1 // SPDX-License-Identifier: GPL-2.0
3 * Block multiqueue core code
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
33 #include <trace/events/block.h>
35 #include <linux/t10-pi.h>
38 #include "blk-mq-debugfs.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 #include "blk-ioprio.h"
45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
47 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
48 static void blk_mq_request_bypass_insert(struct request *rq,
50 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
51 struct list_head *list);
52 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
53 struct io_comp_batch *iob, unsigned int flags);
56 * Check if any of the ctx, dispatch list or elevator
57 * have pending work in this hardware queue.
59 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
61 return !list_empty_careful(&hctx->dispatch) ||
62 sbitmap_any_bit_set(&hctx->ctx_map) ||
63 blk_mq_sched_has_work(hctx);
67 * Mark this ctx as having pending work in this hardware queue
69 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
70 struct blk_mq_ctx *ctx)
72 const int bit = ctx->index_hw[hctx->type];
74 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
75 sbitmap_set_bit(&hctx->ctx_map, bit);
78 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
79 struct blk_mq_ctx *ctx)
81 const int bit = ctx->index_hw[hctx->type];
83 sbitmap_clear_bit(&hctx->ctx_map, bit);
87 struct block_device *part;
88 unsigned int inflight[2];
91 static bool blk_mq_check_inflight(struct request *rq, void *priv)
93 struct mq_inflight *mi = priv;
95 if (rq->part && blk_do_io_stat(rq) &&
96 (!mi->part->bd_partno || rq->part == mi->part) &&
97 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
98 mi->inflight[rq_data_dir(rq)]++;
103 unsigned int blk_mq_in_flight(struct request_queue *q,
104 struct block_device *part)
106 struct mq_inflight mi = { .part = part };
108 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
110 return mi.inflight[0] + mi.inflight[1];
113 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
114 unsigned int inflight[2])
116 struct mq_inflight mi = { .part = part };
118 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119 inflight[0] = mi.inflight[0];
120 inflight[1] = mi.inflight[1];
123 void blk_freeze_queue_start(struct request_queue *q)
125 mutex_lock(&q->mq_freeze_lock);
126 if (++q->mq_freeze_depth == 1) {
127 percpu_ref_kill(&q->q_usage_counter);
128 mutex_unlock(&q->mq_freeze_lock);
130 blk_mq_run_hw_queues(q, false);
132 mutex_unlock(&q->mq_freeze_lock);
135 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
137 void blk_mq_freeze_queue_wait(struct request_queue *q)
139 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
141 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
143 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
144 unsigned long timeout)
146 return wait_event_timeout(q->mq_freeze_wq,
147 percpu_ref_is_zero(&q->q_usage_counter),
150 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
153 * Guarantee no request is in use, so we can change any data structure of
154 * the queue afterward.
156 void blk_freeze_queue(struct request_queue *q)
159 * In the !blk_mq case we are only calling this to kill the
160 * q_usage_counter, otherwise this increases the freeze depth
161 * and waits for it to return to zero. For this reason there is
162 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
163 * exported to drivers as the only user for unfreeze is blk_mq.
165 blk_freeze_queue_start(q);
166 blk_mq_freeze_queue_wait(q);
169 void blk_mq_freeze_queue(struct request_queue *q)
172 * ...just an alias to keep freeze and unfreeze actions balanced
173 * in the blk_mq_* namespace
177 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
179 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
181 mutex_lock(&q->mq_freeze_lock);
183 q->q_usage_counter.data->force_atomic = true;
184 q->mq_freeze_depth--;
185 WARN_ON_ONCE(q->mq_freeze_depth < 0);
186 if (!q->mq_freeze_depth) {
187 percpu_ref_resurrect(&q->q_usage_counter);
188 wake_up_all(&q->mq_freeze_wq);
190 mutex_unlock(&q->mq_freeze_lock);
193 void blk_mq_unfreeze_queue(struct request_queue *q)
195 __blk_mq_unfreeze_queue(q, false);
197 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
200 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
201 * mpt3sas driver such that this function can be removed.
203 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
207 spin_lock_irqsave(&q->queue_lock, flags);
208 if (!q->quiesce_depth++)
209 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
210 spin_unlock_irqrestore(&q->queue_lock, flags);
212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
215 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
216 * @set: tag_set to wait on
218 * Note: it is driver's responsibility for making sure that quiesce has
219 * been started on or more of the request_queues of the tag_set. This
220 * function only waits for the quiesce on those request_queues that had
221 * the quiesce flag set using blk_mq_quiesce_queue_nowait.
223 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
225 if (set->flags & BLK_MQ_F_BLOCKING)
226 synchronize_srcu(set->srcu);
230 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
233 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
236 * Note: this function does not prevent that the struct request end_io()
237 * callback function is invoked. Once this function is returned, we make
238 * sure no dispatch can happen until the queue is unquiesced via
239 * blk_mq_unquiesce_queue().
241 void blk_mq_quiesce_queue(struct request_queue *q)
243 blk_mq_quiesce_queue_nowait(q);
244 /* nothing to wait for non-mq queues */
246 blk_mq_wait_quiesce_done(q->tag_set);
248 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
251 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
254 * This function recovers queue into the state before quiescing
255 * which is done by blk_mq_quiesce_queue.
257 void blk_mq_unquiesce_queue(struct request_queue *q)
260 bool run_queue = false;
262 spin_lock_irqsave(&q->queue_lock, flags);
263 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
265 } else if (!--q->quiesce_depth) {
266 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
269 spin_unlock_irqrestore(&q->queue_lock, flags);
271 /* dispatch requests which are inserted during quiescing */
273 blk_mq_run_hw_queues(q, true);
275 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
277 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
279 struct request_queue *q;
281 mutex_lock(&set->tag_list_lock);
282 list_for_each_entry(q, &set->tag_list, tag_set_list) {
283 if (!blk_queue_skip_tagset_quiesce(q))
284 blk_mq_quiesce_queue_nowait(q);
286 blk_mq_wait_quiesce_done(set);
287 mutex_unlock(&set->tag_list_lock);
289 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
291 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
293 struct request_queue *q;
295 mutex_lock(&set->tag_list_lock);
296 list_for_each_entry(q, &set->tag_list, tag_set_list) {
297 if (!blk_queue_skip_tagset_quiesce(q))
298 blk_mq_unquiesce_queue(q);
300 mutex_unlock(&set->tag_list_lock);
302 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
304 void blk_mq_wake_waiters(struct request_queue *q)
306 struct blk_mq_hw_ctx *hctx;
309 queue_for_each_hw_ctx(q, hctx, i)
310 if (blk_mq_hw_queue_mapped(hctx))
311 blk_mq_tag_wakeup_all(hctx->tags, true);
314 void blk_rq_init(struct request_queue *q, struct request *rq)
316 memset(rq, 0, sizeof(*rq));
318 INIT_LIST_HEAD(&rq->queuelist);
320 rq->__sector = (sector_t) -1;
321 INIT_HLIST_NODE(&rq->hash);
322 RB_CLEAR_NODE(&rq->rb_node);
323 rq->tag = BLK_MQ_NO_TAG;
324 rq->internal_tag = BLK_MQ_NO_TAG;
325 rq->start_time_ns = ktime_get_ns();
327 blk_crypto_rq_set_defaults(rq);
329 EXPORT_SYMBOL(blk_rq_init);
331 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
332 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
334 struct blk_mq_ctx *ctx = data->ctx;
335 struct blk_mq_hw_ctx *hctx = data->hctx;
336 struct request_queue *q = data->q;
337 struct request *rq = tags->static_rqs[tag];
342 rq->cmd_flags = data->cmd_flags;
344 if (data->flags & BLK_MQ_REQ_PM)
345 data->rq_flags |= RQF_PM;
346 if (blk_queue_io_stat(q))
347 data->rq_flags |= RQF_IO_STAT;
348 rq->rq_flags = data->rq_flags;
350 if (data->rq_flags & RQF_SCHED_TAGS) {
351 rq->tag = BLK_MQ_NO_TAG;
352 rq->internal_tag = tag;
355 rq->internal_tag = BLK_MQ_NO_TAG;
359 if (blk_mq_need_time_stamp(rq))
360 rq->start_time_ns = ktime_get_ns();
362 rq->start_time_ns = 0;
364 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
365 rq->alloc_time_ns = alloc_time_ns;
367 rq->io_start_time_ns = 0;
368 rq->stats_sectors = 0;
369 rq->nr_phys_segments = 0;
370 #if defined(CONFIG_BLK_DEV_INTEGRITY)
371 rq->nr_integrity_segments = 0;
374 rq->end_io_data = NULL;
376 blk_crypto_rq_set_defaults(rq);
377 INIT_LIST_HEAD(&rq->queuelist);
378 /* tag was already set */
379 WRITE_ONCE(rq->deadline, 0);
382 if (rq->rq_flags & RQF_USE_SCHED) {
383 struct elevator_queue *e = data->q->elevator;
385 INIT_HLIST_NODE(&rq->hash);
386 RB_CLEAR_NODE(&rq->rb_node);
388 if (e->type->ops.prepare_request)
389 e->type->ops.prepare_request(rq);
395 static inline struct request *
396 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
399 unsigned int tag, tag_offset;
400 struct blk_mq_tags *tags;
402 unsigned long tag_mask;
405 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
406 if (unlikely(!tag_mask))
409 tags = blk_mq_tags_from_data(data);
410 for (i = 0; tag_mask; i++) {
411 if (!(tag_mask & (1UL << i)))
413 tag = tag_offset + i;
414 prefetch(tags->static_rqs[tag]);
415 tag_mask &= ~(1UL << i);
416 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
417 rq_list_add(data->cached_rq, rq);
420 /* caller already holds a reference, add for remainder */
421 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
424 return rq_list_pop(data->cached_rq);
427 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
429 struct request_queue *q = data->q;
430 u64 alloc_time_ns = 0;
434 /* alloc_time includes depth and tag waits */
435 if (blk_queue_rq_alloc_time(q))
436 alloc_time_ns = ktime_get_ns();
438 if (data->cmd_flags & REQ_NOWAIT)
439 data->flags |= BLK_MQ_REQ_NOWAIT;
443 * All requests use scheduler tags when an I/O scheduler is
444 * enabled for the queue.
446 data->rq_flags |= RQF_SCHED_TAGS;
449 * Flush/passthrough requests are special and go directly to the
452 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
453 !blk_op_is_passthrough(data->cmd_flags)) {
454 struct elevator_mq_ops *ops = &q->elevator->type->ops;
456 WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
458 data->rq_flags |= RQF_USE_SCHED;
459 if (ops->limit_depth)
460 ops->limit_depth(data->cmd_flags, data);
465 data->ctx = blk_mq_get_ctx(q);
466 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
467 if (!(data->rq_flags & RQF_SCHED_TAGS))
468 blk_mq_tag_busy(data->hctx);
470 if (data->flags & BLK_MQ_REQ_RESERVED)
471 data->rq_flags |= RQF_RESV;
474 * Try batched alloc if we want more than 1 tag.
476 if (data->nr_tags > 1) {
477 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
484 * Waiting allocations only fail because of an inactive hctx. In that
485 * case just retry the hctx assignment and tag allocation as CPU hotplug
486 * should have migrated us to an online CPU by now.
488 tag = blk_mq_get_tag(data);
489 if (tag == BLK_MQ_NO_TAG) {
490 if (data->flags & BLK_MQ_REQ_NOWAIT)
493 * Give up the CPU and sleep for a random short time to
494 * ensure that thread using a realtime scheduling class
495 * are migrated off the CPU, and thus off the hctx that
502 return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
506 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
507 struct blk_plug *plug,
509 blk_mq_req_flags_t flags)
511 struct blk_mq_alloc_data data = {
515 .nr_tags = plug->nr_ios,
516 .cached_rq = &plug->cached_rq,
520 if (blk_queue_enter(q, flags))
525 rq = __blk_mq_alloc_requests(&data);
531 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
533 blk_mq_req_flags_t flags)
535 struct blk_plug *plug = current->plug;
541 if (rq_list_empty(plug->cached_rq)) {
542 if (plug->nr_ios == 1)
544 rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
548 rq = rq_list_peek(&plug->cached_rq);
549 if (!rq || rq->q != q)
552 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
554 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
557 plug->cached_rq = rq_list_next(rq);
561 INIT_LIST_HEAD(&rq->queuelist);
565 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
566 blk_mq_req_flags_t flags)
570 rq = blk_mq_alloc_cached_request(q, opf, flags);
572 struct blk_mq_alloc_data data = {
580 ret = blk_queue_enter(q, flags);
584 rq = __blk_mq_alloc_requests(&data);
589 rq->__sector = (sector_t) -1;
590 rq->bio = rq->biotail = NULL;
594 return ERR_PTR(-EWOULDBLOCK);
596 EXPORT_SYMBOL(blk_mq_alloc_request);
598 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
599 blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
601 struct blk_mq_alloc_data data = {
607 u64 alloc_time_ns = 0;
613 /* alloc_time includes depth and tag waits */
614 if (blk_queue_rq_alloc_time(q))
615 alloc_time_ns = ktime_get_ns();
618 * If the tag allocator sleeps we could get an allocation for a
619 * different hardware context. No need to complicate the low level
620 * allocator for this for the rare use case of a command tied to
623 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
624 WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
625 return ERR_PTR(-EINVAL);
627 if (hctx_idx >= q->nr_hw_queues)
628 return ERR_PTR(-EIO);
630 ret = blk_queue_enter(q, flags);
635 * Check if the hardware context is actually mapped to anything.
636 * If not tell the caller that it should skip this queue.
639 data.hctx = xa_load(&q->hctx_table, hctx_idx);
640 if (!blk_mq_hw_queue_mapped(data.hctx))
642 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
643 if (cpu >= nr_cpu_ids)
645 data.ctx = __blk_mq_get_ctx(q, cpu);
648 data.rq_flags |= RQF_SCHED_TAGS;
650 blk_mq_tag_busy(data.hctx);
652 if (flags & BLK_MQ_REQ_RESERVED)
653 data.rq_flags |= RQF_RESV;
656 tag = blk_mq_get_tag(&data);
657 if (tag == BLK_MQ_NO_TAG)
659 rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
662 rq->__sector = (sector_t) -1;
663 rq->bio = rq->biotail = NULL;
670 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
672 static void __blk_mq_free_request(struct request *rq)
674 struct request_queue *q = rq->q;
675 struct blk_mq_ctx *ctx = rq->mq_ctx;
676 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
677 const int sched_tag = rq->internal_tag;
679 blk_crypto_free_request(rq);
680 blk_pm_mark_last_busy(rq);
683 if (rq->rq_flags & RQF_MQ_INFLIGHT)
684 __blk_mq_dec_active_requests(hctx);
686 if (rq->tag != BLK_MQ_NO_TAG)
687 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
688 if (sched_tag != BLK_MQ_NO_TAG)
689 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
690 blk_mq_sched_restart(hctx);
694 void blk_mq_free_request(struct request *rq)
696 struct request_queue *q = rq->q;
698 if ((rq->rq_flags & RQF_USE_SCHED) &&
699 q->elevator->type->ops.finish_request)
700 q->elevator->type->ops.finish_request(rq);
702 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
703 laptop_io_completion(q->disk->bdi);
707 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
708 if (req_ref_put_and_test(rq))
709 __blk_mq_free_request(rq);
711 EXPORT_SYMBOL_GPL(blk_mq_free_request);
713 void blk_mq_free_plug_rqs(struct blk_plug *plug)
717 while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
718 blk_mq_free_request(rq);
721 void blk_dump_rq_flags(struct request *rq, char *msg)
723 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
724 rq->q->disk ? rq->q->disk->disk_name : "?",
725 (__force unsigned long long) rq->cmd_flags);
727 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
728 (unsigned long long)blk_rq_pos(rq),
729 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
730 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
731 rq->bio, rq->biotail, blk_rq_bytes(rq));
733 EXPORT_SYMBOL(blk_dump_rq_flags);
735 static void req_bio_endio(struct request *rq, struct bio *bio,
736 unsigned int nbytes, blk_status_t error)
738 if (unlikely(error)) {
739 bio->bi_status = error;
740 } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
742 * Partial zone append completions cannot be supported as the
743 * BIO fragments may end up not being written sequentially.
745 if (bio->bi_iter.bi_size != nbytes)
746 bio->bi_status = BLK_STS_IOERR;
748 bio->bi_iter.bi_sector = rq->__sector;
751 bio_advance(bio, nbytes);
753 if (unlikely(rq->rq_flags & RQF_QUIET))
754 bio_set_flag(bio, BIO_QUIET);
755 /* don't actually finish bio if it's part of flush sequence */
756 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
760 static void blk_account_io_completion(struct request *req, unsigned int bytes)
762 if (req->part && blk_do_io_stat(req)) {
763 const int sgrp = op_stat_group(req_op(req));
766 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
771 static void blk_print_req_error(struct request *req, blk_status_t status)
773 printk_ratelimited(KERN_ERR
774 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
775 "phys_seg %u prio class %u\n",
776 blk_status_to_str(status),
777 req->q->disk ? req->q->disk->disk_name : "?",
778 blk_rq_pos(req), (__force u32)req_op(req),
779 blk_op_str(req_op(req)),
780 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
781 req->nr_phys_segments,
782 IOPRIO_PRIO_CLASS(req->ioprio));
786 * Fully end IO on a request. Does not support partial completions, or
789 static void blk_complete_request(struct request *req)
791 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
792 int total_bytes = blk_rq_bytes(req);
793 struct bio *bio = req->bio;
795 trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
800 #ifdef CONFIG_BLK_DEV_INTEGRITY
801 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
802 req->q->integrity.profile->complete_fn(req, total_bytes);
806 * Upper layers may call blk_crypto_evict_key() anytime after the last
807 * bio_endio(). Therefore, the keyslot must be released before that.
809 blk_crypto_rq_put_keyslot(req);
811 blk_account_io_completion(req, total_bytes);
814 struct bio *next = bio->bi_next;
816 /* Completion has already been traced */
817 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
819 if (req_op(req) == REQ_OP_ZONE_APPEND)
820 bio->bi_iter.bi_sector = req->__sector;
828 * Reset counters so that the request stacking driver
829 * can find how many bytes remain in the request
839 * blk_update_request - Complete multiple bytes without completing the request
840 * @req: the request being processed
841 * @error: block status code
842 * @nr_bytes: number of bytes to complete for @req
845 * Ends I/O on a number of bytes attached to @req, but doesn't complete
846 * the request structure even if @req doesn't have leftover.
847 * If @req has leftover, sets it up for the next range of segments.
849 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
850 * %false return from this function.
853 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
854 * except in the consistency check at the end of this function.
857 * %false - this request doesn't have any more data
858 * %true - this request has more data
860 bool blk_update_request(struct request *req, blk_status_t error,
861 unsigned int nr_bytes)
865 trace_block_rq_complete(req, error, nr_bytes);
870 #ifdef CONFIG_BLK_DEV_INTEGRITY
871 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
873 req->q->integrity.profile->complete_fn(req, nr_bytes);
877 * Upper layers may call blk_crypto_evict_key() anytime after the last
878 * bio_endio(). Therefore, the keyslot must be released before that.
880 if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
881 __blk_crypto_rq_put_keyslot(req);
883 if (unlikely(error && !blk_rq_is_passthrough(req) &&
884 !(req->rq_flags & RQF_QUIET)) &&
885 !test_bit(GD_DEAD, &req->q->disk->state)) {
886 blk_print_req_error(req, error);
887 trace_block_rq_error(req, error, nr_bytes);
890 blk_account_io_completion(req, nr_bytes);
894 struct bio *bio = req->bio;
895 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
897 if (bio_bytes == bio->bi_iter.bi_size)
898 req->bio = bio->bi_next;
900 /* Completion has already been traced */
901 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
902 req_bio_endio(req, bio, bio_bytes, error);
904 total_bytes += bio_bytes;
905 nr_bytes -= bio_bytes;
916 * Reset counters so that the request stacking driver
917 * can find how many bytes remain in the request
924 req->__data_len -= total_bytes;
926 /* update sector only for requests with clear definition of sector */
927 if (!blk_rq_is_passthrough(req))
928 req->__sector += total_bytes >> 9;
930 /* mixed attributes always follow the first bio */
931 if (req->rq_flags & RQF_MIXED_MERGE) {
932 req->cmd_flags &= ~REQ_FAILFAST_MASK;
933 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
936 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
938 * If total number of sectors is less than the first segment
939 * size, something has gone terribly wrong.
941 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
942 blk_dump_rq_flags(req, "request botched");
943 req->__data_len = blk_rq_cur_bytes(req);
946 /* recalculate the number of segments */
947 req->nr_phys_segments = blk_recalc_rq_segments(req);
952 EXPORT_SYMBOL_GPL(blk_update_request);
954 static inline void blk_account_io_done(struct request *req, u64 now)
956 trace_block_io_done(req);
959 * Account IO completion. flush_rq isn't accounted as a
960 * normal IO on queueing nor completion. Accounting the
961 * containing request is enough.
963 if (blk_do_io_stat(req) && req->part &&
964 !(req->rq_flags & RQF_FLUSH_SEQ)) {
965 const int sgrp = op_stat_group(req_op(req));
968 update_io_ticks(req->part, jiffies, true);
969 part_stat_inc(req->part, ios[sgrp]);
970 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
975 static inline void blk_account_io_start(struct request *req)
977 trace_block_io_start(req);
979 if (blk_do_io_stat(req)) {
981 * All non-passthrough requests are created from a bio with one
982 * exception: when a flush command that is part of a flush sequence
983 * generated by the state machine in blk-flush.c is cloned onto the
984 * lower device by dm-multipath we can get here without a bio.
987 req->part = req->bio->bi_bdev;
989 req->part = req->q->disk->part0;
992 update_io_ticks(req->part, jiffies, false);
997 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
999 if (rq->rq_flags & RQF_STATS)
1000 blk_stat_add(rq, now);
1002 blk_mq_sched_completed_request(rq, now);
1003 blk_account_io_done(rq, now);
1006 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1008 if (blk_mq_need_time_stamp(rq))
1009 __blk_mq_end_request_acct(rq, ktime_get_ns());
1012 rq_qos_done(rq->q, rq);
1013 if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1014 blk_mq_free_request(rq);
1016 blk_mq_free_request(rq);
1019 EXPORT_SYMBOL(__blk_mq_end_request);
1021 void blk_mq_end_request(struct request *rq, blk_status_t error)
1023 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1025 __blk_mq_end_request(rq, error);
1027 EXPORT_SYMBOL(blk_mq_end_request);
1029 #define TAG_COMP_BATCH 32
1031 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1032 int *tag_array, int nr_tags)
1034 struct request_queue *q = hctx->queue;
1037 * All requests should have been marked as RQF_MQ_INFLIGHT, so
1038 * update hctx->nr_active in batch
1040 if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
1041 __blk_mq_sub_active_requests(hctx, nr_tags);
1043 blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1044 percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1047 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1049 int tags[TAG_COMP_BATCH], nr_tags = 0;
1050 struct blk_mq_hw_ctx *cur_hctx = NULL;
1055 now = ktime_get_ns();
1057 while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1059 prefetch(rq->rq_next);
1061 blk_complete_request(rq);
1063 __blk_mq_end_request_acct(rq, now);
1065 rq_qos_done(rq->q, rq);
1068 * If end_io handler returns NONE, then it still has
1069 * ownership of the request.
1071 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1074 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1075 if (!req_ref_put_and_test(rq))
1078 blk_crypto_free_request(rq);
1079 blk_pm_mark_last_busy(rq);
1081 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1083 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1085 cur_hctx = rq->mq_hctx;
1087 tags[nr_tags++] = rq->tag;
1091 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1093 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1095 static void blk_complete_reqs(struct llist_head *list)
1097 struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1098 struct request *rq, *next;
1100 llist_for_each_entry_safe(rq, next, entry, ipi_list)
1101 rq->q->mq_ops->complete(rq);
1104 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1106 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1109 static int blk_softirq_cpu_dead(unsigned int cpu)
1111 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1115 static void __blk_mq_complete_request_remote(void *data)
1117 __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1120 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1122 int cpu = raw_smp_processor_id();
1124 if (!IS_ENABLED(CONFIG_SMP) ||
1125 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1128 * With force threaded interrupts enabled, raising softirq from an SMP
1129 * function call will always result in waking the ksoftirqd thread.
1130 * This is probably worse than completing the request on a different
1133 if (force_irqthreads())
1136 /* same CPU or cache domain? Complete locally */
1137 if (cpu == rq->mq_ctx->cpu ||
1138 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1139 cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1142 /* don't try to IPI to an offline CPU */
1143 return cpu_online(rq->mq_ctx->cpu);
1146 static void blk_mq_complete_send_ipi(struct request *rq)
1148 struct llist_head *list;
1151 cpu = rq->mq_ctx->cpu;
1152 list = &per_cpu(blk_cpu_done, cpu);
1153 if (llist_add(&rq->ipi_list, list)) {
1154 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1155 smp_call_function_single_async(cpu, &rq->csd);
1159 static void blk_mq_raise_softirq(struct request *rq)
1161 struct llist_head *list;
1164 list = this_cpu_ptr(&blk_cpu_done);
1165 if (llist_add(&rq->ipi_list, list))
1166 raise_softirq(BLOCK_SOFTIRQ);
1170 bool blk_mq_complete_request_remote(struct request *rq)
1172 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1175 * For request which hctx has only one ctx mapping,
1176 * or a polled request, always complete locally,
1177 * it's pointless to redirect the completion.
1179 if ((rq->mq_hctx->nr_ctx == 1 &&
1180 rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1181 rq->cmd_flags & REQ_POLLED)
1184 if (blk_mq_complete_need_ipi(rq)) {
1185 blk_mq_complete_send_ipi(rq);
1189 if (rq->q->nr_hw_queues == 1) {
1190 blk_mq_raise_softirq(rq);
1195 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1198 * blk_mq_complete_request - end I/O on a request
1199 * @rq: the request being processed
1202 * Complete a request by scheduling the ->complete_rq operation.
1204 void blk_mq_complete_request(struct request *rq)
1206 if (!blk_mq_complete_request_remote(rq))
1207 rq->q->mq_ops->complete(rq);
1209 EXPORT_SYMBOL(blk_mq_complete_request);
1212 * blk_mq_start_request - Start processing a request
1213 * @rq: Pointer to request to be started
1215 * Function used by device drivers to notify the block layer that a request
1216 * is going to be processed now, so blk layer can do proper initializations
1217 * such as starting the timeout timer.
1219 void blk_mq_start_request(struct request *rq)
1221 struct request_queue *q = rq->q;
1223 trace_block_rq_issue(rq);
1225 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1226 rq->io_start_time_ns = ktime_get_ns();
1227 rq->stats_sectors = blk_rq_sectors(rq);
1228 rq->rq_flags |= RQF_STATS;
1229 rq_qos_issue(q, rq);
1232 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1235 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1237 #ifdef CONFIG_BLK_DEV_INTEGRITY
1238 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1239 q->integrity.profile->prepare_fn(rq);
1241 if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1242 WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1244 EXPORT_SYMBOL(blk_mq_start_request);
1247 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1248 * queues. This is important for md arrays to benefit from merging
1251 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1253 if (plug->multiple_queues)
1254 return BLK_MAX_REQUEST_COUNT * 2;
1255 return BLK_MAX_REQUEST_COUNT;
1258 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1260 struct request *last = rq_list_peek(&plug->mq_list);
1262 if (!plug->rq_count) {
1263 trace_block_plug(rq->q);
1264 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1265 (!blk_queue_nomerges(rq->q) &&
1266 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1267 blk_mq_flush_plug_list(plug, false);
1269 trace_block_plug(rq->q);
1272 if (!plug->multiple_queues && last && last->q != rq->q)
1273 plug->multiple_queues = true;
1275 * Any request allocated from sched tags can't be issued to
1276 * ->queue_rqs() directly
1278 if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1279 plug->has_elevator = true;
1281 rq_list_add(&plug->mq_list, rq);
1286 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1287 * @rq: request to insert
1288 * @at_head: insert request at head or tail of queue
1291 * Insert a fully prepared request at the back of the I/O scheduler queue
1292 * for execution. Don't wait for completion.
1295 * This function will invoke @done directly if the queue is dead.
1297 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1299 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1301 WARN_ON(irqs_disabled());
1302 WARN_ON(!blk_rq_is_passthrough(rq));
1304 blk_account_io_start(rq);
1307 * As plugging can be enabled for passthrough requests on a zoned
1308 * device, directly accessing the plug instead of using blk_mq_plug()
1309 * should not have any consequences.
1311 if (current->plug && !at_head) {
1312 blk_add_rq_to_plug(current->plug, rq);
1316 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1317 blk_mq_run_hw_queue(hctx, false);
1319 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1321 struct blk_rq_wait {
1322 struct completion done;
1326 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1328 struct blk_rq_wait *wait = rq->end_io_data;
1331 complete(&wait->done);
1332 return RQ_END_IO_NONE;
1335 bool blk_rq_is_poll(struct request *rq)
1339 if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1343 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1345 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1348 blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1350 } while (!completion_done(wait));
1354 * blk_execute_rq - insert a request into queue for execution
1355 * @rq: request to insert
1356 * @at_head: insert request at head or tail of queue
1359 * Insert a fully prepared request at the back of the I/O scheduler queue
1360 * for execution and wait for completion.
1361 * Return: The blk_status_t result provided to blk_mq_end_request().
1363 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1365 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1366 struct blk_rq_wait wait = {
1367 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1370 WARN_ON(irqs_disabled());
1371 WARN_ON(!blk_rq_is_passthrough(rq));
1373 rq->end_io_data = &wait;
1374 rq->end_io = blk_end_sync_rq;
1376 blk_account_io_start(rq);
1377 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1378 blk_mq_run_hw_queue(hctx, false);
1380 if (blk_rq_is_poll(rq)) {
1381 blk_rq_poll_completion(rq, &wait.done);
1384 * Prevent hang_check timer from firing at us during very long
1387 unsigned long hang_check = sysctl_hung_task_timeout_secs;
1390 while (!wait_for_completion_io_timeout(&wait.done,
1391 hang_check * (HZ/2)))
1394 wait_for_completion_io(&wait.done);
1399 EXPORT_SYMBOL(blk_execute_rq);
1401 static void __blk_mq_requeue_request(struct request *rq)
1403 struct request_queue *q = rq->q;
1405 blk_mq_put_driver_tag(rq);
1407 trace_block_rq_requeue(rq);
1408 rq_qos_requeue(q, rq);
1410 if (blk_mq_request_started(rq)) {
1411 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1412 rq->rq_flags &= ~RQF_TIMED_OUT;
1416 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1418 struct request_queue *q = rq->q;
1419 unsigned long flags;
1421 __blk_mq_requeue_request(rq);
1423 /* this request will be re-inserted to io scheduler queue */
1424 blk_mq_sched_requeue_request(rq);
1426 spin_lock_irqsave(&q->requeue_lock, flags);
1427 list_add_tail(&rq->queuelist, &q->requeue_list);
1428 spin_unlock_irqrestore(&q->requeue_lock, flags);
1430 if (kick_requeue_list)
1431 blk_mq_kick_requeue_list(q);
1433 EXPORT_SYMBOL(blk_mq_requeue_request);
1435 static void blk_mq_requeue_work(struct work_struct *work)
1437 struct request_queue *q =
1438 container_of(work, struct request_queue, requeue_work.work);
1440 LIST_HEAD(flush_list);
1443 spin_lock_irq(&q->requeue_lock);
1444 list_splice_init(&q->requeue_list, &rq_list);
1445 list_splice_init(&q->flush_list, &flush_list);
1446 spin_unlock_irq(&q->requeue_lock);
1448 while (!list_empty(&rq_list)) {
1449 rq = list_entry(rq_list.next, struct request, queuelist);
1451 * If RQF_DONTPREP ist set, the request has been started by the
1452 * driver already and might have driver-specific data allocated
1453 * already. Insert it into the hctx dispatch list to avoid
1454 * block layer merges for the request.
1456 if (rq->rq_flags & RQF_DONTPREP) {
1457 list_del_init(&rq->queuelist);
1458 blk_mq_request_bypass_insert(rq, 0);
1460 list_del_init(&rq->queuelist);
1461 blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1465 while (!list_empty(&flush_list)) {
1466 rq = list_entry(flush_list.next, struct request, queuelist);
1467 list_del_init(&rq->queuelist);
1468 blk_mq_insert_request(rq, 0);
1471 blk_mq_run_hw_queues(q, false);
1474 void blk_mq_kick_requeue_list(struct request_queue *q)
1476 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1478 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1480 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1481 unsigned long msecs)
1483 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1484 msecs_to_jiffies(msecs));
1486 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1488 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1491 * If we find a request that isn't idle we know the queue is busy
1492 * as it's checked in the iter.
1493 * Return false to stop the iteration.
1495 if (blk_mq_request_started(rq)) {
1505 bool blk_mq_queue_inflight(struct request_queue *q)
1509 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1512 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1514 static void blk_mq_rq_timed_out(struct request *req)
1516 req->rq_flags |= RQF_TIMED_OUT;
1517 if (req->q->mq_ops->timeout) {
1518 enum blk_eh_timer_return ret;
1520 ret = req->q->mq_ops->timeout(req);
1521 if (ret == BLK_EH_DONE)
1523 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1529 struct blk_expired_data {
1530 bool has_timedout_rq;
1532 unsigned long timeout_start;
1535 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1537 unsigned long deadline;
1539 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1541 if (rq->rq_flags & RQF_TIMED_OUT)
1544 deadline = READ_ONCE(rq->deadline);
1545 if (time_after_eq(expired->timeout_start, deadline))
1548 if (expired->next == 0)
1549 expired->next = deadline;
1550 else if (time_after(expired->next, deadline))
1551 expired->next = deadline;
1555 void blk_mq_put_rq_ref(struct request *rq)
1557 if (is_flush_rq(rq)) {
1558 if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1559 blk_mq_free_request(rq);
1560 } else if (req_ref_put_and_test(rq)) {
1561 __blk_mq_free_request(rq);
1565 static bool blk_mq_check_expired(struct request *rq, void *priv)
1567 struct blk_expired_data *expired = priv;
1570 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1571 * be reallocated underneath the timeout handler's processing, then
1572 * the expire check is reliable. If the request is not expired, then
1573 * it was completed and reallocated as a new request after returning
1574 * from blk_mq_check_expired().
1576 if (blk_mq_req_expired(rq, expired)) {
1577 expired->has_timedout_rq = true;
1583 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1585 struct blk_expired_data *expired = priv;
1587 if (blk_mq_req_expired(rq, expired))
1588 blk_mq_rq_timed_out(rq);
1592 static void blk_mq_timeout_work(struct work_struct *work)
1594 struct request_queue *q =
1595 container_of(work, struct request_queue, timeout_work);
1596 struct blk_expired_data expired = {
1597 .timeout_start = jiffies,
1599 struct blk_mq_hw_ctx *hctx;
1602 /* A deadlock might occur if a request is stuck requiring a
1603 * timeout at the same time a queue freeze is waiting
1604 * completion, since the timeout code would not be able to
1605 * acquire the queue reference here.
1607 * That's why we don't use blk_queue_enter here; instead, we use
1608 * percpu_ref_tryget directly, because we need to be able to
1609 * obtain a reference even in the short window between the queue
1610 * starting to freeze, by dropping the first reference in
1611 * blk_freeze_queue_start, and the moment the last request is
1612 * consumed, marked by the instant q_usage_counter reaches
1615 if (!percpu_ref_tryget(&q->q_usage_counter))
1618 /* check if there is any timed-out request */
1619 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1620 if (expired.has_timedout_rq) {
1622 * Before walking tags, we must ensure any submit started
1623 * before the current time has finished. Since the submit
1624 * uses srcu or rcu, wait for a synchronization point to
1625 * ensure all running submits have finished
1627 blk_mq_wait_quiesce_done(q->tag_set);
1630 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1633 if (expired.next != 0) {
1634 mod_timer(&q->timeout, expired.next);
1637 * Request timeouts are handled as a forward rolling timer. If
1638 * we end up here it means that no requests are pending and
1639 * also that no request has been pending for a while. Mark
1640 * each hctx as idle.
1642 queue_for_each_hw_ctx(q, hctx, i) {
1643 /* the hctx may be unmapped, so check it here */
1644 if (blk_mq_hw_queue_mapped(hctx))
1645 blk_mq_tag_idle(hctx);
1651 struct flush_busy_ctx_data {
1652 struct blk_mq_hw_ctx *hctx;
1653 struct list_head *list;
1656 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1658 struct flush_busy_ctx_data *flush_data = data;
1659 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1660 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1661 enum hctx_type type = hctx->type;
1663 spin_lock(&ctx->lock);
1664 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1665 sbitmap_clear_bit(sb, bitnr);
1666 spin_unlock(&ctx->lock);
1671 * Process software queues that have been marked busy, splicing them
1672 * to the for-dispatch
1674 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1676 struct flush_busy_ctx_data data = {
1681 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1683 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1685 struct dispatch_rq_data {
1686 struct blk_mq_hw_ctx *hctx;
1690 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1693 struct dispatch_rq_data *dispatch_data = data;
1694 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1695 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1696 enum hctx_type type = hctx->type;
1698 spin_lock(&ctx->lock);
1699 if (!list_empty(&ctx->rq_lists[type])) {
1700 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1701 list_del_init(&dispatch_data->rq->queuelist);
1702 if (list_empty(&ctx->rq_lists[type]))
1703 sbitmap_clear_bit(sb, bitnr);
1705 spin_unlock(&ctx->lock);
1707 return !dispatch_data->rq;
1710 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1711 struct blk_mq_ctx *start)
1713 unsigned off = start ? start->index_hw[hctx->type] : 0;
1714 struct dispatch_rq_data data = {
1719 __sbitmap_for_each_set(&hctx->ctx_map, off,
1720 dispatch_rq_from_ctx, &data);
1725 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1727 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1728 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1731 blk_mq_tag_busy(rq->mq_hctx);
1733 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1734 bt = &rq->mq_hctx->tags->breserved_tags;
1737 if (!hctx_may_queue(rq->mq_hctx, bt))
1741 tag = __sbitmap_queue_get(bt);
1742 if (tag == BLK_MQ_NO_TAG)
1745 rq->tag = tag + tag_offset;
1749 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1751 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1754 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1755 !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1756 rq->rq_flags |= RQF_MQ_INFLIGHT;
1757 __blk_mq_inc_active_requests(hctx);
1759 hctx->tags->rqs[rq->tag] = rq;
1763 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1764 int flags, void *key)
1766 struct blk_mq_hw_ctx *hctx;
1768 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1770 spin_lock(&hctx->dispatch_wait_lock);
1771 if (!list_empty(&wait->entry)) {
1772 struct sbitmap_queue *sbq;
1774 list_del_init(&wait->entry);
1775 sbq = &hctx->tags->bitmap_tags;
1776 atomic_dec(&sbq->ws_active);
1778 spin_unlock(&hctx->dispatch_wait_lock);
1780 blk_mq_run_hw_queue(hctx, true);
1785 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1786 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1787 * restart. For both cases, take care to check the condition again after
1788 * marking us as waiting.
1790 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1793 struct sbitmap_queue *sbq;
1794 struct wait_queue_head *wq;
1795 wait_queue_entry_t *wait;
1798 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1799 !(blk_mq_is_shared_tags(hctx->flags))) {
1800 blk_mq_sched_mark_restart_hctx(hctx);
1803 * It's possible that a tag was freed in the window between the
1804 * allocation failure and adding the hardware queue to the wait
1807 * Don't clear RESTART here, someone else could have set it.
1808 * At most this will cost an extra queue run.
1810 return blk_mq_get_driver_tag(rq);
1813 wait = &hctx->dispatch_wait;
1814 if (!list_empty_careful(&wait->entry))
1817 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1818 sbq = &hctx->tags->breserved_tags;
1820 sbq = &hctx->tags->bitmap_tags;
1821 wq = &bt_wait_ptr(sbq, hctx)->wait;
1823 spin_lock_irq(&wq->lock);
1824 spin_lock(&hctx->dispatch_wait_lock);
1825 if (!list_empty(&wait->entry)) {
1826 spin_unlock(&hctx->dispatch_wait_lock);
1827 spin_unlock_irq(&wq->lock);
1831 atomic_inc(&sbq->ws_active);
1832 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1833 __add_wait_queue(wq, wait);
1836 * It's possible that a tag was freed in the window between the
1837 * allocation failure and adding the hardware queue to the wait
1840 ret = blk_mq_get_driver_tag(rq);
1842 spin_unlock(&hctx->dispatch_wait_lock);
1843 spin_unlock_irq(&wq->lock);
1848 * We got a tag, remove ourselves from the wait queue to ensure
1849 * someone else gets the wakeup.
1851 list_del_init(&wait->entry);
1852 atomic_dec(&sbq->ws_active);
1853 spin_unlock(&hctx->dispatch_wait_lock);
1854 spin_unlock_irq(&wq->lock);
1859 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1860 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1862 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1863 * - EWMA is one simple way to compute running average value
1864 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1865 * - take 4 as factor for avoiding to get too small(0) result, and this
1866 * factor doesn't matter because EWMA decreases exponentially
1868 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1872 ewma = hctx->dispatch_busy;
1877 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1879 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1880 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1882 hctx->dispatch_busy = ewma;
1885 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1887 static void blk_mq_handle_dev_resource(struct request *rq,
1888 struct list_head *list)
1890 list_add(&rq->queuelist, list);
1891 __blk_mq_requeue_request(rq);
1894 static void blk_mq_handle_zone_resource(struct request *rq,
1895 struct list_head *zone_list)
1898 * If we end up here it is because we cannot dispatch a request to a
1899 * specific zone due to LLD level zone-write locking or other zone
1900 * related resource not being available. In this case, set the request
1901 * aside in zone_list for retrying it later.
1903 list_add(&rq->queuelist, zone_list);
1904 __blk_mq_requeue_request(rq);
1907 enum prep_dispatch {
1909 PREP_DISPATCH_NO_TAG,
1910 PREP_DISPATCH_NO_BUDGET,
1913 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1916 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1917 int budget_token = -1;
1920 budget_token = blk_mq_get_dispatch_budget(rq->q);
1921 if (budget_token < 0) {
1922 blk_mq_put_driver_tag(rq);
1923 return PREP_DISPATCH_NO_BUDGET;
1925 blk_mq_set_rq_budget_token(rq, budget_token);
1928 if (!blk_mq_get_driver_tag(rq)) {
1930 * The initial allocation attempt failed, so we need to
1931 * rerun the hardware queue when a tag is freed. The
1932 * waitqueue takes care of that. If the queue is run
1933 * before we add this entry back on the dispatch list,
1934 * we'll re-run it below.
1936 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1938 * All budgets not got from this function will be put
1939 * together during handling partial dispatch
1942 blk_mq_put_dispatch_budget(rq->q, budget_token);
1943 return PREP_DISPATCH_NO_TAG;
1947 return PREP_DISPATCH_OK;
1950 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1951 static void blk_mq_release_budgets(struct request_queue *q,
1952 struct list_head *list)
1956 list_for_each_entry(rq, list, queuelist) {
1957 int budget_token = blk_mq_get_rq_budget_token(rq);
1959 if (budget_token >= 0)
1960 blk_mq_put_dispatch_budget(q, budget_token);
1965 * blk_mq_commit_rqs will notify driver using bd->last that there is no
1966 * more requests. (See comment in struct blk_mq_ops for commit_rqs for
1968 * Attention, we should explicitly call this in unusual cases:
1969 * 1) did not queue everything initially scheduled to queue
1970 * 2) the last attempt to queue a request failed
1972 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
1975 if (hctx->queue->mq_ops->commit_rqs && queued) {
1976 trace_block_unplug(hctx->queue, queued, !from_schedule);
1977 hctx->queue->mq_ops->commit_rqs(hctx);
1982 * Returns true if we did some work AND can potentially do more.
1984 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1985 unsigned int nr_budgets)
1987 enum prep_dispatch prep;
1988 struct request_queue *q = hctx->queue;
1991 blk_status_t ret = BLK_STS_OK;
1992 LIST_HEAD(zone_list);
1993 bool needs_resource = false;
1995 if (list_empty(list))
1999 * Now process all the entries, sending them to the driver.
2003 struct blk_mq_queue_data bd;
2005 rq = list_first_entry(list, struct request, queuelist);
2007 WARN_ON_ONCE(hctx != rq->mq_hctx);
2008 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2009 if (prep != PREP_DISPATCH_OK)
2012 list_del_init(&rq->queuelist);
2015 bd.last = list_empty(list);
2018 * once the request is queued to lld, no need to cover the
2023 ret = q->mq_ops->queue_rq(hctx, &bd);
2028 case BLK_STS_RESOURCE:
2029 needs_resource = true;
2031 case BLK_STS_DEV_RESOURCE:
2032 blk_mq_handle_dev_resource(rq, list);
2034 case BLK_STS_ZONE_RESOURCE:
2036 * Move the request to zone_list and keep going through
2037 * the dispatch list to find more requests the drive can
2040 blk_mq_handle_zone_resource(rq, &zone_list);
2041 needs_resource = true;
2044 blk_mq_end_request(rq, ret);
2046 } while (!list_empty(list));
2048 if (!list_empty(&zone_list))
2049 list_splice_tail_init(&zone_list, list);
2051 /* If we didn't flush the entire list, we could have told the driver
2052 * there was more coming, but that turned out to be a lie.
2054 if (!list_empty(list) || ret != BLK_STS_OK)
2055 blk_mq_commit_rqs(hctx, queued, false);
2058 * Any items that need requeuing? Stuff them into hctx->dispatch,
2059 * that is where we will continue on next queue run.
2061 if (!list_empty(list)) {
2063 /* For non-shared tags, the RESTART check will suffice */
2064 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2065 ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2066 blk_mq_is_shared_tags(hctx->flags));
2069 blk_mq_release_budgets(q, list);
2071 spin_lock(&hctx->lock);
2072 list_splice_tail_init(list, &hctx->dispatch);
2073 spin_unlock(&hctx->lock);
2076 * Order adding requests to hctx->dispatch and checking
2077 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2078 * in blk_mq_sched_restart(). Avoid restart code path to
2079 * miss the new added requests to hctx->dispatch, meantime
2080 * SCHED_RESTART is observed here.
2085 * If SCHED_RESTART was set by the caller of this function and
2086 * it is no longer set that means that it was cleared by another
2087 * thread and hence that a queue rerun is needed.
2089 * If 'no_tag' is set, that means that we failed getting
2090 * a driver tag with an I/O scheduler attached. If our dispatch
2091 * waitqueue is no longer active, ensure that we run the queue
2092 * AFTER adding our entries back to the list.
2094 * If no I/O scheduler has been configured it is possible that
2095 * the hardware queue got stopped and restarted before requests
2096 * were pushed back onto the dispatch list. Rerun the queue to
2097 * avoid starvation. Notes:
2098 * - blk_mq_run_hw_queue() checks whether or not a queue has
2099 * been stopped before rerunning a queue.
2100 * - Some but not all block drivers stop a queue before
2101 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2104 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2105 * bit is set, run queue after a delay to avoid IO stalls
2106 * that could otherwise occur if the queue is idle. We'll do
2107 * similar if we couldn't get budget or couldn't lock a zone
2108 * and SCHED_RESTART is set.
2110 needs_restart = blk_mq_sched_needs_restart(hctx);
2111 if (prep == PREP_DISPATCH_NO_BUDGET)
2112 needs_resource = true;
2113 if (!needs_restart ||
2114 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2115 blk_mq_run_hw_queue(hctx, true);
2116 else if (needs_resource)
2117 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2119 blk_mq_update_dispatch_busy(hctx, true);
2123 blk_mq_update_dispatch_busy(hctx, false);
2127 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2129 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2131 if (cpu >= nr_cpu_ids)
2132 cpu = cpumask_first(hctx->cpumask);
2137 * It'd be great if the workqueue API had a way to pass
2138 * in a mask and had some smarts for more clever placement.
2139 * For now we just round-robin here, switching for every
2140 * BLK_MQ_CPU_WORK_BATCH queued items.
2142 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2145 int next_cpu = hctx->next_cpu;
2147 if (hctx->queue->nr_hw_queues == 1)
2148 return WORK_CPU_UNBOUND;
2150 if (--hctx->next_cpu_batch <= 0) {
2152 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2154 if (next_cpu >= nr_cpu_ids)
2155 next_cpu = blk_mq_first_mapped_cpu(hctx);
2156 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2160 * Do unbound schedule if we can't find a online CPU for this hctx,
2161 * and it should only happen in the path of handling CPU DEAD.
2163 if (!cpu_online(next_cpu)) {
2170 * Make sure to re-select CPU next time once after CPUs
2171 * in hctx->cpumask become online again.
2173 hctx->next_cpu = next_cpu;
2174 hctx->next_cpu_batch = 1;
2175 return WORK_CPU_UNBOUND;
2178 hctx->next_cpu = next_cpu;
2183 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2184 * @hctx: Pointer to the hardware queue to run.
2185 * @msecs: Milliseconds of delay to wait before running the queue.
2187 * Run a hardware queue asynchronously with a delay of @msecs.
2189 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2191 if (unlikely(blk_mq_hctx_stopped(hctx)))
2193 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2194 msecs_to_jiffies(msecs));
2196 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2199 * blk_mq_run_hw_queue - Start to run a hardware queue.
2200 * @hctx: Pointer to the hardware queue to run.
2201 * @async: If we want to run the queue asynchronously.
2203 * Check if the request queue is not in a quiesced state and if there are
2204 * pending requests to be sent. If this is true, run the queue to send requests
2207 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2212 * We can't run the queue inline with interrupts disabled.
2214 WARN_ON_ONCE(!async && in_interrupt());
2217 * When queue is quiesced, we may be switching io scheduler, or
2218 * updating nr_hw_queues, or other things, and we can't run queue
2219 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2221 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2224 __blk_mq_run_dispatch_ops(hctx->queue, false,
2225 need_run = !blk_queue_quiesced(hctx->queue) &&
2226 blk_mq_hctx_has_pending(hctx));
2231 if (async || (hctx->flags & BLK_MQ_F_BLOCKING) ||
2232 !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2233 blk_mq_delay_run_hw_queue(hctx, 0);
2237 blk_mq_run_dispatch_ops(hctx->queue,
2238 blk_mq_sched_dispatch_requests(hctx));
2240 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2243 * Return prefered queue to dispatch from (if any) for non-mq aware IO
2246 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2248 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2250 * If the IO scheduler does not respect hardware queues when
2251 * dispatching, we just don't bother with multiple HW queues and
2252 * dispatch from hctx for the current CPU since running multiple queues
2253 * just causes lock contention inside the scheduler and pointless cache
2256 struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2258 if (!blk_mq_hctx_stopped(hctx))
2264 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2265 * @q: Pointer to the request queue to run.
2266 * @async: If we want to run the queue asynchronously.
2268 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2270 struct blk_mq_hw_ctx *hctx, *sq_hctx;
2274 if (blk_queue_sq_sched(q))
2275 sq_hctx = blk_mq_get_sq_hctx(q);
2276 queue_for_each_hw_ctx(q, hctx, i) {
2277 if (blk_mq_hctx_stopped(hctx))
2280 * Dispatch from this hctx either if there's no hctx preferred
2281 * by IO scheduler or if it has requests that bypass the
2284 if (!sq_hctx || sq_hctx == hctx ||
2285 !list_empty_careful(&hctx->dispatch))
2286 blk_mq_run_hw_queue(hctx, async);
2289 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2292 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2293 * @q: Pointer to the request queue to run.
2294 * @msecs: Milliseconds of delay to wait before running the queues.
2296 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2298 struct blk_mq_hw_ctx *hctx, *sq_hctx;
2302 if (blk_queue_sq_sched(q))
2303 sq_hctx = blk_mq_get_sq_hctx(q);
2304 queue_for_each_hw_ctx(q, hctx, i) {
2305 if (blk_mq_hctx_stopped(hctx))
2308 * If there is already a run_work pending, leave the
2309 * pending delay untouched. Otherwise, a hctx can stall
2310 * if another hctx is re-delaying the other's work
2311 * before the work executes.
2313 if (delayed_work_pending(&hctx->run_work))
2316 * Dispatch from this hctx either if there's no hctx preferred
2317 * by IO scheduler or if it has requests that bypass the
2320 if (!sq_hctx || sq_hctx == hctx ||
2321 !list_empty_careful(&hctx->dispatch))
2322 blk_mq_delay_run_hw_queue(hctx, msecs);
2325 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2328 * This function is often used for pausing .queue_rq() by driver when
2329 * there isn't enough resource or some conditions aren't satisfied, and
2330 * BLK_STS_RESOURCE is usually returned.
2332 * We do not guarantee that dispatch can be drained or blocked
2333 * after blk_mq_stop_hw_queue() returns. Please use
2334 * blk_mq_quiesce_queue() for that requirement.
2336 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2338 cancel_delayed_work(&hctx->run_work);
2340 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2342 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2345 * This function is often used for pausing .queue_rq() by driver when
2346 * there isn't enough resource or some conditions aren't satisfied, and
2347 * BLK_STS_RESOURCE is usually returned.
2349 * We do not guarantee that dispatch can be drained or blocked
2350 * after blk_mq_stop_hw_queues() returns. Please use
2351 * blk_mq_quiesce_queue() for that requirement.
2353 void blk_mq_stop_hw_queues(struct request_queue *q)
2355 struct blk_mq_hw_ctx *hctx;
2358 queue_for_each_hw_ctx(q, hctx, i)
2359 blk_mq_stop_hw_queue(hctx);
2361 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2363 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2365 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2367 blk_mq_run_hw_queue(hctx, false);
2369 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2371 void blk_mq_start_hw_queues(struct request_queue *q)
2373 struct blk_mq_hw_ctx *hctx;
2376 queue_for_each_hw_ctx(q, hctx, i)
2377 blk_mq_start_hw_queue(hctx);
2379 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2381 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2383 if (!blk_mq_hctx_stopped(hctx))
2386 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2387 blk_mq_run_hw_queue(hctx, async);
2389 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2391 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2393 struct blk_mq_hw_ctx *hctx;
2396 queue_for_each_hw_ctx(q, hctx, i)
2397 blk_mq_start_stopped_hw_queue(hctx, async);
2399 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2401 static void blk_mq_run_work_fn(struct work_struct *work)
2403 struct blk_mq_hw_ctx *hctx =
2404 container_of(work, struct blk_mq_hw_ctx, run_work.work);
2406 blk_mq_run_dispatch_ops(hctx->queue,
2407 blk_mq_sched_dispatch_requests(hctx));
2411 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2412 * @rq: Pointer to request to be inserted.
2413 * @flags: BLK_MQ_INSERT_*
2415 * Should only be used carefully, when the caller knows we want to
2416 * bypass a potential IO scheduler on the target device.
2418 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2420 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2422 spin_lock(&hctx->lock);
2423 if (flags & BLK_MQ_INSERT_AT_HEAD)
2424 list_add(&rq->queuelist, &hctx->dispatch);
2426 list_add_tail(&rq->queuelist, &hctx->dispatch);
2427 spin_unlock(&hctx->lock);
2430 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2431 struct blk_mq_ctx *ctx, struct list_head *list,
2432 bool run_queue_async)
2435 enum hctx_type type = hctx->type;
2438 * Try to issue requests directly if the hw queue isn't busy to save an
2439 * extra enqueue & dequeue to the sw queue.
2441 if (!hctx->dispatch_busy && !run_queue_async) {
2442 blk_mq_run_dispatch_ops(hctx->queue,
2443 blk_mq_try_issue_list_directly(hctx, list));
2444 if (list_empty(list))
2449 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2452 list_for_each_entry(rq, list, queuelist) {
2453 BUG_ON(rq->mq_ctx != ctx);
2454 trace_block_rq_insert(rq);
2457 spin_lock(&ctx->lock);
2458 list_splice_tail_init(list, &ctx->rq_lists[type]);
2459 blk_mq_hctx_mark_pending(hctx, ctx);
2460 spin_unlock(&ctx->lock);
2462 blk_mq_run_hw_queue(hctx, run_queue_async);
2465 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2467 struct request_queue *q = rq->q;
2468 struct blk_mq_ctx *ctx = rq->mq_ctx;
2469 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2471 if (blk_rq_is_passthrough(rq)) {
2473 * Passthrough request have to be added to hctx->dispatch
2474 * directly. The device may be in a situation where it can't
2475 * handle FS request, and always returns BLK_STS_RESOURCE for
2476 * them, which gets them added to hctx->dispatch.
2478 * If a passthrough request is required to unblock the queues,
2479 * and it is added to the scheduler queue, there is no chance to
2480 * dispatch it given we prioritize requests in hctx->dispatch.
2482 blk_mq_request_bypass_insert(rq, flags);
2483 } else if (req_op(rq) == REQ_OP_FLUSH) {
2485 * Firstly normal IO request is inserted to scheduler queue or
2486 * sw queue, meantime we add flush request to dispatch queue(
2487 * hctx->dispatch) directly and there is at most one in-flight
2488 * flush request for each hw queue, so it doesn't matter to add
2489 * flush request to tail or front of the dispatch queue.
2491 * Secondly in case of NCQ, flush request belongs to non-NCQ
2492 * command, and queueing it will fail when there is any
2493 * in-flight normal IO request(NCQ command). When adding flush
2494 * rq to the front of hctx->dispatch, it is easier to introduce
2495 * extra time to flush rq's latency because of S_SCHED_RESTART
2496 * compared with adding to the tail of dispatch queue, then
2497 * chance of flush merge is increased, and less flush requests
2498 * will be issued to controller. It is observed that ~10% time
2499 * is saved in blktests block/004 on disk attached to AHCI/NCQ
2500 * drive when adding flush rq to the front of hctx->dispatch.
2502 * Simply queue flush rq to the front of hctx->dispatch so that
2503 * intensive flush workloads can benefit in case of NCQ HW.
2505 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2506 } else if (q->elevator) {
2509 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2511 list_add(&rq->queuelist, &list);
2512 q->elevator->type->ops.insert_requests(hctx, &list, flags);
2514 trace_block_rq_insert(rq);
2516 spin_lock(&ctx->lock);
2517 if (flags & BLK_MQ_INSERT_AT_HEAD)
2518 list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2520 list_add_tail(&rq->queuelist,
2521 &ctx->rq_lists[hctx->type]);
2522 blk_mq_hctx_mark_pending(hctx, ctx);
2523 spin_unlock(&ctx->lock);
2527 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2528 unsigned int nr_segs)
2532 if (bio->bi_opf & REQ_RAHEAD)
2533 rq->cmd_flags |= REQ_FAILFAST_MASK;
2535 rq->__sector = bio->bi_iter.bi_sector;
2536 blk_rq_bio_prep(rq, bio, nr_segs);
2538 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2539 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2542 blk_account_io_start(rq);
2545 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2546 struct request *rq, bool last)
2548 struct request_queue *q = rq->q;
2549 struct blk_mq_queue_data bd = {
2556 * For OK queue, we are done. For error, caller may kill it.
2557 * Any other error (busy), just add it to our list as we
2558 * previously would have done.
2560 ret = q->mq_ops->queue_rq(hctx, &bd);
2563 blk_mq_update_dispatch_busy(hctx, false);
2565 case BLK_STS_RESOURCE:
2566 case BLK_STS_DEV_RESOURCE:
2567 blk_mq_update_dispatch_busy(hctx, true);
2568 __blk_mq_requeue_request(rq);
2571 blk_mq_update_dispatch_busy(hctx, false);
2578 static bool blk_mq_get_budget_and_tag(struct request *rq)
2582 budget_token = blk_mq_get_dispatch_budget(rq->q);
2583 if (budget_token < 0)
2585 blk_mq_set_rq_budget_token(rq, budget_token);
2586 if (!blk_mq_get_driver_tag(rq)) {
2587 blk_mq_put_dispatch_budget(rq->q, budget_token);
2594 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2595 * @hctx: Pointer of the associated hardware queue.
2596 * @rq: Pointer to request to be sent.
2598 * If the device has enough resources to accept a new request now, send the
2599 * request directly to device driver. Else, insert at hctx->dispatch queue, so
2600 * we can try send it another time in the future. Requests inserted at this
2601 * queue have higher priority.
2603 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2608 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2609 blk_mq_insert_request(rq, 0);
2613 if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2614 blk_mq_insert_request(rq, 0);
2615 blk_mq_run_hw_queue(hctx, false);
2619 ret = __blk_mq_issue_directly(hctx, rq, true);
2623 case BLK_STS_RESOURCE:
2624 case BLK_STS_DEV_RESOURCE:
2625 blk_mq_request_bypass_insert(rq, 0);
2626 blk_mq_run_hw_queue(hctx, false);
2629 blk_mq_end_request(rq, ret);
2634 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2636 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2638 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2639 blk_mq_insert_request(rq, 0);
2643 if (!blk_mq_get_budget_and_tag(rq))
2644 return BLK_STS_RESOURCE;
2645 return __blk_mq_issue_directly(hctx, rq, last);
2648 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2650 struct blk_mq_hw_ctx *hctx = NULL;
2653 blk_status_t ret = BLK_STS_OK;
2655 while ((rq = rq_list_pop(&plug->mq_list))) {
2656 bool last = rq_list_empty(plug->mq_list);
2658 if (hctx != rq->mq_hctx) {
2660 blk_mq_commit_rqs(hctx, queued, false);
2666 ret = blk_mq_request_issue_directly(rq, last);
2671 case BLK_STS_RESOURCE:
2672 case BLK_STS_DEV_RESOURCE:
2673 blk_mq_request_bypass_insert(rq, 0);
2674 blk_mq_run_hw_queue(hctx, false);
2677 blk_mq_end_request(rq, ret);
2683 if (ret != BLK_STS_OK)
2684 blk_mq_commit_rqs(hctx, queued, false);
2687 static void __blk_mq_flush_plug_list(struct request_queue *q,
2688 struct blk_plug *plug)
2690 if (blk_queue_quiesced(q))
2692 q->mq_ops->queue_rqs(&plug->mq_list);
2695 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2697 struct blk_mq_hw_ctx *this_hctx = NULL;
2698 struct blk_mq_ctx *this_ctx = NULL;
2699 struct request *requeue_list = NULL;
2700 struct request **requeue_lastp = &requeue_list;
2701 unsigned int depth = 0;
2702 bool is_passthrough = false;
2706 struct request *rq = rq_list_pop(&plug->mq_list);
2709 this_hctx = rq->mq_hctx;
2710 this_ctx = rq->mq_ctx;
2711 is_passthrough = blk_rq_is_passthrough(rq);
2712 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2713 is_passthrough != blk_rq_is_passthrough(rq)) {
2714 rq_list_add_tail(&requeue_lastp, rq);
2717 list_add(&rq->queuelist, &list);
2719 } while (!rq_list_empty(plug->mq_list));
2721 plug->mq_list = requeue_list;
2722 trace_block_unplug(this_hctx->queue, depth, !from_sched);
2724 percpu_ref_get(&this_hctx->queue->q_usage_counter);
2725 /* passthrough requests should never be issued to the I/O scheduler */
2726 if (is_passthrough) {
2727 spin_lock(&this_hctx->lock);
2728 list_splice_tail_init(&list, &this_hctx->dispatch);
2729 spin_unlock(&this_hctx->lock);
2730 blk_mq_run_hw_queue(this_hctx, from_sched);
2731 } else if (this_hctx->queue->elevator) {
2732 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2734 blk_mq_run_hw_queue(this_hctx, from_sched);
2736 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2738 percpu_ref_put(&this_hctx->queue->q_usage_counter);
2741 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2745 if (rq_list_empty(plug->mq_list))
2749 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2750 struct request_queue *q;
2752 rq = rq_list_peek(&plug->mq_list);
2756 * Peek first request and see if we have a ->queue_rqs() hook.
2757 * If we do, we can dispatch the whole plug list in one go. We
2758 * already know at this point that all requests belong to the
2759 * same queue, caller must ensure that's the case.
2761 * Since we pass off the full list to the driver at this point,
2762 * we do not increment the active request count for the queue.
2763 * Bypass shared tags for now because of that.
2765 if (q->mq_ops->queue_rqs &&
2766 !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2767 blk_mq_run_dispatch_ops(q,
2768 __blk_mq_flush_plug_list(q, plug));
2769 if (rq_list_empty(plug->mq_list))
2773 blk_mq_run_dispatch_ops(q,
2774 blk_mq_plug_issue_direct(plug));
2775 if (rq_list_empty(plug->mq_list))
2780 blk_mq_dispatch_plug_list(plug, from_schedule);
2781 } while (!rq_list_empty(plug->mq_list));
2784 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2785 struct list_head *list)
2788 blk_status_t ret = BLK_STS_OK;
2790 while (!list_empty(list)) {
2791 struct request *rq = list_first_entry(list, struct request,
2794 list_del_init(&rq->queuelist);
2795 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2800 case BLK_STS_RESOURCE:
2801 case BLK_STS_DEV_RESOURCE:
2802 blk_mq_request_bypass_insert(rq, 0);
2803 if (list_empty(list))
2804 blk_mq_run_hw_queue(hctx, false);
2807 blk_mq_end_request(rq, ret);
2813 if (ret != BLK_STS_OK)
2814 blk_mq_commit_rqs(hctx, queued, false);
2817 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2818 struct bio *bio, unsigned int nr_segs)
2820 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2821 if (blk_attempt_plug_merge(q, bio, nr_segs))
2823 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2829 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2830 struct blk_plug *plug,
2834 struct blk_mq_alloc_data data = {
2837 .cmd_flags = bio->bi_opf,
2841 if (unlikely(bio_queue_enter(bio)))
2844 if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2847 rq_qos_throttle(q, bio);
2850 data.nr_tags = plug->nr_ios;
2852 data.cached_rq = &plug->cached_rq;
2855 rq = __blk_mq_alloc_requests(&data);
2858 rq_qos_cleanup(q, bio);
2859 if (bio->bi_opf & REQ_NOWAIT)
2860 bio_wouldblock_error(bio);
2866 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2867 struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2870 enum hctx_type type, hctx_type;
2874 rq = rq_list_peek(&plug->cached_rq);
2875 if (!rq || rq->q != q)
2878 if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2883 type = blk_mq_get_hctx_type((*bio)->bi_opf);
2884 hctx_type = rq->mq_hctx->type;
2885 if (type != hctx_type &&
2886 !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2888 if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2892 * If any qos ->throttle() end up blocking, we will have flushed the
2893 * plug and hence killed the cached_rq list as well. Pop this entry
2894 * before we throttle.
2896 plug->cached_rq = rq_list_next(rq);
2897 rq_qos_throttle(q, *bio);
2899 rq->cmd_flags = (*bio)->bi_opf;
2900 INIT_LIST_HEAD(&rq->queuelist);
2904 static void bio_set_ioprio(struct bio *bio)
2906 /* Nobody set ioprio so far? Initialize it based on task's nice value */
2907 if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2908 bio->bi_ioprio = get_current_ioprio();
2909 blkcg_set_ioprio(bio);
2913 * blk_mq_submit_bio - Create and send a request to block device.
2914 * @bio: Bio pointer.
2916 * Builds up a request structure from @q and @bio and send to the device. The
2917 * request may not be queued directly to hardware if:
2918 * * This request can be merged with another one
2919 * * We want to place request at plug queue for possible future merging
2920 * * There is an IO scheduler active at this queue
2922 * It will not queue the request if there is an error with the bio, or at the
2925 void blk_mq_submit_bio(struct bio *bio)
2927 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2928 struct blk_plug *plug = blk_mq_plug(bio);
2929 const int is_sync = op_is_sync(bio->bi_opf);
2930 struct blk_mq_hw_ctx *hctx;
2932 unsigned int nr_segs = 1;
2935 bio = blk_queue_bounce(bio, q);
2936 if (bio_may_exceed_limits(bio, &q->limits)) {
2937 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2942 if (!bio_integrity_prep(bio))
2945 bio_set_ioprio(bio);
2947 rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2951 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2956 trace_block_getrq(bio);
2958 rq_qos_track(q, rq, bio);
2960 blk_mq_bio_to_request(rq, bio, nr_segs);
2962 ret = blk_crypto_rq_get_keyslot(rq);
2963 if (ret != BLK_STS_OK) {
2964 bio->bi_status = ret;
2966 blk_mq_free_request(rq);
2970 if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
2974 blk_add_rq_to_plug(plug, rq);
2979 if ((rq->rq_flags & RQF_USE_SCHED) ||
2980 (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
2981 blk_mq_insert_request(rq, 0);
2982 blk_mq_run_hw_queue(hctx, true);
2984 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
2988 #ifdef CONFIG_BLK_MQ_STACKING
2990 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2991 * @rq: the request being queued
2993 blk_status_t blk_insert_cloned_request(struct request *rq)
2995 struct request_queue *q = rq->q;
2996 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
2997 unsigned int max_segments = blk_rq_get_max_segments(rq);
3000 if (blk_rq_sectors(rq) > max_sectors) {
3002 * SCSI device does not have a good way to return if
3003 * Write Same/Zero is actually supported. If a device rejects
3004 * a non-read/write command (discard, write same,etc.) the
3005 * low-level device driver will set the relevant queue limit to
3006 * 0 to prevent blk-lib from issuing more of the offending
3007 * operations. Commands queued prior to the queue limit being
3008 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3009 * errors being propagated to upper layers.
3011 if (max_sectors == 0)
3012 return BLK_STS_NOTSUPP;
3014 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3015 __func__, blk_rq_sectors(rq), max_sectors);
3016 return BLK_STS_IOERR;
3020 * The queue settings related to segment counting may differ from the
3023 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3024 if (rq->nr_phys_segments > max_segments) {
3025 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3026 __func__, rq->nr_phys_segments, max_segments);
3027 return BLK_STS_IOERR;
3030 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3031 return BLK_STS_IOERR;
3033 ret = blk_crypto_rq_get_keyslot(rq);
3034 if (ret != BLK_STS_OK)
3037 blk_account_io_start(rq);
3040 * Since we have a scheduler attached on the top device,
3041 * bypass a potential scheduler on the bottom device for
3044 blk_mq_run_dispatch_ops(q,
3045 ret = blk_mq_request_issue_directly(rq, true));
3047 blk_account_io_done(rq, ktime_get_ns());
3050 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3053 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3054 * @rq: the clone request to be cleaned up
3057 * Free all bios in @rq for a cloned request.
3059 void blk_rq_unprep_clone(struct request *rq)
3063 while ((bio = rq->bio) != NULL) {
3064 rq->bio = bio->bi_next;
3069 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3072 * blk_rq_prep_clone - Helper function to setup clone request
3073 * @rq: the request to be setup
3074 * @rq_src: original request to be cloned
3075 * @bs: bio_set that bios for clone are allocated from
3076 * @gfp_mask: memory allocation mask for bio
3077 * @bio_ctr: setup function to be called for each clone bio.
3078 * Returns %0 for success, non %0 for failure.
3079 * @data: private data to be passed to @bio_ctr
3082 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3083 * Also, pages which the original bios are pointing to are not copied
3084 * and the cloned bios just point same pages.
3085 * So cloned bios must be completed before original bios, which means
3086 * the caller must complete @rq before @rq_src.
3088 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3089 struct bio_set *bs, gfp_t gfp_mask,
3090 int (*bio_ctr)(struct bio *, struct bio *, void *),
3093 struct bio *bio, *bio_src;
3098 __rq_for_each_bio(bio_src, rq_src) {
3099 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3104 if (bio_ctr && bio_ctr(bio, bio_src, data))
3108 rq->biotail->bi_next = bio;
3111 rq->bio = rq->biotail = bio;
3116 /* Copy attributes of the original request to the clone request. */
3117 rq->__sector = blk_rq_pos(rq_src);
3118 rq->__data_len = blk_rq_bytes(rq_src);
3119 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3120 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3121 rq->special_vec = rq_src->special_vec;
3123 rq->nr_phys_segments = rq_src->nr_phys_segments;
3124 rq->ioprio = rq_src->ioprio;
3126 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3134 blk_rq_unprep_clone(rq);
3138 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3139 #endif /* CONFIG_BLK_MQ_STACKING */
3142 * Steal bios from a request and add them to a bio list.
3143 * The request must not have been partially completed before.
3145 void blk_steal_bios(struct bio_list *list, struct request *rq)
3149 list->tail->bi_next = rq->bio;
3151 list->head = rq->bio;
3152 list->tail = rq->biotail;
3160 EXPORT_SYMBOL_GPL(blk_steal_bios);
3162 static size_t order_to_size(unsigned int order)
3164 return (size_t)PAGE_SIZE << order;
3167 /* called before freeing request pool in @tags */
3168 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3169 struct blk_mq_tags *tags)
3172 unsigned long flags;
3175 * There is no need to clear mapping if driver tags is not initialized
3176 * or the mapping belongs to the driver tags.
3178 if (!drv_tags || drv_tags == tags)
3181 list_for_each_entry(page, &tags->page_list, lru) {
3182 unsigned long start = (unsigned long)page_address(page);
3183 unsigned long end = start + order_to_size(page->private);
3186 for (i = 0; i < drv_tags->nr_tags; i++) {
3187 struct request *rq = drv_tags->rqs[i];
3188 unsigned long rq_addr = (unsigned long)rq;
3190 if (rq_addr >= start && rq_addr < end) {
3191 WARN_ON_ONCE(req_ref_read(rq) != 0);
3192 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3198 * Wait until all pending iteration is done.
3200 * Request reference is cleared and it is guaranteed to be observed
3201 * after the ->lock is released.
3203 spin_lock_irqsave(&drv_tags->lock, flags);
3204 spin_unlock_irqrestore(&drv_tags->lock, flags);
3207 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3208 unsigned int hctx_idx)
3210 struct blk_mq_tags *drv_tags;
3213 if (list_empty(&tags->page_list))
3216 if (blk_mq_is_shared_tags(set->flags))
3217 drv_tags = set->shared_tags;
3219 drv_tags = set->tags[hctx_idx];
3221 if (tags->static_rqs && set->ops->exit_request) {
3224 for (i = 0; i < tags->nr_tags; i++) {
3225 struct request *rq = tags->static_rqs[i];
3229 set->ops->exit_request(set, rq, hctx_idx);
3230 tags->static_rqs[i] = NULL;
3234 blk_mq_clear_rq_mapping(drv_tags, tags);
3236 while (!list_empty(&tags->page_list)) {
3237 page = list_first_entry(&tags->page_list, struct page, lru);
3238 list_del_init(&page->lru);
3240 * Remove kmemleak object previously allocated in
3241 * blk_mq_alloc_rqs().
3243 kmemleak_free(page_address(page));
3244 __free_pages(page, page->private);
3248 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3252 kfree(tags->static_rqs);
3253 tags->static_rqs = NULL;
3255 blk_mq_free_tags(tags);
3258 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3259 unsigned int hctx_idx)
3263 for (i = 0; i < set->nr_maps; i++) {
3264 unsigned int start = set->map[i].queue_offset;
3265 unsigned int end = start + set->map[i].nr_queues;
3267 if (hctx_idx >= start && hctx_idx < end)
3271 if (i >= set->nr_maps)
3272 i = HCTX_TYPE_DEFAULT;
3277 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3278 unsigned int hctx_idx)
3280 enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3282 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3285 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3286 unsigned int hctx_idx,
3287 unsigned int nr_tags,
3288 unsigned int reserved_tags)
3290 int node = blk_mq_get_hctx_node(set, hctx_idx);
3291 struct blk_mq_tags *tags;
3293 if (node == NUMA_NO_NODE)
3294 node = set->numa_node;
3296 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3297 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3301 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3302 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3307 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3308 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3310 if (!tags->static_rqs)
3318 blk_mq_free_tags(tags);
3322 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3323 unsigned int hctx_idx, int node)
3327 if (set->ops->init_request) {
3328 ret = set->ops->init_request(set, rq, hctx_idx, node);
3333 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3337 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3338 struct blk_mq_tags *tags,
3339 unsigned int hctx_idx, unsigned int depth)
3341 unsigned int i, j, entries_per_page, max_order = 4;
3342 int node = blk_mq_get_hctx_node(set, hctx_idx);
3343 size_t rq_size, left;
3345 if (node == NUMA_NO_NODE)
3346 node = set->numa_node;
3348 INIT_LIST_HEAD(&tags->page_list);
3351 * rq_size is the size of the request plus driver payload, rounded
3352 * to the cacheline size
3354 rq_size = round_up(sizeof(struct request) + set->cmd_size,
3356 left = rq_size * depth;
3358 for (i = 0; i < depth; ) {
3359 int this_order = max_order;
3364 while (this_order && left < order_to_size(this_order - 1))
3368 page = alloc_pages_node(node,
3369 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3375 if (order_to_size(this_order) < rq_size)
3382 page->private = this_order;
3383 list_add_tail(&page->lru, &tags->page_list);
3385 p = page_address(page);
3387 * Allow kmemleak to scan these pages as they contain pointers
3388 * to additional allocations like via ops->init_request().
3390 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3391 entries_per_page = order_to_size(this_order) / rq_size;
3392 to_do = min(entries_per_page, depth - i);
3393 left -= to_do * rq_size;
3394 for (j = 0; j < to_do; j++) {
3395 struct request *rq = p;
3397 tags->static_rqs[i] = rq;
3398 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3399 tags->static_rqs[i] = NULL;
3410 blk_mq_free_rqs(set, tags, hctx_idx);
3414 struct rq_iter_data {
3415 struct blk_mq_hw_ctx *hctx;
3419 static bool blk_mq_has_request(struct request *rq, void *data)
3421 struct rq_iter_data *iter_data = data;
3423 if (rq->mq_hctx != iter_data->hctx)
3425 iter_data->has_rq = true;
3429 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3431 struct blk_mq_tags *tags = hctx->sched_tags ?
3432 hctx->sched_tags : hctx->tags;
3433 struct rq_iter_data data = {
3437 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3441 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3442 struct blk_mq_hw_ctx *hctx)
3444 if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3446 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3451 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3453 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3454 struct blk_mq_hw_ctx, cpuhp_online);
3456 if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3457 !blk_mq_last_cpu_in_hctx(cpu, hctx))
3461 * Prevent new request from being allocated on the current hctx.
3463 * The smp_mb__after_atomic() Pairs with the implied barrier in
3464 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is
3465 * seen once we return from the tag allocator.
3467 set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3468 smp_mb__after_atomic();
3471 * Try to grab a reference to the queue and wait for any outstanding
3472 * requests. If we could not grab a reference the queue has been
3473 * frozen and there are no requests.
3475 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3476 while (blk_mq_hctx_has_requests(hctx))
3478 percpu_ref_put(&hctx->queue->q_usage_counter);
3484 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3486 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3487 struct blk_mq_hw_ctx, cpuhp_online);
3489 if (cpumask_test_cpu(cpu, hctx->cpumask))
3490 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3495 * 'cpu' is going away. splice any existing rq_list entries from this
3496 * software queue to the hw queue dispatch list, and ensure that it
3499 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3501 struct blk_mq_hw_ctx *hctx;
3502 struct blk_mq_ctx *ctx;
3504 enum hctx_type type;
3506 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3507 if (!cpumask_test_cpu(cpu, hctx->cpumask))
3510 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3513 spin_lock(&ctx->lock);
3514 if (!list_empty(&ctx->rq_lists[type])) {
3515 list_splice_init(&ctx->rq_lists[type], &tmp);
3516 blk_mq_hctx_clear_pending(hctx, ctx);
3518 spin_unlock(&ctx->lock);
3520 if (list_empty(&tmp))
3523 spin_lock(&hctx->lock);
3524 list_splice_tail_init(&tmp, &hctx->dispatch);
3525 spin_unlock(&hctx->lock);
3527 blk_mq_run_hw_queue(hctx, true);
3531 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3533 if (!(hctx->flags & BLK_MQ_F_STACKING))
3534 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3535 &hctx->cpuhp_online);
3536 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3541 * Before freeing hw queue, clearing the flush request reference in
3542 * tags->rqs[] for avoiding potential UAF.
3544 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3545 unsigned int queue_depth, struct request *flush_rq)
3548 unsigned long flags;
3550 /* The hw queue may not be mapped yet */
3554 WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3556 for (i = 0; i < queue_depth; i++)
3557 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3560 * Wait until all pending iteration is done.
3562 * Request reference is cleared and it is guaranteed to be observed
3563 * after the ->lock is released.
3565 spin_lock_irqsave(&tags->lock, flags);
3566 spin_unlock_irqrestore(&tags->lock, flags);
3569 /* hctx->ctxs will be freed in queue's release handler */
3570 static void blk_mq_exit_hctx(struct request_queue *q,
3571 struct blk_mq_tag_set *set,
3572 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3574 struct request *flush_rq = hctx->fq->flush_rq;
3576 if (blk_mq_hw_queue_mapped(hctx))
3577 blk_mq_tag_idle(hctx);
3579 if (blk_queue_init_done(q))
3580 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3581 set->queue_depth, flush_rq);
3582 if (set->ops->exit_request)
3583 set->ops->exit_request(set, flush_rq, hctx_idx);
3585 if (set->ops->exit_hctx)
3586 set->ops->exit_hctx(hctx, hctx_idx);
3588 blk_mq_remove_cpuhp(hctx);
3590 xa_erase(&q->hctx_table, hctx_idx);
3592 spin_lock(&q->unused_hctx_lock);
3593 list_add(&hctx->hctx_list, &q->unused_hctx_list);
3594 spin_unlock(&q->unused_hctx_lock);
3597 static void blk_mq_exit_hw_queues(struct request_queue *q,
3598 struct blk_mq_tag_set *set, int nr_queue)
3600 struct blk_mq_hw_ctx *hctx;
3603 queue_for_each_hw_ctx(q, hctx, i) {
3606 blk_mq_exit_hctx(q, set, hctx, i);
3610 static int blk_mq_init_hctx(struct request_queue *q,
3611 struct blk_mq_tag_set *set,
3612 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3614 hctx->queue_num = hctx_idx;
3616 if (!(hctx->flags & BLK_MQ_F_STACKING))
3617 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3618 &hctx->cpuhp_online);
3619 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3621 hctx->tags = set->tags[hctx_idx];
3623 if (set->ops->init_hctx &&
3624 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3625 goto unregister_cpu_notifier;
3627 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3631 if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3637 if (set->ops->exit_request)
3638 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3640 if (set->ops->exit_hctx)
3641 set->ops->exit_hctx(hctx, hctx_idx);
3642 unregister_cpu_notifier:
3643 blk_mq_remove_cpuhp(hctx);
3647 static struct blk_mq_hw_ctx *
3648 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3651 struct blk_mq_hw_ctx *hctx;
3652 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3654 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3656 goto fail_alloc_hctx;
3658 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3661 atomic_set(&hctx->nr_active, 0);
3662 if (node == NUMA_NO_NODE)
3663 node = set->numa_node;
3664 hctx->numa_node = node;
3666 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3667 spin_lock_init(&hctx->lock);
3668 INIT_LIST_HEAD(&hctx->dispatch);
3670 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3672 INIT_LIST_HEAD(&hctx->hctx_list);
3675 * Allocate space for all possible cpus to avoid allocation at
3678 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3683 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3684 gfp, node, false, false))
3688 spin_lock_init(&hctx->dispatch_wait_lock);
3689 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3690 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3692 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3696 blk_mq_hctx_kobj_init(hctx);
3701 sbitmap_free(&hctx->ctx_map);
3705 free_cpumask_var(hctx->cpumask);
3712 static void blk_mq_init_cpu_queues(struct request_queue *q,
3713 unsigned int nr_hw_queues)
3715 struct blk_mq_tag_set *set = q->tag_set;
3718 for_each_possible_cpu(i) {
3719 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3720 struct blk_mq_hw_ctx *hctx;
3724 spin_lock_init(&__ctx->lock);
3725 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3726 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3731 * Set local node, IFF we have more than one hw queue. If
3732 * not, we remain on the home node of the device
3734 for (j = 0; j < set->nr_maps; j++) {
3735 hctx = blk_mq_map_queue_type(q, j, i);
3736 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3737 hctx->numa_node = cpu_to_node(i);
3742 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3743 unsigned int hctx_idx,
3746 struct blk_mq_tags *tags;
3749 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3753 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3755 blk_mq_free_rq_map(tags);
3762 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3765 if (blk_mq_is_shared_tags(set->flags)) {
3766 set->tags[hctx_idx] = set->shared_tags;
3771 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3774 return set->tags[hctx_idx];
3777 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3778 struct blk_mq_tags *tags,
3779 unsigned int hctx_idx)
3782 blk_mq_free_rqs(set, tags, hctx_idx);
3783 blk_mq_free_rq_map(tags);
3787 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3788 unsigned int hctx_idx)
3790 if (!blk_mq_is_shared_tags(set->flags))
3791 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3793 set->tags[hctx_idx] = NULL;
3796 static void blk_mq_map_swqueue(struct request_queue *q)
3798 unsigned int j, hctx_idx;
3800 struct blk_mq_hw_ctx *hctx;
3801 struct blk_mq_ctx *ctx;
3802 struct blk_mq_tag_set *set = q->tag_set;
3804 queue_for_each_hw_ctx(q, hctx, i) {
3805 cpumask_clear(hctx->cpumask);
3807 hctx->dispatch_from = NULL;
3811 * Map software to hardware queues.
3813 * If the cpu isn't present, the cpu is mapped to first hctx.
3815 for_each_possible_cpu(i) {
3817 ctx = per_cpu_ptr(q->queue_ctx, i);
3818 for (j = 0; j < set->nr_maps; j++) {
3819 if (!set->map[j].nr_queues) {
3820 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3821 HCTX_TYPE_DEFAULT, i);
3824 hctx_idx = set->map[j].mq_map[i];
3825 /* unmapped hw queue can be remapped after CPU topo changed */
3826 if (!set->tags[hctx_idx] &&
3827 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3829 * If tags initialization fail for some hctx,
3830 * that hctx won't be brought online. In this
3831 * case, remap the current ctx to hctx[0] which
3832 * is guaranteed to always have tags allocated
3834 set->map[j].mq_map[i] = 0;
3837 hctx = blk_mq_map_queue_type(q, j, i);
3838 ctx->hctxs[j] = hctx;
3840 * If the CPU is already set in the mask, then we've
3841 * mapped this one already. This can happen if
3842 * devices share queues across queue maps.
3844 if (cpumask_test_cpu(i, hctx->cpumask))
3847 cpumask_set_cpu(i, hctx->cpumask);
3849 ctx->index_hw[hctx->type] = hctx->nr_ctx;
3850 hctx->ctxs[hctx->nr_ctx++] = ctx;
3853 * If the nr_ctx type overflows, we have exceeded the
3854 * amount of sw queues we can support.
3856 BUG_ON(!hctx->nr_ctx);
3859 for (; j < HCTX_MAX_TYPES; j++)
3860 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3861 HCTX_TYPE_DEFAULT, i);
3864 queue_for_each_hw_ctx(q, hctx, i) {
3866 * If no software queues are mapped to this hardware queue,
3867 * disable it and free the request entries.
3869 if (!hctx->nr_ctx) {
3870 /* Never unmap queue 0. We need it as a
3871 * fallback in case of a new remap fails
3875 __blk_mq_free_map_and_rqs(set, i);
3881 hctx->tags = set->tags[i];
3882 WARN_ON(!hctx->tags);
3885 * Set the map size to the number of mapped software queues.
3886 * This is more accurate and more efficient than looping
3887 * over all possibly mapped software queues.
3889 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3892 * Initialize batch roundrobin counts
3894 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3895 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3900 * Caller needs to ensure that we're either frozen/quiesced, or that
3901 * the queue isn't live yet.
3903 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3905 struct blk_mq_hw_ctx *hctx;
3908 queue_for_each_hw_ctx(q, hctx, i) {
3910 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3912 blk_mq_tag_idle(hctx);
3913 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3918 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3921 struct request_queue *q;
3923 lockdep_assert_held(&set->tag_list_lock);
3925 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3926 blk_mq_freeze_queue(q);
3927 queue_set_hctx_shared(q, shared);
3928 blk_mq_unfreeze_queue(q);
3932 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3934 struct blk_mq_tag_set *set = q->tag_set;
3936 mutex_lock(&set->tag_list_lock);
3937 list_del(&q->tag_set_list);
3938 if (list_is_singular(&set->tag_list)) {
3939 /* just transitioned to unshared */
3940 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3941 /* update existing queue */
3942 blk_mq_update_tag_set_shared(set, false);
3944 mutex_unlock(&set->tag_list_lock);
3945 INIT_LIST_HEAD(&q->tag_set_list);
3948 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3949 struct request_queue *q)
3951 mutex_lock(&set->tag_list_lock);
3954 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3956 if (!list_empty(&set->tag_list) &&
3957 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3958 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3959 /* update existing queue */
3960 blk_mq_update_tag_set_shared(set, true);
3962 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3963 queue_set_hctx_shared(q, true);
3964 list_add_tail(&q->tag_set_list, &set->tag_list);
3966 mutex_unlock(&set->tag_list_lock);
3969 /* All allocations will be freed in release handler of q->mq_kobj */
3970 static int blk_mq_alloc_ctxs(struct request_queue *q)
3972 struct blk_mq_ctxs *ctxs;
3975 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3979 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3980 if (!ctxs->queue_ctx)
3983 for_each_possible_cpu(cpu) {
3984 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3988 q->mq_kobj = &ctxs->kobj;
3989 q->queue_ctx = ctxs->queue_ctx;
3998 * It is the actual release handler for mq, but we do it from
3999 * request queue's release handler for avoiding use-after-free
4000 * and headache because q->mq_kobj shouldn't have been introduced,
4001 * but we can't group ctx/kctx kobj without it.
4003 void blk_mq_release(struct request_queue *q)
4005 struct blk_mq_hw_ctx *hctx, *next;
4008 queue_for_each_hw_ctx(q, hctx, i)
4009 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4011 /* all hctx are in .unused_hctx_list now */
4012 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4013 list_del_init(&hctx->hctx_list);
4014 kobject_put(&hctx->kobj);
4017 xa_destroy(&q->hctx_table);
4020 * release .mq_kobj and sw queue's kobject now because
4021 * both share lifetime with request queue.
4023 blk_mq_sysfs_deinit(q);
4026 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4029 struct request_queue *q;
4032 q = blk_alloc_queue(set->numa_node);
4034 return ERR_PTR(-ENOMEM);
4035 q->queuedata = queuedata;
4036 ret = blk_mq_init_allocated_queue(set, q);
4039 return ERR_PTR(ret);
4044 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4046 return blk_mq_init_queue_data(set, NULL);
4048 EXPORT_SYMBOL(blk_mq_init_queue);
4051 * blk_mq_destroy_queue - shutdown a request queue
4052 * @q: request queue to shutdown
4054 * This shuts down a request queue allocated by blk_mq_init_queue(). All future
4055 * requests will be failed with -ENODEV. The caller is responsible for dropping
4056 * the reference from blk_mq_init_queue() by calling blk_put_queue().
4058 * Context: can sleep
4060 void blk_mq_destroy_queue(struct request_queue *q)
4062 WARN_ON_ONCE(!queue_is_mq(q));
4063 WARN_ON_ONCE(blk_queue_registered(q));
4067 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4068 blk_queue_start_drain(q);
4069 blk_mq_freeze_queue_wait(q);
4072 blk_mq_cancel_work_sync(q);
4073 blk_mq_exit_queue(q);
4075 EXPORT_SYMBOL(blk_mq_destroy_queue);
4077 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4078 struct lock_class_key *lkclass)
4080 struct request_queue *q;
4081 struct gendisk *disk;
4083 q = blk_mq_init_queue_data(set, queuedata);
4087 disk = __alloc_disk_node(q, set->numa_node, lkclass);
4089 blk_mq_destroy_queue(q);
4091 return ERR_PTR(-ENOMEM);
4093 set_bit(GD_OWNS_QUEUE, &disk->state);
4096 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4098 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4099 struct lock_class_key *lkclass)
4101 struct gendisk *disk;
4103 if (!blk_get_queue(q))
4105 disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4110 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4112 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4113 struct blk_mq_tag_set *set, struct request_queue *q,
4114 int hctx_idx, int node)
4116 struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4118 /* reuse dead hctx first */
4119 spin_lock(&q->unused_hctx_lock);
4120 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4121 if (tmp->numa_node == node) {
4127 list_del_init(&hctx->hctx_list);
4128 spin_unlock(&q->unused_hctx_lock);
4131 hctx = blk_mq_alloc_hctx(q, set, node);
4135 if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4141 kobject_put(&hctx->kobj);
4146 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4147 struct request_queue *q)
4149 struct blk_mq_hw_ctx *hctx;
4152 /* protect against switching io scheduler */
4153 mutex_lock(&q->sysfs_lock);
4154 for (i = 0; i < set->nr_hw_queues; i++) {
4156 int node = blk_mq_get_hctx_node(set, i);
4157 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4160 old_node = old_hctx->numa_node;
4161 blk_mq_exit_hctx(q, set, old_hctx, i);
4164 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4167 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4169 hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4170 WARN_ON_ONCE(!hctx);
4174 * Increasing nr_hw_queues fails. Free the newly allocated
4175 * hctxs and keep the previous q->nr_hw_queues.
4177 if (i != set->nr_hw_queues) {
4178 j = q->nr_hw_queues;
4181 q->nr_hw_queues = set->nr_hw_queues;
4184 xa_for_each_start(&q->hctx_table, j, hctx, j)
4185 blk_mq_exit_hctx(q, set, hctx, j);
4186 mutex_unlock(&q->sysfs_lock);
4189 static void blk_mq_update_poll_flag(struct request_queue *q)
4191 struct blk_mq_tag_set *set = q->tag_set;
4193 if (set->nr_maps > HCTX_TYPE_POLL &&
4194 set->map[HCTX_TYPE_POLL].nr_queues)
4195 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4197 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4200 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4201 struct request_queue *q)
4203 /* mark the queue as mq asap */
4204 q->mq_ops = set->ops;
4206 if (blk_mq_alloc_ctxs(q))
4209 /* init q->mq_kobj and sw queues' kobjects */
4210 blk_mq_sysfs_init(q);
4212 INIT_LIST_HEAD(&q->unused_hctx_list);
4213 spin_lock_init(&q->unused_hctx_lock);
4215 xa_init(&q->hctx_table);
4217 blk_mq_realloc_hw_ctxs(set, q);
4218 if (!q->nr_hw_queues)
4221 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4222 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4226 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4227 blk_mq_update_poll_flag(q);
4229 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4230 INIT_LIST_HEAD(&q->flush_list);
4231 INIT_LIST_HEAD(&q->requeue_list);
4232 spin_lock_init(&q->requeue_lock);
4234 q->nr_requests = set->queue_depth;
4236 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4237 blk_mq_add_queue_tag_set(set, q);
4238 blk_mq_map_swqueue(q);
4247 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4249 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4250 void blk_mq_exit_queue(struct request_queue *q)
4252 struct blk_mq_tag_set *set = q->tag_set;
4254 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4255 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4256 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4257 blk_mq_del_queue_tag_set(q);
4260 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4264 if (blk_mq_is_shared_tags(set->flags)) {
4265 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4268 if (!set->shared_tags)
4272 for (i = 0; i < set->nr_hw_queues; i++) {
4273 if (!__blk_mq_alloc_map_and_rqs(set, i))
4282 __blk_mq_free_map_and_rqs(set, i);
4284 if (blk_mq_is_shared_tags(set->flags)) {
4285 blk_mq_free_map_and_rqs(set, set->shared_tags,
4286 BLK_MQ_NO_HCTX_IDX);
4293 * Allocate the request maps associated with this tag_set. Note that this
4294 * may reduce the depth asked for, if memory is tight. set->queue_depth
4295 * will be updated to reflect the allocated depth.
4297 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4302 depth = set->queue_depth;
4304 err = __blk_mq_alloc_rq_maps(set);
4308 set->queue_depth >>= 1;
4309 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4313 } while (set->queue_depth);
4315 if (!set->queue_depth || err) {
4316 pr_err("blk-mq: failed to allocate request map\n");
4320 if (depth != set->queue_depth)
4321 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4322 depth, set->queue_depth);
4327 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4330 * blk_mq_map_queues() and multiple .map_queues() implementations
4331 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4332 * number of hardware queues.
4334 if (set->nr_maps == 1)
4335 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4337 if (set->ops->map_queues && !is_kdump_kernel()) {
4341 * transport .map_queues is usually done in the following
4344 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4345 * mask = get_cpu_mask(queue)
4346 * for_each_cpu(cpu, mask)
4347 * set->map[x].mq_map[cpu] = queue;
4350 * When we need to remap, the table has to be cleared for
4351 * killing stale mapping since one CPU may not be mapped
4354 for (i = 0; i < set->nr_maps; i++)
4355 blk_mq_clear_mq_map(&set->map[i]);
4357 set->ops->map_queues(set);
4359 BUG_ON(set->nr_maps > 1);
4360 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4364 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4365 int new_nr_hw_queues)
4367 struct blk_mq_tags **new_tags;
4369 if (set->nr_hw_queues >= new_nr_hw_queues)
4372 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4373 GFP_KERNEL, set->numa_node);
4378 memcpy(new_tags, set->tags, set->nr_hw_queues *
4379 sizeof(*set->tags));
4381 set->tags = new_tags;
4383 set->nr_hw_queues = new_nr_hw_queues;
4388 * Alloc a tag set to be associated with one or more request queues.
4389 * May fail with EINVAL for various error conditions. May adjust the
4390 * requested depth down, if it's too large. In that case, the set
4391 * value will be stored in set->queue_depth.
4393 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4397 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4399 if (!set->nr_hw_queues)
4401 if (!set->queue_depth)
4403 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4406 if (!set->ops->queue_rq)
4409 if (!set->ops->get_budget ^ !set->ops->put_budget)
4412 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4413 pr_info("blk-mq: reduced tag depth to %u\n",
4415 set->queue_depth = BLK_MQ_MAX_DEPTH;
4420 else if (set->nr_maps > HCTX_MAX_TYPES)
4424 * If a crashdump is active, then we are potentially in a very
4425 * memory constrained environment. Limit us to 1 queue and
4426 * 64 tags to prevent using too much memory.
4428 if (is_kdump_kernel()) {
4429 set->nr_hw_queues = 1;
4431 set->queue_depth = min(64U, set->queue_depth);
4434 * There is no use for more h/w queues than cpus if we just have
4437 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4438 set->nr_hw_queues = nr_cpu_ids;
4440 if (set->flags & BLK_MQ_F_BLOCKING) {
4441 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4444 ret = init_srcu_struct(set->srcu);
4450 set->tags = kcalloc_node(set->nr_hw_queues,
4451 sizeof(struct blk_mq_tags *), GFP_KERNEL,
4454 goto out_cleanup_srcu;
4456 for (i = 0; i < set->nr_maps; i++) {
4457 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4458 sizeof(set->map[i].mq_map[0]),
4459 GFP_KERNEL, set->numa_node);
4460 if (!set->map[i].mq_map)
4461 goto out_free_mq_map;
4462 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4465 blk_mq_update_queue_map(set);
4467 ret = blk_mq_alloc_set_map_and_rqs(set);
4469 goto out_free_mq_map;
4471 mutex_init(&set->tag_list_lock);
4472 INIT_LIST_HEAD(&set->tag_list);
4477 for (i = 0; i < set->nr_maps; i++) {
4478 kfree(set->map[i].mq_map);
4479 set->map[i].mq_map = NULL;
4484 if (set->flags & BLK_MQ_F_BLOCKING)
4485 cleanup_srcu_struct(set->srcu);
4487 if (set->flags & BLK_MQ_F_BLOCKING)
4491 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4493 /* allocate and initialize a tagset for a simple single-queue device */
4494 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4495 const struct blk_mq_ops *ops, unsigned int queue_depth,
4496 unsigned int set_flags)
4498 memset(set, 0, sizeof(*set));
4500 set->nr_hw_queues = 1;
4502 set->queue_depth = queue_depth;
4503 set->numa_node = NUMA_NO_NODE;
4504 set->flags = set_flags;
4505 return blk_mq_alloc_tag_set(set);
4507 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4509 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4513 for (i = 0; i < set->nr_hw_queues; i++)
4514 __blk_mq_free_map_and_rqs(set, i);
4516 if (blk_mq_is_shared_tags(set->flags)) {
4517 blk_mq_free_map_and_rqs(set, set->shared_tags,
4518 BLK_MQ_NO_HCTX_IDX);
4521 for (j = 0; j < set->nr_maps; j++) {
4522 kfree(set->map[j].mq_map);
4523 set->map[j].mq_map = NULL;
4528 if (set->flags & BLK_MQ_F_BLOCKING) {
4529 cleanup_srcu_struct(set->srcu);
4533 EXPORT_SYMBOL(blk_mq_free_tag_set);
4535 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4537 struct blk_mq_tag_set *set = q->tag_set;
4538 struct blk_mq_hw_ctx *hctx;
4545 if (q->nr_requests == nr)
4548 blk_mq_freeze_queue(q);
4549 blk_mq_quiesce_queue(q);
4552 queue_for_each_hw_ctx(q, hctx, i) {
4556 * If we're using an MQ scheduler, just update the scheduler
4557 * queue depth. This is similar to what the old code would do.
4559 if (hctx->sched_tags) {
4560 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4563 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4568 if (q->elevator && q->elevator->type->ops.depth_updated)
4569 q->elevator->type->ops.depth_updated(hctx);
4572 q->nr_requests = nr;
4573 if (blk_mq_is_shared_tags(set->flags)) {
4575 blk_mq_tag_update_sched_shared_tags(q);
4577 blk_mq_tag_resize_shared_tags(set, nr);
4581 blk_mq_unquiesce_queue(q);
4582 blk_mq_unfreeze_queue(q);
4588 * request_queue and elevator_type pair.
4589 * It is just used by __blk_mq_update_nr_hw_queues to cache
4590 * the elevator_type associated with a request_queue.
4592 struct blk_mq_qe_pair {
4593 struct list_head node;
4594 struct request_queue *q;
4595 struct elevator_type *type;
4599 * Cache the elevator_type in qe pair list and switch the
4600 * io scheduler to 'none'
4602 static bool blk_mq_elv_switch_none(struct list_head *head,
4603 struct request_queue *q)
4605 struct blk_mq_qe_pair *qe;
4607 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4611 /* q->elevator needs protection from ->sysfs_lock */
4612 mutex_lock(&q->sysfs_lock);
4614 /* the check has to be done with holding sysfs_lock */
4620 INIT_LIST_HEAD(&qe->node);
4622 qe->type = q->elevator->type;
4623 /* keep a reference to the elevator module as we'll switch back */
4624 __elevator_get(qe->type);
4625 list_add(&qe->node, head);
4626 elevator_disable(q);
4628 mutex_unlock(&q->sysfs_lock);
4633 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4634 struct request_queue *q)
4636 struct blk_mq_qe_pair *qe;
4638 list_for_each_entry(qe, head, node)
4645 static void blk_mq_elv_switch_back(struct list_head *head,
4646 struct request_queue *q)
4648 struct blk_mq_qe_pair *qe;
4649 struct elevator_type *t;
4651 qe = blk_lookup_qe_pair(head, q);
4655 list_del(&qe->node);
4658 mutex_lock(&q->sysfs_lock);
4659 elevator_switch(q, t);
4660 /* drop the reference acquired in blk_mq_elv_switch_none */
4662 mutex_unlock(&q->sysfs_lock);
4665 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4668 struct request_queue *q;
4670 int prev_nr_hw_queues;
4672 lockdep_assert_held(&set->tag_list_lock);
4674 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4675 nr_hw_queues = nr_cpu_ids;
4676 if (nr_hw_queues < 1)
4678 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4681 list_for_each_entry(q, &set->tag_list, tag_set_list)
4682 blk_mq_freeze_queue(q);
4684 * Switch IO scheduler to 'none', cleaning up the data associated
4685 * with the previous scheduler. We will switch back once we are done
4686 * updating the new sw to hw queue mappings.
4688 list_for_each_entry(q, &set->tag_list, tag_set_list)
4689 if (!blk_mq_elv_switch_none(&head, q))
4692 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4693 blk_mq_debugfs_unregister_hctxs(q);
4694 blk_mq_sysfs_unregister_hctxs(q);
4697 prev_nr_hw_queues = set->nr_hw_queues;
4698 if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4702 blk_mq_update_queue_map(set);
4703 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4704 blk_mq_realloc_hw_ctxs(set, q);
4705 blk_mq_update_poll_flag(q);
4706 if (q->nr_hw_queues != set->nr_hw_queues) {
4707 int i = prev_nr_hw_queues;
4709 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4710 nr_hw_queues, prev_nr_hw_queues);
4711 for (; i < set->nr_hw_queues; i++)
4712 __blk_mq_free_map_and_rqs(set, i);
4714 set->nr_hw_queues = prev_nr_hw_queues;
4715 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4718 blk_mq_map_swqueue(q);
4722 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4723 blk_mq_sysfs_register_hctxs(q);
4724 blk_mq_debugfs_register_hctxs(q);
4728 list_for_each_entry(q, &set->tag_list, tag_set_list)
4729 blk_mq_elv_switch_back(&head, q);
4731 list_for_each_entry(q, &set->tag_list, tag_set_list)
4732 blk_mq_unfreeze_queue(q);
4735 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4737 mutex_lock(&set->tag_list_lock);
4738 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4739 mutex_unlock(&set->tag_list_lock);
4741 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4743 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
4744 struct io_comp_batch *iob, unsigned int flags)
4746 long state = get_current_state();
4750 ret = q->mq_ops->poll(hctx, iob);
4752 __set_current_state(TASK_RUNNING);
4756 if (signal_pending_state(state, current))
4757 __set_current_state(TASK_RUNNING);
4758 if (task_is_running(current))
4761 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4764 } while (!need_resched());
4766 __set_current_state(TASK_RUNNING);
4770 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
4771 struct io_comp_batch *iob, unsigned int flags)
4773 struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie);
4775 return blk_hctx_poll(q, hctx, iob, flags);
4778 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
4779 unsigned int poll_flags)
4781 struct request_queue *q = rq->q;
4784 if (!blk_rq_is_poll(rq))
4786 if (!percpu_ref_tryget(&q->q_usage_counter))
4789 ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
4794 EXPORT_SYMBOL_GPL(blk_rq_poll);
4796 unsigned int blk_mq_rq_cpu(struct request *rq)
4798 return rq->mq_ctx->cpu;
4800 EXPORT_SYMBOL(blk_mq_rq_cpu);
4802 void blk_mq_cancel_work_sync(struct request_queue *q)
4804 struct blk_mq_hw_ctx *hctx;
4807 cancel_delayed_work_sync(&q->requeue_work);
4809 queue_for_each_hw_ctx(q, hctx, i)
4810 cancel_delayed_work_sync(&hctx->run_work);
4813 static int __init blk_mq_init(void)
4817 for_each_possible_cpu(i)
4818 init_llist_head(&per_cpu(blk_cpu_done, i));
4819 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4821 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4822 "block/softirq:dead", NULL,
4823 blk_softirq_cpu_dead);
4824 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4825 blk_mq_hctx_notify_dead);
4826 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4827 blk_mq_hctx_notify_online,
4828 blk_mq_hctx_notify_offline);
4831 subsys_initcall(blk_mq_init);