Merge tag 'io_uring-6.5-2023-07-14' of git://git.kernel.dk/linux
[platform/kernel/linux-starfive.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 #include "blk-ioprio.h"
44
45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
46
47 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
48 static void blk_mq_request_bypass_insert(struct request *rq,
49                 blk_insert_t flags);
50 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
51                 struct list_head *list);
52 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
53                          struct io_comp_batch *iob, unsigned int flags);
54
55 /*
56  * Check if any of the ctx, dispatch list or elevator
57  * have pending work in this hardware queue.
58  */
59 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
60 {
61         return !list_empty_careful(&hctx->dispatch) ||
62                 sbitmap_any_bit_set(&hctx->ctx_map) ||
63                         blk_mq_sched_has_work(hctx);
64 }
65
66 /*
67  * Mark this ctx as having pending work in this hardware queue
68  */
69 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
70                                      struct blk_mq_ctx *ctx)
71 {
72         const int bit = ctx->index_hw[hctx->type];
73
74         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
75                 sbitmap_set_bit(&hctx->ctx_map, bit);
76 }
77
78 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
79                                       struct blk_mq_ctx *ctx)
80 {
81         const int bit = ctx->index_hw[hctx->type];
82
83         sbitmap_clear_bit(&hctx->ctx_map, bit);
84 }
85
86 struct mq_inflight {
87         struct block_device *part;
88         unsigned int inflight[2];
89 };
90
91 static bool blk_mq_check_inflight(struct request *rq, void *priv)
92 {
93         struct mq_inflight *mi = priv;
94
95         if (rq->part && blk_do_io_stat(rq) &&
96             (!mi->part->bd_partno || rq->part == mi->part) &&
97             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
98                 mi->inflight[rq_data_dir(rq)]++;
99
100         return true;
101 }
102
103 unsigned int blk_mq_in_flight(struct request_queue *q,
104                 struct block_device *part)
105 {
106         struct mq_inflight mi = { .part = part };
107
108         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
109
110         return mi.inflight[0] + mi.inflight[1];
111 }
112
113 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
114                 unsigned int inflight[2])
115 {
116         struct mq_inflight mi = { .part = part };
117
118         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119         inflight[0] = mi.inflight[0];
120         inflight[1] = mi.inflight[1];
121 }
122
123 void blk_freeze_queue_start(struct request_queue *q)
124 {
125         mutex_lock(&q->mq_freeze_lock);
126         if (++q->mq_freeze_depth == 1) {
127                 percpu_ref_kill(&q->q_usage_counter);
128                 mutex_unlock(&q->mq_freeze_lock);
129                 if (queue_is_mq(q))
130                         blk_mq_run_hw_queues(q, false);
131         } else {
132                 mutex_unlock(&q->mq_freeze_lock);
133         }
134 }
135 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
136
137 void blk_mq_freeze_queue_wait(struct request_queue *q)
138 {
139         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
140 }
141 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
142
143 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
144                                      unsigned long timeout)
145 {
146         return wait_event_timeout(q->mq_freeze_wq,
147                                         percpu_ref_is_zero(&q->q_usage_counter),
148                                         timeout);
149 }
150 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
151
152 /*
153  * Guarantee no request is in use, so we can change any data structure of
154  * the queue afterward.
155  */
156 void blk_freeze_queue(struct request_queue *q)
157 {
158         /*
159          * In the !blk_mq case we are only calling this to kill the
160          * q_usage_counter, otherwise this increases the freeze depth
161          * and waits for it to return to zero.  For this reason there is
162          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
163          * exported to drivers as the only user for unfreeze is blk_mq.
164          */
165         blk_freeze_queue_start(q);
166         blk_mq_freeze_queue_wait(q);
167 }
168
169 void blk_mq_freeze_queue(struct request_queue *q)
170 {
171         /*
172          * ...just an alias to keep freeze and unfreeze actions balanced
173          * in the blk_mq_* namespace
174          */
175         blk_freeze_queue(q);
176 }
177 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
178
179 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
180 {
181         mutex_lock(&q->mq_freeze_lock);
182         if (force_atomic)
183                 q->q_usage_counter.data->force_atomic = true;
184         q->mq_freeze_depth--;
185         WARN_ON_ONCE(q->mq_freeze_depth < 0);
186         if (!q->mq_freeze_depth) {
187                 percpu_ref_resurrect(&q->q_usage_counter);
188                 wake_up_all(&q->mq_freeze_wq);
189         }
190         mutex_unlock(&q->mq_freeze_lock);
191 }
192
193 void blk_mq_unfreeze_queue(struct request_queue *q)
194 {
195         __blk_mq_unfreeze_queue(q, false);
196 }
197 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
198
199 /*
200  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
201  * mpt3sas driver such that this function can be removed.
202  */
203 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
204 {
205         unsigned long flags;
206
207         spin_lock_irqsave(&q->queue_lock, flags);
208         if (!q->quiesce_depth++)
209                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
210         spin_unlock_irqrestore(&q->queue_lock, flags);
211 }
212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
213
214 /**
215  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
216  * @set: tag_set to wait on
217  *
218  * Note: it is driver's responsibility for making sure that quiesce has
219  * been started on or more of the request_queues of the tag_set.  This
220  * function only waits for the quiesce on those request_queues that had
221  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
222  */
223 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
224 {
225         if (set->flags & BLK_MQ_F_BLOCKING)
226                 synchronize_srcu(set->srcu);
227         else
228                 synchronize_rcu();
229 }
230 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
231
232 /**
233  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
234  * @q: request queue.
235  *
236  * Note: this function does not prevent that the struct request end_io()
237  * callback function is invoked. Once this function is returned, we make
238  * sure no dispatch can happen until the queue is unquiesced via
239  * blk_mq_unquiesce_queue().
240  */
241 void blk_mq_quiesce_queue(struct request_queue *q)
242 {
243         blk_mq_quiesce_queue_nowait(q);
244         /* nothing to wait for non-mq queues */
245         if (queue_is_mq(q))
246                 blk_mq_wait_quiesce_done(q->tag_set);
247 }
248 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
249
250 /*
251  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
252  * @q: request queue.
253  *
254  * This function recovers queue into the state before quiescing
255  * which is done by blk_mq_quiesce_queue.
256  */
257 void blk_mq_unquiesce_queue(struct request_queue *q)
258 {
259         unsigned long flags;
260         bool run_queue = false;
261
262         spin_lock_irqsave(&q->queue_lock, flags);
263         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
264                 ;
265         } else if (!--q->quiesce_depth) {
266                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
267                 run_queue = true;
268         }
269         spin_unlock_irqrestore(&q->queue_lock, flags);
270
271         /* dispatch requests which are inserted during quiescing */
272         if (run_queue)
273                 blk_mq_run_hw_queues(q, true);
274 }
275 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
276
277 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
278 {
279         struct request_queue *q;
280
281         mutex_lock(&set->tag_list_lock);
282         list_for_each_entry(q, &set->tag_list, tag_set_list) {
283                 if (!blk_queue_skip_tagset_quiesce(q))
284                         blk_mq_quiesce_queue_nowait(q);
285         }
286         blk_mq_wait_quiesce_done(set);
287         mutex_unlock(&set->tag_list_lock);
288 }
289 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
290
291 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
292 {
293         struct request_queue *q;
294
295         mutex_lock(&set->tag_list_lock);
296         list_for_each_entry(q, &set->tag_list, tag_set_list) {
297                 if (!blk_queue_skip_tagset_quiesce(q))
298                         blk_mq_unquiesce_queue(q);
299         }
300         mutex_unlock(&set->tag_list_lock);
301 }
302 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
303
304 void blk_mq_wake_waiters(struct request_queue *q)
305 {
306         struct blk_mq_hw_ctx *hctx;
307         unsigned long i;
308
309         queue_for_each_hw_ctx(q, hctx, i)
310                 if (blk_mq_hw_queue_mapped(hctx))
311                         blk_mq_tag_wakeup_all(hctx->tags, true);
312 }
313
314 void blk_rq_init(struct request_queue *q, struct request *rq)
315 {
316         memset(rq, 0, sizeof(*rq));
317
318         INIT_LIST_HEAD(&rq->queuelist);
319         rq->q = q;
320         rq->__sector = (sector_t) -1;
321         INIT_HLIST_NODE(&rq->hash);
322         RB_CLEAR_NODE(&rq->rb_node);
323         rq->tag = BLK_MQ_NO_TAG;
324         rq->internal_tag = BLK_MQ_NO_TAG;
325         rq->start_time_ns = ktime_get_ns();
326         rq->part = NULL;
327         blk_crypto_rq_set_defaults(rq);
328 }
329 EXPORT_SYMBOL(blk_rq_init);
330
331 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
332                 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
333 {
334         struct blk_mq_ctx *ctx = data->ctx;
335         struct blk_mq_hw_ctx *hctx = data->hctx;
336         struct request_queue *q = data->q;
337         struct request *rq = tags->static_rqs[tag];
338
339         rq->q = q;
340         rq->mq_ctx = ctx;
341         rq->mq_hctx = hctx;
342         rq->cmd_flags = data->cmd_flags;
343
344         if (data->flags & BLK_MQ_REQ_PM)
345                 data->rq_flags |= RQF_PM;
346         if (blk_queue_io_stat(q))
347                 data->rq_flags |= RQF_IO_STAT;
348         rq->rq_flags = data->rq_flags;
349
350         if (data->rq_flags & RQF_SCHED_TAGS) {
351                 rq->tag = BLK_MQ_NO_TAG;
352                 rq->internal_tag = tag;
353         } else {
354                 rq->tag = tag;
355                 rq->internal_tag = BLK_MQ_NO_TAG;
356         }
357         rq->timeout = 0;
358
359         if (blk_mq_need_time_stamp(rq))
360                 rq->start_time_ns = ktime_get_ns();
361         else
362                 rq->start_time_ns = 0;
363         rq->part = NULL;
364 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
365         rq->alloc_time_ns = alloc_time_ns;
366 #endif
367         rq->io_start_time_ns = 0;
368         rq->stats_sectors = 0;
369         rq->nr_phys_segments = 0;
370 #if defined(CONFIG_BLK_DEV_INTEGRITY)
371         rq->nr_integrity_segments = 0;
372 #endif
373         rq->end_io = NULL;
374         rq->end_io_data = NULL;
375
376         blk_crypto_rq_set_defaults(rq);
377         INIT_LIST_HEAD(&rq->queuelist);
378         /* tag was already set */
379         WRITE_ONCE(rq->deadline, 0);
380         req_ref_set(rq, 1);
381
382         if (rq->rq_flags & RQF_USE_SCHED) {
383                 struct elevator_queue *e = data->q->elevator;
384
385                 INIT_HLIST_NODE(&rq->hash);
386                 RB_CLEAR_NODE(&rq->rb_node);
387
388                 if (e->type->ops.prepare_request)
389                         e->type->ops.prepare_request(rq);
390         }
391
392         return rq;
393 }
394
395 static inline struct request *
396 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
397                 u64 alloc_time_ns)
398 {
399         unsigned int tag, tag_offset;
400         struct blk_mq_tags *tags;
401         struct request *rq;
402         unsigned long tag_mask;
403         int i, nr = 0;
404
405         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
406         if (unlikely(!tag_mask))
407                 return NULL;
408
409         tags = blk_mq_tags_from_data(data);
410         for (i = 0; tag_mask; i++) {
411                 if (!(tag_mask & (1UL << i)))
412                         continue;
413                 tag = tag_offset + i;
414                 prefetch(tags->static_rqs[tag]);
415                 tag_mask &= ~(1UL << i);
416                 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
417                 rq_list_add(data->cached_rq, rq);
418                 nr++;
419         }
420         /* caller already holds a reference, add for remainder */
421         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
422         data->nr_tags -= nr;
423
424         return rq_list_pop(data->cached_rq);
425 }
426
427 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
428 {
429         struct request_queue *q = data->q;
430         u64 alloc_time_ns = 0;
431         struct request *rq;
432         unsigned int tag;
433
434         /* alloc_time includes depth and tag waits */
435         if (blk_queue_rq_alloc_time(q))
436                 alloc_time_ns = ktime_get_ns();
437
438         if (data->cmd_flags & REQ_NOWAIT)
439                 data->flags |= BLK_MQ_REQ_NOWAIT;
440
441         if (q->elevator) {
442                 /*
443                  * All requests use scheduler tags when an I/O scheduler is
444                  * enabled for the queue.
445                  */
446                 data->rq_flags |= RQF_SCHED_TAGS;
447
448                 /*
449                  * Flush/passthrough requests are special and go directly to the
450                  * dispatch list.
451                  */
452                 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
453                     !blk_op_is_passthrough(data->cmd_flags)) {
454                         struct elevator_mq_ops *ops = &q->elevator->type->ops;
455
456                         WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
457
458                         data->rq_flags |= RQF_USE_SCHED;
459                         if (ops->limit_depth)
460                                 ops->limit_depth(data->cmd_flags, data);
461                 }
462         }
463
464 retry:
465         data->ctx = blk_mq_get_ctx(q);
466         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
467         if (!(data->rq_flags & RQF_SCHED_TAGS))
468                 blk_mq_tag_busy(data->hctx);
469
470         if (data->flags & BLK_MQ_REQ_RESERVED)
471                 data->rq_flags |= RQF_RESV;
472
473         /*
474          * Try batched alloc if we want more than 1 tag.
475          */
476         if (data->nr_tags > 1) {
477                 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
478                 if (rq)
479                         return rq;
480                 data->nr_tags = 1;
481         }
482
483         /*
484          * Waiting allocations only fail because of an inactive hctx.  In that
485          * case just retry the hctx assignment and tag allocation as CPU hotplug
486          * should have migrated us to an online CPU by now.
487          */
488         tag = blk_mq_get_tag(data);
489         if (tag == BLK_MQ_NO_TAG) {
490                 if (data->flags & BLK_MQ_REQ_NOWAIT)
491                         return NULL;
492                 /*
493                  * Give up the CPU and sleep for a random short time to
494                  * ensure that thread using a realtime scheduling class
495                  * are migrated off the CPU, and thus off the hctx that
496                  * is going away.
497                  */
498                 msleep(3);
499                 goto retry;
500         }
501
502         return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
503                                         alloc_time_ns);
504 }
505
506 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
507                                             struct blk_plug *plug,
508                                             blk_opf_t opf,
509                                             blk_mq_req_flags_t flags)
510 {
511         struct blk_mq_alloc_data data = {
512                 .q              = q,
513                 .flags          = flags,
514                 .cmd_flags      = opf,
515                 .nr_tags        = plug->nr_ios,
516                 .cached_rq      = &plug->cached_rq,
517         };
518         struct request *rq;
519
520         if (blk_queue_enter(q, flags))
521                 return NULL;
522
523         plug->nr_ios = 1;
524
525         rq = __blk_mq_alloc_requests(&data);
526         if (unlikely(!rq))
527                 blk_queue_exit(q);
528         return rq;
529 }
530
531 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
532                                                    blk_opf_t opf,
533                                                    blk_mq_req_flags_t flags)
534 {
535         struct blk_plug *plug = current->plug;
536         struct request *rq;
537
538         if (!plug)
539                 return NULL;
540
541         if (rq_list_empty(plug->cached_rq)) {
542                 if (plug->nr_ios == 1)
543                         return NULL;
544                 rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
545                 if (!rq)
546                         return NULL;
547         } else {
548                 rq = rq_list_peek(&plug->cached_rq);
549                 if (!rq || rq->q != q)
550                         return NULL;
551
552                 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
553                         return NULL;
554                 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
555                         return NULL;
556
557                 plug->cached_rq = rq_list_next(rq);
558         }
559
560         rq->cmd_flags = opf;
561         INIT_LIST_HEAD(&rq->queuelist);
562         return rq;
563 }
564
565 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
566                 blk_mq_req_flags_t flags)
567 {
568         struct request *rq;
569
570         rq = blk_mq_alloc_cached_request(q, opf, flags);
571         if (!rq) {
572                 struct blk_mq_alloc_data data = {
573                         .q              = q,
574                         .flags          = flags,
575                         .cmd_flags      = opf,
576                         .nr_tags        = 1,
577                 };
578                 int ret;
579
580                 ret = blk_queue_enter(q, flags);
581                 if (ret)
582                         return ERR_PTR(ret);
583
584                 rq = __blk_mq_alloc_requests(&data);
585                 if (!rq)
586                         goto out_queue_exit;
587         }
588         rq->__data_len = 0;
589         rq->__sector = (sector_t) -1;
590         rq->bio = rq->biotail = NULL;
591         return rq;
592 out_queue_exit:
593         blk_queue_exit(q);
594         return ERR_PTR(-EWOULDBLOCK);
595 }
596 EXPORT_SYMBOL(blk_mq_alloc_request);
597
598 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
599         blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
600 {
601         struct blk_mq_alloc_data data = {
602                 .q              = q,
603                 .flags          = flags,
604                 .cmd_flags      = opf,
605                 .nr_tags        = 1,
606         };
607         u64 alloc_time_ns = 0;
608         struct request *rq;
609         unsigned int cpu;
610         unsigned int tag;
611         int ret;
612
613         /* alloc_time includes depth and tag waits */
614         if (blk_queue_rq_alloc_time(q))
615                 alloc_time_ns = ktime_get_ns();
616
617         /*
618          * If the tag allocator sleeps we could get an allocation for a
619          * different hardware context.  No need to complicate the low level
620          * allocator for this for the rare use case of a command tied to
621          * a specific queue.
622          */
623         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
624             WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
625                 return ERR_PTR(-EINVAL);
626
627         if (hctx_idx >= q->nr_hw_queues)
628                 return ERR_PTR(-EIO);
629
630         ret = blk_queue_enter(q, flags);
631         if (ret)
632                 return ERR_PTR(ret);
633
634         /*
635          * Check if the hardware context is actually mapped to anything.
636          * If not tell the caller that it should skip this queue.
637          */
638         ret = -EXDEV;
639         data.hctx = xa_load(&q->hctx_table, hctx_idx);
640         if (!blk_mq_hw_queue_mapped(data.hctx))
641                 goto out_queue_exit;
642         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
643         if (cpu >= nr_cpu_ids)
644                 goto out_queue_exit;
645         data.ctx = __blk_mq_get_ctx(q, cpu);
646
647         if (q->elevator)
648                 data.rq_flags |= RQF_SCHED_TAGS;
649         else
650                 blk_mq_tag_busy(data.hctx);
651
652         if (flags & BLK_MQ_REQ_RESERVED)
653                 data.rq_flags |= RQF_RESV;
654
655         ret = -EWOULDBLOCK;
656         tag = blk_mq_get_tag(&data);
657         if (tag == BLK_MQ_NO_TAG)
658                 goto out_queue_exit;
659         rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
660                                         alloc_time_ns);
661         rq->__data_len = 0;
662         rq->__sector = (sector_t) -1;
663         rq->bio = rq->biotail = NULL;
664         return rq;
665
666 out_queue_exit:
667         blk_queue_exit(q);
668         return ERR_PTR(ret);
669 }
670 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
671
672 static void __blk_mq_free_request(struct request *rq)
673 {
674         struct request_queue *q = rq->q;
675         struct blk_mq_ctx *ctx = rq->mq_ctx;
676         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
677         const int sched_tag = rq->internal_tag;
678
679         blk_crypto_free_request(rq);
680         blk_pm_mark_last_busy(rq);
681         rq->mq_hctx = NULL;
682
683         if (rq->rq_flags & RQF_MQ_INFLIGHT)
684                 __blk_mq_dec_active_requests(hctx);
685
686         if (rq->tag != BLK_MQ_NO_TAG)
687                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
688         if (sched_tag != BLK_MQ_NO_TAG)
689                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
690         blk_mq_sched_restart(hctx);
691         blk_queue_exit(q);
692 }
693
694 void blk_mq_free_request(struct request *rq)
695 {
696         struct request_queue *q = rq->q;
697
698         if ((rq->rq_flags & RQF_USE_SCHED) &&
699             q->elevator->type->ops.finish_request)
700                 q->elevator->type->ops.finish_request(rq);
701
702         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
703                 laptop_io_completion(q->disk->bdi);
704
705         rq_qos_done(q, rq);
706
707         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
708         if (req_ref_put_and_test(rq))
709                 __blk_mq_free_request(rq);
710 }
711 EXPORT_SYMBOL_GPL(blk_mq_free_request);
712
713 void blk_mq_free_plug_rqs(struct blk_plug *plug)
714 {
715         struct request *rq;
716
717         while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
718                 blk_mq_free_request(rq);
719 }
720
721 void blk_dump_rq_flags(struct request *rq, char *msg)
722 {
723         printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
724                 rq->q->disk ? rq->q->disk->disk_name : "?",
725                 (__force unsigned long long) rq->cmd_flags);
726
727         printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
728                (unsigned long long)blk_rq_pos(rq),
729                blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
730         printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
731                rq->bio, rq->biotail, blk_rq_bytes(rq));
732 }
733 EXPORT_SYMBOL(blk_dump_rq_flags);
734
735 static void req_bio_endio(struct request *rq, struct bio *bio,
736                           unsigned int nbytes, blk_status_t error)
737 {
738         if (unlikely(error)) {
739                 bio->bi_status = error;
740         } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
741                 /*
742                  * Partial zone append completions cannot be supported as the
743                  * BIO fragments may end up not being written sequentially.
744                  */
745                 if (bio->bi_iter.bi_size != nbytes)
746                         bio->bi_status = BLK_STS_IOERR;
747                 else
748                         bio->bi_iter.bi_sector = rq->__sector;
749         }
750
751         bio_advance(bio, nbytes);
752
753         if (unlikely(rq->rq_flags & RQF_QUIET))
754                 bio_set_flag(bio, BIO_QUIET);
755         /* don't actually finish bio if it's part of flush sequence */
756         if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
757                 bio_endio(bio);
758 }
759
760 static void blk_account_io_completion(struct request *req, unsigned int bytes)
761 {
762         if (req->part && blk_do_io_stat(req)) {
763                 const int sgrp = op_stat_group(req_op(req));
764
765                 part_stat_lock();
766                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
767                 part_stat_unlock();
768         }
769 }
770
771 static void blk_print_req_error(struct request *req, blk_status_t status)
772 {
773         printk_ratelimited(KERN_ERR
774                 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
775                 "phys_seg %u prio class %u\n",
776                 blk_status_to_str(status),
777                 req->q->disk ? req->q->disk->disk_name : "?",
778                 blk_rq_pos(req), (__force u32)req_op(req),
779                 blk_op_str(req_op(req)),
780                 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
781                 req->nr_phys_segments,
782                 IOPRIO_PRIO_CLASS(req->ioprio));
783 }
784
785 /*
786  * Fully end IO on a request. Does not support partial completions, or
787  * errors.
788  */
789 static void blk_complete_request(struct request *req)
790 {
791         const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
792         int total_bytes = blk_rq_bytes(req);
793         struct bio *bio = req->bio;
794
795         trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
796
797         if (!bio)
798                 return;
799
800 #ifdef CONFIG_BLK_DEV_INTEGRITY
801         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
802                 req->q->integrity.profile->complete_fn(req, total_bytes);
803 #endif
804
805         /*
806          * Upper layers may call blk_crypto_evict_key() anytime after the last
807          * bio_endio().  Therefore, the keyslot must be released before that.
808          */
809         blk_crypto_rq_put_keyslot(req);
810
811         blk_account_io_completion(req, total_bytes);
812
813         do {
814                 struct bio *next = bio->bi_next;
815
816                 /* Completion has already been traced */
817                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
818
819                 if (req_op(req) == REQ_OP_ZONE_APPEND)
820                         bio->bi_iter.bi_sector = req->__sector;
821
822                 if (!is_flush)
823                         bio_endio(bio);
824                 bio = next;
825         } while (bio);
826
827         /*
828          * Reset counters so that the request stacking driver
829          * can find how many bytes remain in the request
830          * later.
831          */
832         if (!req->end_io) {
833                 req->bio = NULL;
834                 req->__data_len = 0;
835         }
836 }
837
838 /**
839  * blk_update_request - Complete multiple bytes without completing the request
840  * @req:      the request being processed
841  * @error:    block status code
842  * @nr_bytes: number of bytes to complete for @req
843  *
844  * Description:
845  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
846  *     the request structure even if @req doesn't have leftover.
847  *     If @req has leftover, sets it up for the next range of segments.
848  *
849  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
850  *     %false return from this function.
851  *
852  * Note:
853  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
854  *      except in the consistency check at the end of this function.
855  *
856  * Return:
857  *     %false - this request doesn't have any more data
858  *     %true  - this request has more data
859  **/
860 bool blk_update_request(struct request *req, blk_status_t error,
861                 unsigned int nr_bytes)
862 {
863         int total_bytes;
864
865         trace_block_rq_complete(req, error, nr_bytes);
866
867         if (!req->bio)
868                 return false;
869
870 #ifdef CONFIG_BLK_DEV_INTEGRITY
871         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
872             error == BLK_STS_OK)
873                 req->q->integrity.profile->complete_fn(req, nr_bytes);
874 #endif
875
876         /*
877          * Upper layers may call blk_crypto_evict_key() anytime after the last
878          * bio_endio().  Therefore, the keyslot must be released before that.
879          */
880         if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
881                 __blk_crypto_rq_put_keyslot(req);
882
883         if (unlikely(error && !blk_rq_is_passthrough(req) &&
884                      !(req->rq_flags & RQF_QUIET)) &&
885                      !test_bit(GD_DEAD, &req->q->disk->state)) {
886                 blk_print_req_error(req, error);
887                 trace_block_rq_error(req, error, nr_bytes);
888         }
889
890         blk_account_io_completion(req, nr_bytes);
891
892         total_bytes = 0;
893         while (req->bio) {
894                 struct bio *bio = req->bio;
895                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
896
897                 if (bio_bytes == bio->bi_iter.bi_size)
898                         req->bio = bio->bi_next;
899
900                 /* Completion has already been traced */
901                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
902                 req_bio_endio(req, bio, bio_bytes, error);
903
904                 total_bytes += bio_bytes;
905                 nr_bytes -= bio_bytes;
906
907                 if (!nr_bytes)
908                         break;
909         }
910
911         /*
912          * completely done
913          */
914         if (!req->bio) {
915                 /*
916                  * Reset counters so that the request stacking driver
917                  * can find how many bytes remain in the request
918                  * later.
919                  */
920                 req->__data_len = 0;
921                 return false;
922         }
923
924         req->__data_len -= total_bytes;
925
926         /* update sector only for requests with clear definition of sector */
927         if (!blk_rq_is_passthrough(req))
928                 req->__sector += total_bytes >> 9;
929
930         /* mixed attributes always follow the first bio */
931         if (req->rq_flags & RQF_MIXED_MERGE) {
932                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
933                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
934         }
935
936         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
937                 /*
938                  * If total number of sectors is less than the first segment
939                  * size, something has gone terribly wrong.
940                  */
941                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
942                         blk_dump_rq_flags(req, "request botched");
943                         req->__data_len = blk_rq_cur_bytes(req);
944                 }
945
946                 /* recalculate the number of segments */
947                 req->nr_phys_segments = blk_recalc_rq_segments(req);
948         }
949
950         return true;
951 }
952 EXPORT_SYMBOL_GPL(blk_update_request);
953
954 static inline void blk_account_io_done(struct request *req, u64 now)
955 {
956         trace_block_io_done(req);
957
958         /*
959          * Account IO completion.  flush_rq isn't accounted as a
960          * normal IO on queueing nor completion.  Accounting the
961          * containing request is enough.
962          */
963         if (blk_do_io_stat(req) && req->part &&
964             !(req->rq_flags & RQF_FLUSH_SEQ)) {
965                 const int sgrp = op_stat_group(req_op(req));
966
967                 part_stat_lock();
968                 update_io_ticks(req->part, jiffies, true);
969                 part_stat_inc(req->part, ios[sgrp]);
970                 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
971                 part_stat_unlock();
972         }
973 }
974
975 static inline void blk_account_io_start(struct request *req)
976 {
977         trace_block_io_start(req);
978
979         if (blk_do_io_stat(req)) {
980                 /*
981                  * All non-passthrough requests are created from a bio with one
982                  * exception: when a flush command that is part of a flush sequence
983                  * generated by the state machine in blk-flush.c is cloned onto the
984                  * lower device by dm-multipath we can get here without a bio.
985                  */
986                 if (req->bio)
987                         req->part = req->bio->bi_bdev;
988                 else
989                         req->part = req->q->disk->part0;
990
991                 part_stat_lock();
992                 update_io_ticks(req->part, jiffies, false);
993                 part_stat_unlock();
994         }
995 }
996
997 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
998 {
999         if (rq->rq_flags & RQF_STATS)
1000                 blk_stat_add(rq, now);
1001
1002         blk_mq_sched_completed_request(rq, now);
1003         blk_account_io_done(rq, now);
1004 }
1005
1006 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1007 {
1008         if (blk_mq_need_time_stamp(rq))
1009                 __blk_mq_end_request_acct(rq, ktime_get_ns());
1010
1011         if (rq->end_io) {
1012                 rq_qos_done(rq->q, rq);
1013                 if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1014                         blk_mq_free_request(rq);
1015         } else {
1016                 blk_mq_free_request(rq);
1017         }
1018 }
1019 EXPORT_SYMBOL(__blk_mq_end_request);
1020
1021 void blk_mq_end_request(struct request *rq, blk_status_t error)
1022 {
1023         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1024                 BUG();
1025         __blk_mq_end_request(rq, error);
1026 }
1027 EXPORT_SYMBOL(blk_mq_end_request);
1028
1029 #define TAG_COMP_BATCH          32
1030
1031 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1032                                           int *tag_array, int nr_tags)
1033 {
1034         struct request_queue *q = hctx->queue;
1035
1036         /*
1037          * All requests should have been marked as RQF_MQ_INFLIGHT, so
1038          * update hctx->nr_active in batch
1039          */
1040         if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
1041                 __blk_mq_sub_active_requests(hctx, nr_tags);
1042
1043         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1044         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1045 }
1046
1047 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1048 {
1049         int tags[TAG_COMP_BATCH], nr_tags = 0;
1050         struct blk_mq_hw_ctx *cur_hctx = NULL;
1051         struct request *rq;
1052         u64 now = 0;
1053
1054         if (iob->need_ts)
1055                 now = ktime_get_ns();
1056
1057         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1058                 prefetch(rq->bio);
1059                 prefetch(rq->rq_next);
1060
1061                 blk_complete_request(rq);
1062                 if (iob->need_ts)
1063                         __blk_mq_end_request_acct(rq, now);
1064
1065                 rq_qos_done(rq->q, rq);
1066
1067                 /*
1068                  * If end_io handler returns NONE, then it still has
1069                  * ownership of the request.
1070                  */
1071                 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1072                         continue;
1073
1074                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1075                 if (!req_ref_put_and_test(rq))
1076                         continue;
1077
1078                 blk_crypto_free_request(rq);
1079                 blk_pm_mark_last_busy(rq);
1080
1081                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1082                         if (cur_hctx)
1083                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1084                         nr_tags = 0;
1085                         cur_hctx = rq->mq_hctx;
1086                 }
1087                 tags[nr_tags++] = rq->tag;
1088         }
1089
1090         if (nr_tags)
1091                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1092 }
1093 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1094
1095 static void blk_complete_reqs(struct llist_head *list)
1096 {
1097         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1098         struct request *rq, *next;
1099
1100         llist_for_each_entry_safe(rq, next, entry, ipi_list)
1101                 rq->q->mq_ops->complete(rq);
1102 }
1103
1104 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1105 {
1106         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1107 }
1108
1109 static int blk_softirq_cpu_dead(unsigned int cpu)
1110 {
1111         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1112         return 0;
1113 }
1114
1115 static void __blk_mq_complete_request_remote(void *data)
1116 {
1117         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1118 }
1119
1120 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1121 {
1122         int cpu = raw_smp_processor_id();
1123
1124         if (!IS_ENABLED(CONFIG_SMP) ||
1125             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1126                 return false;
1127         /*
1128          * With force threaded interrupts enabled, raising softirq from an SMP
1129          * function call will always result in waking the ksoftirqd thread.
1130          * This is probably worse than completing the request on a different
1131          * cache domain.
1132          */
1133         if (force_irqthreads())
1134                 return false;
1135
1136         /* same CPU or cache domain?  Complete locally */
1137         if (cpu == rq->mq_ctx->cpu ||
1138             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1139              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1140                 return false;
1141
1142         /* don't try to IPI to an offline CPU */
1143         return cpu_online(rq->mq_ctx->cpu);
1144 }
1145
1146 static void blk_mq_complete_send_ipi(struct request *rq)
1147 {
1148         struct llist_head *list;
1149         unsigned int cpu;
1150
1151         cpu = rq->mq_ctx->cpu;
1152         list = &per_cpu(blk_cpu_done, cpu);
1153         if (llist_add(&rq->ipi_list, list)) {
1154                 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1155                 smp_call_function_single_async(cpu, &rq->csd);
1156         }
1157 }
1158
1159 static void blk_mq_raise_softirq(struct request *rq)
1160 {
1161         struct llist_head *list;
1162
1163         preempt_disable();
1164         list = this_cpu_ptr(&blk_cpu_done);
1165         if (llist_add(&rq->ipi_list, list))
1166                 raise_softirq(BLOCK_SOFTIRQ);
1167         preempt_enable();
1168 }
1169
1170 bool blk_mq_complete_request_remote(struct request *rq)
1171 {
1172         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1173
1174         /*
1175          * For request which hctx has only one ctx mapping,
1176          * or a polled request, always complete locally,
1177          * it's pointless to redirect the completion.
1178          */
1179         if ((rq->mq_hctx->nr_ctx == 1 &&
1180              rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1181              rq->cmd_flags & REQ_POLLED)
1182                 return false;
1183
1184         if (blk_mq_complete_need_ipi(rq)) {
1185                 blk_mq_complete_send_ipi(rq);
1186                 return true;
1187         }
1188
1189         if (rq->q->nr_hw_queues == 1) {
1190                 blk_mq_raise_softirq(rq);
1191                 return true;
1192         }
1193         return false;
1194 }
1195 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1196
1197 /**
1198  * blk_mq_complete_request - end I/O on a request
1199  * @rq:         the request being processed
1200  *
1201  * Description:
1202  *      Complete a request by scheduling the ->complete_rq operation.
1203  **/
1204 void blk_mq_complete_request(struct request *rq)
1205 {
1206         if (!blk_mq_complete_request_remote(rq))
1207                 rq->q->mq_ops->complete(rq);
1208 }
1209 EXPORT_SYMBOL(blk_mq_complete_request);
1210
1211 /**
1212  * blk_mq_start_request - Start processing a request
1213  * @rq: Pointer to request to be started
1214  *
1215  * Function used by device drivers to notify the block layer that a request
1216  * is going to be processed now, so blk layer can do proper initializations
1217  * such as starting the timeout timer.
1218  */
1219 void blk_mq_start_request(struct request *rq)
1220 {
1221         struct request_queue *q = rq->q;
1222
1223         trace_block_rq_issue(rq);
1224
1225         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1226                 rq->io_start_time_ns = ktime_get_ns();
1227                 rq->stats_sectors = blk_rq_sectors(rq);
1228                 rq->rq_flags |= RQF_STATS;
1229                 rq_qos_issue(q, rq);
1230         }
1231
1232         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1233
1234         blk_add_timer(rq);
1235         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1236
1237 #ifdef CONFIG_BLK_DEV_INTEGRITY
1238         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1239                 q->integrity.profile->prepare_fn(rq);
1240 #endif
1241         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1242                 WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1243 }
1244 EXPORT_SYMBOL(blk_mq_start_request);
1245
1246 /*
1247  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1248  * queues. This is important for md arrays to benefit from merging
1249  * requests.
1250  */
1251 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1252 {
1253         if (plug->multiple_queues)
1254                 return BLK_MAX_REQUEST_COUNT * 2;
1255         return BLK_MAX_REQUEST_COUNT;
1256 }
1257
1258 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1259 {
1260         struct request *last = rq_list_peek(&plug->mq_list);
1261
1262         if (!plug->rq_count) {
1263                 trace_block_plug(rq->q);
1264         } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1265                    (!blk_queue_nomerges(rq->q) &&
1266                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1267                 blk_mq_flush_plug_list(plug, false);
1268                 last = NULL;
1269                 trace_block_plug(rq->q);
1270         }
1271
1272         if (!plug->multiple_queues && last && last->q != rq->q)
1273                 plug->multiple_queues = true;
1274         /*
1275          * Any request allocated from sched tags can't be issued to
1276          * ->queue_rqs() directly
1277          */
1278         if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1279                 plug->has_elevator = true;
1280         rq->rq_next = NULL;
1281         rq_list_add(&plug->mq_list, rq);
1282         plug->rq_count++;
1283 }
1284
1285 /**
1286  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1287  * @rq:         request to insert
1288  * @at_head:    insert request at head or tail of queue
1289  *
1290  * Description:
1291  *    Insert a fully prepared request at the back of the I/O scheduler queue
1292  *    for execution.  Don't wait for completion.
1293  *
1294  * Note:
1295  *    This function will invoke @done directly if the queue is dead.
1296  */
1297 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1298 {
1299         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1300
1301         WARN_ON(irqs_disabled());
1302         WARN_ON(!blk_rq_is_passthrough(rq));
1303
1304         blk_account_io_start(rq);
1305
1306         /*
1307          * As plugging can be enabled for passthrough requests on a zoned
1308          * device, directly accessing the plug instead of using blk_mq_plug()
1309          * should not have any consequences.
1310          */
1311         if (current->plug && !at_head) {
1312                 blk_add_rq_to_plug(current->plug, rq);
1313                 return;
1314         }
1315
1316         blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1317         blk_mq_run_hw_queue(hctx, false);
1318 }
1319 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1320
1321 struct blk_rq_wait {
1322         struct completion done;
1323         blk_status_t ret;
1324 };
1325
1326 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1327 {
1328         struct blk_rq_wait *wait = rq->end_io_data;
1329
1330         wait->ret = ret;
1331         complete(&wait->done);
1332         return RQ_END_IO_NONE;
1333 }
1334
1335 bool blk_rq_is_poll(struct request *rq)
1336 {
1337         if (!rq->mq_hctx)
1338                 return false;
1339         if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1340                 return false;
1341         return true;
1342 }
1343 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1344
1345 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1346 {
1347         do {
1348                 blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1349                 cond_resched();
1350         } while (!completion_done(wait));
1351 }
1352
1353 /**
1354  * blk_execute_rq - insert a request into queue for execution
1355  * @rq:         request to insert
1356  * @at_head:    insert request at head or tail of queue
1357  *
1358  * Description:
1359  *    Insert a fully prepared request at the back of the I/O scheduler queue
1360  *    for execution and wait for completion.
1361  * Return: The blk_status_t result provided to blk_mq_end_request().
1362  */
1363 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1364 {
1365         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1366         struct blk_rq_wait wait = {
1367                 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1368         };
1369
1370         WARN_ON(irqs_disabled());
1371         WARN_ON(!blk_rq_is_passthrough(rq));
1372
1373         rq->end_io_data = &wait;
1374         rq->end_io = blk_end_sync_rq;
1375
1376         blk_account_io_start(rq);
1377         blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1378         blk_mq_run_hw_queue(hctx, false);
1379
1380         if (blk_rq_is_poll(rq)) {
1381                 blk_rq_poll_completion(rq, &wait.done);
1382         } else {
1383                 /*
1384                  * Prevent hang_check timer from firing at us during very long
1385                  * I/O
1386                  */
1387                 unsigned long hang_check = sysctl_hung_task_timeout_secs;
1388
1389                 if (hang_check)
1390                         while (!wait_for_completion_io_timeout(&wait.done,
1391                                         hang_check * (HZ/2)))
1392                                 ;
1393                 else
1394                         wait_for_completion_io(&wait.done);
1395         }
1396
1397         return wait.ret;
1398 }
1399 EXPORT_SYMBOL(blk_execute_rq);
1400
1401 static void __blk_mq_requeue_request(struct request *rq)
1402 {
1403         struct request_queue *q = rq->q;
1404
1405         blk_mq_put_driver_tag(rq);
1406
1407         trace_block_rq_requeue(rq);
1408         rq_qos_requeue(q, rq);
1409
1410         if (blk_mq_request_started(rq)) {
1411                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1412                 rq->rq_flags &= ~RQF_TIMED_OUT;
1413         }
1414 }
1415
1416 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1417 {
1418         struct request_queue *q = rq->q;
1419         unsigned long flags;
1420
1421         __blk_mq_requeue_request(rq);
1422
1423         /* this request will be re-inserted to io scheduler queue */
1424         blk_mq_sched_requeue_request(rq);
1425
1426         spin_lock_irqsave(&q->requeue_lock, flags);
1427         list_add_tail(&rq->queuelist, &q->requeue_list);
1428         spin_unlock_irqrestore(&q->requeue_lock, flags);
1429
1430         if (kick_requeue_list)
1431                 blk_mq_kick_requeue_list(q);
1432 }
1433 EXPORT_SYMBOL(blk_mq_requeue_request);
1434
1435 static void blk_mq_requeue_work(struct work_struct *work)
1436 {
1437         struct request_queue *q =
1438                 container_of(work, struct request_queue, requeue_work.work);
1439         LIST_HEAD(rq_list);
1440         LIST_HEAD(flush_list);
1441         struct request *rq;
1442
1443         spin_lock_irq(&q->requeue_lock);
1444         list_splice_init(&q->requeue_list, &rq_list);
1445         list_splice_init(&q->flush_list, &flush_list);
1446         spin_unlock_irq(&q->requeue_lock);
1447
1448         while (!list_empty(&rq_list)) {
1449                 rq = list_entry(rq_list.next, struct request, queuelist);
1450                 /*
1451                  * If RQF_DONTPREP ist set, the request has been started by the
1452                  * driver already and might have driver-specific data allocated
1453                  * already.  Insert it into the hctx dispatch list to avoid
1454                  * block layer merges for the request.
1455                  */
1456                 if (rq->rq_flags & RQF_DONTPREP) {
1457                         list_del_init(&rq->queuelist);
1458                         blk_mq_request_bypass_insert(rq, 0);
1459                 } else {
1460                         list_del_init(&rq->queuelist);
1461                         blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1462                 }
1463         }
1464
1465         while (!list_empty(&flush_list)) {
1466                 rq = list_entry(flush_list.next, struct request, queuelist);
1467                 list_del_init(&rq->queuelist);
1468                 blk_mq_insert_request(rq, 0);
1469         }
1470
1471         blk_mq_run_hw_queues(q, false);
1472 }
1473
1474 void blk_mq_kick_requeue_list(struct request_queue *q)
1475 {
1476         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1477 }
1478 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1479
1480 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1481                                     unsigned long msecs)
1482 {
1483         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1484                                     msecs_to_jiffies(msecs));
1485 }
1486 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1487
1488 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1489 {
1490         /*
1491          * If we find a request that isn't idle we know the queue is busy
1492          * as it's checked in the iter.
1493          * Return false to stop the iteration.
1494          */
1495         if (blk_mq_request_started(rq)) {
1496                 bool *busy = priv;
1497
1498                 *busy = true;
1499                 return false;
1500         }
1501
1502         return true;
1503 }
1504
1505 bool blk_mq_queue_inflight(struct request_queue *q)
1506 {
1507         bool busy = false;
1508
1509         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1510         return busy;
1511 }
1512 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1513
1514 static void blk_mq_rq_timed_out(struct request *req)
1515 {
1516         req->rq_flags |= RQF_TIMED_OUT;
1517         if (req->q->mq_ops->timeout) {
1518                 enum blk_eh_timer_return ret;
1519
1520                 ret = req->q->mq_ops->timeout(req);
1521                 if (ret == BLK_EH_DONE)
1522                         return;
1523                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1524         }
1525
1526         blk_add_timer(req);
1527 }
1528
1529 struct blk_expired_data {
1530         bool has_timedout_rq;
1531         unsigned long next;
1532         unsigned long timeout_start;
1533 };
1534
1535 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1536 {
1537         unsigned long deadline;
1538
1539         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1540                 return false;
1541         if (rq->rq_flags & RQF_TIMED_OUT)
1542                 return false;
1543
1544         deadline = READ_ONCE(rq->deadline);
1545         if (time_after_eq(expired->timeout_start, deadline))
1546                 return true;
1547
1548         if (expired->next == 0)
1549                 expired->next = deadline;
1550         else if (time_after(expired->next, deadline))
1551                 expired->next = deadline;
1552         return false;
1553 }
1554
1555 void blk_mq_put_rq_ref(struct request *rq)
1556 {
1557         if (is_flush_rq(rq)) {
1558                 if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1559                         blk_mq_free_request(rq);
1560         } else if (req_ref_put_and_test(rq)) {
1561                 __blk_mq_free_request(rq);
1562         }
1563 }
1564
1565 static bool blk_mq_check_expired(struct request *rq, void *priv)
1566 {
1567         struct blk_expired_data *expired = priv;
1568
1569         /*
1570          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1571          * be reallocated underneath the timeout handler's processing, then
1572          * the expire check is reliable. If the request is not expired, then
1573          * it was completed and reallocated as a new request after returning
1574          * from blk_mq_check_expired().
1575          */
1576         if (blk_mq_req_expired(rq, expired)) {
1577                 expired->has_timedout_rq = true;
1578                 return false;
1579         }
1580         return true;
1581 }
1582
1583 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1584 {
1585         struct blk_expired_data *expired = priv;
1586
1587         if (blk_mq_req_expired(rq, expired))
1588                 blk_mq_rq_timed_out(rq);
1589         return true;
1590 }
1591
1592 static void blk_mq_timeout_work(struct work_struct *work)
1593 {
1594         struct request_queue *q =
1595                 container_of(work, struct request_queue, timeout_work);
1596         struct blk_expired_data expired = {
1597                 .timeout_start = jiffies,
1598         };
1599         struct blk_mq_hw_ctx *hctx;
1600         unsigned long i;
1601
1602         /* A deadlock might occur if a request is stuck requiring a
1603          * timeout at the same time a queue freeze is waiting
1604          * completion, since the timeout code would not be able to
1605          * acquire the queue reference here.
1606          *
1607          * That's why we don't use blk_queue_enter here; instead, we use
1608          * percpu_ref_tryget directly, because we need to be able to
1609          * obtain a reference even in the short window between the queue
1610          * starting to freeze, by dropping the first reference in
1611          * blk_freeze_queue_start, and the moment the last request is
1612          * consumed, marked by the instant q_usage_counter reaches
1613          * zero.
1614          */
1615         if (!percpu_ref_tryget(&q->q_usage_counter))
1616                 return;
1617
1618         /* check if there is any timed-out request */
1619         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1620         if (expired.has_timedout_rq) {
1621                 /*
1622                  * Before walking tags, we must ensure any submit started
1623                  * before the current time has finished. Since the submit
1624                  * uses srcu or rcu, wait for a synchronization point to
1625                  * ensure all running submits have finished
1626                  */
1627                 blk_mq_wait_quiesce_done(q->tag_set);
1628
1629                 expired.next = 0;
1630                 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1631         }
1632
1633         if (expired.next != 0) {
1634                 mod_timer(&q->timeout, expired.next);
1635         } else {
1636                 /*
1637                  * Request timeouts are handled as a forward rolling timer. If
1638                  * we end up here it means that no requests are pending and
1639                  * also that no request has been pending for a while. Mark
1640                  * each hctx as idle.
1641                  */
1642                 queue_for_each_hw_ctx(q, hctx, i) {
1643                         /* the hctx may be unmapped, so check it here */
1644                         if (blk_mq_hw_queue_mapped(hctx))
1645                                 blk_mq_tag_idle(hctx);
1646                 }
1647         }
1648         blk_queue_exit(q);
1649 }
1650
1651 struct flush_busy_ctx_data {
1652         struct blk_mq_hw_ctx *hctx;
1653         struct list_head *list;
1654 };
1655
1656 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1657 {
1658         struct flush_busy_ctx_data *flush_data = data;
1659         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1660         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1661         enum hctx_type type = hctx->type;
1662
1663         spin_lock(&ctx->lock);
1664         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1665         sbitmap_clear_bit(sb, bitnr);
1666         spin_unlock(&ctx->lock);
1667         return true;
1668 }
1669
1670 /*
1671  * Process software queues that have been marked busy, splicing them
1672  * to the for-dispatch
1673  */
1674 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1675 {
1676         struct flush_busy_ctx_data data = {
1677                 .hctx = hctx,
1678                 .list = list,
1679         };
1680
1681         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1682 }
1683 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1684
1685 struct dispatch_rq_data {
1686         struct blk_mq_hw_ctx *hctx;
1687         struct request *rq;
1688 };
1689
1690 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1691                 void *data)
1692 {
1693         struct dispatch_rq_data *dispatch_data = data;
1694         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1695         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1696         enum hctx_type type = hctx->type;
1697
1698         spin_lock(&ctx->lock);
1699         if (!list_empty(&ctx->rq_lists[type])) {
1700                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1701                 list_del_init(&dispatch_data->rq->queuelist);
1702                 if (list_empty(&ctx->rq_lists[type]))
1703                         sbitmap_clear_bit(sb, bitnr);
1704         }
1705         spin_unlock(&ctx->lock);
1706
1707         return !dispatch_data->rq;
1708 }
1709
1710 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1711                                         struct blk_mq_ctx *start)
1712 {
1713         unsigned off = start ? start->index_hw[hctx->type] : 0;
1714         struct dispatch_rq_data data = {
1715                 .hctx = hctx,
1716                 .rq   = NULL,
1717         };
1718
1719         __sbitmap_for_each_set(&hctx->ctx_map, off,
1720                                dispatch_rq_from_ctx, &data);
1721
1722         return data.rq;
1723 }
1724
1725 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1726 {
1727         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1728         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1729         int tag;
1730
1731         blk_mq_tag_busy(rq->mq_hctx);
1732
1733         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1734                 bt = &rq->mq_hctx->tags->breserved_tags;
1735                 tag_offset = 0;
1736         } else {
1737                 if (!hctx_may_queue(rq->mq_hctx, bt))
1738                         return false;
1739         }
1740
1741         tag = __sbitmap_queue_get(bt);
1742         if (tag == BLK_MQ_NO_TAG)
1743                 return false;
1744
1745         rq->tag = tag + tag_offset;
1746         return true;
1747 }
1748
1749 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1750 {
1751         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1752                 return false;
1753
1754         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1755                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1756                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1757                 __blk_mq_inc_active_requests(hctx);
1758         }
1759         hctx->tags->rqs[rq->tag] = rq;
1760         return true;
1761 }
1762
1763 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1764                                 int flags, void *key)
1765 {
1766         struct blk_mq_hw_ctx *hctx;
1767
1768         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1769
1770         spin_lock(&hctx->dispatch_wait_lock);
1771         if (!list_empty(&wait->entry)) {
1772                 struct sbitmap_queue *sbq;
1773
1774                 list_del_init(&wait->entry);
1775                 sbq = &hctx->tags->bitmap_tags;
1776                 atomic_dec(&sbq->ws_active);
1777         }
1778         spin_unlock(&hctx->dispatch_wait_lock);
1779
1780         blk_mq_run_hw_queue(hctx, true);
1781         return 1;
1782 }
1783
1784 /*
1785  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1786  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1787  * restart. For both cases, take care to check the condition again after
1788  * marking us as waiting.
1789  */
1790 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1791                                  struct request *rq)
1792 {
1793         struct sbitmap_queue *sbq;
1794         struct wait_queue_head *wq;
1795         wait_queue_entry_t *wait;
1796         bool ret;
1797
1798         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1799             !(blk_mq_is_shared_tags(hctx->flags))) {
1800                 blk_mq_sched_mark_restart_hctx(hctx);
1801
1802                 /*
1803                  * It's possible that a tag was freed in the window between the
1804                  * allocation failure and adding the hardware queue to the wait
1805                  * queue.
1806                  *
1807                  * Don't clear RESTART here, someone else could have set it.
1808                  * At most this will cost an extra queue run.
1809                  */
1810                 return blk_mq_get_driver_tag(rq);
1811         }
1812
1813         wait = &hctx->dispatch_wait;
1814         if (!list_empty_careful(&wait->entry))
1815                 return false;
1816
1817         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1818                 sbq = &hctx->tags->breserved_tags;
1819         else
1820                 sbq = &hctx->tags->bitmap_tags;
1821         wq = &bt_wait_ptr(sbq, hctx)->wait;
1822
1823         spin_lock_irq(&wq->lock);
1824         spin_lock(&hctx->dispatch_wait_lock);
1825         if (!list_empty(&wait->entry)) {
1826                 spin_unlock(&hctx->dispatch_wait_lock);
1827                 spin_unlock_irq(&wq->lock);
1828                 return false;
1829         }
1830
1831         atomic_inc(&sbq->ws_active);
1832         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1833         __add_wait_queue(wq, wait);
1834
1835         /*
1836          * It's possible that a tag was freed in the window between the
1837          * allocation failure and adding the hardware queue to the wait
1838          * queue.
1839          */
1840         ret = blk_mq_get_driver_tag(rq);
1841         if (!ret) {
1842                 spin_unlock(&hctx->dispatch_wait_lock);
1843                 spin_unlock_irq(&wq->lock);
1844                 return false;
1845         }
1846
1847         /*
1848          * We got a tag, remove ourselves from the wait queue to ensure
1849          * someone else gets the wakeup.
1850          */
1851         list_del_init(&wait->entry);
1852         atomic_dec(&sbq->ws_active);
1853         spin_unlock(&hctx->dispatch_wait_lock);
1854         spin_unlock_irq(&wq->lock);
1855
1856         return true;
1857 }
1858
1859 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1860 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1861 /*
1862  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1863  * - EWMA is one simple way to compute running average value
1864  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1865  * - take 4 as factor for avoiding to get too small(0) result, and this
1866  *   factor doesn't matter because EWMA decreases exponentially
1867  */
1868 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1869 {
1870         unsigned int ewma;
1871
1872         ewma = hctx->dispatch_busy;
1873
1874         if (!ewma && !busy)
1875                 return;
1876
1877         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1878         if (busy)
1879                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1880         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1881
1882         hctx->dispatch_busy = ewma;
1883 }
1884
1885 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1886
1887 static void blk_mq_handle_dev_resource(struct request *rq,
1888                                        struct list_head *list)
1889 {
1890         list_add(&rq->queuelist, list);
1891         __blk_mq_requeue_request(rq);
1892 }
1893
1894 static void blk_mq_handle_zone_resource(struct request *rq,
1895                                         struct list_head *zone_list)
1896 {
1897         /*
1898          * If we end up here it is because we cannot dispatch a request to a
1899          * specific zone due to LLD level zone-write locking or other zone
1900          * related resource not being available. In this case, set the request
1901          * aside in zone_list for retrying it later.
1902          */
1903         list_add(&rq->queuelist, zone_list);
1904         __blk_mq_requeue_request(rq);
1905 }
1906
1907 enum prep_dispatch {
1908         PREP_DISPATCH_OK,
1909         PREP_DISPATCH_NO_TAG,
1910         PREP_DISPATCH_NO_BUDGET,
1911 };
1912
1913 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1914                                                   bool need_budget)
1915 {
1916         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1917         int budget_token = -1;
1918
1919         if (need_budget) {
1920                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1921                 if (budget_token < 0) {
1922                         blk_mq_put_driver_tag(rq);
1923                         return PREP_DISPATCH_NO_BUDGET;
1924                 }
1925                 blk_mq_set_rq_budget_token(rq, budget_token);
1926         }
1927
1928         if (!blk_mq_get_driver_tag(rq)) {
1929                 /*
1930                  * The initial allocation attempt failed, so we need to
1931                  * rerun the hardware queue when a tag is freed. The
1932                  * waitqueue takes care of that. If the queue is run
1933                  * before we add this entry back on the dispatch list,
1934                  * we'll re-run it below.
1935                  */
1936                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1937                         /*
1938                          * All budgets not got from this function will be put
1939                          * together during handling partial dispatch
1940                          */
1941                         if (need_budget)
1942                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1943                         return PREP_DISPATCH_NO_TAG;
1944                 }
1945         }
1946
1947         return PREP_DISPATCH_OK;
1948 }
1949
1950 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1951 static void blk_mq_release_budgets(struct request_queue *q,
1952                 struct list_head *list)
1953 {
1954         struct request *rq;
1955
1956         list_for_each_entry(rq, list, queuelist) {
1957                 int budget_token = blk_mq_get_rq_budget_token(rq);
1958
1959                 if (budget_token >= 0)
1960                         blk_mq_put_dispatch_budget(q, budget_token);
1961         }
1962 }
1963
1964 /*
1965  * blk_mq_commit_rqs will notify driver using bd->last that there is no
1966  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
1967  * details)
1968  * Attention, we should explicitly call this in unusual cases:
1969  *  1) did not queue everything initially scheduled to queue
1970  *  2) the last attempt to queue a request failed
1971  */
1972 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
1973                               bool from_schedule)
1974 {
1975         if (hctx->queue->mq_ops->commit_rqs && queued) {
1976                 trace_block_unplug(hctx->queue, queued, !from_schedule);
1977                 hctx->queue->mq_ops->commit_rqs(hctx);
1978         }
1979 }
1980
1981 /*
1982  * Returns true if we did some work AND can potentially do more.
1983  */
1984 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1985                              unsigned int nr_budgets)
1986 {
1987         enum prep_dispatch prep;
1988         struct request_queue *q = hctx->queue;
1989         struct request *rq;
1990         int queued;
1991         blk_status_t ret = BLK_STS_OK;
1992         LIST_HEAD(zone_list);
1993         bool needs_resource = false;
1994
1995         if (list_empty(list))
1996                 return false;
1997
1998         /*
1999          * Now process all the entries, sending them to the driver.
2000          */
2001         queued = 0;
2002         do {
2003                 struct blk_mq_queue_data bd;
2004
2005                 rq = list_first_entry(list, struct request, queuelist);
2006
2007                 WARN_ON_ONCE(hctx != rq->mq_hctx);
2008                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2009                 if (prep != PREP_DISPATCH_OK)
2010                         break;
2011
2012                 list_del_init(&rq->queuelist);
2013
2014                 bd.rq = rq;
2015                 bd.last = list_empty(list);
2016
2017                 /*
2018                  * once the request is queued to lld, no need to cover the
2019                  * budget any more
2020                  */
2021                 if (nr_budgets)
2022                         nr_budgets--;
2023                 ret = q->mq_ops->queue_rq(hctx, &bd);
2024                 switch (ret) {
2025                 case BLK_STS_OK:
2026                         queued++;
2027                         break;
2028                 case BLK_STS_RESOURCE:
2029                         needs_resource = true;
2030                         fallthrough;
2031                 case BLK_STS_DEV_RESOURCE:
2032                         blk_mq_handle_dev_resource(rq, list);
2033                         goto out;
2034                 case BLK_STS_ZONE_RESOURCE:
2035                         /*
2036                          * Move the request to zone_list and keep going through
2037                          * the dispatch list to find more requests the drive can
2038                          * accept.
2039                          */
2040                         blk_mq_handle_zone_resource(rq, &zone_list);
2041                         needs_resource = true;
2042                         break;
2043                 default:
2044                         blk_mq_end_request(rq, ret);
2045                 }
2046         } while (!list_empty(list));
2047 out:
2048         if (!list_empty(&zone_list))
2049                 list_splice_tail_init(&zone_list, list);
2050
2051         /* If we didn't flush the entire list, we could have told the driver
2052          * there was more coming, but that turned out to be a lie.
2053          */
2054         if (!list_empty(list) || ret != BLK_STS_OK)
2055                 blk_mq_commit_rqs(hctx, queued, false);
2056
2057         /*
2058          * Any items that need requeuing? Stuff them into hctx->dispatch,
2059          * that is where we will continue on next queue run.
2060          */
2061         if (!list_empty(list)) {
2062                 bool needs_restart;
2063                 /* For non-shared tags, the RESTART check will suffice */
2064                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2065                         ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2066                         blk_mq_is_shared_tags(hctx->flags));
2067
2068                 if (nr_budgets)
2069                         blk_mq_release_budgets(q, list);
2070
2071                 spin_lock(&hctx->lock);
2072                 list_splice_tail_init(list, &hctx->dispatch);
2073                 spin_unlock(&hctx->lock);
2074
2075                 /*
2076                  * Order adding requests to hctx->dispatch and checking
2077                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
2078                  * in blk_mq_sched_restart(). Avoid restart code path to
2079                  * miss the new added requests to hctx->dispatch, meantime
2080                  * SCHED_RESTART is observed here.
2081                  */
2082                 smp_mb();
2083
2084                 /*
2085                  * If SCHED_RESTART was set by the caller of this function and
2086                  * it is no longer set that means that it was cleared by another
2087                  * thread and hence that a queue rerun is needed.
2088                  *
2089                  * If 'no_tag' is set, that means that we failed getting
2090                  * a driver tag with an I/O scheduler attached. If our dispatch
2091                  * waitqueue is no longer active, ensure that we run the queue
2092                  * AFTER adding our entries back to the list.
2093                  *
2094                  * If no I/O scheduler has been configured it is possible that
2095                  * the hardware queue got stopped and restarted before requests
2096                  * were pushed back onto the dispatch list. Rerun the queue to
2097                  * avoid starvation. Notes:
2098                  * - blk_mq_run_hw_queue() checks whether or not a queue has
2099                  *   been stopped before rerunning a queue.
2100                  * - Some but not all block drivers stop a queue before
2101                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2102                  *   and dm-rq.
2103                  *
2104                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2105                  * bit is set, run queue after a delay to avoid IO stalls
2106                  * that could otherwise occur if the queue is idle.  We'll do
2107                  * similar if we couldn't get budget or couldn't lock a zone
2108                  * and SCHED_RESTART is set.
2109                  */
2110                 needs_restart = blk_mq_sched_needs_restart(hctx);
2111                 if (prep == PREP_DISPATCH_NO_BUDGET)
2112                         needs_resource = true;
2113                 if (!needs_restart ||
2114                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2115                         blk_mq_run_hw_queue(hctx, true);
2116                 else if (needs_resource)
2117                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2118
2119                 blk_mq_update_dispatch_busy(hctx, true);
2120                 return false;
2121         }
2122
2123         blk_mq_update_dispatch_busy(hctx, false);
2124         return true;
2125 }
2126
2127 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2128 {
2129         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2130
2131         if (cpu >= nr_cpu_ids)
2132                 cpu = cpumask_first(hctx->cpumask);
2133         return cpu;
2134 }
2135
2136 /*
2137  * It'd be great if the workqueue API had a way to pass
2138  * in a mask and had some smarts for more clever placement.
2139  * For now we just round-robin here, switching for every
2140  * BLK_MQ_CPU_WORK_BATCH queued items.
2141  */
2142 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2143 {
2144         bool tried = false;
2145         int next_cpu = hctx->next_cpu;
2146
2147         if (hctx->queue->nr_hw_queues == 1)
2148                 return WORK_CPU_UNBOUND;
2149
2150         if (--hctx->next_cpu_batch <= 0) {
2151 select_cpu:
2152                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2153                                 cpu_online_mask);
2154                 if (next_cpu >= nr_cpu_ids)
2155                         next_cpu = blk_mq_first_mapped_cpu(hctx);
2156                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2157         }
2158
2159         /*
2160          * Do unbound schedule if we can't find a online CPU for this hctx,
2161          * and it should only happen in the path of handling CPU DEAD.
2162          */
2163         if (!cpu_online(next_cpu)) {
2164                 if (!tried) {
2165                         tried = true;
2166                         goto select_cpu;
2167                 }
2168
2169                 /*
2170                  * Make sure to re-select CPU next time once after CPUs
2171                  * in hctx->cpumask become online again.
2172                  */
2173                 hctx->next_cpu = next_cpu;
2174                 hctx->next_cpu_batch = 1;
2175                 return WORK_CPU_UNBOUND;
2176         }
2177
2178         hctx->next_cpu = next_cpu;
2179         return next_cpu;
2180 }
2181
2182 /**
2183  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2184  * @hctx: Pointer to the hardware queue to run.
2185  * @msecs: Milliseconds of delay to wait before running the queue.
2186  *
2187  * Run a hardware queue asynchronously with a delay of @msecs.
2188  */
2189 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2190 {
2191         if (unlikely(blk_mq_hctx_stopped(hctx)))
2192                 return;
2193         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2194                                     msecs_to_jiffies(msecs));
2195 }
2196 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2197
2198 /**
2199  * blk_mq_run_hw_queue - Start to run a hardware queue.
2200  * @hctx: Pointer to the hardware queue to run.
2201  * @async: If we want to run the queue asynchronously.
2202  *
2203  * Check if the request queue is not in a quiesced state and if there are
2204  * pending requests to be sent. If this is true, run the queue to send requests
2205  * to hardware.
2206  */
2207 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2208 {
2209         bool need_run;
2210
2211         /*
2212          * We can't run the queue inline with interrupts disabled.
2213          */
2214         WARN_ON_ONCE(!async && in_interrupt());
2215
2216         /*
2217          * When queue is quiesced, we may be switching io scheduler, or
2218          * updating nr_hw_queues, or other things, and we can't run queue
2219          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2220          *
2221          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2222          * quiesced.
2223          */
2224         __blk_mq_run_dispatch_ops(hctx->queue, false,
2225                 need_run = !blk_queue_quiesced(hctx->queue) &&
2226                 blk_mq_hctx_has_pending(hctx));
2227
2228         if (!need_run)
2229                 return;
2230
2231         if (async || (hctx->flags & BLK_MQ_F_BLOCKING) ||
2232             !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2233                 blk_mq_delay_run_hw_queue(hctx, 0);
2234                 return;
2235         }
2236
2237         blk_mq_run_dispatch_ops(hctx->queue,
2238                                 blk_mq_sched_dispatch_requests(hctx));
2239 }
2240 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2241
2242 /*
2243  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2244  * scheduler.
2245  */
2246 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2247 {
2248         struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2249         /*
2250          * If the IO scheduler does not respect hardware queues when
2251          * dispatching, we just don't bother with multiple HW queues and
2252          * dispatch from hctx for the current CPU since running multiple queues
2253          * just causes lock contention inside the scheduler and pointless cache
2254          * bouncing.
2255          */
2256         struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2257
2258         if (!blk_mq_hctx_stopped(hctx))
2259                 return hctx;
2260         return NULL;
2261 }
2262
2263 /**
2264  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2265  * @q: Pointer to the request queue to run.
2266  * @async: If we want to run the queue asynchronously.
2267  */
2268 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2269 {
2270         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2271         unsigned long i;
2272
2273         sq_hctx = NULL;
2274         if (blk_queue_sq_sched(q))
2275                 sq_hctx = blk_mq_get_sq_hctx(q);
2276         queue_for_each_hw_ctx(q, hctx, i) {
2277                 if (blk_mq_hctx_stopped(hctx))
2278                         continue;
2279                 /*
2280                  * Dispatch from this hctx either if there's no hctx preferred
2281                  * by IO scheduler or if it has requests that bypass the
2282                  * scheduler.
2283                  */
2284                 if (!sq_hctx || sq_hctx == hctx ||
2285                     !list_empty_careful(&hctx->dispatch))
2286                         blk_mq_run_hw_queue(hctx, async);
2287         }
2288 }
2289 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2290
2291 /**
2292  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2293  * @q: Pointer to the request queue to run.
2294  * @msecs: Milliseconds of delay to wait before running the queues.
2295  */
2296 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2297 {
2298         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2299         unsigned long i;
2300
2301         sq_hctx = NULL;
2302         if (blk_queue_sq_sched(q))
2303                 sq_hctx = blk_mq_get_sq_hctx(q);
2304         queue_for_each_hw_ctx(q, hctx, i) {
2305                 if (blk_mq_hctx_stopped(hctx))
2306                         continue;
2307                 /*
2308                  * If there is already a run_work pending, leave the
2309                  * pending delay untouched. Otherwise, a hctx can stall
2310                  * if another hctx is re-delaying the other's work
2311                  * before the work executes.
2312                  */
2313                 if (delayed_work_pending(&hctx->run_work))
2314                         continue;
2315                 /*
2316                  * Dispatch from this hctx either if there's no hctx preferred
2317                  * by IO scheduler or if it has requests that bypass the
2318                  * scheduler.
2319                  */
2320                 if (!sq_hctx || sq_hctx == hctx ||
2321                     !list_empty_careful(&hctx->dispatch))
2322                         blk_mq_delay_run_hw_queue(hctx, msecs);
2323         }
2324 }
2325 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2326
2327 /*
2328  * This function is often used for pausing .queue_rq() by driver when
2329  * there isn't enough resource or some conditions aren't satisfied, and
2330  * BLK_STS_RESOURCE is usually returned.
2331  *
2332  * We do not guarantee that dispatch can be drained or blocked
2333  * after blk_mq_stop_hw_queue() returns. Please use
2334  * blk_mq_quiesce_queue() for that requirement.
2335  */
2336 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2337 {
2338         cancel_delayed_work(&hctx->run_work);
2339
2340         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2341 }
2342 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2343
2344 /*
2345  * This function is often used for pausing .queue_rq() by driver when
2346  * there isn't enough resource or some conditions aren't satisfied, and
2347  * BLK_STS_RESOURCE is usually returned.
2348  *
2349  * We do not guarantee that dispatch can be drained or blocked
2350  * after blk_mq_stop_hw_queues() returns. Please use
2351  * blk_mq_quiesce_queue() for that requirement.
2352  */
2353 void blk_mq_stop_hw_queues(struct request_queue *q)
2354 {
2355         struct blk_mq_hw_ctx *hctx;
2356         unsigned long i;
2357
2358         queue_for_each_hw_ctx(q, hctx, i)
2359                 blk_mq_stop_hw_queue(hctx);
2360 }
2361 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2362
2363 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2364 {
2365         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2366
2367         blk_mq_run_hw_queue(hctx, false);
2368 }
2369 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2370
2371 void blk_mq_start_hw_queues(struct request_queue *q)
2372 {
2373         struct blk_mq_hw_ctx *hctx;
2374         unsigned long i;
2375
2376         queue_for_each_hw_ctx(q, hctx, i)
2377                 blk_mq_start_hw_queue(hctx);
2378 }
2379 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2380
2381 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2382 {
2383         if (!blk_mq_hctx_stopped(hctx))
2384                 return;
2385
2386         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2387         blk_mq_run_hw_queue(hctx, async);
2388 }
2389 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2390
2391 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2392 {
2393         struct blk_mq_hw_ctx *hctx;
2394         unsigned long i;
2395
2396         queue_for_each_hw_ctx(q, hctx, i)
2397                 blk_mq_start_stopped_hw_queue(hctx, async);
2398 }
2399 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2400
2401 static void blk_mq_run_work_fn(struct work_struct *work)
2402 {
2403         struct blk_mq_hw_ctx *hctx =
2404                 container_of(work, struct blk_mq_hw_ctx, run_work.work);
2405
2406         blk_mq_run_dispatch_ops(hctx->queue,
2407                                 blk_mq_sched_dispatch_requests(hctx));
2408 }
2409
2410 /**
2411  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2412  * @rq: Pointer to request to be inserted.
2413  * @flags: BLK_MQ_INSERT_*
2414  *
2415  * Should only be used carefully, when the caller knows we want to
2416  * bypass a potential IO scheduler on the target device.
2417  */
2418 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2419 {
2420         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2421
2422         spin_lock(&hctx->lock);
2423         if (flags & BLK_MQ_INSERT_AT_HEAD)
2424                 list_add(&rq->queuelist, &hctx->dispatch);
2425         else
2426                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2427         spin_unlock(&hctx->lock);
2428 }
2429
2430 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2431                 struct blk_mq_ctx *ctx, struct list_head *list,
2432                 bool run_queue_async)
2433 {
2434         struct request *rq;
2435         enum hctx_type type = hctx->type;
2436
2437         /*
2438          * Try to issue requests directly if the hw queue isn't busy to save an
2439          * extra enqueue & dequeue to the sw queue.
2440          */
2441         if (!hctx->dispatch_busy && !run_queue_async) {
2442                 blk_mq_run_dispatch_ops(hctx->queue,
2443                         blk_mq_try_issue_list_directly(hctx, list));
2444                 if (list_empty(list))
2445                         goto out;
2446         }
2447
2448         /*
2449          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2450          * offline now
2451          */
2452         list_for_each_entry(rq, list, queuelist) {
2453                 BUG_ON(rq->mq_ctx != ctx);
2454                 trace_block_rq_insert(rq);
2455         }
2456
2457         spin_lock(&ctx->lock);
2458         list_splice_tail_init(list, &ctx->rq_lists[type]);
2459         blk_mq_hctx_mark_pending(hctx, ctx);
2460         spin_unlock(&ctx->lock);
2461 out:
2462         blk_mq_run_hw_queue(hctx, run_queue_async);
2463 }
2464
2465 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2466 {
2467         struct request_queue *q = rq->q;
2468         struct blk_mq_ctx *ctx = rq->mq_ctx;
2469         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2470
2471         if (blk_rq_is_passthrough(rq)) {
2472                 /*
2473                  * Passthrough request have to be added to hctx->dispatch
2474                  * directly.  The device may be in a situation where it can't
2475                  * handle FS request, and always returns BLK_STS_RESOURCE for
2476                  * them, which gets them added to hctx->dispatch.
2477                  *
2478                  * If a passthrough request is required to unblock the queues,
2479                  * and it is added to the scheduler queue, there is no chance to
2480                  * dispatch it given we prioritize requests in hctx->dispatch.
2481                  */
2482                 blk_mq_request_bypass_insert(rq, flags);
2483         } else if (req_op(rq) == REQ_OP_FLUSH) {
2484                 /*
2485                  * Firstly normal IO request is inserted to scheduler queue or
2486                  * sw queue, meantime we add flush request to dispatch queue(
2487                  * hctx->dispatch) directly and there is at most one in-flight
2488                  * flush request for each hw queue, so it doesn't matter to add
2489                  * flush request to tail or front of the dispatch queue.
2490                  *
2491                  * Secondly in case of NCQ, flush request belongs to non-NCQ
2492                  * command, and queueing it will fail when there is any
2493                  * in-flight normal IO request(NCQ command). When adding flush
2494                  * rq to the front of hctx->dispatch, it is easier to introduce
2495                  * extra time to flush rq's latency because of S_SCHED_RESTART
2496                  * compared with adding to the tail of dispatch queue, then
2497                  * chance of flush merge is increased, and less flush requests
2498                  * will be issued to controller. It is observed that ~10% time
2499                  * is saved in blktests block/004 on disk attached to AHCI/NCQ
2500                  * drive when adding flush rq to the front of hctx->dispatch.
2501                  *
2502                  * Simply queue flush rq to the front of hctx->dispatch so that
2503                  * intensive flush workloads can benefit in case of NCQ HW.
2504                  */
2505                 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2506         } else if (q->elevator) {
2507                 LIST_HEAD(list);
2508
2509                 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2510
2511                 list_add(&rq->queuelist, &list);
2512                 q->elevator->type->ops.insert_requests(hctx, &list, flags);
2513         } else {
2514                 trace_block_rq_insert(rq);
2515
2516                 spin_lock(&ctx->lock);
2517                 if (flags & BLK_MQ_INSERT_AT_HEAD)
2518                         list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2519                 else
2520                         list_add_tail(&rq->queuelist,
2521                                       &ctx->rq_lists[hctx->type]);
2522                 blk_mq_hctx_mark_pending(hctx, ctx);
2523                 spin_unlock(&ctx->lock);
2524         }
2525 }
2526
2527 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2528                 unsigned int nr_segs)
2529 {
2530         int err;
2531
2532         if (bio->bi_opf & REQ_RAHEAD)
2533                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2534
2535         rq->__sector = bio->bi_iter.bi_sector;
2536         blk_rq_bio_prep(rq, bio, nr_segs);
2537
2538         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2539         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2540         WARN_ON_ONCE(err);
2541
2542         blk_account_io_start(rq);
2543 }
2544
2545 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2546                                             struct request *rq, bool last)
2547 {
2548         struct request_queue *q = rq->q;
2549         struct blk_mq_queue_data bd = {
2550                 .rq = rq,
2551                 .last = last,
2552         };
2553         blk_status_t ret;
2554
2555         /*
2556          * For OK queue, we are done. For error, caller may kill it.
2557          * Any other error (busy), just add it to our list as we
2558          * previously would have done.
2559          */
2560         ret = q->mq_ops->queue_rq(hctx, &bd);
2561         switch (ret) {
2562         case BLK_STS_OK:
2563                 blk_mq_update_dispatch_busy(hctx, false);
2564                 break;
2565         case BLK_STS_RESOURCE:
2566         case BLK_STS_DEV_RESOURCE:
2567                 blk_mq_update_dispatch_busy(hctx, true);
2568                 __blk_mq_requeue_request(rq);
2569                 break;
2570         default:
2571                 blk_mq_update_dispatch_busy(hctx, false);
2572                 break;
2573         }
2574
2575         return ret;
2576 }
2577
2578 static bool blk_mq_get_budget_and_tag(struct request *rq)
2579 {
2580         int budget_token;
2581
2582         budget_token = blk_mq_get_dispatch_budget(rq->q);
2583         if (budget_token < 0)
2584                 return false;
2585         blk_mq_set_rq_budget_token(rq, budget_token);
2586         if (!blk_mq_get_driver_tag(rq)) {
2587                 blk_mq_put_dispatch_budget(rq->q, budget_token);
2588                 return false;
2589         }
2590         return true;
2591 }
2592
2593 /**
2594  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2595  * @hctx: Pointer of the associated hardware queue.
2596  * @rq: Pointer to request to be sent.
2597  *
2598  * If the device has enough resources to accept a new request now, send the
2599  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2600  * we can try send it another time in the future. Requests inserted at this
2601  * queue have higher priority.
2602  */
2603 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2604                 struct request *rq)
2605 {
2606         blk_status_t ret;
2607
2608         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2609                 blk_mq_insert_request(rq, 0);
2610                 return;
2611         }
2612
2613         if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2614                 blk_mq_insert_request(rq, 0);
2615                 blk_mq_run_hw_queue(hctx, false);
2616                 return;
2617         }
2618
2619         ret = __blk_mq_issue_directly(hctx, rq, true);
2620         switch (ret) {
2621         case BLK_STS_OK:
2622                 break;
2623         case BLK_STS_RESOURCE:
2624         case BLK_STS_DEV_RESOURCE:
2625                 blk_mq_request_bypass_insert(rq, 0);
2626                 blk_mq_run_hw_queue(hctx, false);
2627                 break;
2628         default:
2629                 blk_mq_end_request(rq, ret);
2630                 break;
2631         }
2632 }
2633
2634 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2635 {
2636         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2637
2638         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2639                 blk_mq_insert_request(rq, 0);
2640                 return BLK_STS_OK;
2641         }
2642
2643         if (!blk_mq_get_budget_and_tag(rq))
2644                 return BLK_STS_RESOURCE;
2645         return __blk_mq_issue_directly(hctx, rq, last);
2646 }
2647
2648 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2649 {
2650         struct blk_mq_hw_ctx *hctx = NULL;
2651         struct request *rq;
2652         int queued = 0;
2653         blk_status_t ret = BLK_STS_OK;
2654
2655         while ((rq = rq_list_pop(&plug->mq_list))) {
2656                 bool last = rq_list_empty(plug->mq_list);
2657
2658                 if (hctx != rq->mq_hctx) {
2659                         if (hctx) {
2660                                 blk_mq_commit_rqs(hctx, queued, false);
2661                                 queued = 0;
2662                         }
2663                         hctx = rq->mq_hctx;
2664                 }
2665
2666                 ret = blk_mq_request_issue_directly(rq, last);
2667                 switch (ret) {
2668                 case BLK_STS_OK:
2669                         queued++;
2670                         break;
2671                 case BLK_STS_RESOURCE:
2672                 case BLK_STS_DEV_RESOURCE:
2673                         blk_mq_request_bypass_insert(rq, 0);
2674                         blk_mq_run_hw_queue(hctx, false);
2675                         goto out;
2676                 default:
2677                         blk_mq_end_request(rq, ret);
2678                         break;
2679                 }
2680         }
2681
2682 out:
2683         if (ret != BLK_STS_OK)
2684                 blk_mq_commit_rqs(hctx, queued, false);
2685 }
2686
2687 static void __blk_mq_flush_plug_list(struct request_queue *q,
2688                                      struct blk_plug *plug)
2689 {
2690         if (blk_queue_quiesced(q))
2691                 return;
2692         q->mq_ops->queue_rqs(&plug->mq_list);
2693 }
2694
2695 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2696 {
2697         struct blk_mq_hw_ctx *this_hctx = NULL;
2698         struct blk_mq_ctx *this_ctx = NULL;
2699         struct request *requeue_list = NULL;
2700         struct request **requeue_lastp = &requeue_list;
2701         unsigned int depth = 0;
2702         bool is_passthrough = false;
2703         LIST_HEAD(list);
2704
2705         do {
2706                 struct request *rq = rq_list_pop(&plug->mq_list);
2707
2708                 if (!this_hctx) {
2709                         this_hctx = rq->mq_hctx;
2710                         this_ctx = rq->mq_ctx;
2711                         is_passthrough = blk_rq_is_passthrough(rq);
2712                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2713                            is_passthrough != blk_rq_is_passthrough(rq)) {
2714                         rq_list_add_tail(&requeue_lastp, rq);
2715                         continue;
2716                 }
2717                 list_add(&rq->queuelist, &list);
2718                 depth++;
2719         } while (!rq_list_empty(plug->mq_list));
2720
2721         plug->mq_list = requeue_list;
2722         trace_block_unplug(this_hctx->queue, depth, !from_sched);
2723
2724         percpu_ref_get(&this_hctx->queue->q_usage_counter);
2725         /* passthrough requests should never be issued to the I/O scheduler */
2726         if (is_passthrough) {
2727                 spin_lock(&this_hctx->lock);
2728                 list_splice_tail_init(&list, &this_hctx->dispatch);
2729                 spin_unlock(&this_hctx->lock);
2730                 blk_mq_run_hw_queue(this_hctx, from_sched);
2731         } else if (this_hctx->queue->elevator) {
2732                 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2733                                 &list, 0);
2734                 blk_mq_run_hw_queue(this_hctx, from_sched);
2735         } else {
2736                 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2737         }
2738         percpu_ref_put(&this_hctx->queue->q_usage_counter);
2739 }
2740
2741 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2742 {
2743         struct request *rq;
2744
2745         if (rq_list_empty(plug->mq_list))
2746                 return;
2747         plug->rq_count = 0;
2748
2749         if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2750                 struct request_queue *q;
2751
2752                 rq = rq_list_peek(&plug->mq_list);
2753                 q = rq->q;
2754
2755                 /*
2756                  * Peek first request and see if we have a ->queue_rqs() hook.
2757                  * If we do, we can dispatch the whole plug list in one go. We
2758                  * already know at this point that all requests belong to the
2759                  * same queue, caller must ensure that's the case.
2760                  *
2761                  * Since we pass off the full list to the driver at this point,
2762                  * we do not increment the active request count for the queue.
2763                  * Bypass shared tags for now because of that.
2764                  */
2765                 if (q->mq_ops->queue_rqs &&
2766                     !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2767                         blk_mq_run_dispatch_ops(q,
2768                                 __blk_mq_flush_plug_list(q, plug));
2769                         if (rq_list_empty(plug->mq_list))
2770                                 return;
2771                 }
2772
2773                 blk_mq_run_dispatch_ops(q,
2774                                 blk_mq_plug_issue_direct(plug));
2775                 if (rq_list_empty(plug->mq_list))
2776                         return;
2777         }
2778
2779         do {
2780                 blk_mq_dispatch_plug_list(plug, from_schedule);
2781         } while (!rq_list_empty(plug->mq_list));
2782 }
2783
2784 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2785                 struct list_head *list)
2786 {
2787         int queued = 0;
2788         blk_status_t ret = BLK_STS_OK;
2789
2790         while (!list_empty(list)) {
2791                 struct request *rq = list_first_entry(list, struct request,
2792                                 queuelist);
2793
2794                 list_del_init(&rq->queuelist);
2795                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2796                 switch (ret) {
2797                 case BLK_STS_OK:
2798                         queued++;
2799                         break;
2800                 case BLK_STS_RESOURCE:
2801                 case BLK_STS_DEV_RESOURCE:
2802                         blk_mq_request_bypass_insert(rq, 0);
2803                         if (list_empty(list))
2804                                 blk_mq_run_hw_queue(hctx, false);
2805                         goto out;
2806                 default:
2807                         blk_mq_end_request(rq, ret);
2808                         break;
2809                 }
2810         }
2811
2812 out:
2813         if (ret != BLK_STS_OK)
2814                 blk_mq_commit_rqs(hctx, queued, false);
2815 }
2816
2817 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2818                                      struct bio *bio, unsigned int nr_segs)
2819 {
2820         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2821                 if (blk_attempt_plug_merge(q, bio, nr_segs))
2822                         return true;
2823                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2824                         return true;
2825         }
2826         return false;
2827 }
2828
2829 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2830                                                struct blk_plug *plug,
2831                                                struct bio *bio,
2832                                                unsigned int nsegs)
2833 {
2834         struct blk_mq_alloc_data data = {
2835                 .q              = q,
2836                 .nr_tags        = 1,
2837                 .cmd_flags      = bio->bi_opf,
2838         };
2839         struct request *rq;
2840
2841         if (unlikely(bio_queue_enter(bio)))
2842                 return NULL;
2843
2844         if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2845                 goto queue_exit;
2846
2847         rq_qos_throttle(q, bio);
2848
2849         if (plug) {
2850                 data.nr_tags = plug->nr_ios;
2851                 plug->nr_ios = 1;
2852                 data.cached_rq = &plug->cached_rq;
2853         }
2854
2855         rq = __blk_mq_alloc_requests(&data);
2856         if (rq)
2857                 return rq;
2858         rq_qos_cleanup(q, bio);
2859         if (bio->bi_opf & REQ_NOWAIT)
2860                 bio_wouldblock_error(bio);
2861 queue_exit:
2862         blk_queue_exit(q);
2863         return NULL;
2864 }
2865
2866 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2867                 struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2868 {
2869         struct request *rq;
2870         enum hctx_type type, hctx_type;
2871
2872         if (!plug)
2873                 return NULL;
2874         rq = rq_list_peek(&plug->cached_rq);
2875         if (!rq || rq->q != q)
2876                 return NULL;
2877
2878         if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2879                 *bio = NULL;
2880                 return NULL;
2881         }
2882
2883         type = blk_mq_get_hctx_type((*bio)->bi_opf);
2884         hctx_type = rq->mq_hctx->type;
2885         if (type != hctx_type &&
2886             !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2887                 return NULL;
2888         if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2889                 return NULL;
2890
2891         /*
2892          * If any qos ->throttle() end up blocking, we will have flushed the
2893          * plug and hence killed the cached_rq list as well. Pop this entry
2894          * before we throttle.
2895          */
2896         plug->cached_rq = rq_list_next(rq);
2897         rq_qos_throttle(q, *bio);
2898
2899         rq->cmd_flags = (*bio)->bi_opf;
2900         INIT_LIST_HEAD(&rq->queuelist);
2901         return rq;
2902 }
2903
2904 static void bio_set_ioprio(struct bio *bio)
2905 {
2906         /* Nobody set ioprio so far? Initialize it based on task's nice value */
2907         if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2908                 bio->bi_ioprio = get_current_ioprio();
2909         blkcg_set_ioprio(bio);
2910 }
2911
2912 /**
2913  * blk_mq_submit_bio - Create and send a request to block device.
2914  * @bio: Bio pointer.
2915  *
2916  * Builds up a request structure from @q and @bio and send to the device. The
2917  * request may not be queued directly to hardware if:
2918  * * This request can be merged with another one
2919  * * We want to place request at plug queue for possible future merging
2920  * * There is an IO scheduler active at this queue
2921  *
2922  * It will not queue the request if there is an error with the bio, or at the
2923  * request creation.
2924  */
2925 void blk_mq_submit_bio(struct bio *bio)
2926 {
2927         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2928         struct blk_plug *plug = blk_mq_plug(bio);
2929         const int is_sync = op_is_sync(bio->bi_opf);
2930         struct blk_mq_hw_ctx *hctx;
2931         struct request *rq;
2932         unsigned int nr_segs = 1;
2933         blk_status_t ret;
2934
2935         bio = blk_queue_bounce(bio, q);
2936         if (bio_may_exceed_limits(bio, &q->limits)) {
2937                 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2938                 if (!bio)
2939                         return;
2940         }
2941
2942         if (!bio_integrity_prep(bio))
2943                 return;
2944
2945         bio_set_ioprio(bio);
2946
2947         rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2948         if (!rq) {
2949                 if (!bio)
2950                         return;
2951                 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2952                 if (unlikely(!rq))
2953                         return;
2954         }
2955
2956         trace_block_getrq(bio);
2957
2958         rq_qos_track(q, rq, bio);
2959
2960         blk_mq_bio_to_request(rq, bio, nr_segs);
2961
2962         ret = blk_crypto_rq_get_keyslot(rq);
2963         if (ret != BLK_STS_OK) {
2964                 bio->bi_status = ret;
2965                 bio_endio(bio);
2966                 blk_mq_free_request(rq);
2967                 return;
2968         }
2969
2970         if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
2971                 return;
2972
2973         if (plug) {
2974                 blk_add_rq_to_plug(plug, rq);
2975                 return;
2976         }
2977
2978         hctx = rq->mq_hctx;
2979         if ((rq->rq_flags & RQF_USE_SCHED) ||
2980             (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
2981                 blk_mq_insert_request(rq, 0);
2982                 blk_mq_run_hw_queue(hctx, true);
2983         } else {
2984                 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
2985         }
2986 }
2987
2988 #ifdef CONFIG_BLK_MQ_STACKING
2989 /**
2990  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2991  * @rq: the request being queued
2992  */
2993 blk_status_t blk_insert_cloned_request(struct request *rq)
2994 {
2995         struct request_queue *q = rq->q;
2996         unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
2997         unsigned int max_segments = blk_rq_get_max_segments(rq);
2998         blk_status_t ret;
2999
3000         if (blk_rq_sectors(rq) > max_sectors) {
3001                 /*
3002                  * SCSI device does not have a good way to return if
3003                  * Write Same/Zero is actually supported. If a device rejects
3004                  * a non-read/write command (discard, write same,etc.) the
3005                  * low-level device driver will set the relevant queue limit to
3006                  * 0 to prevent blk-lib from issuing more of the offending
3007                  * operations. Commands queued prior to the queue limit being
3008                  * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3009                  * errors being propagated to upper layers.
3010                  */
3011                 if (max_sectors == 0)
3012                         return BLK_STS_NOTSUPP;
3013
3014                 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3015                         __func__, blk_rq_sectors(rq), max_sectors);
3016                 return BLK_STS_IOERR;
3017         }
3018
3019         /*
3020          * The queue settings related to segment counting may differ from the
3021          * original queue.
3022          */
3023         rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3024         if (rq->nr_phys_segments > max_segments) {
3025                 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3026                         __func__, rq->nr_phys_segments, max_segments);
3027                 return BLK_STS_IOERR;
3028         }
3029
3030         if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3031                 return BLK_STS_IOERR;
3032
3033         ret = blk_crypto_rq_get_keyslot(rq);
3034         if (ret != BLK_STS_OK)
3035                 return ret;
3036
3037         blk_account_io_start(rq);
3038
3039         /*
3040          * Since we have a scheduler attached on the top device,
3041          * bypass a potential scheduler on the bottom device for
3042          * insert.
3043          */
3044         blk_mq_run_dispatch_ops(q,
3045                         ret = blk_mq_request_issue_directly(rq, true));
3046         if (ret)
3047                 blk_account_io_done(rq, ktime_get_ns());
3048         return ret;
3049 }
3050 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3051
3052 /**
3053  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3054  * @rq: the clone request to be cleaned up
3055  *
3056  * Description:
3057  *     Free all bios in @rq for a cloned request.
3058  */
3059 void blk_rq_unprep_clone(struct request *rq)
3060 {
3061         struct bio *bio;
3062
3063         while ((bio = rq->bio) != NULL) {
3064                 rq->bio = bio->bi_next;
3065
3066                 bio_put(bio);
3067         }
3068 }
3069 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3070
3071 /**
3072  * blk_rq_prep_clone - Helper function to setup clone request
3073  * @rq: the request to be setup
3074  * @rq_src: original request to be cloned
3075  * @bs: bio_set that bios for clone are allocated from
3076  * @gfp_mask: memory allocation mask for bio
3077  * @bio_ctr: setup function to be called for each clone bio.
3078  *           Returns %0 for success, non %0 for failure.
3079  * @data: private data to be passed to @bio_ctr
3080  *
3081  * Description:
3082  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3083  *     Also, pages which the original bios are pointing to are not copied
3084  *     and the cloned bios just point same pages.
3085  *     So cloned bios must be completed before original bios, which means
3086  *     the caller must complete @rq before @rq_src.
3087  */
3088 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3089                       struct bio_set *bs, gfp_t gfp_mask,
3090                       int (*bio_ctr)(struct bio *, struct bio *, void *),
3091                       void *data)
3092 {
3093         struct bio *bio, *bio_src;
3094
3095         if (!bs)
3096                 bs = &fs_bio_set;
3097
3098         __rq_for_each_bio(bio_src, rq_src) {
3099                 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3100                                       bs);
3101                 if (!bio)
3102                         goto free_and_out;
3103
3104                 if (bio_ctr && bio_ctr(bio, bio_src, data))
3105                         goto free_and_out;
3106
3107                 if (rq->bio) {
3108                         rq->biotail->bi_next = bio;
3109                         rq->biotail = bio;
3110                 } else {
3111                         rq->bio = rq->biotail = bio;
3112                 }
3113                 bio = NULL;
3114         }
3115
3116         /* Copy attributes of the original request to the clone request. */
3117         rq->__sector = blk_rq_pos(rq_src);
3118         rq->__data_len = blk_rq_bytes(rq_src);
3119         if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3120                 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3121                 rq->special_vec = rq_src->special_vec;
3122         }
3123         rq->nr_phys_segments = rq_src->nr_phys_segments;
3124         rq->ioprio = rq_src->ioprio;
3125
3126         if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3127                 goto free_and_out;
3128
3129         return 0;
3130
3131 free_and_out:
3132         if (bio)
3133                 bio_put(bio);
3134         blk_rq_unprep_clone(rq);
3135
3136         return -ENOMEM;
3137 }
3138 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3139 #endif /* CONFIG_BLK_MQ_STACKING */
3140
3141 /*
3142  * Steal bios from a request and add them to a bio list.
3143  * The request must not have been partially completed before.
3144  */
3145 void blk_steal_bios(struct bio_list *list, struct request *rq)
3146 {
3147         if (rq->bio) {
3148                 if (list->tail)
3149                         list->tail->bi_next = rq->bio;
3150                 else
3151                         list->head = rq->bio;
3152                 list->tail = rq->biotail;
3153
3154                 rq->bio = NULL;
3155                 rq->biotail = NULL;
3156         }
3157
3158         rq->__data_len = 0;
3159 }
3160 EXPORT_SYMBOL_GPL(blk_steal_bios);
3161
3162 static size_t order_to_size(unsigned int order)
3163 {
3164         return (size_t)PAGE_SIZE << order;
3165 }
3166
3167 /* called before freeing request pool in @tags */
3168 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3169                                     struct blk_mq_tags *tags)
3170 {
3171         struct page *page;
3172         unsigned long flags;
3173
3174         /*
3175          * There is no need to clear mapping if driver tags is not initialized
3176          * or the mapping belongs to the driver tags.
3177          */
3178         if (!drv_tags || drv_tags == tags)
3179                 return;
3180
3181         list_for_each_entry(page, &tags->page_list, lru) {
3182                 unsigned long start = (unsigned long)page_address(page);
3183                 unsigned long end = start + order_to_size(page->private);
3184                 int i;
3185
3186                 for (i = 0; i < drv_tags->nr_tags; i++) {
3187                         struct request *rq = drv_tags->rqs[i];
3188                         unsigned long rq_addr = (unsigned long)rq;
3189
3190                         if (rq_addr >= start && rq_addr < end) {
3191                                 WARN_ON_ONCE(req_ref_read(rq) != 0);
3192                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3193                         }
3194                 }
3195         }
3196
3197         /*
3198          * Wait until all pending iteration is done.
3199          *
3200          * Request reference is cleared and it is guaranteed to be observed
3201          * after the ->lock is released.
3202          */
3203         spin_lock_irqsave(&drv_tags->lock, flags);
3204         spin_unlock_irqrestore(&drv_tags->lock, flags);
3205 }
3206
3207 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3208                      unsigned int hctx_idx)
3209 {
3210         struct blk_mq_tags *drv_tags;
3211         struct page *page;
3212
3213         if (list_empty(&tags->page_list))
3214                 return;
3215
3216         if (blk_mq_is_shared_tags(set->flags))
3217                 drv_tags = set->shared_tags;
3218         else
3219                 drv_tags = set->tags[hctx_idx];
3220
3221         if (tags->static_rqs && set->ops->exit_request) {
3222                 int i;
3223
3224                 for (i = 0; i < tags->nr_tags; i++) {
3225                         struct request *rq = tags->static_rqs[i];
3226
3227                         if (!rq)
3228                                 continue;
3229                         set->ops->exit_request(set, rq, hctx_idx);
3230                         tags->static_rqs[i] = NULL;
3231                 }
3232         }
3233
3234         blk_mq_clear_rq_mapping(drv_tags, tags);
3235
3236         while (!list_empty(&tags->page_list)) {
3237                 page = list_first_entry(&tags->page_list, struct page, lru);
3238                 list_del_init(&page->lru);
3239                 /*
3240                  * Remove kmemleak object previously allocated in
3241                  * blk_mq_alloc_rqs().
3242                  */
3243                 kmemleak_free(page_address(page));
3244                 __free_pages(page, page->private);
3245         }
3246 }
3247
3248 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3249 {
3250         kfree(tags->rqs);
3251         tags->rqs = NULL;
3252         kfree(tags->static_rqs);
3253         tags->static_rqs = NULL;
3254
3255         blk_mq_free_tags(tags);
3256 }
3257
3258 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3259                 unsigned int hctx_idx)
3260 {
3261         int i;
3262
3263         for (i = 0; i < set->nr_maps; i++) {
3264                 unsigned int start = set->map[i].queue_offset;
3265                 unsigned int end = start + set->map[i].nr_queues;
3266
3267                 if (hctx_idx >= start && hctx_idx < end)
3268                         break;
3269         }
3270
3271         if (i >= set->nr_maps)
3272                 i = HCTX_TYPE_DEFAULT;
3273
3274         return i;
3275 }
3276
3277 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3278                 unsigned int hctx_idx)
3279 {
3280         enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3281
3282         return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3283 }
3284
3285 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3286                                                unsigned int hctx_idx,
3287                                                unsigned int nr_tags,
3288                                                unsigned int reserved_tags)
3289 {
3290         int node = blk_mq_get_hctx_node(set, hctx_idx);
3291         struct blk_mq_tags *tags;
3292
3293         if (node == NUMA_NO_NODE)
3294                 node = set->numa_node;
3295
3296         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3297                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3298         if (!tags)
3299                 return NULL;
3300
3301         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3302                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3303                                  node);
3304         if (!tags->rqs)
3305                 goto err_free_tags;
3306
3307         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3308                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3309                                         node);
3310         if (!tags->static_rqs)
3311                 goto err_free_rqs;
3312
3313         return tags;
3314
3315 err_free_rqs:
3316         kfree(tags->rqs);
3317 err_free_tags:
3318         blk_mq_free_tags(tags);
3319         return NULL;
3320 }
3321
3322 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3323                                unsigned int hctx_idx, int node)
3324 {
3325         int ret;
3326
3327         if (set->ops->init_request) {
3328                 ret = set->ops->init_request(set, rq, hctx_idx, node);
3329                 if (ret)
3330                         return ret;
3331         }
3332
3333         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3334         return 0;
3335 }
3336
3337 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3338                             struct blk_mq_tags *tags,
3339                             unsigned int hctx_idx, unsigned int depth)
3340 {
3341         unsigned int i, j, entries_per_page, max_order = 4;
3342         int node = blk_mq_get_hctx_node(set, hctx_idx);
3343         size_t rq_size, left;
3344
3345         if (node == NUMA_NO_NODE)
3346                 node = set->numa_node;
3347
3348         INIT_LIST_HEAD(&tags->page_list);
3349
3350         /*
3351          * rq_size is the size of the request plus driver payload, rounded
3352          * to the cacheline size
3353          */
3354         rq_size = round_up(sizeof(struct request) + set->cmd_size,
3355                                 cache_line_size());
3356         left = rq_size * depth;
3357
3358         for (i = 0; i < depth; ) {
3359                 int this_order = max_order;
3360                 struct page *page;
3361                 int to_do;
3362                 void *p;
3363
3364                 while (this_order && left < order_to_size(this_order - 1))
3365                         this_order--;
3366
3367                 do {
3368                         page = alloc_pages_node(node,
3369                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3370                                 this_order);
3371                         if (page)
3372                                 break;
3373                         if (!this_order--)
3374                                 break;
3375                         if (order_to_size(this_order) < rq_size)
3376                                 break;
3377                 } while (1);
3378
3379                 if (!page)
3380                         goto fail;
3381
3382                 page->private = this_order;
3383                 list_add_tail(&page->lru, &tags->page_list);
3384
3385                 p = page_address(page);
3386                 /*
3387                  * Allow kmemleak to scan these pages as they contain pointers
3388                  * to additional allocations like via ops->init_request().
3389                  */
3390                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3391                 entries_per_page = order_to_size(this_order) / rq_size;
3392                 to_do = min(entries_per_page, depth - i);
3393                 left -= to_do * rq_size;
3394                 for (j = 0; j < to_do; j++) {
3395                         struct request *rq = p;
3396
3397                         tags->static_rqs[i] = rq;
3398                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3399                                 tags->static_rqs[i] = NULL;
3400                                 goto fail;
3401                         }
3402
3403                         p += rq_size;
3404                         i++;
3405                 }
3406         }
3407         return 0;
3408
3409 fail:
3410         blk_mq_free_rqs(set, tags, hctx_idx);
3411         return -ENOMEM;
3412 }
3413
3414 struct rq_iter_data {
3415         struct blk_mq_hw_ctx *hctx;
3416         bool has_rq;
3417 };
3418
3419 static bool blk_mq_has_request(struct request *rq, void *data)
3420 {
3421         struct rq_iter_data *iter_data = data;
3422
3423         if (rq->mq_hctx != iter_data->hctx)
3424                 return true;
3425         iter_data->has_rq = true;
3426         return false;
3427 }
3428
3429 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3430 {
3431         struct blk_mq_tags *tags = hctx->sched_tags ?
3432                         hctx->sched_tags : hctx->tags;
3433         struct rq_iter_data data = {
3434                 .hctx   = hctx,
3435         };
3436
3437         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3438         return data.has_rq;
3439 }
3440
3441 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3442                 struct blk_mq_hw_ctx *hctx)
3443 {
3444         if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3445                 return false;
3446         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3447                 return false;
3448         return true;
3449 }
3450
3451 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3452 {
3453         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3454                         struct blk_mq_hw_ctx, cpuhp_online);
3455
3456         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3457             !blk_mq_last_cpu_in_hctx(cpu, hctx))
3458                 return 0;
3459
3460         /*
3461          * Prevent new request from being allocated on the current hctx.
3462          *
3463          * The smp_mb__after_atomic() Pairs with the implied barrier in
3464          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3465          * seen once we return from the tag allocator.
3466          */
3467         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3468         smp_mb__after_atomic();
3469
3470         /*
3471          * Try to grab a reference to the queue and wait for any outstanding
3472          * requests.  If we could not grab a reference the queue has been
3473          * frozen and there are no requests.
3474          */
3475         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3476                 while (blk_mq_hctx_has_requests(hctx))
3477                         msleep(5);
3478                 percpu_ref_put(&hctx->queue->q_usage_counter);
3479         }
3480
3481         return 0;
3482 }
3483
3484 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3485 {
3486         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3487                         struct blk_mq_hw_ctx, cpuhp_online);
3488
3489         if (cpumask_test_cpu(cpu, hctx->cpumask))
3490                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3491         return 0;
3492 }
3493
3494 /*
3495  * 'cpu' is going away. splice any existing rq_list entries from this
3496  * software queue to the hw queue dispatch list, and ensure that it
3497  * gets run.
3498  */
3499 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3500 {
3501         struct blk_mq_hw_ctx *hctx;
3502         struct blk_mq_ctx *ctx;
3503         LIST_HEAD(tmp);
3504         enum hctx_type type;
3505
3506         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3507         if (!cpumask_test_cpu(cpu, hctx->cpumask))
3508                 return 0;
3509
3510         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3511         type = hctx->type;
3512
3513         spin_lock(&ctx->lock);
3514         if (!list_empty(&ctx->rq_lists[type])) {
3515                 list_splice_init(&ctx->rq_lists[type], &tmp);
3516                 blk_mq_hctx_clear_pending(hctx, ctx);
3517         }
3518         spin_unlock(&ctx->lock);
3519
3520         if (list_empty(&tmp))
3521                 return 0;
3522
3523         spin_lock(&hctx->lock);
3524         list_splice_tail_init(&tmp, &hctx->dispatch);
3525         spin_unlock(&hctx->lock);
3526
3527         blk_mq_run_hw_queue(hctx, true);
3528         return 0;
3529 }
3530
3531 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3532 {
3533         if (!(hctx->flags & BLK_MQ_F_STACKING))
3534                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3535                                                     &hctx->cpuhp_online);
3536         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3537                                             &hctx->cpuhp_dead);
3538 }
3539
3540 /*
3541  * Before freeing hw queue, clearing the flush request reference in
3542  * tags->rqs[] for avoiding potential UAF.
3543  */
3544 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3545                 unsigned int queue_depth, struct request *flush_rq)
3546 {
3547         int i;
3548         unsigned long flags;
3549
3550         /* The hw queue may not be mapped yet */
3551         if (!tags)
3552                 return;
3553
3554         WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3555
3556         for (i = 0; i < queue_depth; i++)
3557                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3558
3559         /*
3560          * Wait until all pending iteration is done.
3561          *
3562          * Request reference is cleared and it is guaranteed to be observed
3563          * after the ->lock is released.
3564          */
3565         spin_lock_irqsave(&tags->lock, flags);
3566         spin_unlock_irqrestore(&tags->lock, flags);
3567 }
3568
3569 /* hctx->ctxs will be freed in queue's release handler */
3570 static void blk_mq_exit_hctx(struct request_queue *q,
3571                 struct blk_mq_tag_set *set,
3572                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3573 {
3574         struct request *flush_rq = hctx->fq->flush_rq;
3575
3576         if (blk_mq_hw_queue_mapped(hctx))
3577                 blk_mq_tag_idle(hctx);
3578
3579         if (blk_queue_init_done(q))
3580                 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3581                                 set->queue_depth, flush_rq);
3582         if (set->ops->exit_request)
3583                 set->ops->exit_request(set, flush_rq, hctx_idx);
3584
3585         if (set->ops->exit_hctx)
3586                 set->ops->exit_hctx(hctx, hctx_idx);
3587
3588         blk_mq_remove_cpuhp(hctx);
3589
3590         xa_erase(&q->hctx_table, hctx_idx);
3591
3592         spin_lock(&q->unused_hctx_lock);
3593         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3594         spin_unlock(&q->unused_hctx_lock);
3595 }
3596
3597 static void blk_mq_exit_hw_queues(struct request_queue *q,
3598                 struct blk_mq_tag_set *set, int nr_queue)
3599 {
3600         struct blk_mq_hw_ctx *hctx;
3601         unsigned long i;
3602
3603         queue_for_each_hw_ctx(q, hctx, i) {
3604                 if (i == nr_queue)
3605                         break;
3606                 blk_mq_exit_hctx(q, set, hctx, i);
3607         }
3608 }
3609
3610 static int blk_mq_init_hctx(struct request_queue *q,
3611                 struct blk_mq_tag_set *set,
3612                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3613 {
3614         hctx->queue_num = hctx_idx;
3615
3616         if (!(hctx->flags & BLK_MQ_F_STACKING))
3617                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3618                                 &hctx->cpuhp_online);
3619         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3620
3621         hctx->tags = set->tags[hctx_idx];
3622
3623         if (set->ops->init_hctx &&
3624             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3625                 goto unregister_cpu_notifier;
3626
3627         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3628                                 hctx->numa_node))
3629                 goto exit_hctx;
3630
3631         if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3632                 goto exit_flush_rq;
3633
3634         return 0;
3635
3636  exit_flush_rq:
3637         if (set->ops->exit_request)
3638                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3639  exit_hctx:
3640         if (set->ops->exit_hctx)
3641                 set->ops->exit_hctx(hctx, hctx_idx);
3642  unregister_cpu_notifier:
3643         blk_mq_remove_cpuhp(hctx);
3644         return -1;
3645 }
3646
3647 static struct blk_mq_hw_ctx *
3648 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3649                 int node)
3650 {
3651         struct blk_mq_hw_ctx *hctx;
3652         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3653
3654         hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3655         if (!hctx)
3656                 goto fail_alloc_hctx;
3657
3658         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3659                 goto free_hctx;
3660
3661         atomic_set(&hctx->nr_active, 0);
3662         if (node == NUMA_NO_NODE)
3663                 node = set->numa_node;
3664         hctx->numa_node = node;
3665
3666         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3667         spin_lock_init(&hctx->lock);
3668         INIT_LIST_HEAD(&hctx->dispatch);
3669         hctx->queue = q;
3670         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3671
3672         INIT_LIST_HEAD(&hctx->hctx_list);
3673
3674         /*
3675          * Allocate space for all possible cpus to avoid allocation at
3676          * runtime
3677          */
3678         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3679                         gfp, node);
3680         if (!hctx->ctxs)
3681                 goto free_cpumask;
3682
3683         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3684                                 gfp, node, false, false))
3685                 goto free_ctxs;
3686         hctx->nr_ctx = 0;
3687
3688         spin_lock_init(&hctx->dispatch_wait_lock);
3689         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3690         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3691
3692         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3693         if (!hctx->fq)
3694                 goto free_bitmap;
3695
3696         blk_mq_hctx_kobj_init(hctx);
3697
3698         return hctx;
3699
3700  free_bitmap:
3701         sbitmap_free(&hctx->ctx_map);
3702  free_ctxs:
3703         kfree(hctx->ctxs);
3704  free_cpumask:
3705         free_cpumask_var(hctx->cpumask);
3706  free_hctx:
3707         kfree(hctx);
3708  fail_alloc_hctx:
3709         return NULL;
3710 }
3711
3712 static void blk_mq_init_cpu_queues(struct request_queue *q,
3713                                    unsigned int nr_hw_queues)
3714 {
3715         struct blk_mq_tag_set *set = q->tag_set;
3716         unsigned int i, j;
3717
3718         for_each_possible_cpu(i) {
3719                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3720                 struct blk_mq_hw_ctx *hctx;
3721                 int k;
3722
3723                 __ctx->cpu = i;
3724                 spin_lock_init(&__ctx->lock);
3725                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3726                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3727
3728                 __ctx->queue = q;
3729
3730                 /*
3731                  * Set local node, IFF we have more than one hw queue. If
3732                  * not, we remain on the home node of the device
3733                  */
3734                 for (j = 0; j < set->nr_maps; j++) {
3735                         hctx = blk_mq_map_queue_type(q, j, i);
3736                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3737                                 hctx->numa_node = cpu_to_node(i);
3738                 }
3739         }
3740 }
3741
3742 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3743                                              unsigned int hctx_idx,
3744                                              unsigned int depth)
3745 {
3746         struct blk_mq_tags *tags;
3747         int ret;
3748
3749         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3750         if (!tags)
3751                 return NULL;
3752
3753         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3754         if (ret) {
3755                 blk_mq_free_rq_map(tags);
3756                 return NULL;
3757         }
3758
3759         return tags;
3760 }
3761
3762 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3763                                        int hctx_idx)
3764 {
3765         if (blk_mq_is_shared_tags(set->flags)) {
3766                 set->tags[hctx_idx] = set->shared_tags;
3767
3768                 return true;
3769         }
3770
3771         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3772                                                        set->queue_depth);
3773
3774         return set->tags[hctx_idx];
3775 }
3776
3777 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3778                              struct blk_mq_tags *tags,
3779                              unsigned int hctx_idx)
3780 {
3781         if (tags) {
3782                 blk_mq_free_rqs(set, tags, hctx_idx);
3783                 blk_mq_free_rq_map(tags);
3784         }
3785 }
3786
3787 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3788                                       unsigned int hctx_idx)
3789 {
3790         if (!blk_mq_is_shared_tags(set->flags))
3791                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3792
3793         set->tags[hctx_idx] = NULL;
3794 }
3795
3796 static void blk_mq_map_swqueue(struct request_queue *q)
3797 {
3798         unsigned int j, hctx_idx;
3799         unsigned long i;
3800         struct blk_mq_hw_ctx *hctx;
3801         struct blk_mq_ctx *ctx;
3802         struct blk_mq_tag_set *set = q->tag_set;
3803
3804         queue_for_each_hw_ctx(q, hctx, i) {
3805                 cpumask_clear(hctx->cpumask);
3806                 hctx->nr_ctx = 0;
3807                 hctx->dispatch_from = NULL;
3808         }
3809
3810         /*
3811          * Map software to hardware queues.
3812          *
3813          * If the cpu isn't present, the cpu is mapped to first hctx.
3814          */
3815         for_each_possible_cpu(i) {
3816
3817                 ctx = per_cpu_ptr(q->queue_ctx, i);
3818                 for (j = 0; j < set->nr_maps; j++) {
3819                         if (!set->map[j].nr_queues) {
3820                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3821                                                 HCTX_TYPE_DEFAULT, i);
3822                                 continue;
3823                         }
3824                         hctx_idx = set->map[j].mq_map[i];
3825                         /* unmapped hw queue can be remapped after CPU topo changed */
3826                         if (!set->tags[hctx_idx] &&
3827                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3828                                 /*
3829                                  * If tags initialization fail for some hctx,
3830                                  * that hctx won't be brought online.  In this
3831                                  * case, remap the current ctx to hctx[0] which
3832                                  * is guaranteed to always have tags allocated
3833                                  */
3834                                 set->map[j].mq_map[i] = 0;
3835                         }
3836
3837                         hctx = blk_mq_map_queue_type(q, j, i);
3838                         ctx->hctxs[j] = hctx;
3839                         /*
3840                          * If the CPU is already set in the mask, then we've
3841                          * mapped this one already. This can happen if
3842                          * devices share queues across queue maps.
3843                          */
3844                         if (cpumask_test_cpu(i, hctx->cpumask))
3845                                 continue;
3846
3847                         cpumask_set_cpu(i, hctx->cpumask);
3848                         hctx->type = j;
3849                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
3850                         hctx->ctxs[hctx->nr_ctx++] = ctx;
3851
3852                         /*
3853                          * If the nr_ctx type overflows, we have exceeded the
3854                          * amount of sw queues we can support.
3855                          */
3856                         BUG_ON(!hctx->nr_ctx);
3857                 }
3858
3859                 for (; j < HCTX_MAX_TYPES; j++)
3860                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
3861                                         HCTX_TYPE_DEFAULT, i);
3862         }
3863
3864         queue_for_each_hw_ctx(q, hctx, i) {
3865                 /*
3866                  * If no software queues are mapped to this hardware queue,
3867                  * disable it and free the request entries.
3868                  */
3869                 if (!hctx->nr_ctx) {
3870                         /* Never unmap queue 0.  We need it as a
3871                          * fallback in case of a new remap fails
3872                          * allocation
3873                          */
3874                         if (i)
3875                                 __blk_mq_free_map_and_rqs(set, i);
3876
3877                         hctx->tags = NULL;
3878                         continue;
3879                 }
3880
3881                 hctx->tags = set->tags[i];
3882                 WARN_ON(!hctx->tags);
3883
3884                 /*
3885                  * Set the map size to the number of mapped software queues.
3886                  * This is more accurate and more efficient than looping
3887                  * over all possibly mapped software queues.
3888                  */
3889                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3890
3891                 /*
3892                  * Initialize batch roundrobin counts
3893                  */
3894                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3895                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3896         }
3897 }
3898
3899 /*
3900  * Caller needs to ensure that we're either frozen/quiesced, or that
3901  * the queue isn't live yet.
3902  */
3903 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3904 {
3905         struct blk_mq_hw_ctx *hctx;
3906         unsigned long i;
3907
3908         queue_for_each_hw_ctx(q, hctx, i) {
3909                 if (shared) {
3910                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3911                 } else {
3912                         blk_mq_tag_idle(hctx);
3913                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3914                 }
3915         }
3916 }
3917
3918 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3919                                          bool shared)
3920 {
3921         struct request_queue *q;
3922
3923         lockdep_assert_held(&set->tag_list_lock);
3924
3925         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3926                 blk_mq_freeze_queue(q);
3927                 queue_set_hctx_shared(q, shared);
3928                 blk_mq_unfreeze_queue(q);
3929         }
3930 }
3931
3932 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3933 {
3934         struct blk_mq_tag_set *set = q->tag_set;
3935
3936         mutex_lock(&set->tag_list_lock);
3937         list_del(&q->tag_set_list);
3938         if (list_is_singular(&set->tag_list)) {
3939                 /* just transitioned to unshared */
3940                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3941                 /* update existing queue */
3942                 blk_mq_update_tag_set_shared(set, false);
3943         }
3944         mutex_unlock(&set->tag_list_lock);
3945         INIT_LIST_HEAD(&q->tag_set_list);
3946 }
3947
3948 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3949                                      struct request_queue *q)
3950 {
3951         mutex_lock(&set->tag_list_lock);
3952
3953         /*
3954          * Check to see if we're transitioning to shared (from 1 to 2 queues).
3955          */
3956         if (!list_empty(&set->tag_list) &&
3957             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3958                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3959                 /* update existing queue */
3960                 blk_mq_update_tag_set_shared(set, true);
3961         }
3962         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3963                 queue_set_hctx_shared(q, true);
3964         list_add_tail(&q->tag_set_list, &set->tag_list);
3965
3966         mutex_unlock(&set->tag_list_lock);
3967 }
3968
3969 /* All allocations will be freed in release handler of q->mq_kobj */
3970 static int blk_mq_alloc_ctxs(struct request_queue *q)
3971 {
3972         struct blk_mq_ctxs *ctxs;
3973         int cpu;
3974
3975         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3976         if (!ctxs)
3977                 return -ENOMEM;
3978
3979         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3980         if (!ctxs->queue_ctx)
3981                 goto fail;
3982
3983         for_each_possible_cpu(cpu) {
3984                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3985                 ctx->ctxs = ctxs;
3986         }
3987
3988         q->mq_kobj = &ctxs->kobj;
3989         q->queue_ctx = ctxs->queue_ctx;
3990
3991         return 0;
3992  fail:
3993         kfree(ctxs);
3994         return -ENOMEM;
3995 }
3996
3997 /*
3998  * It is the actual release handler for mq, but we do it from
3999  * request queue's release handler for avoiding use-after-free
4000  * and headache because q->mq_kobj shouldn't have been introduced,
4001  * but we can't group ctx/kctx kobj without it.
4002  */
4003 void blk_mq_release(struct request_queue *q)
4004 {
4005         struct blk_mq_hw_ctx *hctx, *next;
4006         unsigned long i;
4007
4008         queue_for_each_hw_ctx(q, hctx, i)
4009                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4010
4011         /* all hctx are in .unused_hctx_list now */
4012         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4013                 list_del_init(&hctx->hctx_list);
4014                 kobject_put(&hctx->kobj);
4015         }
4016
4017         xa_destroy(&q->hctx_table);
4018
4019         /*
4020          * release .mq_kobj and sw queue's kobject now because
4021          * both share lifetime with request queue.
4022          */
4023         blk_mq_sysfs_deinit(q);
4024 }
4025
4026 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4027                 void *queuedata)
4028 {
4029         struct request_queue *q;
4030         int ret;
4031
4032         q = blk_alloc_queue(set->numa_node);
4033         if (!q)
4034                 return ERR_PTR(-ENOMEM);
4035         q->queuedata = queuedata;
4036         ret = blk_mq_init_allocated_queue(set, q);
4037         if (ret) {
4038                 blk_put_queue(q);
4039                 return ERR_PTR(ret);
4040         }
4041         return q;
4042 }
4043
4044 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4045 {
4046         return blk_mq_init_queue_data(set, NULL);
4047 }
4048 EXPORT_SYMBOL(blk_mq_init_queue);
4049
4050 /**
4051  * blk_mq_destroy_queue - shutdown a request queue
4052  * @q: request queue to shutdown
4053  *
4054  * This shuts down a request queue allocated by blk_mq_init_queue(). All future
4055  * requests will be failed with -ENODEV. The caller is responsible for dropping
4056  * the reference from blk_mq_init_queue() by calling blk_put_queue().
4057  *
4058  * Context: can sleep
4059  */
4060 void blk_mq_destroy_queue(struct request_queue *q)
4061 {
4062         WARN_ON_ONCE(!queue_is_mq(q));
4063         WARN_ON_ONCE(blk_queue_registered(q));
4064
4065         might_sleep();
4066
4067         blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4068         blk_queue_start_drain(q);
4069         blk_mq_freeze_queue_wait(q);
4070
4071         blk_sync_queue(q);
4072         blk_mq_cancel_work_sync(q);
4073         blk_mq_exit_queue(q);
4074 }
4075 EXPORT_SYMBOL(blk_mq_destroy_queue);
4076
4077 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4078                 struct lock_class_key *lkclass)
4079 {
4080         struct request_queue *q;
4081         struct gendisk *disk;
4082
4083         q = blk_mq_init_queue_data(set, queuedata);
4084         if (IS_ERR(q))
4085                 return ERR_CAST(q);
4086
4087         disk = __alloc_disk_node(q, set->numa_node, lkclass);
4088         if (!disk) {
4089                 blk_mq_destroy_queue(q);
4090                 blk_put_queue(q);
4091                 return ERR_PTR(-ENOMEM);
4092         }
4093         set_bit(GD_OWNS_QUEUE, &disk->state);
4094         return disk;
4095 }
4096 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4097
4098 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4099                 struct lock_class_key *lkclass)
4100 {
4101         struct gendisk *disk;
4102
4103         if (!blk_get_queue(q))
4104                 return NULL;
4105         disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4106         if (!disk)
4107                 blk_put_queue(q);
4108         return disk;
4109 }
4110 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4111
4112 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4113                 struct blk_mq_tag_set *set, struct request_queue *q,
4114                 int hctx_idx, int node)
4115 {
4116         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4117
4118         /* reuse dead hctx first */
4119         spin_lock(&q->unused_hctx_lock);
4120         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4121                 if (tmp->numa_node == node) {
4122                         hctx = tmp;
4123                         break;
4124                 }
4125         }
4126         if (hctx)
4127                 list_del_init(&hctx->hctx_list);
4128         spin_unlock(&q->unused_hctx_lock);
4129
4130         if (!hctx)
4131                 hctx = blk_mq_alloc_hctx(q, set, node);
4132         if (!hctx)
4133                 goto fail;
4134
4135         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4136                 goto free_hctx;
4137
4138         return hctx;
4139
4140  free_hctx:
4141         kobject_put(&hctx->kobj);
4142  fail:
4143         return NULL;
4144 }
4145
4146 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4147                                                 struct request_queue *q)
4148 {
4149         struct blk_mq_hw_ctx *hctx;
4150         unsigned long i, j;
4151
4152         /* protect against switching io scheduler  */
4153         mutex_lock(&q->sysfs_lock);
4154         for (i = 0; i < set->nr_hw_queues; i++) {
4155                 int old_node;
4156                 int node = blk_mq_get_hctx_node(set, i);
4157                 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4158
4159                 if (old_hctx) {
4160                         old_node = old_hctx->numa_node;
4161                         blk_mq_exit_hctx(q, set, old_hctx, i);
4162                 }
4163
4164                 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4165                         if (!old_hctx)
4166                                 break;
4167                         pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4168                                         node, old_node);
4169                         hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4170                         WARN_ON_ONCE(!hctx);
4171                 }
4172         }
4173         /*
4174          * Increasing nr_hw_queues fails. Free the newly allocated
4175          * hctxs and keep the previous q->nr_hw_queues.
4176          */
4177         if (i != set->nr_hw_queues) {
4178                 j = q->nr_hw_queues;
4179         } else {
4180                 j = i;
4181                 q->nr_hw_queues = set->nr_hw_queues;
4182         }
4183
4184         xa_for_each_start(&q->hctx_table, j, hctx, j)
4185                 blk_mq_exit_hctx(q, set, hctx, j);
4186         mutex_unlock(&q->sysfs_lock);
4187 }
4188
4189 static void blk_mq_update_poll_flag(struct request_queue *q)
4190 {
4191         struct blk_mq_tag_set *set = q->tag_set;
4192
4193         if (set->nr_maps > HCTX_TYPE_POLL &&
4194             set->map[HCTX_TYPE_POLL].nr_queues)
4195                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4196         else
4197                 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4198 }
4199
4200 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4201                 struct request_queue *q)
4202 {
4203         /* mark the queue as mq asap */
4204         q->mq_ops = set->ops;
4205
4206         if (blk_mq_alloc_ctxs(q))
4207                 goto err_exit;
4208
4209         /* init q->mq_kobj and sw queues' kobjects */
4210         blk_mq_sysfs_init(q);
4211
4212         INIT_LIST_HEAD(&q->unused_hctx_list);
4213         spin_lock_init(&q->unused_hctx_lock);
4214
4215         xa_init(&q->hctx_table);
4216
4217         blk_mq_realloc_hw_ctxs(set, q);
4218         if (!q->nr_hw_queues)
4219                 goto err_hctxs;
4220
4221         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4222         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4223
4224         q->tag_set = set;
4225
4226         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4227         blk_mq_update_poll_flag(q);
4228
4229         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4230         INIT_LIST_HEAD(&q->flush_list);
4231         INIT_LIST_HEAD(&q->requeue_list);
4232         spin_lock_init(&q->requeue_lock);
4233
4234         q->nr_requests = set->queue_depth;
4235
4236         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4237         blk_mq_add_queue_tag_set(set, q);
4238         blk_mq_map_swqueue(q);
4239         return 0;
4240
4241 err_hctxs:
4242         blk_mq_release(q);
4243 err_exit:
4244         q->mq_ops = NULL;
4245         return -ENOMEM;
4246 }
4247 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4248
4249 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4250 void blk_mq_exit_queue(struct request_queue *q)
4251 {
4252         struct blk_mq_tag_set *set = q->tag_set;
4253
4254         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4255         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4256         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4257         blk_mq_del_queue_tag_set(q);
4258 }
4259
4260 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4261 {
4262         int i;
4263
4264         if (blk_mq_is_shared_tags(set->flags)) {
4265                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4266                                                 BLK_MQ_NO_HCTX_IDX,
4267                                                 set->queue_depth);
4268                 if (!set->shared_tags)
4269                         return -ENOMEM;
4270         }
4271
4272         for (i = 0; i < set->nr_hw_queues; i++) {
4273                 if (!__blk_mq_alloc_map_and_rqs(set, i))
4274                         goto out_unwind;
4275                 cond_resched();
4276         }
4277
4278         return 0;
4279
4280 out_unwind:
4281         while (--i >= 0)
4282                 __blk_mq_free_map_and_rqs(set, i);
4283
4284         if (blk_mq_is_shared_tags(set->flags)) {
4285                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4286                                         BLK_MQ_NO_HCTX_IDX);
4287         }
4288
4289         return -ENOMEM;
4290 }
4291
4292 /*
4293  * Allocate the request maps associated with this tag_set. Note that this
4294  * may reduce the depth asked for, if memory is tight. set->queue_depth
4295  * will be updated to reflect the allocated depth.
4296  */
4297 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4298 {
4299         unsigned int depth;
4300         int err;
4301
4302         depth = set->queue_depth;
4303         do {
4304                 err = __blk_mq_alloc_rq_maps(set);
4305                 if (!err)
4306                         break;
4307
4308                 set->queue_depth >>= 1;
4309                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4310                         err = -ENOMEM;
4311                         break;
4312                 }
4313         } while (set->queue_depth);
4314
4315         if (!set->queue_depth || err) {
4316                 pr_err("blk-mq: failed to allocate request map\n");
4317                 return -ENOMEM;
4318         }
4319
4320         if (depth != set->queue_depth)
4321                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4322                                                 depth, set->queue_depth);
4323
4324         return 0;
4325 }
4326
4327 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4328 {
4329         /*
4330          * blk_mq_map_queues() and multiple .map_queues() implementations
4331          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4332          * number of hardware queues.
4333          */
4334         if (set->nr_maps == 1)
4335                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4336
4337         if (set->ops->map_queues && !is_kdump_kernel()) {
4338                 int i;
4339
4340                 /*
4341                  * transport .map_queues is usually done in the following
4342                  * way:
4343                  *
4344                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4345                  *      mask = get_cpu_mask(queue)
4346                  *      for_each_cpu(cpu, mask)
4347                  *              set->map[x].mq_map[cpu] = queue;
4348                  * }
4349                  *
4350                  * When we need to remap, the table has to be cleared for
4351                  * killing stale mapping since one CPU may not be mapped
4352                  * to any hw queue.
4353                  */
4354                 for (i = 0; i < set->nr_maps; i++)
4355                         blk_mq_clear_mq_map(&set->map[i]);
4356
4357                 set->ops->map_queues(set);
4358         } else {
4359                 BUG_ON(set->nr_maps > 1);
4360                 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4361         }
4362 }
4363
4364 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4365                                        int new_nr_hw_queues)
4366 {
4367         struct blk_mq_tags **new_tags;
4368
4369         if (set->nr_hw_queues >= new_nr_hw_queues)
4370                 goto done;
4371
4372         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4373                                 GFP_KERNEL, set->numa_node);
4374         if (!new_tags)
4375                 return -ENOMEM;
4376
4377         if (set->tags)
4378                 memcpy(new_tags, set->tags, set->nr_hw_queues *
4379                        sizeof(*set->tags));
4380         kfree(set->tags);
4381         set->tags = new_tags;
4382 done:
4383         set->nr_hw_queues = new_nr_hw_queues;
4384         return 0;
4385 }
4386
4387 /*
4388  * Alloc a tag set to be associated with one or more request queues.
4389  * May fail with EINVAL for various error conditions. May adjust the
4390  * requested depth down, if it's too large. In that case, the set
4391  * value will be stored in set->queue_depth.
4392  */
4393 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4394 {
4395         int i, ret;
4396
4397         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4398
4399         if (!set->nr_hw_queues)
4400                 return -EINVAL;
4401         if (!set->queue_depth)
4402                 return -EINVAL;
4403         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4404                 return -EINVAL;
4405
4406         if (!set->ops->queue_rq)
4407                 return -EINVAL;
4408
4409         if (!set->ops->get_budget ^ !set->ops->put_budget)
4410                 return -EINVAL;
4411
4412         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4413                 pr_info("blk-mq: reduced tag depth to %u\n",
4414                         BLK_MQ_MAX_DEPTH);
4415                 set->queue_depth = BLK_MQ_MAX_DEPTH;
4416         }
4417
4418         if (!set->nr_maps)
4419                 set->nr_maps = 1;
4420         else if (set->nr_maps > HCTX_MAX_TYPES)
4421                 return -EINVAL;
4422
4423         /*
4424          * If a crashdump is active, then we are potentially in a very
4425          * memory constrained environment. Limit us to 1 queue and
4426          * 64 tags to prevent using too much memory.
4427          */
4428         if (is_kdump_kernel()) {
4429                 set->nr_hw_queues = 1;
4430                 set->nr_maps = 1;
4431                 set->queue_depth = min(64U, set->queue_depth);
4432         }
4433         /*
4434          * There is no use for more h/w queues than cpus if we just have
4435          * a single map
4436          */
4437         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4438                 set->nr_hw_queues = nr_cpu_ids;
4439
4440         if (set->flags & BLK_MQ_F_BLOCKING) {
4441                 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4442                 if (!set->srcu)
4443                         return -ENOMEM;
4444                 ret = init_srcu_struct(set->srcu);
4445                 if (ret)
4446                         goto out_free_srcu;
4447         }
4448
4449         ret = -ENOMEM;
4450         set->tags = kcalloc_node(set->nr_hw_queues,
4451                                  sizeof(struct blk_mq_tags *), GFP_KERNEL,
4452                                  set->numa_node);
4453         if (!set->tags)
4454                 goto out_cleanup_srcu;
4455
4456         for (i = 0; i < set->nr_maps; i++) {
4457                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4458                                                   sizeof(set->map[i].mq_map[0]),
4459                                                   GFP_KERNEL, set->numa_node);
4460                 if (!set->map[i].mq_map)
4461                         goto out_free_mq_map;
4462                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4463         }
4464
4465         blk_mq_update_queue_map(set);
4466
4467         ret = blk_mq_alloc_set_map_and_rqs(set);
4468         if (ret)
4469                 goto out_free_mq_map;
4470
4471         mutex_init(&set->tag_list_lock);
4472         INIT_LIST_HEAD(&set->tag_list);
4473
4474         return 0;
4475
4476 out_free_mq_map:
4477         for (i = 0; i < set->nr_maps; i++) {
4478                 kfree(set->map[i].mq_map);
4479                 set->map[i].mq_map = NULL;
4480         }
4481         kfree(set->tags);
4482         set->tags = NULL;
4483 out_cleanup_srcu:
4484         if (set->flags & BLK_MQ_F_BLOCKING)
4485                 cleanup_srcu_struct(set->srcu);
4486 out_free_srcu:
4487         if (set->flags & BLK_MQ_F_BLOCKING)
4488                 kfree(set->srcu);
4489         return ret;
4490 }
4491 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4492
4493 /* allocate and initialize a tagset for a simple single-queue device */
4494 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4495                 const struct blk_mq_ops *ops, unsigned int queue_depth,
4496                 unsigned int set_flags)
4497 {
4498         memset(set, 0, sizeof(*set));
4499         set->ops = ops;
4500         set->nr_hw_queues = 1;
4501         set->nr_maps = 1;
4502         set->queue_depth = queue_depth;
4503         set->numa_node = NUMA_NO_NODE;
4504         set->flags = set_flags;
4505         return blk_mq_alloc_tag_set(set);
4506 }
4507 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4508
4509 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4510 {
4511         int i, j;
4512
4513         for (i = 0; i < set->nr_hw_queues; i++)
4514                 __blk_mq_free_map_and_rqs(set, i);
4515
4516         if (blk_mq_is_shared_tags(set->flags)) {
4517                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4518                                         BLK_MQ_NO_HCTX_IDX);
4519         }
4520
4521         for (j = 0; j < set->nr_maps; j++) {
4522                 kfree(set->map[j].mq_map);
4523                 set->map[j].mq_map = NULL;
4524         }
4525
4526         kfree(set->tags);
4527         set->tags = NULL;
4528         if (set->flags & BLK_MQ_F_BLOCKING) {
4529                 cleanup_srcu_struct(set->srcu);
4530                 kfree(set->srcu);
4531         }
4532 }
4533 EXPORT_SYMBOL(blk_mq_free_tag_set);
4534
4535 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4536 {
4537         struct blk_mq_tag_set *set = q->tag_set;
4538         struct blk_mq_hw_ctx *hctx;
4539         int ret;
4540         unsigned long i;
4541
4542         if (!set)
4543                 return -EINVAL;
4544
4545         if (q->nr_requests == nr)
4546                 return 0;
4547
4548         blk_mq_freeze_queue(q);
4549         blk_mq_quiesce_queue(q);
4550
4551         ret = 0;
4552         queue_for_each_hw_ctx(q, hctx, i) {
4553                 if (!hctx->tags)
4554                         continue;
4555                 /*
4556                  * If we're using an MQ scheduler, just update the scheduler
4557                  * queue depth. This is similar to what the old code would do.
4558                  */
4559                 if (hctx->sched_tags) {
4560                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4561                                                       nr, true);
4562                 } else {
4563                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4564                                                       false);
4565                 }
4566                 if (ret)
4567                         break;
4568                 if (q->elevator && q->elevator->type->ops.depth_updated)
4569                         q->elevator->type->ops.depth_updated(hctx);
4570         }
4571         if (!ret) {
4572                 q->nr_requests = nr;
4573                 if (blk_mq_is_shared_tags(set->flags)) {
4574                         if (q->elevator)
4575                                 blk_mq_tag_update_sched_shared_tags(q);
4576                         else
4577                                 blk_mq_tag_resize_shared_tags(set, nr);
4578                 }
4579         }
4580
4581         blk_mq_unquiesce_queue(q);
4582         blk_mq_unfreeze_queue(q);
4583
4584         return ret;
4585 }
4586
4587 /*
4588  * request_queue and elevator_type pair.
4589  * It is just used by __blk_mq_update_nr_hw_queues to cache
4590  * the elevator_type associated with a request_queue.
4591  */
4592 struct blk_mq_qe_pair {
4593         struct list_head node;
4594         struct request_queue *q;
4595         struct elevator_type *type;
4596 };
4597
4598 /*
4599  * Cache the elevator_type in qe pair list and switch the
4600  * io scheduler to 'none'
4601  */
4602 static bool blk_mq_elv_switch_none(struct list_head *head,
4603                 struct request_queue *q)
4604 {
4605         struct blk_mq_qe_pair *qe;
4606
4607         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4608         if (!qe)
4609                 return false;
4610
4611         /* q->elevator needs protection from ->sysfs_lock */
4612         mutex_lock(&q->sysfs_lock);
4613
4614         /* the check has to be done with holding sysfs_lock */
4615         if (!q->elevator) {
4616                 kfree(qe);
4617                 goto unlock;
4618         }
4619
4620         INIT_LIST_HEAD(&qe->node);
4621         qe->q = q;
4622         qe->type = q->elevator->type;
4623         /* keep a reference to the elevator module as we'll switch back */
4624         __elevator_get(qe->type);
4625         list_add(&qe->node, head);
4626         elevator_disable(q);
4627 unlock:
4628         mutex_unlock(&q->sysfs_lock);
4629
4630         return true;
4631 }
4632
4633 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4634                                                 struct request_queue *q)
4635 {
4636         struct blk_mq_qe_pair *qe;
4637
4638         list_for_each_entry(qe, head, node)
4639                 if (qe->q == q)
4640                         return qe;
4641
4642         return NULL;
4643 }
4644
4645 static void blk_mq_elv_switch_back(struct list_head *head,
4646                                   struct request_queue *q)
4647 {
4648         struct blk_mq_qe_pair *qe;
4649         struct elevator_type *t;
4650
4651         qe = blk_lookup_qe_pair(head, q);
4652         if (!qe)
4653                 return;
4654         t = qe->type;
4655         list_del(&qe->node);
4656         kfree(qe);
4657
4658         mutex_lock(&q->sysfs_lock);
4659         elevator_switch(q, t);
4660         /* drop the reference acquired in blk_mq_elv_switch_none */
4661         elevator_put(t);
4662         mutex_unlock(&q->sysfs_lock);
4663 }
4664
4665 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4666                                                         int nr_hw_queues)
4667 {
4668         struct request_queue *q;
4669         LIST_HEAD(head);
4670         int prev_nr_hw_queues;
4671
4672         lockdep_assert_held(&set->tag_list_lock);
4673
4674         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4675                 nr_hw_queues = nr_cpu_ids;
4676         if (nr_hw_queues < 1)
4677                 return;
4678         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4679                 return;
4680
4681         list_for_each_entry(q, &set->tag_list, tag_set_list)
4682                 blk_mq_freeze_queue(q);
4683         /*
4684          * Switch IO scheduler to 'none', cleaning up the data associated
4685          * with the previous scheduler. We will switch back once we are done
4686          * updating the new sw to hw queue mappings.
4687          */
4688         list_for_each_entry(q, &set->tag_list, tag_set_list)
4689                 if (!blk_mq_elv_switch_none(&head, q))
4690                         goto switch_back;
4691
4692         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4693                 blk_mq_debugfs_unregister_hctxs(q);
4694                 blk_mq_sysfs_unregister_hctxs(q);
4695         }
4696
4697         prev_nr_hw_queues = set->nr_hw_queues;
4698         if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4699                 goto reregister;
4700
4701 fallback:
4702         blk_mq_update_queue_map(set);
4703         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4704                 blk_mq_realloc_hw_ctxs(set, q);
4705                 blk_mq_update_poll_flag(q);
4706                 if (q->nr_hw_queues != set->nr_hw_queues) {
4707                         int i = prev_nr_hw_queues;
4708
4709                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4710                                         nr_hw_queues, prev_nr_hw_queues);
4711                         for (; i < set->nr_hw_queues; i++)
4712                                 __blk_mq_free_map_and_rqs(set, i);
4713
4714                         set->nr_hw_queues = prev_nr_hw_queues;
4715                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4716                         goto fallback;
4717                 }
4718                 blk_mq_map_swqueue(q);
4719         }
4720
4721 reregister:
4722         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4723                 blk_mq_sysfs_register_hctxs(q);
4724                 blk_mq_debugfs_register_hctxs(q);
4725         }
4726
4727 switch_back:
4728         list_for_each_entry(q, &set->tag_list, tag_set_list)
4729                 blk_mq_elv_switch_back(&head, q);
4730
4731         list_for_each_entry(q, &set->tag_list, tag_set_list)
4732                 blk_mq_unfreeze_queue(q);
4733 }
4734
4735 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4736 {
4737         mutex_lock(&set->tag_list_lock);
4738         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4739         mutex_unlock(&set->tag_list_lock);
4740 }
4741 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4742
4743 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
4744                          struct io_comp_batch *iob, unsigned int flags)
4745 {
4746         long state = get_current_state();
4747         int ret;
4748
4749         do {
4750                 ret = q->mq_ops->poll(hctx, iob);
4751                 if (ret > 0) {
4752                         __set_current_state(TASK_RUNNING);
4753                         return ret;
4754                 }
4755
4756                 if (signal_pending_state(state, current))
4757                         __set_current_state(TASK_RUNNING);
4758                 if (task_is_running(current))
4759                         return 1;
4760
4761                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4762                         break;
4763                 cpu_relax();
4764         } while (!need_resched());
4765
4766         __set_current_state(TASK_RUNNING);
4767         return 0;
4768 }
4769
4770 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
4771                 struct io_comp_batch *iob, unsigned int flags)
4772 {
4773         struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie);
4774
4775         return blk_hctx_poll(q, hctx, iob, flags);
4776 }
4777
4778 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
4779                 unsigned int poll_flags)
4780 {
4781         struct request_queue *q = rq->q;
4782         int ret;
4783
4784         if (!blk_rq_is_poll(rq))
4785                 return 0;
4786         if (!percpu_ref_tryget(&q->q_usage_counter))
4787                 return 0;
4788
4789         ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
4790         blk_queue_exit(q);
4791
4792         return ret;
4793 }
4794 EXPORT_SYMBOL_GPL(blk_rq_poll);
4795
4796 unsigned int blk_mq_rq_cpu(struct request *rq)
4797 {
4798         return rq->mq_ctx->cpu;
4799 }
4800 EXPORT_SYMBOL(blk_mq_rq_cpu);
4801
4802 void blk_mq_cancel_work_sync(struct request_queue *q)
4803 {
4804         struct blk_mq_hw_ctx *hctx;
4805         unsigned long i;
4806
4807         cancel_delayed_work_sync(&q->requeue_work);
4808
4809         queue_for_each_hw_ctx(q, hctx, i)
4810                 cancel_delayed_work_sync(&hctx->run_work);
4811 }
4812
4813 static int __init blk_mq_init(void)
4814 {
4815         int i;
4816
4817         for_each_possible_cpu(i)
4818                 init_llist_head(&per_cpu(blk_cpu_done, i));
4819         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4820
4821         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4822                                   "block/softirq:dead", NULL,
4823                                   blk_softirq_cpu_dead);
4824         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4825                                 blk_mq_hctx_notify_dead);
4826         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4827                                 blk_mq_hctx_notify_online,
4828                                 blk_mq_hctx_notify_offline);
4829         return 0;
4830 }
4831 subsys_initcall(blk_mq_init);