherwise this increases the freeze depth
202 * and waits for it to return to zero. For this reason there is
203 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
204 * exported to drivers as the only user for unfreeze is blk_mq.
206 blk_freeze_queue_start(q);
207 blk_mq_freeze_queue_wait(q);
210 void blk_mq_freeze_queue(struct request_queue *q)
213 * ...just an alias to keep freeze and unfreeze actions balanced
214 * in the blk_mq_* namespace
218 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
220 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
222 mutex_lock(&q->mq_freeze_lock);
224 q->q_usage_counter.data->force_atomic = true;
225 q->mq_freeze_depth--;
226 WARN_ON_ONCE(q->mq_freeze_depth < 0);
227 if (!q->mq_freeze_depth) {
228 percpu_ref_resurrect(&q->q_usage_counter);
229 wake_up_all(&q->mq_freeze_wq);
231 mutex_unlock(&q->mq_freeze_lock);
234 void blk_mq_unfreeze_queue(struct request_queue *q)
236 __blk_mq_unfreeze_queue(q, false);
238 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
241 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
242 * mpt3sas driver such that this function can be removed.
244 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
248 spin_lock_irqsave(&q->queue_lock, flags);
249 if (!q->quiesce_depth++)
250 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
251 spin_unlock_irqrestore(&q->queue_lock, flags);
253 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
256 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
257 * @set: tag_set to wait on
259 * Note: it is driver's responsibility for making sure that quiesce has
260 * been started on or more of the request_queues of the tag_set. This
261 * function only waits for the quiesce on those request_queues that had
262 * the quiesce flag set using blk_mq_quiesce_queue_nowait.
264 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
266 if (set->flags & BLK_MQ_F_BLOCKING)
267 synchronize_srcu(set->srcu);
271 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
274 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
277 * Note: this function does not prevent that the struct request end_io()
278 * callback function is invoked. Once this function is returned, we make
279 * sure no dispatch can happen until the queue is unquiesced via
280 * blk_mq_unquiesce_queue().
282 void blk_mq_quiesce_queue(struct request_queue *q)
284 blk_mq_quiesce_queue_nowait(q);
285 /* nothing to wait for non-mq queues */
287 blk_mq_wait_quiesce_done(q->tag_set);
289 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
292 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
295 * This function recovers queue into the state before quiescing
296 * which is done by blk_mq_quiesce_queue.
298 void blk_mq_unquiesce_queue(struct request_queue *q)
301 bool run_queue = false;
303 spin_lock_irqsave(&q->queue_lock, flags);
304 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
306 } else if (!--q->quiesce_depth) {
307 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
310 spin_unlock_irqrestore(&q->queue_lock, flags);
312 /* dispatch requests which are inserted during quiescing */
314 blk_mq_run_hw_queues(q, true);
316 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
318 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
320 struct request_queue *q;
322 mutex_lock(&set->tag_list_lock);
323 list_for_each_entry(q, &set->tag_list, tag_set_list) {
324 if (!blk_queue_skip_tagset_quiesce(q))
325 blk_mq_quiesce_queue_nowait(q);
327 blk_mq_wait_quiesce_done(set);
328 mutex_unlock(&set->tag_list_lock);
330 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
332 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
334 struct request_queue *q;
336 mutex_lock(&set->tag_list_lock);
337 list_for_each_entry(q, &set->tag_list, tag_set_list) {
338 if (!blk_queue_skip_tagset_quiesce(q))
339 blk_mq_unquiesce_queue(q);
341 mutex_unlock(&set->tag_list_lock);
343 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
345 void blk_mq_wake_waiters(struct request_queue *q)
347 struct blk_mq_hw_ctx *hctx;
350 queue_for_each_hw_ctx(q, hctx, i)
351 if (blk_mq_hw_queue_mapped(hctx))
352 blk_mq_tag_wakeup_all(hctx->tags, true);
355 void blk_rq_init(struct request_queue *q, struct request *rq)
357 memset(rq, 0, sizeof(*rq));
359 INIT_LIST_HEAD(&rq->queuelist);
361 rq->__sector = (sector_t) -1;
362 INIT_HLIST_NODE(&rq->hash);
363 RB_CLEAR_NODE(&rq->rb_node);
364 rq->tag = BLK_MQ_NO_TAG;
365 rq->internal_tag = BLK_MQ_NO_TAG;
366 rq->start_time_ns = ktime_get_ns();
368 blk_crypto_rq_set_defaults(rq);
370 EXPORT_SYMBOL(blk_rq_init);
372 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
373 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
375 struct blk_mq_ctx *ctx = data->ctx;
376 struct blk_mq_hw_ctx *hctx = data->hctx;
377 struct request_queue *q = data->q;
378 struct request *rq = tags->static_rqs[tag];
383 rq->cmd_flags = data->cmd_flags;
385 if (data->flags & BLK_MQ_REQ_PM)
386 data->rq_flags |= RQF_PM;
387 if (blk_queue_io_stat(q))
388 data->rq_flags |= RQF_IO_STAT;
389 rq->rq_flags = data->rq_flags;
391 if (!(data->rq_flags & RQF_ELV)) {
393 rq->internal_tag = BLK_MQ_NO_TAG;
395 rq->tag = BLK_MQ_NO_TAG;
396 rq->internal_tag = tag;
400 if (blk_mq_need_time_stamp(rq))
401 rq->start_time_ns = ktime_get_ns();
403 rq->start_time_ns = 0;
405 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
406 rq->alloc_time_ns = alloc_time_ns;
408 rq->io_start_time_ns = 0;
409 rq->stats_sectors = 0;
410 rq->nr_phys_segments = 0;
411 #if defined(CONFIG_BLK_DEV_INTEGRITY)
412 rq->nr_integrity_segments = 0;
415 rq->end_io_data = NULL;
417 blk_crypto_rq_set_defaults(rq);
418 INIT_LIST_HEAD(&rq->queuelist);
419 /* tag was already set */
420 WRITE_ONCE(rq->deadline, 0);
423 if (rq->rq_flags & RQF_ELV) {
424 struct elevator_queue *e = data->q->elevator;
426 INIT_HLIST_NODE(&rq->hash);
427 RB_CLEAR_NODE(&rq->rb_node);
429 if (!op_is_flush(data->cmd_flags) &&
430 e->type->ops.prepare_request) {
431 e->type->ops.prepare_request(rq);
432 rq->rq_flags |= RQF_ELVPRIV;
439 static inline struct request *
440 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
443 unsigned int tag, tag_offset;
444 struct blk_mq_tags *tags;
446 unsigned long tag_mask;
449 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
450 if (unlikely(!tag_mask))
453 tags = blk_mq_tags_from_data(data);
454 for (i = 0; tag_mask; i++) {
455 if (!(tag_mask & (1UL << i)))
457 tag = tag_offset + i;
458 prefetch(tags->static_rqs[tag]);
459 tag_mask &= ~(1UL << i);
460 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
461 rq_list_add(data->cached_rq, rq);
464 /* caller already holds a reference, add for remainder */
465 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
468 return rq_list_pop(data->cached_rq);
471 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
473 struct request_queue *q = data->q;
474 u64 alloc_time_ns = 0;
478 /* alloc_time includes depth and tag waits */
479 if (blk_queue_rq_alloc_time(q))
480 alloc_time_ns = ktime_get_ns();
482 if (data->cmd_flags & REQ_NOWAIT)
483 data->flags |= BLK_MQ_REQ_NOWAIT;
486 struct elevator_queue *e = q->elevator;
488 data->rq_flags |= RQF_ELV;
491 * Flush/passthrough requests are special and go directly to the
492 * dispatch list. Don't include reserved tags in the
493 * limiting, as it isn't useful.
495 if (!op_is_flush(data->cmd_flags) &&
496 !blk_op_is_passthrough(data->cmd_flags) &&
497 e->type->ops.limit_depth &&
498 !(data->flags & BLK_MQ_REQ_RESERVED))
499 e->type->ops.limit_depth(data->cmd_flags, data);
503 data->ctx = blk_mq_get_ctx(q);
504 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
505 if (!(data->rq_flags & RQF_ELV))
506 blk_mq_tag_busy(data->hctx);
508 if (data->flags & BLK_MQ_REQ_RESERVED)
509 data->rq_flags |= RQF_RESV;
512 * Try batched alloc if we want more than 1 tag.
514 if (data->nr_tags > 1) {
515 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
522 * Waiting allocations only fail because of an inactive hctx. In that
523 * case just retry the hctx assignment and tag allocation as CPU hotplug
524 * should have migrated us to an online CPU by now.
526 tag = blk_mq_get_tag(data);
527 if (tag == BLK_MQ_NO_TAG) {
528 if (data->flags & BLK_MQ_REQ_NOWAIT)
531 * Give up the CPU and sleep for a random short time to
532 * ensure that thread using a realtime scheduling class
533 * are migrated off the CPU, and thus off the hctx that
540 return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
544 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
545 struct blk_plug *plug,
547 blk_mq_req_flags_t flags)
549 struct blk_mq_alloc_data data = {
553 .nr_tags = plug->nr_ios,
554 .cached_rq = &plug->cached_rq,
558 if (blk_queue_enter(q, flags))
563 rq = __blk_mq_alloc_requests(&data);
569 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
571 blk_mq_req_flags_t flags)
573 struct blk_plug *plug = current->plug;
579 if (rq_list_empty(plug->cached_rq)) {
580 if (plug->nr_ios == 1)
582 rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
586 rq = rq_list_peek(&plug->cached_rq);
587 if (!rq || rq->q != q)
590 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
592 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
595 plug->cached_rq = rq_list_next(rq);
599 INIT_LIST_HEAD(&rq->queuelist);
603 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
604 blk_mq_req_flags_t flags)
608 rq = blk_mq_alloc_cached_request(q, opf, flags);
610 struct blk_mq_alloc_data data = {
618 ret = blk_queue_enter(q, flags);
622 rq = __blk_mq_alloc_requests(&data);
627 rq->__sector = (sector_t) -1;
628 rq->bio = rq->biotail = NULL;
632 return ERR_PTR(-EWOULDBLOCK);
634 EXPORT_SYMBOL(blk_mq_alloc_request);
636 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
637 blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
639 struct blk_mq_alloc_data data = {
645 u64 alloc_time_ns = 0;
651 /* alloc_time includes depth and tag waits */
652 if (blk_queue_rq_alloc_time(q))
653 alloc_time_ns = ktime_get_ns();
656 * If the tag allocator sleeps we could get an allocation for a
657 * different hardware context. No need to complicate the low level
658 * allocator for this for the rare use case of a command tied to
661 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
662 WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
663 return ERR_PTR(-EINVAL);
665 if (hctx_idx >= q->nr_hw_queues)
666 return ERR_PTR(-EIO);
668 ret = blk_queue_enter(q, flags);
673 * Check if the hardware context is actually mapped to anything.
674 * If not tell the caller that it should skip this queue.
677 data.hctx = xa_load(&q->hctx_table, hctx_idx);
678 if (!blk_mq_hw_queue_mapped(data.hctx))
680 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
681 if (cpu >= nr_cpu_ids)
683 data.ctx = __blk_mq_get_ctx(q, cpu);
686 blk_mq_tag_busy(data.hctx);
688 data.rq_flags |= RQF_ELV;
690 if (flags & BLK_MQ_REQ_RESERVED)
691 data.rq_flags |= RQF_RESV;
694 tag = blk_mq_get_tag(&data);
695 if (tag == BLK_MQ_NO_TAG)
697 rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
700 rq->__sector = (sector_t) -1;
701 rq->bio = rq->biotail = NULL;
708 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
710 static void __blk_mq_free_request(struct request *rq)
712 struct request_queue *q = rq->q;
713 struct blk_mq_ctx *ctx = rq->mq_ctx;
714 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
715 const int sched_tag = rq->internal_tag;
717 blk_crypto_free_request(rq);
718 blk_pm_mark_last_busy(rq);
720 if (rq->tag != BLK_MQ_NO_TAG)
721 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
722 if (sched_tag != BLK_MQ_NO_TAG)
723 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
724 blk_mq_sched_restart(hctx);
728 void blk_mq_free_request(struct request *rq)
730 struct request_queue *q = rq->q;
731 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
733 if ((rq->rq_flags & RQF_ELVPRIV) &&
734 q->elevator->type->ops.finish_request)
735 q->elevator->type->ops.finish_request(rq);
737 if (rq->rq_flags & RQF_MQ_INFLIGHT)
738 __blk_mq_dec_active_requests(hctx);
740 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
741 laptop_io_completion(q->disk->bdi);
745 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
746 if (req_ref_put_and_test(rq))
747 __blk_mq_free_request(rq);
749 EXPORT_SYMBOL_GPL(blk_mq_free_request);
751 void blk_mq_free_plug_rqs(struct blk_plug *plug)
755 while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
756 blk_mq_free_request(rq);
759 void blk_dump_rq_flags(struct request *rq, char *msg)
761 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
762 rq->q->disk ? rq->q->disk->disk_name : "?",
763 (__force unsigned long long) rq->cmd_flags);
765 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
766 (unsigned long long)blk_rq_pos(rq),
767 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
768 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
769 rq->bio, rq->biotail, blk_rq_bytes(rq));
771 EXPORT_SYMBOL(blk_dump_rq_flags);
773 static void req_bio_endio(struct request *rq, struct bio *bio,
774 unsigned int nbytes, blk_status_t error)
776 if (unlikely(error)) {
777 bio->bi_status = error;
778 } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
780 * Partial zone append completions cannot be supported as the
781 * BIO fragments may end up not being written sequentially.
783 if (bio->bi_iter.bi_size != nbytes)
784 bio->bi_status = BLK_STS_IOERR;
786 bio->bi_iter.bi_sector = rq->__sector;
789 bio_advance(bio, nbytes);
791 if (unlikely(rq->rq_flags & RQF_QUIET))
792 bio_set_flag(bio, BIO_QUIET);
793 /* don't actually finish bio if it's part of flush sequence */
794 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
798 static void blk_account_io_completion(struct request *req, unsigned int bytes)
800 if (req->part && blk_do_io_stat(req)) {
801 const int sgrp = op_stat_group(req_op(req));
804 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
809 static void blk_print_req_error(struct request *req, blk_status_t status)
811 printk_ratelimited(KERN_ERR
812 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
813 "phys_seg %u prio class %u\n",
814 blk_status_to_str(status),
815 req->q->disk ? req->q->disk->disk_name : "?",
816 blk_rq_pos(req), (__force u32)req_op(req),
817 blk_op_str(req_op(req)),
818 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
819 req->nr_phys_segments,
820 IOPRIO_PRIO_CLASS(req->ioprio));
824 * Fully end IO on a request. Does not support partial completions, or
827 static void blk_complete_request(struct request *req)
829 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
830 int total_bytes = blk_rq_bytes(req);
831 struct bio *bio = req->bio;
833 trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
838 #ifdef CONFIG_BLK_DEV_INTEGRITY
839 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
840 req->q->integrity.profile->complete_fn(req, total_bytes);
843 blk_account_io_completion(req, total_bytes);
846 struct bio *next = bio->bi_next;
848 /* Completion has already been traced */
849 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
851 if (req_op(req) == REQ_OP_ZONE_APPEND)
852 bio->bi_iter.bi_sector = req->__sector;
860 * Reset counters so that the request stacking driver
861 * can find how many bytes remain in the request
871 * blk_update_request - Complete multiple bytes without completing the request
872 * @req: the request being processed
873 * @error: block status code
874 * @nr_bytes: number of bytes to complete for @req
877 * Ends I/O on a number of bytes attached to @req, but doesn't complete
878 * the request structure even if @req doesn't have leftover.
879 * If @req has leftover, sets it up for the next range of segments.
881 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
882 * %false return from this function.
885 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
886 * except in the consistency check at the end of this function.
889 * %false - this request doesn't have any more data
890 * %true - this request has more data
892 bool blk_update_request(struct request *req, blk_status_t error,
893 unsigned int nr_bytes)
897 trace_block_rq_complete(req, error, nr_bytes);
902 #ifdef CONFIG_BLK_DEV_INTEGRITY
903 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
905 req->q->integrity.profile->complete_fn(req, nr_bytes);
908 if (unlikely(error && !blk_rq_is_passthrough(req) &&
909 !(req->rq_flags & RQF_QUIET)) &&
910 !test_bit(GD_DEAD, &req->q->disk->state)) {
911 blk_print_req_error(req, error);
912 trace_block_rq_error(req, error, nr_bytes);
915 blk_account_io_completion(req, nr_bytes);
919 struct bio *bio = req->bio;
920 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
922 if (bio_bytes == bio->bi_iter.bi_size)
923 req->bio = bio->bi_next;
925 /* Completion has already been traced */
926 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
927 req_bio_endio(req, bio, bio_bytes, error);
929 total_bytes += bio_bytes;
930 nr_bytes -= bio_bytes;
941 * Reset counters so that the request stacking driver
942 * can find how many bytes remain in the request
949 req->__data_len -= total_bytes;
951 /* update sector only for requests with clear definition of sector */
952 if (!blk_rq_is_passthrough(req))
953 req->__sector += total_bytes >> 9;
955 /* mixed attributes always follow the first bio */
956 if (req->rq_flags & RQF_MIXED_MERGE) {
957 req->cmd_flags &= ~REQ_FAILFAST_MASK;
958 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
961 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
963 * If total number of sectors is less than the first segment
964 * size, something has gone terribly wrong.
966 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
967 blk_dump_rq_flags(req, "request botched");
968 req->__data_len = blk_rq_cur_bytes(req);
971 /* recalculate the number of segments */
972 req->nr_phys_segments = blk_recalc_rq_segments(req);
977 EXPORT_SYMBOL_GPL(blk_update_request);
979 static void __blk_account_io_done(struct request *req, u64 now)
981 const int sgrp = op_stat_group(req_op(req));
984 update_io_ticks(req->part, jiffies, true);
985 part_stat_inc(req->part, ios[sgrp]);
986 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
990 static inline void blk_account_io_done(struct request *req, u64 now)
993 * Account IO completion. flush_rq isn't accounted as a
994 * normal IO on queueing nor completion. Accounting the
995 * containing request is enough.
997 if (blk_do_io_stat(req) && req->part &&
998 !(req->rq_flags & RQF_FLUSH_SEQ))
999 __blk_account_io_done(req, now);
1002 static void __blk_account_io_start(struct request *rq)
1005 * All non-passthrough requests are created from a bio with one
1006 * exception: when a flush command that is part of a flush sequence
1007 * generated by the state machine in blk-flush.c is cloned onto the
1008 * lower device by dm-multipath we can get here without a bio.
1011 rq->part = rq->bio->bi_bdev;
1013 rq->part = rq->q->disk->part0;
1016 update_io_ticks(rq->part, jiffies, false);
1020 static inline void blk_account_io_start(struct request *req)
1022 if (blk_do_io_stat(req))
1023 __blk_account_io_start(req);
1026 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1028 if (rq->rq_flags & RQF_STATS) {
1029 blk_mq_poll_stats_start(rq->q);
1030 blk_stat_add(rq, now);
1033 blk_mq_sched_completed_request(rq, now);
1034 blk_account_io_done(rq, now);
1037 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1039 if (blk_mq_need_time_stamp(rq))
1040 __blk_mq_end_request_acct(rq, ktime_get_ns());
1043 rq_qos_done(rq->q, rq);
1044 if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1045 blk_mq_free_request(rq);
1047 blk_mq_free_request(rq);
1050 EXPORT_SYMBOL(__blk_mq_end_request);
1052 void blk_mq_end_request(struct request *rq, blk_status_t error)
1054 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1056 __blk_mq_end_request(rq, error);
1058 EXPORT_SYMBOL(blk_mq_end_request);
1060 #define TAG_COMP_BATCH 32
1062 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1063 int *tag_array, int nr_tags)
1065 struct request_queue *q = hctx->queue;
1068 * All requests should have been marked as RQF_MQ_INFLIGHT, so
1069 * update hctx->nr_active in batch
1071 if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
1072 __blk_mq_sub_active_requests(hctx, nr_tags);
1074 blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1075 percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1078 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1080 int tags[TAG_COMP_BATCH], nr_tags = 0;
1081 struct blk_mq_hw_ctx *cur_hctx = NULL;
1086 now = ktime_get_ns();
1088 while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1090 prefetch(rq->rq_next);
1092 blk_complete_request(rq);
1094 __blk_mq_end_request_acct(rq, now);
1096 rq_qos_done(rq->q, rq);
1099 * If end_io handler returns NONE, then it still has
1100 * ownership of the request.
1102 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1105 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1106 if (!req_ref_put_and_test(rq))
1109 blk_crypto_free_request(rq);
1110 blk_pm_mark_last_busy(rq);
1112 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1114 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1116 cur_hctx = rq->mq_hctx;
1118 tags[nr_tags++] = rq->tag;
1122 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1124 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1126 static void blk_complete_reqs(struct llist_head *list)
1128 struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1129 struct request *rq, *next;
1131 llist_for_each_entry_safe(rq, next, entry, ipi_list)
1132 rq->q->mq_ops->complete(rq);
1135 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1137 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1140 static int blk_softirq_cpu_dead(unsigned int cpu)
1142 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1146 static void __blk_mq_complete_request_remote(void *data)
1148 __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1151 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1153 int cpu = raw_smp_processor_id();
1155 if (!IS_ENABLED(CONFIG_SMP) ||
1156 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1159 * With force threaded interrupts enabled, raising softirq from an SMP
1160 * function call will always result in waking the ksoftirqd thread.
1161 * This is probably worse than completing the request on a different
1164 if (force_irqthreads())
1167 /* same CPU or cache domain? Complete locally */
1168 if (cpu == rq->mq_ctx->cpu ||
1169 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1170 cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1173 /* don't try to IPI to an offline CPU */
1174 return cpu_online(rq->mq_ctx->cpu);
1177 static void blk_mq_complete_send_ipi(struct request *rq)
1179 struct llist_head *list;
1182 cpu = rq->mq_ctx->cpu;
1183 list = &per_cpu(blk_cpu_done, cpu);
1184 if (llist_add(&rq->ipi_list, list)) {
1185 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1186 smp_call_function_single_async(cpu, &rq->csd);
1190 static void blk_mq_raise_softirq(struct request *rq)
1192 struct llist_head *list;
1195 list = this_cpu_ptr(&blk_cpu_done);
1196 if (llist_add(&rq->ipi_list, list))
1197 raise_softirq(BLOCK_SOFTIRQ);
1201 bool blk_mq_complete_request_remote(struct request *rq)
1203 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1206 * For request which hctx has only one ctx mapping,
1207 * or a polled request, always complete locally,
1208 * it's pointless to redirect the completion.
1210 if (rq->mq_hctx->nr_ctx == 1 ||
1211 rq->cmd_flags & REQ_POLLED)
1214 if (blk_mq_complete_need_ipi(rq)) {
1215 blk_mq_complete_send_ipi(rq);
1219 if (rq->q->nr_hw_queues == 1) {
1220 blk_mq_raise_softirq(rq);
1225 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1228 * blk_mq_complete_request - end I/O on a request
1229 * @rq: the request being processed
1232 * Complete a request by scheduling the ->complete_rq operation.
1234 void blk_mq_complete_request(struct request *rq)
1236 if (!blk_mq_complete_request_remote(rq))
1237 rq->q->mq_ops->complete(rq);
1239 EXPORT_SYMBOL(blk_mq_complete_request);
1242 * blk_mq_start_request - Start processing a request
1243 * @rq: Pointer to request to be started
1245 * Function used by device drivers to notify the block layer that a request
1246 * is going to be processed now, so blk layer can do proper initializations
1247 * such as starting the timeout timer.
1249 void blk_mq_start_request(struct request *rq)
1251 struct request_queue *q = rq->q;
1253 trace_block_rq_issue(rq);
1255 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1256 rq->io_start_time_ns = ktime_get_ns();
1257 rq->stats_sectors = blk_rq_sectors(rq);
1258 rq->rq_flags |= RQF_STATS;
1259 rq_qos_issue(q, rq);
1262 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1265 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1267 #ifdef CONFIG_BLK_DEV_INTEGRITY
1268 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1269 q->integrity.profile->prepare_fn(rq);
1271 if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1272 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1274 EXPORT_SYMBOL(blk_mq_start_request);
1277 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1278 * queues. This is important for md arrays to benefit from merging
1281 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1283 if (plug->multiple_queues)
1284 return BLK_MAX_REQUEST_COUNT * 2;
1285 return BLK_MAX_REQUEST_COUNT;
1288 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1290 struct request *last = rq_list_peek(&plug->mq_list);
1292 if (!plug->rq_count) {
1293 trace_block_plug(rq->q);
1294 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1295 (!blk_queue_nomerges(rq->q) &&
1296 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1297 blk_mq_flush_plug_list(plug, false);
1299 trace_block_plug(rq->q);
1302 if (!plug->multiple_queues && last && last->q != rq->q)
1303 plug->multiple_queues = true;
1304 if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
1305 plug->has_elevator = true;
1307 rq_list_add(&plug->mq_list, rq);
1312 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1313 * @rq: request to insert
1314 * @at_head: insert request at head or tail of queue
1317 * Insert a fully prepared request at the back of the I/O scheduler queue
1318 * for execution. Don't wait for completion.
1321 * This function will invoke @done directly if the queue is dead.
1323 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1325 WARN_ON(irqs_disabled());
1326 WARN_ON(!blk_rq_is_passthrough(rq));
1328 blk_account_io_start(rq);
1331 * As plugging can be enabled for passthrough requests on a zoned
1332 * device, directly accessing the plug instead of using blk_mq_plug()
1333 * should not have any consequences.
1336 blk_add_rq_to_plug(current->plug, rq);
1338 blk_mq_sched_insert_request(rq, at_head, true, false);
1340 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1342 struct blk_rq_wait {
1343 struct completion done;
1347 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1349 struct blk_rq_wait *wait = rq->end_io_data;
1352 complete(&wait->done);
1353 return RQ_END_IO_NONE;
1356 bool blk_rq_is_poll(struct request *rq)
1360 if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1362 if (WARN_ON_ONCE(!rq->bio))
1366 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1368 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1371 bio_poll(rq->bio, NULL, 0);
1373 } while (!completion_done(wait));
1377 * blk_execute_rq - insert a request into queue for execution
1378 * @rq: request to insert
1379 * @at_head: insert request at head or tail of queue
1382 * Insert a fully prepared request at the back of the I/O scheduler queue
1383 * for execution and wait for completion.
1384 * Return: The blk_status_t result provided to blk_mq_end_request().
1386 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1388 struct blk_rq_wait wait = {
1389 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1392 WARN_ON(irqs_disabled());
1393 WARN_ON(!blk_rq_is_passthrough(rq));
1395 rq->end_io_data = &wait;
1396 rq->end_io = blk_end_sync_rq;
1398 blk_account_io_start(rq);
1399 blk_mq_sched_insert_request(rq, at_head, true, false);
1401 if (blk_rq_is_poll(rq)) {
1402 blk_rq_poll_completion(rq, &wait.done);
1405 * Prevent hang_check timer from firing at us during very long
1408 unsigned long hang_check = sysctl_hung_task_timeout_secs;
1411 while (!wait_for_completion_io_timeout(&wait.done,
1412 hang_check * (HZ/2)))
1415 wait_for_completion_io(&wait.done);
1420 EXPORT_SYMBOL(blk_execute_rq);
1422 static void __blk_mq_requeue_request(struct request *rq)
1424 struct request_queue *q = rq->q;
1426 blk_mq_put_driver_tag(rq);
1428 trace_block_rq_requeue(rq);
1429 rq_qos_requeue(q, rq);
1431 if (blk_mq_request_started(rq)) {
1432 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1433 rq->rq_flags &= ~RQF_TIMED_OUT;
1437 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1439 __blk_mq_requeue_request(rq);
1441 /* this request will be re-inserted to io scheduler queue */
1442 blk_mq_sched_requeue_request(rq);
1444 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1446 EXPORT_SYMBOL(blk_mq_requeue_request);
1448 static void blk_mq_requeue_work(struct work_struct *work)
1450 struct request_queue *q =
1451 container_of(work, struct request_queue, requeue_work.work);
1453 struct request *rq, *next;
1455 spin_lock_irq(&q->requeue_lock);
1456 list_splice_init(&q->requeue_list, &rq_list);
1457 spin_unlock_irq(&q->requeue_lock);
1459 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1460 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1463 rq->rq_flags &= ~RQF_SOFTBARRIER;
1464 list_del_init(&rq->queuelist);
1466 * If RQF_DONTPREP, rq has contained some driver specific
1467 * data, so insert it to hctx dispatch list to avoid any
1470 if (rq->rq_flags & RQF_DONTPREP)
1471 blk_mq_request_bypass_insert(rq, false, false);
1473 blk_mq_sched_insert_request(rq, true, false, false);
1476 while (!list_empty(&rq_list)) {
1477 rq = list_entry(rq_list.next, struct request, queuelist);
1478 list_del_init(&rq->queuelist);
1479 blk_mq_sched_insert_request(rq, false, false, false);
1482 blk_mq_run_hw_queues(q, false);
1485 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1486 bool kick_requeue_list)
1488 struct request_queue *q = rq->q;
1489 unsigned long flags;
1492 * We abuse this flag that is otherwise used by the I/O scheduler to
1493 * request head insertion from the workqueue.
1495 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1497 spin_lock_irqsave(&q->requeue_lock, flags);
1499 rq->rq_flags |= RQF_SOFTBARRIER;
1500 list_add(&rq->queuelist, &q->requeue_list);
1502 list_add_tail(&rq->queuelist, &q->requeue_list);
1504 spin_unlock_irqrestore(&q->requeue_lock, flags);
1506 if (kick_requeue_list)
1507 blk_mq_kick_requeue_list(q);
1510 void blk_mq_kick_requeue_list(struct request_queue *q)
1512 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1514 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1516 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1517 unsigned long msecs)
1519 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1520 msecs_to_jiffies(msecs));
1522 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1524 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1527 * If we find a request that isn't idle we know the queue is busy
1528 * as it's checked in the iter.
1529 * Return false to stop the iteration.
1531 if (blk_mq_request_started(rq)) {
1541 bool blk_mq_queue_inflight(struct request_queue *q)
1545 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1548 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1550 static void blk_mq_rq_timed_out(struct request *req)
1552 req->rq_flags |= RQF_TIMED_OUT;
1553 if (req->q->mq_ops->timeout) {
1554 enum blk_eh_timer_return ret;
1556 ret = req->q->mq_ops->timeout(req);
1557 if (ret == BLK_EH_DONE)
1559 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1565 struct blk_expired_data {
1566 bool has_timedout_rq;
1568 unsigned long timeout_start;
1571 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1573 unsigned long deadline;
1575 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1577 if (rq->rq_flags & RQF_TIMED_OUT)
1580 deadline = READ_ONCE(rq->deadline);
1581 if (time_after_eq(expired->timeout_start, deadline))
1584 if (expired->next == 0)
1585 expired->next = deadline;
1586 else if (time_after(expired->next, deadline))
1587 expired->next = deadline;
1591 void blk_mq_put_rq_ref(struct request *rq)
1593 if (is_flush_rq(rq)) {
1594 if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1595 blk_mq_free_request(rq);
1596 } else if (req_ref_put_and_test(rq)) {
1597 __blk_mq_free_request(rq);
1601 static bool blk_mq_check_expired(struct request *rq, void *priv)
1603 struct blk_expired_data *expired = priv;
1606 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1607 * be reallocated underneath the timeout handler's processing, then
1608 * the expire check is reliable. If the request is not expired, then
1609 * it was completed and reallocated as a new request after returning
1610 * from blk_mq_check_expired().
1612 if (blk_mq_req_expired(rq, expired)) {
1613 expired->has_timedout_rq = true;
1619 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1621 struct blk_expired_data *expired = priv;
1623 if (blk_mq_req_expired(rq, expired))
1624 blk_mq_rq_timed_out(rq);
1628 static void blk_mq_timeout_work(struct work_struct *work)
1630 struct request_queue *q =
1631 container_of(work, struct request_queue, timeout_work);
1632 struct blk_expired_data expired = {
1633 .timeout_start = jiffies,
1635 struct blk_mq_hw_ctx *hctx;
1638 /* A deadlock might occur if a request is stuck requiring a
1639 * timeout at the same time a queue freeze is waiting
1640 * completion, since the timeout code would not be able to
1641 * acquire the queue reference here.
1643 * That's why we don't use blk_queue_enter here; instead, we use
1644 * percpu_ref_tryget directly, because we need to be able to
1645 * obtain a reference even in the short window between the queue
1646 * starting to freeze, by dropping the first reference in
1647 * blk_freeze_queue_start, and the moment the last request is
1648 * consumed, marked by the instant q_usage_counter reaches
1651 if (!percpu_ref_tryget(&q->q_usage_counter))
1654 /* check if there is any timed-out request */
1655 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1656 if (expired.has_timedout_rq) {
1658 * Before walking tags, we must ensure any submit started
1659 * before the current time has finished. Since the submit
1660 * uses srcu or rcu, wait for a synchronization point to
1661 * ensure all running submits have finished
1663 blk_mq_wait_quiesce_done(q->tag_set);
1666 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1669 if (expired.next != 0) {
1670 mod_timer(&q->timeout, expired.next);
1673 * Request timeouts are handled as a forward rolling timer. If
1674 * we end up here it means that no requests are pending and
1675 * also that no request has been pending for a while. Mark
1676 * each hctx as idle.
1678 queue_for_each_hw_ctx(q, hctx, i) {
1679 /* the hctx may be unmapped, so check it here */
1680 if (blk_mq_hw_queue_mapped(hctx))
1681 blk_mq_tag_idle(hctx);
1687 struct flush_busy_ctx_data {
1688 struct blk_mq_hw_ctx *hctx;
1689 struct list_head *list;
1692 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1694 struct flush_busy_ctx_data *flush_data = data;
1695 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1696 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1697 enum hctx_type type = hctx->type;
1699 spin_lock(&ctx->lock);
1700 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1701 sbitmap_clear_bit(sb, bitnr);
1702 spin_unlock(&ctx->lock);
1707 * Process software queues that have been marked busy, splicing them
1708 * to the for-dispatch
1710 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1712 struct flush_busy_ctx_data data = {
1717 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1719 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1721 struct dispatch_rq_data {
1722 struct blk_mq_hw_ctx *hctx;
1726 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1729 struct dispatch_rq_data *dispatch_data = data;
1730 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1731 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1732 enum hctx_type type = hctx->type;
1734 spin_lock(&ctx->lock);
1735 if (!list_empty(&ctx->rq_lists[type])) {
1736 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1737 list_del_init(&dispatch_data->rq->queuelist);
1738 if (list_empty(&ctx->rq_lists[type]))
1739 sbitmap_clear_bit(sb, bitnr);
1741 spin_unlock(&ctx->lock);
1743 return !dispatch_data->rq;
1746 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1747 struct blk_mq_ctx *start)
1749 unsigned off = start ? start->index_hw[hctx->type] : 0;
1750 struct dispatch_rq_data data = {
1755 __sbitmap_for_each_set(&hctx->ctx_map, off,
1756 dispatch_rq_from_ctx, &data);
1761 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1763 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1764 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1767 blk_mq_tag_busy(rq->mq_hctx);
1769 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1770 bt = &rq->mq_hctx->tags->breserved_tags;
1773 if (!hctx_may_queue(rq->mq_hctx, bt))
1777 tag = __sbitmap_queue_get(bt);
1778 if (tag == BLK_MQ_NO_TAG)
1781 rq->tag = tag + tag_offset;
1785 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1787 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1790 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1791 !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1792 rq->rq_flags |= RQF_MQ_INFLIGHT;
1793 __blk_mq_inc_active_requests(hctx);
1795 hctx->tags->rqs[rq->tag] = rq;
1799 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1800 int flags, void *key)
1802 struct blk_mq_hw_ctx *hctx;
1804 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1806 spin_lock(&hctx->dispatch_wait_lock);
1807 if (!list_empty(&wait->entry)) {
1808 struct sbitmap_queue *sbq;
1810 list_del_init(&wait->entry);
1811 sbq = &hctx->tags->bitmap_tags;
1812 atomic_dec(&sbq->ws_active);
1814 spin_unlock(&hctx->dispatch_wait_lock);
1816 blk_mq_run_hw_queue(hctx, true);
1821 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1822 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1823 * restart. For both cases, take care to check the condition again after
1824 * marking us as waiting.
1826 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1829 struct sbitmap_queue *sbq;
1830 struct wait_queue_head *wq;
1831 wait_queue_entry_t *wait;
1834 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1835 !(blk_mq_is_shared_tags(hctx->flags))) {
1836 blk_mq_sched_mark_restart_hctx(hctx);
1839 * It's possible that a tag was freed in the window between the
1840 * allocation failure and adding the hardware queue to the wait
1843 * Don't clear RESTART here, someone else could have set it.
1844 * At most this will cost an extra queue run.
1846 return blk_mq_get_driver_tag(rq);
1849 wait = &hctx->dispatch_wait;
1850 if (!list_empty_careful(&wait->entry))
1853 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1854 sbq = &hctx->tags->breserved_tags;
1856 sbq = &hctx->tags->bitmap_tags;
1857 wq = &bt_wait_ptr(sbq, hctx)->wait;
1859 spin_lock_irq(&wq->lock);
1860 spin_lock(&hctx->dispatch_wait_lock);
1861 if (!list_empty(&wait->entry)) {
1862 spin_unlock(&hctx->dispatch_wait_lock);
1863 spin_unlock_irq(&wq->lock);
1867 atomic_inc(&sbq->ws_active);
1868 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1869 __add_wait_queue(wq, wait);
1872 * It's possible that a tag was freed in the window between the
1873 * allocation failure and adding the hardware queue to the wait
1876 ret = blk_mq_get_driver_tag(rq);
1878 spin_unlock(&hctx->dispatch_wait_lock);
1879 spin_unlock_irq(&wq->lock);
1884 * We got a tag, remove ourselves from the wait queue to ensure
1885 * someone else gets the wakeup.
1887 list_del_init(&wait->entry);
1888 atomic_dec(&sbq->ws_active);
1889 spin_unlock(&hctx->dispatch_wait_lock);
1890 spin_unlock_irq(&wq->lock);
1895 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1896 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1898 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1899 * - EWMA is one simple way to compute running average value
1900 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1901 * - take 4 as factor for avoiding to get too small(0) result, and this
1902 * factor doesn't matter because EWMA decreases exponentially
1904 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1908 ewma = hctx->dispatch_busy;
1913 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1915 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1916 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1918 hctx->dispatch_busy = ewma;
1921 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1923 static void blk_mq_handle_dev_resource(struct request *rq,
1924 struct list_head *list)
1926 list_add(&rq->queuelist, list);
1927 __blk_mq_requeue_request(rq);
1930 static void blk_mq_handle_zone_resource(struct request *rq,
1931 struct list_head *zone_list)
1934 * If we end up here it is because we cannot dispatch a request to a
1935 * specific zone due to LLD level zone-write locking or other zone
1936 * related resource not being available. In this case, set the request
1937 * aside in zone_list for retrying it later.
1939 list_add(&rq->queuelist, zone_list);
1940 __blk_mq_requeue_request(rq);
1943 enum prep_dispatch {
1945 PREP_DISPATCH_NO_TAG,
1946 PREP_DISPATCH_NO_BUDGET,
1949 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1952 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1953 int budget_token = -1;
1956 budget_token = blk_mq_get_dispatch_budget(rq->q);
1957 if (budget_token < 0) {
1958 blk_mq_put_driver_tag(rq);
1959 return PREP_DISPATCH_NO_BUDGET;
1961 blk_mq_set_rq_budget_token(rq, budget_token);
1964 if (!blk_mq_get_driver_tag(rq)) {
1966 * The initial allocation attempt failed, so we need to
1967 * rerun the hardware queue when a tag is freed. The
1968 * waitqueue takes care of that. If the queue is run
1969 * before we add this entry back on the dispatch list,
1970 * we'll re-run it below.
1972 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1974 * All budgets not got from this function will be put
1975 * together during handling partial dispatch
1978 blk_mq_put_dispatch_budget(rq->q, budget_token);
1979 return PREP_DISPATCH_NO_TAG;
1983 return PREP_DISPATCH_OK;
1986 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1987 static void blk_mq_release_budgets(struct request_queue *q,
1988 struct list_head *list)
1992 list_for_each_entry(rq, list, queuelist) {
1993 int budget_token = blk_mq_get_rq_budget_token(rq);
1995 if (budget_token >= 0)
1996 blk_mq_put_dispatch_budget(q, budget_token);
2001 * blk_mq_commit_rqs will notify driver using bd->last that there is no
2002 * more requests. (See comment in struct blk_mq_ops for commit_rqs for
2004 * Attention, we should explicitly call this in unusual cases:
2005 * 1) did not queue everything initially scheduled to queue
2006 * 2) the last attempt to queue a request failed
2008 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
2011 if (hctx->queue->mq_ops->commit_rqs && queued) {
2012 trace_block_unplug(hctx->queue, queued, !from_schedule);
2013 hctx->queue->mq_ops->commit_rqs(hctx);
2018 * Returns true if we did some work AND can potentially do more.
2020 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2021 unsigned int nr_budgets)
2023 enum prep_dispatch prep;
2024 struct request_queue *q = hctx->queue;
2027 blk_status_t ret = BLK_STS_OK;
2028 LIST_HEAD(zone_list);
2029 bool needs_resource = false;
2031 if (list_empty(list))
2035 * Now process all the entries, sending them to the driver.
2039 struct blk_mq_queue_data bd;
2041 rq = list_first_entry(list, struct request, queuelist);
2043 WARN_ON_ONCE(hctx != rq->mq_hctx);
2044 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2045 if (prep != PREP_DISPATCH_OK)
2048 list_del_init(&rq->queuelist);
2051 bd.last = list_empty(list);
2054 * once the request is queued to lld, no need to cover the
2059 ret = q->mq_ops->queue_rq(hctx, &bd);
2064 case BLK_STS_RESOURCE:
2065 needs_resource = true;
2067 case BLK_STS_DEV_RESOURCE:
2068 blk_mq_handle_dev_resource(rq, list);
2070 case BLK_STS_ZONE_RESOURCE:
2072 * Move the request to zone_list and keep going through
2073 * the dispatch list to find more requests the drive can
2076 blk_mq_handle_zone_resource(rq, &zone_list);
2077 needs_resource = true;
2080 blk_mq_end_request(rq, ret);
2082 } while (!list_empty(list));
2084 if (!list_empty(&zone_list))
2085 list_splice_tail_init(&zone_list, list);
2087 /* If we didn't flush the entire list, we could have told the driver
2088 * there was more coming, but that turned out to be a lie.
2090 if (!list_empty(list) || ret != BLK_STS_OK)
2091 blk_mq_commit_rqs(hctx, queued, false);
2094 * Any items that need requeuing? Stuff them into hctx->dispatch,
2095 * that is where we will continue on next queue run.
2097 if (!list_empty(list)) {
2099 /* For non-shared tags, the RESTART check will suffice */
2100 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2101 ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2102 blk_mq_is_shared_tags(hctx->flags));
2105 blk_mq_release_budgets(q, list);
2107 spin_lock(&hctx->lock);
2108 list_splice_tail_init(list, &hctx->dispatch);
2109 spin_unlock(&hctx->lock);
2112 * Order adding requests to hctx->dispatch and checking
2113 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2114 * in blk_mq_sched_restart(). Avoid restart code path to
2115 * miss the new added requests to hctx->dispatch, meantime
2116 * SCHED_RESTART is observed here.
2121 * If SCHED_RESTART was set by the caller of this function and
2122 * it is no longer set that means that it was cleared by another
2123 * thread and hence that a queue rerun is needed.
2125 * If 'no_tag' is set, that means that we failed getting
2126 * a driver tag with an I/O scheduler attached. If our dispatch
2127 * waitqueue is no longer active, ensure that we run the queue
2128 * AFTER adding our entries back to the list.
2130 * If no I/O scheduler has been configured it is possible that
2131 * the hardware queue got stopped and restarted before requests
2132 * were pushed back onto the dispatch list. Rerun the queue to
2133 * avoid starvation. Notes:
2134 * - blk_mq_run_hw_queue() checks whether or not a queue has
2135 * been stopped before rerunning a queue.
2136 * - Some but not all block drivers stop a queue before
2137 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2140 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2141 * bit is set, run queue after a delay to avoid IO stalls
2142 * that could otherwise occur if the queue is idle. We'll do
2143 * similar if we couldn't get budget or couldn't lock a zone
2144 * and SCHED_RESTART is set.
2146 needs_restart = blk_mq_sched_needs_restart(hctx);
2147 if (prep == PREP_DISPATCH_NO_BUDGET)
2148 needs_resource = true;
2149 if (!needs_restart ||
2150 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2151 blk_mq_run_hw_queue(hctx, true);
2152 else if (needs_resource)
2153 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2155 blk_mq_update_dispatch_busy(hctx, true);
2159 blk_mq_update_dispatch_busy(hctx, false);
2164 * __blk_mq_run_hw_queue - Run a hardware queue.
2165 * @hctx: Pointer to the hardware queue to run.
2167 * Send pending requests to the hardware.
2169 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
2172 * We can't run the queue inline with ints disabled. Ensure that
2173 * we catch bad users of this early.
2175 WARN_ON_ONCE(in_interrupt());
2177 blk_mq_run_dispatch_ops(hctx->queue,
2178 blk_mq_sched_dispatch_requests(hctx));
2181 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2183 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2185 if (cpu >= nr_cpu_ids)
2186 cpu = cpumask_first(hctx->cpumask);
2191 * It'd be great if the workqueue API had a way to pass
2192 * in a mask and had some smarts for more clever placement.
2193 * For now we just round-robin here, switching for every
2194 * BLK_MQ_CPU_WORK_BATCH queued items.
2196 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2199 int next_cpu = hctx->next_cpu;
2201 if (hctx->queue->nr_hw_queues == 1)
2202 return WORK_CPU_UNBOUND;
2204 if (--hctx->next_cpu_batch <= 0) {
2206 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2208 if (next_cpu >= nr_cpu_ids)
2209 next_cpu = blk_mq_first_mapped_cpu(hctx);
2210 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2214 * Do unbound schedule if we can't find a online CPU for this hctx,
2215 * and it should only happen in the path of handling CPU DEAD.
2217 if (!cpu_online(next_cpu)) {
2224 * Make sure to re-select CPU next time once after CPUs
2225 * in hctx->cpumask become online again.
2227 hctx->next_cpu = next_cpu;
2228 hctx->next_cpu_batch = 1;
2229 return WORK_CPU_UNBOUND;
2232 hctx->next_cpu = next_cpu;
2237 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2238 * @hctx: Pointer to the hardware queue to run.
2239 * @async: If we want to run the queue asynchronously.
2240 * @msecs: Milliseconds of delay to wait before running the queue.
2242 * If !@async, try to run the queue now. Else, run the queue asynchronously and
2243 * with a delay of @msecs.
2245 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2246 unsigned long msecs)
2248 if (unlikely(blk_mq_hctx_stopped(hctx)))
2251 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2252 if (cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2253 __blk_mq_run_hw_queue(hctx);
2258 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2259 msecs_to_jiffies(msecs));
2263 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2264 * @hctx: Pointer to the hardware queue to run.
2265 * @msecs: Milliseconds of delay to wait before running the queue.
2267 * Run a hardware queue asynchronously with a delay of @msecs.
2269 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2271 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
2273 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2276 * blk_mq_run_hw_queue - Start to run a hardware queue.
2277 * @hctx: Pointer to the hardware queue to run.
2278 * @async: If we want to run the queue asynchronously.
2280 * Check if the request queue is not in a quiesced state and if there are
2281 * pending requests to be sent. If this is true, run the queue to send requests
2284 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2289 * When queue is quiesced, we may be switching io scheduler, or
2290 * updating nr_hw_queues, or other things, and we can't run queue
2291 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2293 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2296 __blk_mq_run_dispatch_ops(hctx->queue, false,
2297 need_run = !blk_queue_quiesced(hctx->queue) &&
2298 blk_mq_hctx_has_pending(hctx));
2301 __blk_mq_delay_run_hw_queue(hctx, async, 0);
2303 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2306 * Return prefered queue to dispatch from (if any) for non-mq aware IO
2309 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2311 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2313 * If the IO scheduler does not respect hardware queues when
2314 * dispatching, we just don't bother with multiple HW queues and
2315 * dispatch from hctx for the current CPU since running multiple queues
2316 * just causes lock contention inside the scheduler and pointless cache
2319 struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2321 if (!blk_mq_hctx_stopped(hctx))
2327 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2328 * @q: Pointer to the request queue to run.
2329 * @async: If we want to run the queue asynchronously.
2331 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2333 struct blk_mq_hw_ctx *hctx, *sq_hctx;
2337 if (blk_queue_sq_sched(q))
2338 sq_hctx = blk_mq_get_sq_hctx(q);
2339 queue_for_each_hw_ctx(q, hctx, i) {
2340 if (blk_mq_hctx_stopped(hctx))
2343 * Dispatch from this hctx either if there's no hctx preferred
2344 * by IO scheduler or if it has requests that bypass the
2347 if (!sq_hctx || sq_hctx == hctx ||
2348 !list_empty_careful(&hctx->dispatch))
2349 blk_mq_run_hw_queue(hctx, async);
2352 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2355 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2356 * @q: Pointer to the request queue to run.
2357 * @msecs: Milliseconds of delay to wait before running the queues.
2359 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2361 struct blk_mq_hw_ctx *hctx, *sq_hctx;
2365 if (blk_queue_sq_sched(q))
2366 sq_hctx = blk_mq_get_sq_hctx(q);
2367 queue_for_each_hw_ctx(q, hctx, i) {
2368 if (blk_mq_hctx_stopped(hctx))
2371 * If there is already a run_work pending, leave the
2372 * pending delay untouched. Otherwise, a hctx can stall
2373 * if another hctx is re-delaying the other's work
2374 * before the work executes.
2376 if (delayed_work_pending(&hctx->run_work))
2379 * Dispatch from this hctx either if there's no hctx preferred
2380 * by IO scheduler or if it has requests that bypass the
2383 if (!sq_hctx || sq_hctx == hctx ||
2384 !list_empty_careful(&hctx->dispatch))
2385 blk_mq_delay_run_hw_queue(hctx, msecs);
2388 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2391 * This function is often used for pausing .queue_rq() by driver when
2392 * there isn't enough resource or some conditions aren't satisfied, and
2393 * BLK_STS_RESOURCE is usually returned.
2395 * We do not guarantee that dispatch can be drained or blocked
2396 * after blk_mq_stop_hw_queue() returns. Please use
2397 * blk_mq_quiesce_queue() for that requirement.
2399 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2401 cancel_delayed_work(&hctx->run_work);
2403 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2405 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2408 * This function is often used for pausing .queue_rq() by driver when
2409 * there isn't enough resource or some conditions aren't satisfied, and
2410 * BLK_STS_RESOURCE is usually returned.
2412 * We do not guarantee that dispatch can be drained or blocked
2413 * after blk_mq_stop_hw_queues() returns. Please use
2414 * blk_mq_quiesce_queue() for that requirement.
2416 void blk_mq_stop_hw_queues(struct request_queue *q)
2418 struct blk_mq_hw_ctx *hctx;
2421 queue_for_each_hw_ctx(q, hctx, i)
2422 blk_mq_stop_hw_queue(hctx);
2424 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2426 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2428 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2430 blk_mq_run_hw_queue(hctx, false);
2432 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2434 void blk_mq_start_hw_queues(struct request_queue *q)
2436 struct blk_mq_hw_ctx *hctx;
2439 queue_for_each_hw_ctx(q, hctx, i)
2440 blk_mq_start_hw_queue(hctx);
2442 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2444 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2446 if (!blk_mq_hctx_stopped(hctx))
2449 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2450 blk_mq_run_hw_queue(hctx, async);
2452 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2454 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2456 struct blk_mq_hw_ctx *hctx;
2459 queue_for_each_hw_ctx(q, hctx, i)
2460 blk_mq_start_stopped_hw_queue(hctx, async);
2462 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2464 static void blk_mq_run_work_fn(struct work_struct *work)
2466 struct blk_mq_hw_ctx *hctx;
2468 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2471 * If we are stopped, don't run the queue.
2473 if (blk_mq_hctx_stopped(hctx))
2476 __blk_mq_run_hw_queue(hctx);
2479 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2483 struct blk_mq_ctx *ctx = rq->mq_ctx;
2484 enum hctx_type type = hctx->type;
2486 lockdep_assert_held(&ctx->lock);
2488 trace_block_rq_insert(rq);
2491 list_add(&rq->queuelist, &ctx->rq_lists[type]);
2493 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2496 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2499 struct blk_mq_ctx *ctx = rq->mq_ctx;
2501 lockdep_assert_held(&ctx->lock);
2503 __blk_mq_insert_req_list(hctx, rq, at_head);
2504 blk_mq_hctx_mark_pending(hctx, ctx);
2508 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2509 * @rq: Pointer to request to be inserted.
2510 * @at_head: true if the request should be inserted at the head of the list.
2511 * @run_queue: If we should run the hardware queue after inserting the request.
2513 * Should only be used carefully, when the caller knows we want to
2514 * bypass a potential IO scheduler on the target device.
2516 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2519 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2521 spin_lock(&hctx->lock);
2523 list_add(&rq->queuelist, &hctx->dispatch);
2525 list_add_tail(&rq->queuelist, &hctx->dispatch);
2526 spin_unlock(&hctx->lock);
2529 blk_mq_run_hw_queue(hctx, false);
2532 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2533 struct list_head *list)
2537 enum hctx_type type = hctx->type;
2540 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2543 list_for_each_entry(rq, list, queuelist) {
2544 BUG_ON(rq->mq_ctx != ctx);
2545 trace_block_rq_insert(rq);
2548 spin_lock(&ctx->lock);
2549 list_splice_tail_init(list, &ctx->rq_lists[type]);
2550 blk_mq_hctx_mark_pending(hctx, ctx);
2551 spin_unlock(&ctx->lock);
2554 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2555 unsigned int nr_segs)
2559 if (bio->bi_opf & REQ_RAHEAD)
2560 rq->cmd_flags |= REQ_FAILFAST_MASK;
2562 rq->__sector = bio->bi_iter.bi_sector;
2563 blk_rq_bio_prep(rq, bio, nr_segs);
2565 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2566 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2569 blk_account_io_start(rq);
2572 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2573 struct request *rq, bool last)
2575 struct request_queue *q = rq->q;
2576 struct blk_mq_queue_data bd = {
2583 * For OK queue, we are done. For error, caller may kill it.
2584 * Any other error (busy), just add it to our list as we
2585 * previously would have done.
2587 ret = q->mq_ops->queue_rq(hctx, &bd);
2590 blk_mq_update_dispatch_busy(hctx, false);
2592 case BLK_STS_RESOURCE:
2593 case BLK_STS_DEV_RESOURCE:
2594 blk_mq_update_dispatch_busy(hctx, true);
2595 __blk_mq_requeue_request(rq);
2598 blk_mq_update_dispatch_busy(hctx, false);
2605 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2607 bool bypass_insert, bool last)
2609 struct request_queue *q = rq->q;
2610 bool run_queue = true;
2614 * RCU or SRCU read lock is needed before checking quiesced flag.
2616 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2617 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2618 * and avoid driver to try to dispatch again.
2620 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2622 bypass_insert = false;
2626 if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2629 budget_token = blk_mq_get_dispatch_budget(q);
2630 if (budget_token < 0)
2633 blk_mq_set_rq_budget_token(rq, budget_token);
2635 if (!blk_mq_get_driver_tag(rq)) {
2636 blk_mq_put_dispatch_budget(q, budget_token);
2640 return __blk_mq_issue_directly(hctx, rq, last);
2643 return BLK_STS_RESOURCE;
2645 blk_mq_sched_insert_request(rq, false, run_queue, false);
2651 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2652 * @hctx: Pointer of the associated hardware queue.
2653 * @rq: Pointer to request to be sent.
2655 * If the device has enough resources to accept a new request now, send the
2656 * request directly to device driver. Else, insert at hctx->dispatch queue, so
2657 * we can try send it another time in the future. Requests inserted at this
2658 * queue have higher priority.
2660 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2664 __blk_mq_try_issue_directly(hctx, rq, false, true);
2666 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2667 blk_mq_request_bypass_insert(rq, false, true);
2668 else if (ret != BLK_STS_OK)
2669 blk_mq_end_request(rq, ret);
2672 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2674 return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
2677 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2679 struct blk_mq_hw_ctx *hctx = NULL;
2682 blk_status_t ret = BLK_STS_OK;
2684 while ((rq = rq_list_pop(&plug->mq_list))) {
2685 bool last = rq_list_empty(plug->mq_list);
2687 if (hctx != rq->mq_hctx) {
2689 blk_mq_commit_rqs(hctx, queued, false);
2695 ret = blk_mq_request_issue_directly(rq, last);
2700 case BLK_STS_RESOURCE:
2701 case BLK_STS_DEV_RESOURCE:
2702 blk_mq_request_bypass_insert(rq, false, true);
2705 blk_mq_end_request(rq, ret);
2711 if (ret != BLK_STS_OK)
2712 blk_mq_commit_rqs(hctx, queued, false);
2715 static void __blk_mq_flush_plug_list(struct request_queue *q,
2716 struct blk_plug *plug)
2718 if (blk_queue_quiesced(q))
2720 q->mq_ops->queue_rqs(&plug->mq_list);
2723 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2725 struct blk_mq_hw_ctx *this_hctx = NULL;
2726 struct blk_mq_ctx *this_ctx = NULL;
2727 struct request *requeue_list = NULL;
2728 unsigned int depth = 0;
2732 struct request *rq = rq_list_pop(&plug->mq_list);
2735 this_hctx = rq->mq_hctx;
2736 this_ctx = rq->mq_ctx;
2737 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2738 rq_list_add(&requeue_list, rq);
2741 list_add_tail(&rq->queuelist, &list);
2743 } while (!rq_list_empty(plug->mq_list));
2745 plug->mq_list = requeue_list;
2746 trace_block_unplug(this_hctx->queue, depth, !from_sched);
2747 blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched);
2750 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2754 if (rq_list_empty(plug->mq_list))
2758 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2759 struct request_queue *q;
2761 rq = rq_list_peek(&plug->mq_list);
2765 * Peek first request and see if we have a ->queue_rqs() hook.
2766 * If we do, we can dispatch the whole plug list in one go. We
2767 * already know at this point that all requests belong to the
2768 * same queue, caller must ensure that's the case.
2770 * Since we pass off the full list to the driver at this point,
2771 * we do not increment the active request count for the queue.
2772 * Bypass shared tags for now because of that.
2774 if (q->mq_ops->queue_rqs &&
2775 !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2776 blk_mq_run_dispatch_ops(q,
2777 __blk_mq_flush_plug_list(q, plug));
2778 if (rq_list_empty(plug->mq_list))
2782 blk_mq_run_dispatch_ops(q,
2783 blk_mq_plug_issue_direct(plug));
2784 if (rq_list_empty(plug->mq_list))
2789 blk_mq_dispatch_plug_list(plug, from_schedule);
2790 } while (!rq_list_empty(plug->mq_list));
2793 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2794 struct list_head *list)
2797 blk_status_t ret = BLK_STS_OK;
2799 while (!list_empty(list)) {
2800 struct request *rq = list_first_entry(list, struct request,
2803 list_del_init(&rq->queuelist);
2804 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2809 case BLK_STS_RESOURCE:
2810 case BLK_STS_DEV_RESOURCE:
2811 blk_mq_request_bypass_insert(rq, false,
2815 blk_mq_end_request(rq, ret);
2821 if (ret != BLK_STS_OK)
2822 blk_mq_commit_rqs(hctx, queued, false);
2825 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2826 struct bio *bio, unsigned int nr_segs)
2828 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2829 if (blk_attempt_plug_merge(q, bio, nr_segs))
2831 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2837 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2838 struct blk_plug *plug,
2842 struct blk_mq_alloc_data data = {
2845 .cmd_flags = bio->bi_opf,
2849 if (unlikely(bio_queue_enter(bio)))
2852 if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2855 rq_qos_throttle(q, bio);
2858 data.nr_tags = plug->nr_ios;
2860 data.cached_rq = &plug->cached_rq;
2863 rq = __blk_mq_alloc_requests(&data);
2866 rq_qos_cleanup(q, bio);
2867 if (bio->bi_opf & REQ_NOWAIT)
2868 bio_wouldblock_error(bio);
2874 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2875 struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2878 enum hctx_type type, hctx_type;
2883 if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2888 rq = rq_list_peek(&plug->cached_rq);
2889 if (!rq || rq->q != q)
2892 type = blk_mq_get_hctx_type((*bio)->bi_opf);
2893 hctx_type = rq->mq_hctx->type;
2894 if (type != hctx_type &&
2895 !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2897 if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2901 * If any qos ->throttle() end up blocking, we will have flushed the
2902 * plug and hence killed the cached_rq list as well. Pop this entry
2903 * before we throttle.
2905 plug->cached_rq = rq_list_next(rq);
2906 rq_qos_throttle(q, *bio);
2908 rq->cmd_flags = (*bio)->bi_opf;
2909 INIT_LIST_HEAD(&rq->queuelist);
2913 static void bio_set_ioprio(struct bio *bio)
2915 /* Nobody set ioprio so far? Initialize it based on task's nice value */
2916 if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2917 bio->bi_ioprio = get_current_ioprio();
2918 blkcg_set_ioprio(bio);
2922 * blk_mq_submit_bio - Create and send a request to block device.
2923 * @bio: Bio pointer.
2925 * Builds up a request structure from @q and @bio and send to the device. The
2926 * request may not be queued directly to hardware if:
2927 * * This request can be merged with another one
2928 * * We want to place request at plug queue for possible future merging
2929 * * There is an IO scheduler active at this queue
2931 * It will not queue the request if there is an error with the bio, or at the
2934 void blk_mq_submit_bio(struct bio *bio)
2936 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2937 struct blk_plug *plug = blk_mq_plug(bio);
2938 const int is_sync = op_is_sync(bio->bi_opf);
2940 unsigned int nr_segs = 1;
2943 bio = blk_queue_bounce(bio, q);
2944 if (bio_may_exceed_limits(bio, &q->limits)) {
2945 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2950 if (!bio_integrity_prep(bio))
2953 bio_set_ioprio(bio);
2955 rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2959 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2964 trace_block_getrq(bio);
2966 rq_qos_track(q, rq, bio);
2968 blk_mq_bio_to_request(rq, bio, nr_segs);
2970 ret = blk_crypto_init_request(rq);
2971 if (ret != BLK_STS_OK) {
2972 bio->bi_status = ret;
2974 blk_mq_free_request(rq);
2978 if (op_is_flush(bio->bi_opf)) {
2979 blk_insert_flush(rq);
2984 blk_add_rq_to_plug(plug, rq);
2985 else if ((rq->rq_flags & RQF_ELV) ||
2986 (rq->mq_hctx->dispatch_busy &&
2987 (q->nr_hw_queues == 1 || !is_sync)))
2988 blk_mq_sched_insert_request(rq, false, true, true);
2990 blk_mq_run_dispatch_ops(rq->q,
2991 blk_mq_try_issue_directly(rq->mq_hctx, rq));
2994 #ifdef CONFIG_BLK_MQ_STACKING
2996 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2997 * @rq: the request being queued
2999 blk_status_t blk_insert_cloned_request(struct request *rq)
3001 struct request_queue *q = rq->q;
3002 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3005 if (blk_rq_sectors(rq) > max_sectors) {
3007 * SCSI device does not have a good way to return if
3008 * Write Same/Zero is actually supported. If a device rejects
3009 * a non-read/write command (discard, write same,etc.) the
3010 * low-level device driver will set the relevant queue limit to
3011 * 0 to prevent blk-lib from issuing more of the offending
3012 * operations. Commands queued prior to the queue limit being
3013 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3014 * errors being propagated to upper layers.
3016 if (max_sectors == 0)
3017 return BLK_STS_NOTSUPP;
3019 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3020 __func__, blk_rq_sectors(rq), max_sectors);
3021 return BLK_STS_IOERR;
3025 * The queue settings related to segment counting may differ from the
3028 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3029 if (rq->nr_phys_segments > queue_max_segments(q)) {
3030 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
3031 __func__, rq->nr_phys_segments, queue_max_segments(q));
3032 return BLK_STS_IOERR;
3035 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3036 return BLK_STS_IOERR;
3038 if (blk_crypto_insert_cloned_request(rq))
3039 return BLK_STS_IOERR;
3041 blk_account_io_start(rq);
3044 * Since we have a scheduler attached on the top device,
3045 * bypass a potential scheduler on the bottom device for
3048 blk_mq_run_dispatch_ops(q,
3049 ret = blk_mq_request_issue_directly(rq, true));
3051 blk_account_io_done(rq, ktime_get_ns());
3054 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3057 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3058 * @rq: the clone request to be cleaned up
3061 * Free all bios in @rq for a cloned request.
3063 void blk_rq_unprep_clone(struct request *rq)
3067 while ((bio = rq->bio) != NULL) {
3068 rq->bio = bio->bi_next;
3073 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3076 * blk_rq_prep_clone - Helper function to setup clone request
3077 * @rq: the request to be setup
3078 * @rq_src: original request to be cloned
3079 * @bs: bio_set that bios for clone are allocated from
3080 * @gfp_mask: memory allocation mask for bio
3081 * @bio_ctr: setup function to be called for each clone bio.
3082 * Returns %0 for success, non %0 for failure.
3083 * @data: private data to be passed to @bio_ctr
3086 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3087 * Also, pages which the original bios are pointing to are not copied
3088 * and the cloned bios just point same pages.
3089 * So cloned bios must be completed before original bios, which means
3090 * the caller must complete @rq before @rq_src.
3092 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3093 struct bio_set *bs, gfp_t gfp_mask,
3094 int (*bio_ctr)(struct bio *, struct bio *, void *),
3097 struct bio *bio, *bio_src;
3102 __rq_for_each_bio(bio_src, rq_src) {
3103 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3108 if (bio_ctr && bio_ctr(bio, bio_src, data))
3112 rq->biotail->bi_next = bio;
3115 rq->bio = rq->biotail = bio;
3120 /* Copy attributes of the original request to the clone request. */
3121 rq->__sector = blk_rq_pos(rq_src);
3122 rq->__data_len = blk_rq_bytes(rq_src);
3123 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3124 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3125 rq->special_vec = rq_src->special_vec;
3127 rq->nr_phys_segments = rq_src->nr_phys_segments;
3128 rq->ioprio = rq_src->ioprio;
3130 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3138 blk_rq_unprep_clone(rq);
3142 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3143 #endif /* CONFIG_BLK_MQ_STACKING */
3146 * Steal bios from a request and add them to a bio list.
3147 * The request must not have been partially completed before.
3149 void blk_steal_bios(struct bio_list *list, struct request *rq)
3153 list->tail->bi_next = rq->bio;
3155 list->head = rq->bio;
3156 list->tail = rq->biotail;
3164 EXPORT_SYMBOL_GPL(blk_steal_bios);
3166 static size_t order_to_size(unsigned int order)
3168 return (size_t)PAGE_SIZE << order;
3171 /* called before freeing request pool in @tags */
3172 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3173 struct blk_mq_tags *tags)
3176 unsigned long flags;
3179 * There is no need to clear mapping if driver tags is not initialized
3180 * or the mapping belongs to the driver tags.
3182 if (!drv_tags || drv_tags == tags)
3185 list_for_each_entry(page, &tags->page_list, lru) {
3186 unsigned long start = (unsigned long)page_address(page);
3187 unsigned long end = start + order_to_size(page->private);
3190 for (i = 0; i < drv_tags->nr_tags; i++) {
3191 struct request *rq = drv_tags->rqs[i];
3192 unsigned long rq_addr = (unsigned long)rq;
3194 if (rq_addr >= start && rq_addr < end) {
3195 WARN_ON_ONCE(req_ref_read(rq) != 0);
3196 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3202 * Wait until all pending iteration is done.
3204 * Request reference is cleared and it is guaranteed to be observed
3205 * after the ->lock is released.
3207 spin_lock_irqsave(&drv_tags->lock, flags);
3208 spin_unlock_irqrestore(&drv_tags->lock, flags);
3211 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3212 unsigned int hctx_idx)
3214 struct blk_mq_tags *drv_tags;
3217 if (list_empty(&tags->page_list))
3220 if (blk_mq_is_shared_tags(set->flags))
3221 drv_tags = set->shared_tags;
3223 drv_tags = set->tags[hctx_idx];
3225 if (tags->static_rqs && set->ops->exit_request) {
3228 for (i = 0; i < tags->nr_tags; i++) {
3229 struct request *rq = tags->static_rqs[i];
3233 set->ops->exit_request(set, rq, hctx_idx);
3234 tags->static_rqs[i] = NULL;
3238 blk_mq_clear_rq_mapping(drv_tags, tags);
3240 while (!list_empty(&tags->page_list)) {
3241 page = list_first_entry(&tags->page_list, struct page, lru);
3242 list_del_init(&page->lru);
3244 * Remove kmemleak object previously allocated in
3245 * blk_mq_alloc_rqs().
3247 kmemleak_free(page_address(page));
3248 __free_pages(page, page->private);
3252 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3256 kfree(tags->static_rqs);
3257 tags->static_rqs = NULL;
3259 blk_mq_free_tags(tags);
3262 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3263 unsigned int hctx_idx)
3267 for (i = 0; i < set->nr_maps; i++) {
3268 unsigned int start = set->map[i].queue_offset;
3269 unsigned int end = start + set->map[i].nr_queues;
3271 if (hctx_idx >= start && hctx_idx < end)
3275 if (i >= set->nr_maps)
3276 i = HCTX_TYPE_DEFAULT;
3281 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3282 unsigned int hctx_idx)
3284 enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3286 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3289 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3290 unsigned int hctx_idx,
3291 unsigned int nr_tags,
3292 unsigned int reserved_tags)
3294 int node = blk_mq_get_hctx_node(set, hctx_idx);
3295 struct blk_mq_tags *tags;
3297 if (node == NUMA_NO_NODE)
3298 node = set->numa_node;
3300 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3301 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3305 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3306 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3311 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3312 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3314 if (!tags->static_rqs)
3322 blk_mq_free_tags(tags);
3326 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3327 unsigned int hctx_idx, int node)
3331 if (set->ops->init_request) {
3332 ret = set->ops->init_request(set, rq, hctx_idx, node);
3337 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3341 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3342 struct blk_mq_tags *tags,
3343 unsigned int hctx_idx, unsigned int depth)
3345 unsigned int i, j, entries_per_page, max_order = 4;
3346 int node = blk_mq_get_hctx_node(set, hctx_idx);
3347 size_t rq_size, left;
3349 if (node == NUMA_NO_NODE)
3350 node = set->numa_node;
3352 INIT_LIST_HEAD(&tags->page_list);
3355 * rq_size is the size of the request plus driver payload, rounded
3356 * to the cacheline size
3358 rq_size = round_up(sizeof(struct request) + set->cmd_size,
3360 left = rq_size * depth;
3362 for (i = 0; i < depth; ) {
3363 int this_order = max_order;
3368 while (this_order && left < order_to_size(this_order - 1))
3372 page = alloc_pages_node(node,
3373 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3379 if (order_to_size(this_order) < rq_size)
3386 page->private = this_order;
3387 list_add_tail(&page->lru, &tags->page_list);
3389 p = page_address(page);
3391 * Allow kmemleak to scan these pages as they contain pointers
3392 * to additional allocations like via ops->init_request().
3394 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3395 entries_per_page = order_to_size(this_order) / rq_size;
3396 to_do = min(entries_per_page, depth - i);
3397 left -= to_do * rq_size;
3398 for (j = 0; j < to_do; j++) {
3399 struct request *rq = p;
3401 tags->static_rqs[i] = rq;
3402 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3403 tags->static_rqs[i] = NULL;
3414 blk_mq_free_rqs(set, tags, hctx_idx);
3418 struct rq_iter_data {
3419 struct blk_mq_hw_ctx *hctx;
3423 static bool blk_mq_has_request(struct request *rq, void *data)
3425 struct rq_iter_data *iter_data = data;
3427 if (rq->mq_hctx != iter_data->hctx)
3429 iter_data->has_rq = true;
3433 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3435 struct blk_mq_tags *tags = hctx->sched_tags ?
3436 hctx->sched_tags : hctx->tags;
3437 struct rq_iter_data data = {
3441 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3445 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3446 struct blk_mq_hw_ctx *hctx)
3448 if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3450 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3455 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3457 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3458 struct blk_mq_hw_ctx, cpuhp_online);
3460 if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3461 !blk_mq_last_cpu_in_hctx(cpu, hctx))
3465 * Prevent new request from being allocated on the current hctx.
3467 * The smp_mb__after_atomic() Pairs with the implied barrier in
3468 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is
3469 * seen once we return from the tag allocator.
3471 set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3472 smp_mb__after_atomic();
3475 * Try to grab a reference to the queue and wait for any outstanding
3476 * requests. If we could not grab a reference the queue has been
3477 * frozen and there are no requests.
3479 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3480 while (blk_mq_hctx_has_requests(hctx))
3482 percpu_ref_put(&hctx->queue->q_usage_counter);
3488 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3490 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3491 struct blk_mq_hw_ctx, cpuhp_online);
3493 if (cpumask_test_cpu(cpu, hctx->cpumask))
3494 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3499 * 'cpu' is going away. splice any existing rq_list entries from this
3500 * software queue to the hw queue dispatch list, and ensure that it
3503 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3505 struct blk_mq_hw_ctx *hctx;
3506 struct blk_mq_ctx *ctx;
3508 enum hctx_type type;
3510 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3511 if (!cpumask_test_cpu(cpu, hctx->cpumask))
3514 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3517 spin_lock(&ctx->lock);
3518 if (!list_empty(&ctx->rq_lists[type])) {
3519 list_splice_init(&ctx->rq_lists[type], &tmp);
3520 blk_mq_hctx_clear_pending(hctx, ctx);
3522 spin_unlock(&ctx->lock);
3524 if (list_empty(&tmp))
3527 spin_lock(&hctx->lock);
3528 list_splice_tail_init(&tmp, &hctx->dispatch);
3529 spin_unlock(&hctx->lock);
3531 blk_mq_run_hw_queue(hctx, true);
3535 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3537 if (!(hctx->flags & BLK_MQ_F_STACKING))
3538 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3539 &hctx->cpuhp_online);
3540 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3545 * Before freeing hw queue, clearing the flush request reference in
3546 * tags->rqs[] for avoiding potential UAF.
3548 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3549 unsigned int queue_depth, struct request *flush_rq)
3552 unsigned long flags;
3554 /* The hw queue may not be mapped yet */
3558 WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3560 for (i = 0; i < queue_depth; i++)
3561 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3564 * Wait until all pending iteration is done.
3566 * Request reference is cleared and it is guaranteed to be observed
3567 * after the ->lock is released.
3569 spin_lock_irqsave(&tags->lock, flags);
3570 spin_unlock_irqrestore(&tags->lock, flags);
3573 /* hctx->ctxs will be freed in queue's release handler */
3574 static void blk_mq_exit_hctx(struct request_queue *q,
3575 struct blk_mq_tag_set *set,
3576 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3578 struct request *flush_rq = hctx->fq->flush_rq;
3580 if (blk_mq_hw_queue_mapped(hctx))
3581 blk_mq_tag_idle(hctx);
3583 if (blk_queue_init_done(q))
3584 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3585 set->queue_depth, flush_rq);
3586 if (set->ops->exit_request)
3587 set->ops->exit_request(set, flush_rq, hctx_idx);
3589 if (set->ops->exit_hctx)
3590 set->ops->exit_hctx(hctx, hctx_idx);
3592 blk_mq_remove_cpuhp(hctx);
3594 xa_erase(&q->hctx_table, hctx_idx);
3596 spin_lock(&q->unused_hctx_lock);
3597 list_add(&hctx->hctx_list, &q->unused_hctx_list);
3598 spin_unlock(&q->unused_hctx_lock);
3601 static void blk_mq_exit_hw_queues(struct request_queue *q,
3602 struct blk_mq_tag_set *set, int nr_queue)
3604 struct blk_mq_hw_ctx *hctx;
3607 queue_for_each_hw_ctx(q, hctx, i) {
3610 blk_mq_exit_hctx(q, set, hctx, i);
3614 static int blk_mq_init_hctx(struct request_queue *q,
3615 struct blk_mq_tag_set *set,
3616 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3618 hctx->queue_num = hctx_idx;
3620 if (!(hctx->flags & BLK_MQ_F_STACKING))
3621 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3622 &hctx->cpuhp_online);
3623 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3625 hctx->tags = set->tags[hctx_idx];
3627 if (set->ops->init_hctx &&
3628 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3629 goto unregister_cpu_notifier;
3631 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3635 if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3641 if (set->ops->exit_request)
3642 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3644 if (set->ops->exit_hctx)
3645 set->ops->exit_hctx(hctx, hctx_idx);
3646 unregister_cpu_notifier:
3647 blk_mq_remove_cpuhp(hctx);
3651 static struct blk_mq_hw_ctx *
3652 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3655 struct blk_mq_hw_ctx *hctx;
3656 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3658 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3660 goto fail_alloc_hctx;
3662 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3665 atomic_set(&hctx->nr_active, 0);
3666 if (node == NUMA_NO_NODE)
3667 node = set->numa_node;
3668 hctx->numa_node = node;
3670 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3671 spin_lock_init(&hctx->lock);
3672 INIT_LIST_HEAD(&hctx->dispatch);
3674 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3676 INIT_LIST_HEAD(&hctx->hctx_list);
3679 * Allocate space for all possible cpus to avoid allocation at
3682 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3687 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3688 gfp, node, false, false))
3692 spin_lock_init(&hctx->dispatch_wait_lock);
3693 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3694 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3696 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3700 blk_mq_hctx_kobj_init(hctx);
3705 sbitmap_free(&hctx->ctx_map);
3709 free_cpumask_var(hctx->cpumask);
3716 static void blk_mq_init_cpu_queues(struct request_queue *q,
3717 unsigned int nr_hw_queues)
3719 struct blk_mq_tag_set *set = q->tag_set;
3722 for_each_possible_cpu(i) {
3723 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3724 struct blk_mq_hw_ctx *hctx;
3728 spin_lock_init(&__ctx->lock);
3729 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3730 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3735 * Set local node, IFF we have more than one hw queue. If
3736 * not, we remain on the home node of the device
3738 for (j = 0; j < set->nr_maps; j++) {
3739 hctx = blk_mq_map_queue_type(q, j, i);
3740 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3741 hctx->numa_node = cpu_to_node(i);
3746 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3747 unsigned int hctx_idx,
3750 struct blk_mq_tags *tags;
3753 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3757 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3759 blk_mq_free_rq_map(tags);
3766 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3769 if (blk_mq_is_shared_tags(set->flags)) {
3770 set->tags[hctx_idx] = set->shared_tags;
3775 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3778 return set->tags[hctx_idx];
3781 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3782 struct blk_mq_tags *tags,
3783 unsigned int hctx_idx)
3786 blk_mq_free_rqs(set, tags, hctx_idx);
3787 blk_mq_free_rq_map(tags);
3791 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3792 unsigned int hctx_idx)
3794 if (!blk_mq_is_shared_tags(set->flags))
3795 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3797 set->tags[hctx_idx] = NULL;
3800 static void blk_mq_map_swqueue(struct request_queue *q)
3802 unsigned int j, hctx_idx;
3804 struct blk_mq_hw_ctx *hctx;
3805 struct blk_mq_ctx *ctx;
3806 struct blk_mq_tag_set *set = q->tag_set;
3808 queue_for_each_hw_ctx(q, hctx, i) {
3809 cpumask_clear(hctx->cpumask);
3811 hctx->dispatch_from = NULL;
3815 * Map software to hardware queues.
3817 * If the cpu isn't present, the cpu is mapped to first hctx.
3819 for_each_possible_cpu(i) {
3821 ctx = per_cpu_ptr(q->queue_ctx, i);
3822 for (j = 0; j < set->nr_maps; j++) {
3823 if (!set->map[j].nr_queues) {
3824 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3825 HCTX_TYPE_DEFAULT, i);
3828 hctx_idx = set->map[j].mq_map[i];
3829 /* unmapped hw queue can be remapped after CPU topo changed */
3830 if (!set->tags[hctx_idx] &&
3831 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3833 * If tags initialization fail for some hctx,
3834 * that hctx won't be brought online. In this
3835 * case, remap the current ctx to hctx[0] which
3836 * is guaranteed to always have tags allocated
3838 set->map[j].mq_map[i] = 0;
3841 hctx = blk_mq_map_queue_type(q, j, i);
3842 ctx->hctxs[j] = hctx;
3844 * If the CPU is already set in the mask, then we've
3845 * mapped this one already. This can happen if
3846 * devices share queues across queue maps.
3848 if (cpumask_test_cpu(i, hctx->cpumask))
3851 cpumask_set_cpu(i, hctx->cpumask);
3853 ctx->index_hw[hctx->type] = hctx->nr_ctx;
3854 hctx->ctxs[hctx->nr_ctx++] = ctx;
3857 * If the nr_ctx type overflows, we have exceeded the
3858 * amount of sw queues we can support.
3860 BUG_ON(!hctx->nr_ctx);
3863 for (; j < HCTX_MAX_TYPES; j++)
3864 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3865 HCTX_TYPE_DEFAULT, i);
3868 queue_for_each_hw_ctx(q, hctx, i) {
3870 * If no software queues are mapped to this hardware queue,
3871 * disable it and free the request entries.
3873 if (!hctx->nr_ctx) {
3874 /* Never unmap queue 0. We need it as a
3875 * fallback in case of a new remap fails
3879 __blk_mq_free_map_and_rqs(set, i);
3885 hctx->tags = set->tags[i];
3886 WARN_ON(!hctx->tags);
3889 * Set the map size to the number of mapped software queues.
3890 * This is more accurate and more efficient than looping
3891 * over all possibly mapped software queues.
3893 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3896 * Initialize batch roundrobin counts
3898 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3899 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3904 * Caller needs to ensure that we're either frozen/quiesced, or that
3905 * the queue isn't live yet.
3907 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3909 struct blk_mq_hw_ctx *hctx;
3912 queue_for_each_hw_ctx(q, hctx, i) {
3914 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3916 blk_mq_tag_idle(hctx);
3917 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3922 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3925 struct request_queue *q;
3927 lockdep_assert_held(&set->tag_list_lock);
3929 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3930 blk_mq_freeze_queue(q);
3931 queue_set_hctx_shared(q, shared);
3932 blk_mq_unfreeze_queue(q);
3936 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3938 struct blk_mq_tag_set *set = q->tag_set;
3940 mutex_lock(&set->tag_list_lock);
3941 list_del(&q->tag_set_list);
3942 if (list_is_singular(&set->tag_list)) {
3943 /* just transitioned to unshared */
3944 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3945 /* update existing queue */
3946 blk_mq_update_tag_set_shared(set, false);
3948 mutex_unlock(&set->tag_list_lock);
3949 INIT_LIST_HEAD(&q->tag_set_list);
3952 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3953 struct request_queue *q)
3955 mutex_lock(&set->tag_list_lock);
3958 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3960 if (!list_empty(&set->tag_list) &&
3961 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3962 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3963 /* update existing queue */
3964 blk_mq_update_tag_set_shared(set, true);
3966 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3967 queue_set_hctx_shared(q, true);
3968 list_add_tail(&q->tag_set_list, &set->tag_list);
3970 mutex_unlock(&set->tag_list_lock);
3973 /* All allocations will be freed in release handler of q->mq_kobj */
3974 static int blk_mq_alloc_ctxs(struct request_queue *q)
3976 struct blk_mq_ctxs *ctxs;
3979 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3983 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3984 if (!ctxs->queue_ctx)
3987 for_each_possible_cpu(cpu) {
3988 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3992 q->mq_kobj = &ctxs->kobj;
3993 q->queue_ctx = ctxs->queue_ctx;
4002 * It is the actual release handler for mq, but we do it from
4003 * request queue's release handler for avoiding use-after-free
4004 * and headache because q->mq_kobj shouldn't have been introduced,
4005 * but we can't group ctx/kctx kobj without it.
4007 void blk_mq_release(struct request_queue *q)
4009 struct blk_mq_hw_ctx *hctx, *next;
4012 queue_for_each_hw_ctx(q, hctx, i)
4013 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4015 /* all hctx are in .unused_hctx_list now */
4016 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4017 list_del_init(&hctx->hctx_list);
4018 kobject_put(&hctx->kobj);
4021 xa_destroy(&q->hctx_table);
4024 * release .mq_kobj and sw queue's kobject now because
4025 * both share lifetime with request queue.
4027 blk_mq_sysfs_deinit(q);
4030 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4033 struct request_queue *q;
4036 q = blk_alloc_queue(set->numa_node);
4038 return ERR_PTR(-ENOMEM);
4039 q->queuedata = queuedata;
4040 ret = blk_mq_init_allocated_queue(set, q);
4043 return ERR_PTR(ret);
4048 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4050 return blk_mq_init_queue_data(set, NULL);
4052 EXPORT_SYMBOL(blk_mq_init_queue);
4055 * blk_mq_destroy_queue - shutdown a request queue
4056 * @q: request queue to shutdown
4058 * This shuts down a request queue allocated by blk_mq_init_queue(). All future
4059 * requests will be failed with -ENODEV. The caller is responsible for dropping
4060 * the reference from blk_mq_init_queue() by calling blk_put_queue().
4062 * Context: can sleep
4064 void blk_mq_destroy_queue(struct request_queue *q)
4066 WARN_ON_ONCE(!queue_is_mq(q));
4067 WARN_ON_ONCE(blk_queue_registered(q));
4071 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4072 blk_queue_start_drain(q);
4073 blk_mq_freeze_queue_wait(q);
4076 blk_mq_cancel_work_sync(q);
4077 blk_mq_exit_queue(q);
4079 EXPORT_SYMBOL(blk_mq_destroy_queue);
4081 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4082 struct lock_class_key *lkclass)
4084 struct request_queue *q;
4085 struct gendisk *disk;
4087 q = blk_mq_init_queue_data(set, queuedata);
4091 disk = __alloc_disk_node(q, set->numa_node, lkclass);
4093 blk_mq_destroy_queue(q);
4095 return ERR_PTR(-ENOMEM);
4097 set_bit(GD_OWNS_QUEUE, &disk->state);
4100 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4102 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4103 struct lock_class_key *lkclass)
4105 struct gendisk *disk;
4107 if (!blk_get_queue(q))
4109 disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4114 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4116 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4117 struct blk_mq_tag_set *set, struct request_queue *q,
4118 int hctx_idx, int node)
4120 struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4122 /* reuse dead hctx first */
4123 spin_lock(&q->unused_hctx_lock);
4124 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4125 if (tmp->numa_node == node) {
4131 list_del_init(&hctx->hctx_list);
4132 spin_unlock(&q->unused_hctx_lock);
4135 hctx = blk_mq_alloc_hctx(q, set, node);
4139 if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4145 kobject_put(&hctx->kobj);
4150 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4151 struct request_queue *q)
4153 struct blk_mq_hw_ctx *hctx;
4156 /* protect against switching io scheduler */
4157 mutex_lock(&q->sysfs_lock);
4158 for (i = 0; i < set->nr_hw_queues; i++) {
4160 int node = blk_mq_get_hctx_node(set, i);
4161 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4164 old_node = old_hctx->numa_node;
4165 blk_mq_exit_hctx(q, set, old_hctx, i);
4168 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4171 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4173 hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4174 WARN_ON_ONCE(!hctx);
4178 * Increasing nr_hw_queues fails. Free the newly allocated
4179 * hctxs and keep the previous q->nr_hw_queues.
4181 if (i != set->nr_hw_queues) {
4182 j = q->nr_hw_queues;
4185 q->nr_hw_queues = set->nr_hw_queues;
4188 xa_for_each_start(&q->hctx_table, j, hctx, j)
4189 blk_mq_exit_hctx(q, set, hctx, j);
4190 mutex_unlock(&q->sysfs_lock);
4193 static void blk_mq_update_poll_flag(struct request_queue *q)
4195 struct blk_mq_tag_set *set = q->tag_set;
4197 if (set->nr_maps > HCTX_TYPE_POLL &&
4198 set->map[HCTX_TYPE_POLL].nr_queues)
4199 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4201 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4204 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4205 struct request_queue *q)
4207 /* mark the queue as mq asap */
4208 q->mq_ops = set->ops;
4210 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4211 blk_mq_poll_stats_bkt,
4212 BLK_MQ_POLL_STATS_BKTS, q);
4216 if (blk_mq_alloc_ctxs(q))
4219 /* init q->mq_kobj and sw queues' kobjects */
4220 blk_mq_sysfs_init(q);
4222 INIT_LIST_HEAD(&q->unused_hctx_list);
4223 spin_lock_init(&q->unused_hctx_lock);
4225 xa_init(&q->hctx_table);
4227 blk_mq_realloc_hw_ctxs(set, q);
4228 if (!q->nr_hw_queues)
4231 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4232 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4236 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4237 blk_mq_update_poll_flag(q);
4239 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4240 INIT_LIST_HEAD(&q->requeue_list);
4241 spin_lock_init(&q->requeue_lock);
4243 q->nr_requests = set->queue_depth;
4246 * Default to classic polling
4248 q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4250 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4251 blk_mq_add_queue_tag_set(set, q);
4252 blk_mq_map_swqueue(q);
4258 blk_stat_free_callback(q->poll_cb);
4264 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4266 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4267 void blk_mq_exit_queue(struct request_queue *q)
4269 struct blk_mq_tag_set *set = q->tag_set;
4271 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4272 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4273 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4274 blk_mq_del_queue_tag_set(q);
4277 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4281 if (blk_mq_is_shared_tags(set->flags)) {
4282 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4285 if (!set->shared_tags)
4289 for (i = 0; i < set->nr_hw_queues; i++) {
4290 if (!__blk_mq_alloc_map_and_rqs(set, i))
4299 __blk_mq_free_map_and_rqs(set, i);
4301 if (blk_mq_is_shared_tags(set->flags)) {
4302 blk_mq_free_map_and_rqs(set, set->shared_tags,
4303 BLK_MQ_NO_HCTX_IDX);
4310 * Allocate the request maps associated with this tag_set. Note that this
4311 * may reduce the depth asked for, if memory is tight. set->queue_depth
4312 * will be updated to reflect the allocated depth.
4314 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4319 depth = set->queue_depth;
4321 err = __blk_mq_alloc_rq_maps(set);
4325 set->queue_depth >>= 1;
4326 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4330 } while (set->queue_depth);
4332 if (!set->queue_depth || err) {
4333 pr_err("blk-mq: failed to allocate request map\n");
4337 if (depth != set->queue_depth)
4338 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4339 depth, set->queue_depth);
4344 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4347 * blk_mq_map_queues() and multiple .map_queues() implementations
4348 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4349 * number of hardware queues.
4351 if (set->nr_maps == 1)
4352 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4354 if (set->ops->map_queues && !is_kdump_kernel()) {
4358 * transport .map_queues is usually done in the following
4361 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4362 * mask = get_cpu_mask(queue)
4363 * for_each_cpu(cpu, mask)
4364 * set->map[x].mq_map[cpu] = queue;
4367 * When we need to remap, the table has to be cleared for
4368 * killing stale mapping since one CPU may not be mapped
4371 for (i = 0; i < set->nr_maps; i++)
4372 blk_mq_clear_mq_map(&set->map[i]);
4374 set->ops->map_queues(set);
4376 BUG_ON(set->nr_maps > 1);
4377 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4381 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4382 int new_nr_hw_queues)
4384 struct blk_mq_tags **new_tags;
4386 if (set->nr_hw_queues >= new_nr_hw_queues)
4389 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4390 GFP_KERNEL, set->numa_node);
4395 memcpy(new_tags, set->tags, set->nr_hw_queues *
4396 sizeof(*set->tags));
4398 set->tags = new_tags;
4400 set->nr_hw_queues = new_nr_hw_queues;
4405 * Alloc a tag set to be associated with one or more request queues.
4406 * May fail with EINVAL for various error conditions. May adjust the
4407 * requested depth down, if it's too large. In that case, the set
4408 * value will be stored in set->queue_depth.
4410 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4414 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4416 if (!set->nr_hw_queues)
4418 if (!set->queue_depth)
4420 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4423 if (!set->ops->queue_rq)
4426 if (!set->ops->get_budget ^ !set->ops->put_budget)
4429 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4430 pr_info("blk-mq: reduced tag depth to %u\n",
4432 set->queue_depth = BLK_MQ_MAX_DEPTH;
4437 else if (set->nr_maps > HCTX_MAX_TYPES)
4441 * If a crashdump is active, then we are potentially in a very
4442 * memory constrained environment. Limit us to 1 queue and
4443 * 64 tags to prevent using too much memory.
4445 if (is_kdump_kernel()) {
4446 set->nr_hw_queues = 1;
4448 set->queue_depth = min(64U, set->queue_depth);
4451 * There is no use for more h/w queues than cpus if we just have
4454 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4455 set->nr_hw_queues = nr_cpu_ids;
4457 if (set->flags & BLK_MQ_F_BLOCKING) {
4458 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4461 ret = init_srcu_struct(set->srcu);
4467 set->tags = kcalloc_node(set->nr_hw_queues,
4468 sizeof(struct blk_mq_tags *), GFP_KERNEL,
4471 goto out_cleanup_srcu;
4473 for (i = 0; i < set->nr_maps; i++) {
4474 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4475 sizeof(set->map[i].mq_map[0]),
4476 GFP_KERNEL, set->numa_node);
4477 if (!set->map[i].mq_map)
4478 goto out_free_mq_map;
4479 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4482 blk_mq_update_queue_map(set);
4484 ret = blk_mq_alloc_set_map_and_rqs(set);
4486 goto out_free_mq_map;
4488 mutex_init(&set->tag_list_lock);
4489 INIT_LIST_HEAD(&set->tag_list);
4494 for (i = 0; i < set->nr_maps; i++) {
4495 kfree(set->map[i].mq_map);
4496 set->map[i].mq_map = NULL;
4501 if (set->flags & BLK_MQ_F_BLOCKING)
4502 cleanup_srcu_struct(set->srcu);
4504 if (set->flags & BLK_MQ_F_BLOCKING)
4508 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4510 /* allocate and initialize a tagset for a simple single-queue device */
4511 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4512 const struct blk_mq_ops *ops, unsigned int queue_depth,
4513 unsigned int set_flags)
4515 memset(set, 0, sizeof(*set));
4517 set->nr_hw_queues = 1;
4519 set->queue_depth = queue_depth;
4520 set->numa_node = NUMA_NO_NODE;
4521 set->flags = set_flags;
4522 return blk_mq_alloc_tag_set(set);
4524 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4526 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4530 for (i = 0; i < set->nr_hw_queues; i++)
4531 __blk_mq_free_map_and_rqs(set, i);
4533 if (blk_mq_is_shared_tags(set->flags)) {
4534 blk_mq_free_map_and_rqs(set, set->shared_tags,
4535 BLK_MQ_NO_HCTX_IDX);
4538 for (j = 0; j < set->nr_maps; j++) {
4539 kfree(set->map[j].mq_map);
4540 set->map[j].mq_map = NULL;
4545 if (set->flags & BLK_MQ_F_BLOCKING) {
4546 cleanup_srcu_struct(set->srcu);
4550 EXPORT_SYMBOL(blk_mq_free_tag_set);
4552 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4554 struct blk_mq_tag_set *set = q->tag_set;
4555 struct blk_mq_hw_ctx *hctx;
4562 if (q->nr_requests == nr)
4565 blk_mq_freeze_queue(q);
4566 blk_mq_quiesce_queue(q);
4569 queue_for_each_hw_ctx(q, hctx, i) {
4573 * If we're using an MQ scheduler, just update the scheduler
4574 * queue depth. This is similar to what the old code would do.
4576 if (hctx->sched_tags) {
4577 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4580 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4585 if (q->elevator && q->elevator->type->ops.depth_updated)
4586 q->elevator->type->ops.depth_updated(hctx);
4589 q->nr_requests = nr;
4590 if (blk_mq_is_shared_tags(set->flags)) {
4592 blk_mq_tag_update_sched_shared_tags(q);
4594 blk_mq_tag_resize_shared_tags(set, nr);
4598 blk_mq_unquiesce_queue(q);
4599 blk_mq_unfreeze_queue(q);
4605 * request_queue and elevator_type pair.
4606 * It is just used by __blk_mq_update_nr_hw_queues to cache
4607 * the elevator_type associated with a request_queue.
4609 struct blk_mq_qe_pair {
4610 struct list_head node;
4611 struct request_queue *q;
4612 struct elevator_type *type;
4616 * Cache the elevator_type in qe pair list and switch the
4617 * io scheduler to 'none'
4619 static bool blk_mq_elv_switch_none(struct list_head *head,
4620 struct request_queue *q)
4622 struct blk_mq_qe_pair *qe;
4627 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4631 /* q->elevator needs protection from ->sysfs_lock */
4632 mutex_lock(&q->sysfs_lock);
4634 INIT_LIST_HEAD(&qe->node);
4636 qe->type = q->elevator->type;
4637 /* keep a reference to the elevator module as we'll switch back */
4638 __elevator_get(qe->type);
4639 list_add(&qe->node, head);
4640 elevator_disable(q);
4641 mutex_unlock(&q->sysfs_lock);
4646 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4647 struct request_queue *q)
4649 struct blk_mq_qe_pair *qe;
4651 list_for_each_entry(qe, head, node)
4658 static void blk_mq_elv_switch_back(struct list_head *head,
4659 struct request_queue *q)
4661 struct blk_mq_qe_pair *qe;
4662 struct elevator_type *t;
4664 qe = blk_lookup_qe_pair(head, q);
4668 list_del(&qe->node);
4671 mutex_lock(&q->sysfs_lock);
4672 elevator_switch(q, t);
4673 /* drop the reference acquired in blk_mq_elv_switch_none */
4675 mutex_unlock(&q->sysfs_lock);
4678 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4681 struct request_queue *q;
4683 int prev_nr_hw_queues;
4685 lockdep_assert_held(&set->tag_list_lock);
4687 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4688 nr_hw_queues = nr_cpu_ids;
4689 if (nr_hw_queues < 1)
4691 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4694 list_for_each_entry(q, &set->tag_list, tag_set_list)
4695 blk_mq_freeze_queue(q);
4697 * Switch IO scheduler to 'none', cleaning up the data associated
4698 * with the previous scheduler. We will switch back once we are done
4699 * updating the new sw to hw queue mappings.
4701 list_for_each_entry(q, &set->tag_list, tag_set_list)
4702 if (!blk_mq_elv_switch_none(&head, q))
4705 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4706 blk_mq_debugfs_unregister_hctxs(q);
4707 blk_mq_sysfs_unregister_hctxs(q);
4710 prev_nr_hw_queues = set->nr_hw_queues;
4711 if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4715 blk_mq_update_queue_map(set);
4716 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4717 blk_mq_realloc_hw_ctxs(set, q);
4718 blk_mq_update_poll_flag(q);
4719 if (q->nr_hw_queues != set->nr_hw_queues) {
4720 int i = prev_nr_hw_queues;
4722 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4723 nr_hw_queues, prev_nr_hw_queues);
4724 for (; i < set->nr_hw_queues; i++)
4725 __blk_mq_free_map_and_rqs(set, i);
4727 set->nr_hw_queues = prev_nr_hw_queues;
4728 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4731 blk_mq_map_swqueue(q);
4735 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4736 blk_mq_sysfs_register_hctxs(q);
4737 blk_mq_debugfs_register_hctxs(q);
4741 list_for_each_entry(q, &set->tag_list, tag_set_list)
4742 blk_mq_elv_switch_back(&head, q);
4744 list_for_each_entry(q, &set->tag_list, tag_set_list)
4745 blk_mq_unfreeze_queue(q);
4748 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4750 mutex_lock(&set->tag_list_lock);
4751 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4752 mutex_unlock(&set->tag_list_lock);
4754 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4756 /* Enable polling stats and return whether they were already enabled. */
4757 static bool blk_poll_stats_enable(struct request_queue *q)
4762 return blk_stats_alloc_enable(q);
4765 static void blk_mq_poll_stats_start(struct request_queue *q)
4768 * We don't arm the callback if polling stats are not enabled or the
4769 * callback is already active.
4771 if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4774 blk_stat_activate_msecs(q->poll_cb, 100);
4777 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4779 struct request_queue *q = cb->data;
4782 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4783 if (cb->stat[bucket].nr_samples)
4784 q->poll_stat[bucket] = cb->stat[bucket];
4788 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4791 unsigned long ret = 0;
4795 * If stats collection isn't on, don't sleep but turn it on for
4798 if (!blk_poll_stats_enable(q))
4802 * As an optimistic guess, use half of the mean service time
4803 * for this type of request. We can (and should) make this smarter.
4804 * For instance, if the completion latencies are tight, we can
4805 * get closer than just half the mean. This is especially
4806 * important on devices where the completion latencies are longer
4807 * than ~10 usec. We do use the stats for the relevant IO size
4808 * if available which does lead to better estimates.
4810 bucket = blk_mq_poll_stats_bkt(rq);
4814 if (q->poll_stat[bucket].nr_samples)
4815 ret = (q->poll_stat[bucket].mean + 1) / 2;
4820 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4822 struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4823 struct request *rq = blk_qc_to_rq(hctx, qc);
4824 struct hrtimer_sleeper hs;
4825 enum hrtimer_mode mode;
4830 * If a request has completed on queue that uses an I/O scheduler, we
4831 * won't get back a request from blk_qc_to_rq.
4833 if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4837 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4839 * 0: use half of prev avg
4840 * >0: use this specific value
4842 if (q->poll_nsec > 0)
4843 nsecs = q->poll_nsec;
4845 nsecs = blk_mq_poll_nsecs(q, rq);
4850 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4853 * This will be replaced with the stats tracking code, using
4854 * 'avg_completion_time / 2' as the pre-sleep target.
4858 mode = HRTIMER_MODE_REL;
4859 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4860 hrtimer_set_expires(&hs.timer, kt);
4863 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4865 set_current_state(TASK_UNINTERRUPTIBLE);
4866 hrtimer_sleeper_start_expires(&hs, mode);
4869 hrtimer_cancel(&hs.timer);
4870 mode = HRTIMER_MODE_ABS;
4871 } while (hs.task && !signal_pending(current));
4873 __set_current_state(TASK_RUNNING);
4874 destroy_hrtimer_on_stack(&hs.timer);
4877 * If we sleep, have the caller restart the poll loop to reset the
4878 * state. Like for the other success return cases, the caller is
4879 * responsible for checking if the IO completed. If the IO isn't
4880 * complete, we'll get called again and will go straight to the busy
4886 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4887 struct io_comp_batch *iob, unsigned int flags)
4889 struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4890 long state = get_current_state();
4894 ret = q->mq_ops->poll(hctx, iob);
4896 __set_current_state(TASK_RUNNING);
4900 if (signal_pending_state(state, current))
4901 __set_current_state(TASK_RUNNING);
4902 if (task_is_running(current))
4905 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4908 } while (!need_resched());
4910 __set_current_state(TASK_RUNNING);
4914 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4917 if (!(flags & BLK_POLL_NOSLEEP) &&
4918 q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4919 if (blk_mq_poll_hybrid(q, cookie))
4922 return blk_mq_poll_classic(q, cookie, iob, flags);
4925 unsigned int blk_mq_rq_cpu(struct request *rq)
4927 return rq->mq_ctx->cpu;
4929 EXPORT_SYMBOL(blk_mq_rq_cpu);
4931 void blk_mq_cancel_work_sync(struct request_queue *q)
4933 struct blk_mq_hw_ctx *hctx;
4936 cancel_delayed_work_sync(&q->requeue_work);
4938 queue_for_each_hw_ctx(q, hctx, i)
4939 cancel_delayed_work_sync(&hctx->run_work);
4942 static int __init blk_mq_init(void)
4946 for_each_possible_cpu(i)
4947 init_llist_head(&per_cpu(blk_cpu_done, i));
4948 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4950 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4951 "block/softirq:dead", NULL,
4952 blk_softirq_cpu_dead);
4953 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4954 blk_mq_hctx_notify_dead);
4955 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4956 blk_mq_hctx_notify_online,
4957 blk_mq_hctx_notify_offline);
4960 subsys_initcall(blk_mq_init);