1 // SPDX-License-Identifier: GPL-2.0
3 * Block multiqueue core code
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
33 #include <trace/events/block.h>
35 #include <linux/blk-mq.h>
36 #include <linux/t10-pi.h>
39 #include "blk-mq-debugfs.h"
40 #include "blk-mq-tag.h"
43 #include "blk-mq-sched.h"
44 #include "blk-rq-qos.h"
45 #include "blk-ioprio.h"
47 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
49 static void blk_mq_poll_stats_start(struct request_queue *q);
50 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
52 static int blk_mq_poll_stats_bkt(const struct request *rq)
54 int ddir, sectors, bucket;
56 ddir = rq_data_dir(rq);
57 sectors = blk_rq_stats_sectors(rq);
59 bucket = ddir + 2 * ilog2(sectors);
63 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
64 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
69 #define BLK_QC_T_SHIFT 16
70 #define BLK_QC_T_INTERNAL (1U << 31)
72 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
75 return xa_load(&q->hctx_table,
76 (qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT);
79 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
82 unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
84 if (qc & BLK_QC_T_INTERNAL)
85 return blk_mq_tag_to_rq(hctx->sched_tags, tag);
86 return blk_mq_tag_to_rq(hctx->tags, tag);
89 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
91 return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
93 rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
97 * Check if any of the ctx, dispatch list or elevator
98 * have pending work in this hardware queue.
100 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
102 return !list_empty_careful(&hctx->dispatch) ||
103 sbitmap_any_bit_set(&hctx->ctx_map) ||
104 blk_mq_sched_has_work(hctx);
108 * Mark this ctx as having pending work in this hardware queue
110 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
111 struct blk_mq_ctx *ctx)
113 const int bit = ctx->index_hw[hctx->type];
115 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
116 sbitmap_set_bit(&hctx->ctx_map, bit);
119 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
120 struct blk_mq_ctx *ctx)
122 const int bit = ctx->index_hw[hctx->type];
124 sbitmap_clear_bit(&hctx->ctx_map, bit);
128 struct block_device *part;
129 unsigned int inflight[2];
132 static bool blk_mq_check_inflight(struct request *rq, void *priv)
134 struct mq_inflight *mi = priv;
136 if (rq->part && blk_do_io_stat(rq) &&
137 (!mi->part->bd_partno || rq->part == mi->part) &&
138 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
139 mi->inflight[rq_data_dir(rq)]++;
144 unsigned int blk_mq_in_flight(struct request_queue *q,
145 struct block_device *part)
147 struct mq_inflight mi = { .part = part };
149 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
151 return mi.inflight[0] + mi.inflight[1];
154 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
155 unsigned int inflight[2])
157 struct mq_inflight mi = { .part = part };
159 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
160 inflight[0] = mi.inflight[0];
161 inflight[1] = mi.inflight[1];
164 void blk_freeze_queue_start(struct request_queue *q)
166 mutex_lock(&q->mq_freeze_lock);
167 if (++q->mq_freeze_depth == 1) {
168 percpu_ref_kill(&q->q_usage_counter);
169 mutex_unlock(&q->mq_freeze_lock);
171 blk_mq_run_hw_queues(q, false);
173 mutex_unlock(&q->mq_freeze_lock);
176 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
178 void blk_mq_freeze_queue_wait(struct request_queue *q)
180 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
182 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
184 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
185 unsigned long timeout)
187 return wait_event_timeout(q->mq_freeze_wq,
188 percpu_ref_is_zero(&q->q_usage_counter),
191 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
194 * Guarantee no request is in use, so we can change any data structure of
195 * the queue afterward.
197 void blk_freeze_queue(struct request_queue *q)
200 * In the !blk_mq case we are only calling this to kill the
201 * q_usage_counter, otherwise this increases the freeze depth
202 * and waits for it to return to zero. For this reason there is
203 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
204 * exported to drivers as the only user for unfreeze is blk_mq.
206 blk_freeze_queue_start(q);
207 blk_mq_freeze_queue_wait(q);
210 void blk_mq_freeze_queue(struct request_queue *q)
213 * ...just an alias to keep freeze and unfreeze actions balanced
214 * in the blk_mq_* namespace
218 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
220 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
222 mutex_lock(&q->mq_freeze_lock);
224 q->q_usage_counter.data->force_atomic = true;
225 q->mq_freeze_depth--;
226 WARN_ON_ONCE(q->mq_freeze_depth < 0);
227 if (!q->mq_freeze_depth) {
228 percpu_ref_resurrect(&q->q_usage_counter);
229 wake_up_all(&q->mq_freeze_wq);
231 mutex_unlock(&q->mq_freeze_lock);
234 void blk_mq_unfreeze_queue(struct request_queue *q)
236 __blk_mq_unfreeze_queue(q, false);
238 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
241 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
242 * mpt3sas driver such that this function can be removed.
244 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
248 spin_lock_irqsave(&q->queue_lock, flags);
249 if (!q->quiesce_depth++)
250 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
251 spin_unlock_irqrestore(&q->queue_lock, flags);
253 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
256 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
257 * @set: tag_set to wait on
259 * Note: it is driver's responsibility for making sure that quiesce has
260 * been started on or more of the request_queues of the tag_set. This
261 * function only waits for the quiesce on those request_queues that had
262 * the quiesce flag set using blk_mq_quiesce_queue_nowait.
264 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
266 if (set->flags & BLK_MQ_F_BLOCKING)
267 synchronize_srcu(set->srcu);
271 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
274 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
277 * Note: this function does not prevent that the struct request end_io()
278 * callback function is invoked. Once this function is returned, we make
279 * sure no dispatch can happen until the queue is unquiesced via
280 * blk_mq_unquiesce_queue().
282 void blk_mq_quiesce_queue(struct request_queue *q)
284 blk_mq_quiesce_queue_nowait(q);
285 /* nothing to wait for non-mq queues */
287 blk_mq_wait_quiesce_done(q->tag_set);
289 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
292 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
295 * This function recovers queue into the state before quiescing
296 * which is done by blk_mq_quiesce_queue.
298 void blk_mq_unquiesce_queue(struct request_queue *q)
301 bool run_queue = false;
303 spin_lock_irqsave(&q->queue_lock, flags);
304 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
306 } else if (!--q->quiesce_depth) {
307 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
310 spin_unlock_irqrestore(&q->queue_lock, flags);
312 /* dispatch requests which are inserted during quiescing */
314 blk_mq_run_hw_queues(q, true);
316 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
318 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
320 struct request_queue *q;
322 mutex_lock(&set->tag_list_lock);
323 list_for_each_entry(q, &set->tag_list, tag_set_list) {
324 if (!blk_queue_skip_tagset_quiesce(q))
325 blk_mq_quiesce_queue_nowait(q);
327 blk_mq_wait_quiesce_done(set);
328 mutex_unlock(&set->tag_list_lock);
330 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
332 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
334 struct request_queue *q;
336 mutex_lock(&set->tag_list_lock);
337 list_for_each_entry(q, &set->tag_list, tag_set_list) {
338 if (!blk_queue_skip_tagset_quiesce(q))
339 blk_mq_unquiesce_queue(q);
341 mutex_unlock(&set->tag_list_lock);
343 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
345 void blk_mq_wake_waiters(struct request_queue *q)
347 struct blk_mq_hw_ctx *hctx;
350 queue_for_each_hw_ctx(q, hctx, i)
351 if (blk_mq_hw_queue_mapped(hctx))
352 blk_mq_tag_wakeup_all(hctx->tags, true);
355 void blk_rq_init(struct request_queue *q, struct request *rq)
357 memset(rq, 0, sizeof(*rq));
359 INIT_LIST_HEAD(&rq->queuelist);
361 rq->__sector = (sector_t) -1;
362 INIT_HLIST_NODE(&rq->hash);
363 RB_CLEAR_NODE(&rq->rb_node);
364 rq->tag = BLK_MQ_NO_TAG;
365 rq->internal_tag = BLK_MQ_NO_TAG;
366 rq->start_time_ns = ktime_get_ns();
368 blk_crypto_rq_set_defaults(rq);
370 EXPORT_SYMBOL(blk_rq_init);
372 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
373 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
375 struct blk_mq_ctx *ctx = data->ctx;
376 struct blk_mq_hw_ctx *hctx = data->hctx;
377 struct request_queue *q = data->q;
378 struct request *rq = tags->static_rqs[tag];
383 rq->cmd_flags = data->cmd_flags;
385 if (data->flags & BLK_MQ_REQ_PM)
386 data->rq_flags |= RQF_PM;
387 if (blk_queue_io_stat(q))
388 data->rq_flags |= RQF_IO_STAT;
389 rq->rq_flags = data->rq_flags;
391 if (!(data->rq_flags & RQF_ELV)) {
393 rq->internal_tag = BLK_MQ_NO_TAG;
395 rq->tag = BLK_MQ_NO_TAG;
396 rq->internal_tag = tag;
400 if (blk_mq_need_time_stamp(rq))
401 rq->start_time_ns = ktime_get_ns();
403 rq->start_time_ns = 0;
405 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
406 rq->alloc_time_ns = alloc_time_ns;
408 rq->io_start_time_ns = 0;
409 rq->stats_sectors = 0;
410 rq->nr_phys_segments = 0;
411 #if defined(CONFIG_BLK_DEV_INTEGRITY)
412 rq->nr_integrity_segments = 0;
415 rq->end_io_data = NULL;
417 blk_crypto_rq_set_defaults(rq);
418 INIT_LIST_HEAD(&rq->queuelist);
419 /* tag was already set */
420 WRITE_ONCE(rq->deadline, 0);
423 if (rq->rq_flags & RQF_ELV) {
424 struct elevator_queue *e = data->q->elevator;
426 INIT_HLIST_NODE(&rq->hash);
427 RB_CLEAR_NODE(&rq->rb_node);
429 if (!op_is_flush(data->cmd_flags) &&
430 e->type->ops.prepare_request) {
431 e->type->ops.prepare_request(rq);
432 rq->rq_flags |= RQF_ELVPRIV;
439 static inline struct request *
440 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
443 unsigned int tag, tag_offset;
444 struct blk_mq_tags *tags;
446 unsigned long tag_mask;
449 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
450 if (unlikely(!tag_mask))
453 tags = blk_mq_tags_from_data(data);
454 for (i = 0; tag_mask; i++) {
455 if (!(tag_mask & (1UL << i)))
457 tag = tag_offset + i;
458 prefetch(tags->static_rqs[tag]);
459 tag_mask &= ~(1UL << i);
460 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
461 rq_list_add(data->cached_rq, rq);
464 /* caller already holds a reference, add for remainder */
465 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
468 return rq_list_pop(data->cached_rq);
471 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
473 struct request_queue *q = data->q;
474 u64 alloc_time_ns = 0;
478 /* alloc_time includes depth and tag waits */
479 if (blk_queue_rq_alloc_time(q))
480 alloc_time_ns = ktime_get_ns();
482 if (data->cmd_flags & REQ_NOWAIT)
483 data->flags |= BLK_MQ_REQ_NOWAIT;
486 struct elevator_queue *e = q->elevator;
488 data->rq_flags |= RQF_ELV;
491 * Flush/passthrough requests are special and go directly to the
492 * dispatch list. Don't include reserved tags in the
493 * limiting, as it isn't useful.
495 if (!op_is_flush(data->cmd_flags) &&
496 !blk_op_is_passthrough(data->cmd_flags) &&
497 e->type->ops.limit_depth &&
498 !(data->flags & BLK_MQ_REQ_RESERVED))
499 e->type->ops.limit_depth(data->cmd_flags, data);
503 data->ctx = blk_mq_get_ctx(q);
504 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
505 if (!(data->rq_flags & RQF_ELV))
506 blk_mq_tag_busy(data->hctx);
508 if (data->flags & BLK_MQ_REQ_RESERVED)
509 data->rq_flags |= RQF_RESV;
512 * Try batched alloc if we want more than 1 tag.
514 if (data->nr_tags > 1) {
515 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
522 * Waiting allocations only fail because of an inactive hctx. In that
523 * case just retry the hctx assignment and tag allocation as CPU hotplug
524 * should have migrated us to an online CPU by now.
526 tag = blk_mq_get_tag(data);
527 if (tag == BLK_MQ_NO_TAG) {
528 if (data->flags & BLK_MQ_REQ_NOWAIT)
531 * Give up the CPU and sleep for a random short time to
532 * ensure that thread using a realtime scheduling class
533 * are migrated off the CPU, and thus off the hctx that
540 return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
544 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
545 struct blk_plug *plug,
547 blk_mq_req_flags_t flags)
549 struct blk_mq_alloc_data data = {
553 .nr_tags = plug->nr_ios,
554 .cached_rq = &plug->cached_rq,
558 if (blk_queue_enter(q, flags))
563 rq = __blk_mq_alloc_requests(&data);
569 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
571 blk_mq_req_flags_t flags)
573 struct blk_plug *plug = current->plug;
579 if (rq_list_empty(plug->cached_rq)) {
580 if (plug->nr_ios == 1)
582 rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
586 rq = rq_list_peek(&plug->cached_rq);
587 if (!rq || rq->q != q)
590 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
592 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
595 plug->cached_rq = rq_list_next(rq);
599 INIT_LIST_HEAD(&rq->queuelist);
603 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
604 blk_mq_req_flags_t flags)
608 rq = blk_mq_alloc_cached_request(q, opf, flags);
610 struct blk_mq_alloc_data data = {
618 ret = blk_queue_enter(q, flags);
622 rq = __blk_mq_alloc_requests(&data);
627 rq->__sector = (sector_t) -1;
628 rq->bio = rq->biotail = NULL;
632 return ERR_PTR(-EWOULDBLOCK);
634 EXPORT_SYMBOL(blk_mq_alloc_request);
636 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
637 blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
639 struct blk_mq_alloc_data data = {
645 u64 alloc_time_ns = 0;
651 /* alloc_time includes depth and tag waits */
652 if (blk_queue_rq_alloc_time(q))
653 alloc_time_ns = ktime_get_ns();
656 * If the tag allocator sleeps we could get an allocation for a
657 * different hardware context. No need to complicate the low level
658 * allocator for this for the rare use case of a command tied to
661 if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
662 return ERR_PTR(-EINVAL);
664 if (hctx_idx >= q->nr_hw_queues)
665 return ERR_PTR(-EIO);
667 ret = blk_queue_enter(q, flags);
672 * Check if the hardware context is actually mapped to anything.
673 * If not tell the caller that it should skip this queue.
676 data.hctx = xa_load(&q->hctx_table, hctx_idx);
677 if (!blk_mq_hw_queue_mapped(data.hctx))
679 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
680 if (cpu >= nr_cpu_ids)
682 data.ctx = __blk_mq_get_ctx(q, cpu);
685 blk_mq_tag_busy(data.hctx);
687 data.rq_flags |= RQF_ELV;
689 if (flags & BLK_MQ_REQ_RESERVED)
690 data.rq_flags |= RQF_RESV;
693 tag = blk_mq_get_tag(&data);
694 if (tag == BLK_MQ_NO_TAG)
696 rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
699 rq->__sector = (sector_t) -1;
700 rq->bio = rq->biotail = NULL;
707 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
709 static void __blk_mq_free_request(struct request *rq)
711 struct request_queue *q = rq->q;
712 struct blk_mq_ctx *ctx = rq->mq_ctx;
713 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
714 const int sched_tag = rq->internal_tag;
716 blk_crypto_free_request(rq);
717 blk_pm_mark_last_busy(rq);
719 if (rq->tag != BLK_MQ_NO_TAG)
720 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
721 if (sched_tag != BLK_MQ_NO_TAG)
722 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
723 blk_mq_sched_restart(hctx);
727 void blk_mq_free_request(struct request *rq)
729 struct request_queue *q = rq->q;
730 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
732 if ((rq->rq_flags & RQF_ELVPRIV) &&
733 q->elevator->type->ops.finish_request)
734 q->elevator->type->ops.finish_request(rq);
736 if (rq->rq_flags & RQF_MQ_INFLIGHT)
737 __blk_mq_dec_active_requests(hctx);
739 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
740 laptop_io_completion(q->disk->bdi);
744 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
745 if (req_ref_put_and_test(rq))
746 __blk_mq_free_request(rq);
748 EXPORT_SYMBOL_GPL(blk_mq_free_request);
750 void blk_mq_free_plug_rqs(struct blk_plug *plug)
754 while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
755 blk_mq_free_request(rq);
758 void blk_dump_rq_flags(struct request *rq, char *msg)
760 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
761 rq->q->disk ? rq->q->disk->disk_name : "?",
762 (__force unsigned long long) rq->cmd_flags);
764 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
765 (unsigned long long)blk_rq_pos(rq),
766 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
767 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
768 rq->bio, rq->biotail, blk_rq_bytes(rq));
770 EXPORT_SYMBOL(blk_dump_rq_flags);
772 static void req_bio_endio(struct request *rq, struct bio *bio,
773 unsigned int nbytes, blk_status_t error)
775 if (unlikely(error)) {
776 bio->bi_status = error;
777 } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
779 * Partial zone append completions cannot be supported as the
780 * BIO fragments may end up not being written sequentially.
782 if (bio->bi_iter.bi_size != nbytes)
783 bio->bi_status = BLK_STS_IOERR;
785 bio->bi_iter.bi_sector = rq->__sector;
788 bio_advance(bio, nbytes);
790 if (unlikely(rq->rq_flags & RQF_QUIET))
791 bio_set_flag(bio, BIO_QUIET);
792 /* don't actually finish bio if it's part of flush sequence */
793 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
797 static void blk_account_io_completion(struct request *req, unsigned int bytes)
799 if (req->part && blk_do_io_stat(req)) {
800 const int sgrp = op_stat_group(req_op(req));
803 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
808 static void blk_print_req_error(struct request *req, blk_status_t status)
810 printk_ratelimited(KERN_ERR
811 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
812 "phys_seg %u prio class %u\n",
813 blk_status_to_str(status),
814 req->q->disk ? req->q->disk->disk_name : "?",
815 blk_rq_pos(req), (__force u32)req_op(req),
816 blk_op_str(req_op(req)),
817 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
818 req->nr_phys_segments,
819 IOPRIO_PRIO_CLASS(req->ioprio));
823 * Fully end IO on a request. Does not support partial completions, or
826 static void blk_complete_request(struct request *req)
828 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
829 int total_bytes = blk_rq_bytes(req);
830 struct bio *bio = req->bio;
832 trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
837 #ifdef CONFIG_BLK_DEV_INTEGRITY
838 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
839 req->q->integrity.profile->complete_fn(req, total_bytes);
842 blk_account_io_completion(req, total_bytes);
845 struct bio *next = bio->bi_next;
847 /* Completion has already been traced */
848 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
850 if (req_op(req) == REQ_OP_ZONE_APPEND)
851 bio->bi_iter.bi_sector = req->__sector;
859 * Reset counters so that the request stacking driver
860 * can find how many bytes remain in the request
870 * blk_update_request - Complete multiple bytes without completing the request
871 * @req: the request being processed
872 * @error: block status code
873 * @nr_bytes: number of bytes to complete for @req
876 * Ends I/O on a number of bytes attached to @req, but doesn't complete
877 * the request structure even if @req doesn't have leftover.
878 * If @req has leftover, sets it up for the next range of segments.
880 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
881 * %false return from this function.
884 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
885 * except in the consistency check at the end of this function.
888 * %false - this request doesn't have any more data
889 * %true - this request has more data
891 bool blk_update_request(struct request *req, blk_status_t error,
892 unsigned int nr_bytes)
896 trace_block_rq_complete(req, error, nr_bytes);
901 #ifdef CONFIG_BLK_DEV_INTEGRITY
902 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
904 req->q->integrity.profile->complete_fn(req, nr_bytes);
907 if (unlikely(error && !blk_rq_is_passthrough(req) &&
908 !(req->rq_flags & RQF_QUIET)) &&
909 !test_bit(GD_DEAD, &req->q->disk->state)) {
910 blk_print_req_error(req, error);
911 trace_block_rq_error(req, error, nr_bytes);
914 blk_account_io_completion(req, nr_bytes);
918 struct bio *bio = req->bio;
919 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
921 if (bio_bytes == bio->bi_iter.bi_size)
922 req->bio = bio->bi_next;
924 /* Completion has already been traced */
925 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
926 req_bio_endio(req, bio, bio_bytes, error);
928 total_bytes += bio_bytes;
929 nr_bytes -= bio_bytes;
940 * Reset counters so that the request stacking driver
941 * can find how many bytes remain in the request
948 req->__data_len -= total_bytes;
950 /* update sector only for requests with clear definition of sector */
951 if (!blk_rq_is_passthrough(req))
952 req->__sector += total_bytes >> 9;
954 /* mixed attributes always follow the first bio */
955 if (req->rq_flags & RQF_MIXED_MERGE) {
956 req->cmd_flags &= ~REQ_FAILFAST_MASK;
957 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
960 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
962 * If total number of sectors is less than the first segment
963 * size, something has gone terribly wrong.
965 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
966 blk_dump_rq_flags(req, "request botched");
967 req->__data_len = blk_rq_cur_bytes(req);
970 /* recalculate the number of segments */
971 req->nr_phys_segments = blk_recalc_rq_segments(req);
976 EXPORT_SYMBOL_GPL(blk_update_request);
978 static void __blk_account_io_done(struct request *req, u64 now)
980 const int sgrp = op_stat_group(req_op(req));
983 update_io_ticks(req->part, jiffies, true);
984 part_stat_inc(req->part, ios[sgrp]);
985 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
989 static inline void blk_account_io_done(struct request *req, u64 now)
992 * Account IO completion. flush_rq isn't accounted as a
993 * normal IO on queueing nor completion. Accounting the
994 * containing request is enough.
996 if (blk_do_io_stat(req) && req->part &&
997 !(req->rq_flags & RQF_FLUSH_SEQ))
998 __blk_account_io_done(req, now);
1001 static void __blk_account_io_start(struct request *rq)
1004 * All non-passthrough requests are created from a bio with one
1005 * exception: when a flush command that is part of a flush sequence
1006 * generated by the state machine in blk-flush.c is cloned onto the
1007 * lower device by dm-multipath we can get here without a bio.
1010 rq->part = rq->bio->bi_bdev;
1012 rq->part = rq->q->disk->part0;
1015 update_io_ticks(rq->part, jiffies, false);
1019 static inline void blk_account_io_start(struct request *req)
1021 if (blk_do_io_stat(req))
1022 __blk_account_io_start(req);
1025 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1027 if (rq->rq_flags & RQF_STATS) {
1028 blk_mq_poll_stats_start(rq->q);
1029 blk_stat_add(rq, now);
1032 blk_mq_sched_completed_request(rq, now);
1033 blk_account_io_done(rq, now);
1036 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1038 if (blk_mq_need_time_stamp(rq))
1039 __blk_mq_end_request_acct(rq, ktime_get_ns());
1042 rq_qos_done(rq->q, rq);
1043 if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1044 blk_mq_free_request(rq);
1046 blk_mq_free_request(rq);
1049 EXPORT_SYMBOL(__blk_mq_end_request);
1051 void blk_mq_end_request(struct request *rq, blk_status_t error)
1053 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1055 __blk_mq_end_request(rq, error);
1057 EXPORT_SYMBOL(blk_mq_end_request);
1059 #define TAG_COMP_BATCH 32
1061 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1062 int *tag_array, int nr_tags)
1064 struct request_queue *q = hctx->queue;
1067 * All requests should have been marked as RQF_MQ_INFLIGHT, so
1068 * update hctx->nr_active in batch
1070 if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
1071 __blk_mq_sub_active_requests(hctx, nr_tags);
1073 blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1074 percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1077 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1079 int tags[TAG_COMP_BATCH], nr_tags = 0;
1080 struct blk_mq_hw_ctx *cur_hctx = NULL;
1085 now = ktime_get_ns();
1087 while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1089 prefetch(rq->rq_next);
1091 blk_complete_request(rq);
1093 __blk_mq_end_request_acct(rq, now);
1095 rq_qos_done(rq->q, rq);
1098 * If end_io handler returns NONE, then it still has
1099 * ownership of the request.
1101 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1104 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1105 if (!req_ref_put_and_test(rq))
1108 blk_crypto_free_request(rq);
1109 blk_pm_mark_last_busy(rq);
1111 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1113 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1115 cur_hctx = rq->mq_hctx;
1117 tags[nr_tags++] = rq->tag;
1121 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1123 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1125 static void blk_complete_reqs(struct llist_head *list)
1127 struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1128 struct request *rq, *next;
1130 llist_for_each_entry_safe(rq, next, entry, ipi_list)
1131 rq->q->mq_ops->complete(rq);
1134 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1136 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1139 static int blk_softirq_cpu_dead(unsigned int cpu)
1141 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1145 static void __blk_mq_complete_request_remote(void *data)
1147 __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1150 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1152 int cpu = raw_smp_processor_id();
1154 if (!IS_ENABLED(CONFIG_SMP) ||
1155 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1158 * With force threaded interrupts enabled, raising softirq from an SMP
1159 * function call will always result in waking the ksoftirqd thread.
1160 * This is probably worse than completing the request on a different
1163 if (force_irqthreads())
1166 /* same CPU or cache domain? Complete locally */
1167 if (cpu == rq->mq_ctx->cpu ||
1168 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1169 cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1172 /* don't try to IPI to an offline CPU */
1173 return cpu_online(rq->mq_ctx->cpu);
1176 static void blk_mq_complete_send_ipi(struct request *rq)
1178 struct llist_head *list;
1181 cpu = rq->mq_ctx->cpu;
1182 list = &per_cpu(blk_cpu_done, cpu);
1183 if (llist_add(&rq->ipi_list, list)) {
1184 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1185 smp_call_function_single_async(cpu, &rq->csd);
1189 static void blk_mq_raise_softirq(struct request *rq)
1191 struct llist_head *list;
1194 list = this_cpu_ptr(&blk_cpu_done);
1195 if (llist_add(&rq->ipi_list, list))
1196 raise_softirq(BLOCK_SOFTIRQ);
1200 bool blk_mq_complete_request_remote(struct request *rq)
1202 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1205 * For request which hctx has only one ctx mapping,
1206 * or a polled request, always complete locally,
1207 * it's pointless to redirect the completion.
1209 if (rq->mq_hctx->nr_ctx == 1 ||
1210 rq->cmd_flags & REQ_POLLED)
1213 if (blk_mq_complete_need_ipi(rq)) {
1214 blk_mq_complete_send_ipi(rq);
1218 if (rq->q->nr_hw_queues == 1) {
1219 blk_mq_raise_softirq(rq);
1224 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1227 * blk_mq_complete_request - end I/O on a request
1228 * @rq: the request being processed
1231 * Complete a request by scheduling the ->complete_rq operation.
1233 void blk_mq_complete_request(struct request *rq)
1235 if (!blk_mq_complete_request_remote(rq))
1236 rq->q->mq_ops->complete(rq);
1238 EXPORT_SYMBOL(blk_mq_complete_request);
1241 * blk_mq_start_request - Start processing a request
1242 * @rq: Pointer to request to be started
1244 * Function used by device drivers to notify the block layer that a request
1245 * is going to be processed now, so blk layer can do proper initializations
1246 * such as starting the timeout timer.
1248 void blk_mq_start_request(struct request *rq)
1250 struct request_queue *q = rq->q;
1252 trace_block_rq_issue(rq);
1254 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1255 rq->io_start_time_ns = ktime_get_ns();
1256 rq->stats_sectors = blk_rq_sectors(rq);
1257 rq->rq_flags |= RQF_STATS;
1258 rq_qos_issue(q, rq);
1261 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1264 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1266 #ifdef CONFIG_BLK_DEV_INTEGRITY
1267 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1268 q->integrity.profile->prepare_fn(rq);
1270 if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1271 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1273 EXPORT_SYMBOL(blk_mq_start_request);
1276 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1277 * queues. This is important for md arrays to benefit from merging
1280 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1282 if (plug->multiple_queues)
1283 return BLK_MAX_REQUEST_COUNT * 2;
1284 return BLK_MAX_REQUEST_COUNT;
1287 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1289 struct request *last = rq_list_peek(&plug->mq_list);
1291 if (!plug->rq_count) {
1292 trace_block_plug(rq->q);
1293 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1294 (!blk_queue_nomerges(rq->q) &&
1295 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1296 blk_mq_flush_plug_list(plug, false);
1298 trace_block_plug(rq->q);
1301 if (!plug->multiple_queues && last && last->q != rq->q)
1302 plug->multiple_queues = true;
1303 if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
1304 plug->has_elevator = true;
1306 rq_list_add(&plug->mq_list, rq);
1311 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1312 * @rq: request to insert
1313 * @at_head: insert request at head or tail of queue
1316 * Insert a fully prepared request at the back of the I/O scheduler queue
1317 * for execution. Don't wait for completion.
1320 * This function will invoke @done directly if the queue is dead.
1322 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1324 WARN_ON(irqs_disabled());
1325 WARN_ON(!blk_rq_is_passthrough(rq));
1327 blk_account_io_start(rq);
1330 * As plugging can be enabled for passthrough requests on a zoned
1331 * device, directly accessing the plug instead of using blk_mq_plug()
1332 * should not have any consequences.
1335 blk_add_rq_to_plug(current->plug, rq);
1337 blk_mq_sched_insert_request(rq, at_head, true, false);
1339 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1341 struct blk_rq_wait {
1342 struct completion done;
1346 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1348 struct blk_rq_wait *wait = rq->end_io_data;
1351 complete(&wait->done);
1352 return RQ_END_IO_NONE;
1355 bool blk_rq_is_poll(struct request *rq)
1359 if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1361 if (WARN_ON_ONCE(!rq->bio))
1365 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1367 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1370 bio_poll(rq->bio, NULL, 0);
1372 } while (!completion_done(wait));
1376 * blk_execute_rq - insert a request into queue for execution
1377 * @rq: request to insert
1378 * @at_head: insert request at head or tail of queue
1381 * Insert a fully prepared request at the back of the I/O scheduler queue
1382 * for execution and wait for completion.
1383 * Return: The blk_status_t result provided to blk_mq_end_request().
1385 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1387 struct blk_rq_wait wait = {
1388 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1391 WARN_ON(irqs_disabled());
1392 WARN_ON(!blk_rq_is_passthrough(rq));
1394 rq->end_io_data = &wait;
1395 rq->end_io = blk_end_sync_rq;
1397 blk_account_io_start(rq);
1398 blk_mq_sched_insert_request(rq, at_head, true, false);
1400 if (blk_rq_is_poll(rq)) {
1401 blk_rq_poll_completion(rq, &wait.done);
1404 * Prevent hang_check timer from firing at us during very long
1407 unsigned long hang_check = sysctl_hung_task_timeout_secs;
1410 while (!wait_for_completion_io_timeout(&wait.done,
1411 hang_check * (HZ/2)))
1414 wait_for_completion_io(&wait.done);
1419 EXPORT_SYMBOL(blk_execute_rq);
1421 static void __blk_mq_requeue_request(struct request *rq)
1423 struct request_queue *q = rq->q;
1425 blk_mq_put_driver_tag(rq);
1427 trace_block_rq_requeue(rq);
1428 rq_qos_requeue(q, rq);
1430 if (blk_mq_request_started(rq)) {
1431 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1432 rq->rq_flags &= ~RQF_TIMED_OUT;
1436 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1438 __blk_mq_requeue_request(rq);
1440 /* this request will be re-inserted to io scheduler queue */
1441 blk_mq_sched_requeue_request(rq);
1443 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1445 EXPORT_SYMBOL(blk_mq_requeue_request);
1447 static void blk_mq_requeue_work(struct work_struct *work)
1449 struct request_queue *q =
1450 container_of(work, struct request_queue, requeue_work.work);
1452 struct request *rq, *next;
1454 spin_lock_irq(&q->requeue_lock);
1455 list_splice_init(&q->requeue_list, &rq_list);
1456 spin_unlock_irq(&q->requeue_lock);
1458 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1459 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1462 rq->rq_flags &= ~RQF_SOFTBARRIER;
1463 list_del_init(&rq->queuelist);
1465 * If RQF_DONTPREP, rq has contained some driver specific
1466 * data, so insert it to hctx dispatch list to avoid any
1469 if (rq->rq_flags & RQF_DONTPREP)
1470 blk_mq_request_bypass_insert(rq, false, false);
1472 blk_mq_sched_insert_request(rq, true, false, false);
1475 while (!list_empty(&rq_list)) {
1476 rq = list_entry(rq_list.next, struct request, queuelist);
1477 list_del_init(&rq->queuelist);
1478 blk_mq_sched_insert_request(rq, false, false, false);
1481 blk_mq_run_hw_queues(q, false);
1484 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1485 bool kick_requeue_list)
1487 struct request_queue *q = rq->q;
1488 unsigned long flags;
1491 * We abuse this flag that is otherwise used by the I/O scheduler to
1492 * request head insertion from the workqueue.
1494 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1496 spin_lock_irqsave(&q->requeue_lock, flags);
1498 rq->rq_flags |= RQF_SOFTBARRIER;
1499 list_add(&rq->queuelist, &q->requeue_list);
1501 list_add_tail(&rq->queuelist, &q->requeue_list);
1503 spin_unlock_irqrestore(&q->requeue_lock, flags);
1505 if (kick_requeue_list)
1506 blk_mq_kick_requeue_list(q);
1509 void blk_mq_kick_requeue_list(struct request_queue *q)
1511 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1513 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1515 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1516 unsigned long msecs)
1518 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1519 msecs_to_jiffies(msecs));
1521 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1523 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1526 * If we find a request that isn't idle we know the queue is busy
1527 * as it's checked in the iter.
1528 * Return false to stop the iteration.
1530 if (blk_mq_request_started(rq)) {
1540 bool blk_mq_queue_inflight(struct request_queue *q)
1544 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1547 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1549 static void blk_mq_rq_timed_out(struct request *req)
1551 req->rq_flags |= RQF_TIMED_OUT;
1552 if (req->q->mq_ops->timeout) {
1553 enum blk_eh_timer_return ret;
1555 ret = req->q->mq_ops->timeout(req);
1556 if (ret == BLK_EH_DONE)
1558 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1564 struct blk_expired_data {
1565 bool has_timedout_rq;
1567 unsigned long timeout_start;
1570 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1572 unsigned long deadline;
1574 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1576 if (rq->rq_flags & RQF_TIMED_OUT)
1579 deadline = READ_ONCE(rq->deadline);
1580 if (time_after_eq(expired->timeout_start, deadline))
1583 if (expired->next == 0)
1584 expired->next = deadline;
1585 else if (time_after(expired->next, deadline))
1586 expired->next = deadline;
1590 void blk_mq_put_rq_ref(struct request *rq)
1592 if (is_flush_rq(rq)) {
1593 if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1594 blk_mq_free_request(rq);
1595 } else if (req_ref_put_and_test(rq)) {
1596 __blk_mq_free_request(rq);
1600 static bool blk_mq_check_expired(struct request *rq, void *priv)
1602 struct blk_expired_data *expired = priv;
1605 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1606 * be reallocated underneath the timeout handler's processing, then
1607 * the expire check is reliable. If the request is not expired, then
1608 * it was completed and reallocated as a new request after returning
1609 * from blk_mq_check_expired().
1611 if (blk_mq_req_expired(rq, expired)) {
1612 expired->has_timedout_rq = true;
1618 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1620 struct blk_expired_data *expired = priv;
1622 if (blk_mq_req_expired(rq, expired))
1623 blk_mq_rq_timed_out(rq);
1627 static void blk_mq_timeout_work(struct work_struct *work)
1629 struct request_queue *q =
1630 container_of(work, struct request_queue, timeout_work);
1631 struct blk_expired_data expired = {
1632 .timeout_start = jiffies,
1634 struct blk_mq_hw_ctx *hctx;
1637 /* A deadlock might occur if a request is stuck requiring a
1638 * timeout at the same time a queue freeze is waiting
1639 * completion, since the timeout code would not be able to
1640 * acquire the queue reference here.
1642 * That's why we don't use blk_queue_enter here; instead, we use
1643 * percpu_ref_tryget directly, because we need to be able to
1644 * obtain a reference even in the short window between the queue
1645 * starting to freeze, by dropping the first reference in
1646 * blk_freeze_queue_start, and the moment the last request is
1647 * consumed, marked by the instant q_usage_counter reaches
1650 if (!percpu_ref_tryget(&q->q_usage_counter))
1653 /* check if there is any timed-out request */
1654 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1655 if (expired.has_timedout_rq) {
1657 * Before walking tags, we must ensure any submit started
1658 * before the current time has finished. Since the submit
1659 * uses srcu or rcu, wait for a synchronization point to
1660 * ensure all running submits have finished
1662 blk_mq_wait_quiesce_done(q->tag_set);
1665 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1668 if (expired.next != 0) {
1669 mod_timer(&q->timeout, expired.next);
1672 * Request timeouts are handled as a forward rolling timer. If
1673 * we end up here it means that no requests are pending and
1674 * also that no request has been pending for a while. Mark
1675 * each hctx as idle.
1677 queue_for_each_hw_ctx(q, hctx, i) {
1678 /* the hctx may be unmapped, so check it here */
1679 if (blk_mq_hw_queue_mapped(hctx))
1680 blk_mq_tag_idle(hctx);
1686 struct flush_busy_ctx_data {
1687 struct blk_mq_hw_ctx *hctx;
1688 struct list_head *list;
1691 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1693 struct flush_busy_ctx_data *flush_data = data;
1694 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1695 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1696 enum hctx_type type = hctx->type;
1698 spin_lock(&ctx->lock);
1699 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1700 sbitmap_clear_bit(sb, bitnr);
1701 spin_unlock(&ctx->lock);
1706 * Process software queues that have been marked busy, splicing them
1707 * to the for-dispatch
1709 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1711 struct flush_busy_ctx_data data = {
1716 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1718 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1720 struct dispatch_rq_data {
1721 struct blk_mq_hw_ctx *hctx;
1725 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1728 struct dispatch_rq_data *dispatch_data = data;
1729 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1730 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1731 enum hctx_type type = hctx->type;
1733 spin_lock(&ctx->lock);
1734 if (!list_empty(&ctx->rq_lists[type])) {
1735 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1736 list_del_init(&dispatch_data->rq->queuelist);
1737 if (list_empty(&ctx->rq_lists[type]))
1738 sbitmap_clear_bit(sb, bitnr);
1740 spin_unlock(&ctx->lock);
1742 return !dispatch_data->rq;
1745 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1746 struct blk_mq_ctx *start)
1748 unsigned off = start ? start->index_hw[hctx->type] : 0;
1749 struct dispatch_rq_data data = {
1754 __sbitmap_for_each_set(&hctx->ctx_map, off,
1755 dispatch_rq_from_ctx, &data);
1760 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1762 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1763 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1766 blk_mq_tag_busy(rq->mq_hctx);
1768 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1769 bt = &rq->mq_hctx->tags->breserved_tags;
1772 if (!hctx_may_queue(rq->mq_hctx, bt))
1776 tag = __sbitmap_queue_get(bt);
1777 if (tag == BLK_MQ_NO_TAG)
1780 rq->tag = tag + tag_offset;
1784 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1786 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1789 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1790 !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1791 rq->rq_flags |= RQF_MQ_INFLIGHT;
1792 __blk_mq_inc_active_requests(hctx);
1794 hctx->tags->rqs[rq->tag] = rq;
1798 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1799 int flags, void *key)
1801 struct blk_mq_hw_ctx *hctx;
1803 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1805 spin_lock(&hctx->dispatch_wait_lock);
1806 if (!list_empty(&wait->entry)) {
1807 struct sbitmap_queue *sbq;
1809 list_del_init(&wait->entry);
1810 sbq = &hctx->tags->bitmap_tags;
1811 atomic_dec(&sbq->ws_active);
1813 spin_unlock(&hctx->dispatch_wait_lock);
1815 blk_mq_run_hw_queue(hctx, true);
1820 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1821 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1822 * restart. For both cases, take care to check the condition again after
1823 * marking us as waiting.
1825 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1828 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1829 struct wait_queue_head *wq;
1830 wait_queue_entry_t *wait;
1833 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1834 blk_mq_sched_mark_restart_hctx(hctx);
1837 * It's possible that a tag was freed in the window between the
1838 * allocation failure and adding the hardware queue to the wait
1841 * Don't clear RESTART here, someone else could have set it.
1842 * At most this will cost an extra queue run.
1844 return blk_mq_get_driver_tag(rq);
1847 wait = &hctx->dispatch_wait;
1848 if (!list_empty_careful(&wait->entry))
1851 wq = &bt_wait_ptr(sbq, hctx)->wait;
1853 spin_lock_irq(&wq->lock);
1854 spin_lock(&hctx->dispatch_wait_lock);
1855 if (!list_empty(&wait->entry)) {
1856 spin_unlock(&hctx->dispatch_wait_lock);
1857 spin_unlock_irq(&wq->lock);
1861 atomic_inc(&sbq->ws_active);
1862 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1863 __add_wait_queue(wq, wait);
1866 * It's possible that a tag was freed in the window between the
1867 * allocation failure and adding the hardware queue to the wait
1870 ret = blk_mq_get_driver_tag(rq);
1872 spin_unlock(&hctx->dispatch_wait_lock);
1873 spin_unlock_irq(&wq->lock);
1878 * We got a tag, remove ourselves from the wait queue to ensure
1879 * someone else gets the wakeup.
1881 list_del_init(&wait->entry);
1882 atomic_dec(&sbq->ws_active);
1883 spin_unlock(&hctx->dispatch_wait_lock);
1884 spin_unlock_irq(&wq->lock);
1889 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1890 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1892 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1893 * - EWMA is one simple way to compute running average value
1894 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1895 * - take 4 as factor for avoiding to get too small(0) result, and this
1896 * factor doesn't matter because EWMA decreases exponentially
1898 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1902 ewma = hctx->dispatch_busy;
1907 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1909 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1910 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1912 hctx->dispatch_busy = ewma;
1915 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1917 static void blk_mq_handle_dev_resource(struct request *rq,
1918 struct list_head *list)
1920 struct request *next =
1921 list_first_entry_or_null(list, struct request, queuelist);
1924 * If an I/O scheduler has been configured and we got a driver tag for
1925 * the next request already, free it.
1928 blk_mq_put_driver_tag(next);
1930 list_add(&rq->queuelist, list);
1931 __blk_mq_requeue_request(rq);
1934 static void blk_mq_handle_zone_resource(struct request *rq,
1935 struct list_head *zone_list)
1938 * If we end up here it is because we cannot dispatch a request to a
1939 * specific zone due to LLD level zone-write locking or other zone
1940 * related resource not being available. In this case, set the request
1941 * aside in zone_list for retrying it later.
1943 list_add(&rq->queuelist, zone_list);
1944 __blk_mq_requeue_request(rq);
1947 enum prep_dispatch {
1949 PREP_DISPATCH_NO_TAG,
1950 PREP_DISPATCH_NO_BUDGET,
1953 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1956 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1957 int budget_token = -1;
1960 budget_token = blk_mq_get_dispatch_budget(rq->q);
1961 if (budget_token < 0) {
1962 blk_mq_put_driver_tag(rq);
1963 return PREP_DISPATCH_NO_BUDGET;
1965 blk_mq_set_rq_budget_token(rq, budget_token);
1968 if (!blk_mq_get_driver_tag(rq)) {
1970 * The initial allocation attempt failed, so we need to
1971 * rerun the hardware queue when a tag is freed. The
1972 * waitqueue takes care of that. If the queue is run
1973 * before we add this entry back on the dispatch list,
1974 * we'll re-run it below.
1976 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1978 * All budgets not got from this function will be put
1979 * together during handling partial dispatch
1982 blk_mq_put_dispatch_budget(rq->q, budget_token);
1983 return PREP_DISPATCH_NO_TAG;
1987 return PREP_DISPATCH_OK;
1990 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1991 static void blk_mq_release_budgets(struct request_queue *q,
1992 struct list_head *list)
1996 list_for_each_entry(rq, list, queuelist) {
1997 int budget_token = blk_mq_get_rq_budget_token(rq);
1999 if (budget_token >= 0)
2000 blk_mq_put_dispatch_budget(q, budget_token);
2005 * Returns true if we did some work AND can potentially do more.
2007 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2008 unsigned int nr_budgets)
2010 enum prep_dispatch prep;
2011 struct request_queue *q = hctx->queue;
2012 struct request *rq, *nxt;
2014 blk_status_t ret = BLK_STS_OK;
2015 LIST_HEAD(zone_list);
2016 bool needs_resource = false;
2018 if (list_empty(list))
2022 * Now process all the entries, sending them to the driver.
2024 errors = queued = 0;
2026 struct blk_mq_queue_data bd;
2028 rq = list_first_entry(list, struct request, queuelist);
2030 WARN_ON_ONCE(hctx != rq->mq_hctx);
2031 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2032 if (prep != PREP_DISPATCH_OK)
2035 list_del_init(&rq->queuelist);
2040 * Flag last if we have no more requests, or if we have more
2041 * but can't assign a driver tag to it.
2043 if (list_empty(list))
2046 nxt = list_first_entry(list, struct request, queuelist);
2047 bd.last = !blk_mq_get_driver_tag(nxt);
2051 * once the request is queued to lld, no need to cover the
2056 ret = q->mq_ops->queue_rq(hctx, &bd);
2061 case BLK_STS_RESOURCE:
2062 needs_resource = true;
2064 case BLK_STS_DEV_RESOURCE:
2065 blk_mq_handle_dev_resource(rq, list);
2067 case BLK_STS_ZONE_RESOURCE:
2069 * Move the request to zone_list and keep going through
2070 * the dispatch list to find more requests the drive can
2073 blk_mq_handle_zone_resource(rq, &zone_list);
2074 needs_resource = true;
2078 blk_mq_end_request(rq, ret);
2080 } while (!list_empty(list));
2082 if (!list_empty(&zone_list))
2083 list_splice_tail_init(&zone_list, list);
2085 /* If we didn't flush the entire list, we could have told the driver
2086 * there was more coming, but that turned out to be a lie.
2088 if ((!list_empty(list) || errors || needs_resource ||
2089 ret == BLK_STS_DEV_RESOURCE) && q->mq_ops->commit_rqs && queued)
2090 q->mq_ops->commit_rqs(hctx);
2092 * Any items that need requeuing? Stuff them into hctx->dispatch,
2093 * that is where we will continue on next queue run.
2095 if (!list_empty(list)) {
2097 /* For non-shared tags, the RESTART check will suffice */
2098 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2099 (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
2102 blk_mq_release_budgets(q, list);
2104 spin_lock(&hctx->lock);
2105 list_splice_tail_init(list, &hctx->dispatch);
2106 spin_unlock(&hctx->lock);
2109 * Order adding requests to hctx->dispatch and checking
2110 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2111 * in blk_mq_sched_restart(). Avoid restart code path to
2112 * miss the new added requests to hctx->dispatch, meantime
2113 * SCHED_RESTART is observed here.
2118 * If SCHED_RESTART was set by the caller of this function and
2119 * it is no longer set that means that it was cleared by another
2120 * thread and hence that a queue rerun is needed.
2122 * If 'no_tag' is set, that means that we failed getting
2123 * a driver tag with an I/O scheduler attached. If our dispatch
2124 * waitqueue is no longer active, ensure that we run the queue
2125 * AFTER adding our entries back to the list.
2127 * If no I/O scheduler has been configured it is possible that
2128 * the hardware queue got stopped and restarted before requests
2129 * were pushed back onto the dispatch list. Rerun the queue to
2130 * avoid starvation. Notes:
2131 * - blk_mq_run_hw_queue() checks whether or not a queue has
2132 * been stopped before rerunning a queue.
2133 * - Some but not all block drivers stop a queue before
2134 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2137 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2138 * bit is set, run queue after a delay to avoid IO stalls
2139 * that could otherwise occur if the queue is idle. We'll do
2140 * similar if we couldn't get budget or couldn't lock a zone
2141 * and SCHED_RESTART is set.
2143 needs_restart = blk_mq_sched_needs_restart(hctx);
2144 if (prep == PREP_DISPATCH_NO_BUDGET)
2145 needs_resource = true;
2146 if (!needs_restart ||
2147 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2148 blk_mq_run_hw_queue(hctx, true);
2149 else if (needs_resource)
2150 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2152 blk_mq_update_dispatch_busy(hctx, true);
2155 blk_mq_update_dispatch_busy(hctx, false);
2157 return (queued + errors) != 0;
2161 * __blk_mq_run_hw_queue - Run a hardware queue.
2162 * @hctx: Pointer to the hardware queue to run.
2164 * Send pending requests to the hardware.
2166 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
2169 * We can't run the queue inline with ints disabled. Ensure that
2170 * we catch bad users of this early.
2172 WARN_ON_ONCE(in_interrupt());
2174 blk_mq_run_dispatch_ops(hctx->queue,
2175 blk_mq_sched_dispatch_requests(hctx));
2178 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2180 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2182 if (cpu >= nr_cpu_ids)
2183 cpu = cpumask_first(hctx->cpumask);
2188 * It'd be great if the workqueue API had a way to pass
2189 * in a mask and had some smarts for more clever placement.
2190 * For now we just round-robin here, switching for every
2191 * BLK_MQ_CPU_WORK_BATCH queued items.
2193 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2196 int next_cpu = hctx->next_cpu;
2198 if (hctx->queue->nr_hw_queues == 1)
2199 return WORK_CPU_UNBOUND;
2201 if (--hctx->next_cpu_batch <= 0) {
2203 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2205 if (next_cpu >= nr_cpu_ids)
2206 next_cpu = blk_mq_first_mapped_cpu(hctx);
2207 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2211 * Do unbound schedule if we can't find a online CPU for this hctx,
2212 * and it should only happen in the path of handling CPU DEAD.
2214 if (!cpu_online(next_cpu)) {
2221 * Make sure to re-select CPU next time once after CPUs
2222 * in hctx->cpumask become online again.
2224 hctx->next_cpu = next_cpu;
2225 hctx->next_cpu_batch = 1;
2226 return WORK_CPU_UNBOUND;
2229 hctx->next_cpu = next_cpu;
2234 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2235 * @hctx: Pointer to the hardware queue to run.
2236 * @async: If we want to run the queue asynchronously.
2237 * @msecs: Milliseconds of delay to wait before running the queue.
2239 * If !@async, try to run the queue now. Else, run the queue asynchronously and
2240 * with a delay of @msecs.
2242 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2243 unsigned long msecs)
2245 if (unlikely(blk_mq_hctx_stopped(hctx)))
2248 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2249 if (cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2250 __blk_mq_run_hw_queue(hctx);
2255 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2256 msecs_to_jiffies(msecs));
2260 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2261 * @hctx: Pointer to the hardware queue to run.
2262 * @msecs: Milliseconds of delay to wait before running the queue.
2264 * Run a hardware queue asynchronously with a delay of @msecs.
2266 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2268 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
2270 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2273 * blk_mq_run_hw_queue - Start to run a hardware queue.
2274 * @hctx: Pointer to the hardware queue to run.
2275 * @async: If we want to run the queue asynchronously.
2277 * Check if the request queue is not in a quiesced state and if there are
2278 * pending requests to be sent. If this is true, run the queue to send requests
2281 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2286 * When queue is quiesced, we may be switching io scheduler, or
2287 * updating nr_hw_queues, or other things, and we can't run queue
2288 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2290 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2293 __blk_mq_run_dispatch_ops(hctx->queue, false,
2294 need_run = !blk_queue_quiesced(hctx->queue) &&
2295 blk_mq_hctx_has_pending(hctx));
2298 __blk_mq_delay_run_hw_queue(hctx, async, 0);
2300 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2303 * Return prefered queue to dispatch from (if any) for non-mq aware IO
2306 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2308 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2310 * If the IO scheduler does not respect hardware queues when
2311 * dispatching, we just don't bother with multiple HW queues and
2312 * dispatch from hctx for the current CPU since running multiple queues
2313 * just causes lock contention inside the scheduler and pointless cache
2316 struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2318 if (!blk_mq_hctx_stopped(hctx))
2324 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2325 * @q: Pointer to the request queue to run.
2326 * @async: If we want to run the queue asynchronously.
2328 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2330 struct blk_mq_hw_ctx *hctx, *sq_hctx;
2334 if (blk_queue_sq_sched(q))
2335 sq_hctx = blk_mq_get_sq_hctx(q);
2336 queue_for_each_hw_ctx(q, hctx, i) {
2337 if (blk_mq_hctx_stopped(hctx))
2340 * Dispatch from this hctx either if there's no hctx preferred
2341 * by IO scheduler or if it has requests that bypass the
2344 if (!sq_hctx || sq_hctx == hctx ||
2345 !list_empty_careful(&hctx->dispatch))
2346 blk_mq_run_hw_queue(hctx, async);
2349 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2352 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2353 * @q: Pointer to the request queue to run.
2354 * @msecs: Milliseconds of delay to wait before running the queues.
2356 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2358 struct blk_mq_hw_ctx *hctx, *sq_hctx;
2362 if (blk_queue_sq_sched(q))
2363 sq_hctx = blk_mq_get_sq_hctx(q);
2364 queue_for_each_hw_ctx(q, hctx, i) {
2365 if (blk_mq_hctx_stopped(hctx))
2368 * If there is already a run_work pending, leave the
2369 * pending delay untouched. Otherwise, a hctx can stall
2370 * if another hctx is re-delaying the other's work
2371 * before the work executes.
2373 if (delayed_work_pending(&hctx->run_work))
2376 * Dispatch from this hctx either if there's no hctx preferred
2377 * by IO scheduler or if it has requests that bypass the
2380 if (!sq_hctx || sq_hctx == hctx ||
2381 !list_empty_careful(&hctx->dispatch))
2382 blk_mq_delay_run_hw_queue(hctx, msecs);
2385 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2388 * This function is often used for pausing .queue_rq() by driver when
2389 * there isn't enough resource or some conditions aren't satisfied, and
2390 * BLK_STS_RESOURCE is usually returned.
2392 * We do not guarantee that dispatch can be drained or blocked
2393 * after blk_mq_stop_hw_queue() returns. Please use
2394 * blk_mq_quiesce_queue() for that requirement.
2396 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2398 cancel_delayed_work(&hctx->run_work);
2400 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2402 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2405 * This function is often used for pausing .queue_rq() by driver when
2406 * there isn't enough resource or some conditions aren't satisfied, and
2407 * BLK_STS_RESOURCE is usually returned.
2409 * We do not guarantee that dispatch can be drained or blocked
2410 * after blk_mq_stop_hw_queues() returns. Please use
2411 * blk_mq_quiesce_queue() for that requirement.
2413 void blk_mq_stop_hw_queues(struct request_queue *q)
2415 struct blk_mq_hw_ctx *hctx;
2418 queue_for_each_hw_ctx(q, hctx, i)
2419 blk_mq_stop_hw_queue(hctx);
2421 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2423 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2425 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2427 blk_mq_run_hw_queue(hctx, false);
2429 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2431 void blk_mq_start_hw_queues(struct request_queue *q)
2433 struct blk_mq_hw_ctx *hctx;
2436 queue_for_each_hw_ctx(q, hctx, i)
2437 blk_mq_start_hw_queue(hctx);
2439 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2441 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2443 if (!blk_mq_hctx_stopped(hctx))
2446 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2447 blk_mq_run_hw_queue(hctx, async);
2449 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2451 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2453 struct blk_mq_hw_ctx *hctx;
2456 queue_for_each_hw_ctx(q, hctx, i)
2457 blk_mq_start_stopped_hw_queue(hctx, async);
2459 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2461 static void blk_mq_run_work_fn(struct work_struct *work)
2463 struct blk_mq_hw_ctx *hctx;
2465 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2468 * If we are stopped, don't run the queue.
2470 if (blk_mq_hctx_stopped(hctx))
2473 __blk_mq_run_hw_queue(hctx);
2476 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2480 struct blk_mq_ctx *ctx = rq->mq_ctx;
2481 enum hctx_type type = hctx->type;
2483 lockdep_assert_held(&ctx->lock);
2485 trace_block_rq_insert(rq);
2488 list_add(&rq->queuelist, &ctx->rq_lists[type]);
2490 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2493 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2496 struct blk_mq_ctx *ctx = rq->mq_ctx;
2498 lockdep_assert_held(&ctx->lock);
2500 __blk_mq_insert_req_list(hctx, rq, at_head);
2501 blk_mq_hctx_mark_pending(hctx, ctx);
2505 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2506 * @rq: Pointer to request to be inserted.
2507 * @at_head: true if the request should be inserted at the head of the list.
2508 * @run_queue: If we should run the hardware queue after inserting the request.
2510 * Should only be used carefully, when the caller knows we want to
2511 * bypass a potential IO scheduler on the target device.
2513 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2516 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2518 spin_lock(&hctx->lock);
2520 list_add(&rq->queuelist, &hctx->dispatch);
2522 list_add_tail(&rq->queuelist, &hctx->dispatch);
2523 spin_unlock(&hctx->lock);
2526 blk_mq_run_hw_queue(hctx, false);
2529 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2530 struct list_head *list)
2534 enum hctx_type type = hctx->type;
2537 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2540 list_for_each_entry(rq, list, queuelist) {
2541 BUG_ON(rq->mq_ctx != ctx);
2542 trace_block_rq_insert(rq);
2545 spin_lock(&ctx->lock);
2546 list_splice_tail_init(list, &ctx->rq_lists[type]);
2547 blk_mq_hctx_mark_pending(hctx, ctx);
2548 spin_unlock(&ctx->lock);
2551 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2554 if (hctx->queue->mq_ops->commit_rqs) {
2555 trace_block_unplug(hctx->queue, *queued, !from_schedule);
2556 hctx->queue->mq_ops->commit_rqs(hctx);
2561 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2562 unsigned int nr_segs)
2566 if (bio->bi_opf & REQ_RAHEAD)
2567 rq->cmd_flags |= REQ_FAILFAST_MASK;
2569 rq->__sector = bio->bi_iter.bi_sector;
2570 blk_rq_bio_prep(rq, bio, nr_segs);
2572 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2573 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2576 blk_account_io_start(rq);
2579 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2580 struct request *rq, bool last)
2582 struct request_queue *q = rq->q;
2583 struct blk_mq_queue_data bd = {
2590 * For OK queue, we are done. For error, caller may kill it.
2591 * Any other error (busy), just add it to our list as we
2592 * previously would have done.
2594 ret = q->mq_ops->queue_rq(hctx, &bd);
2597 blk_mq_update_dispatch_busy(hctx, false);
2599 case BLK_STS_RESOURCE:
2600 case BLK_STS_DEV_RESOURCE:
2601 blk_mq_update_dispatch_busy(hctx, true);
2602 __blk_mq_requeue_request(rq);
2605 blk_mq_update_dispatch_busy(hctx, false);
2612 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2614 bool bypass_insert, bool last)
2616 struct request_queue *q = rq->q;
2617 bool run_queue = true;
2621 * RCU or SRCU read lock is needed before checking quiesced flag.
2623 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2624 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2625 * and avoid driver to try to dispatch again.
2627 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2629 bypass_insert = false;
2633 if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2636 budget_token = blk_mq_get_dispatch_budget(q);
2637 if (budget_token < 0)
2640 blk_mq_set_rq_budget_token(rq, budget_token);
2642 if (!blk_mq_get_driver_tag(rq)) {
2643 blk_mq_put_dispatch_budget(q, budget_token);
2647 return __blk_mq_issue_directly(hctx, rq, last);
2650 return BLK_STS_RESOURCE;
2652 blk_mq_sched_insert_request(rq, false, run_queue, false);
2658 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2659 * @hctx: Pointer of the associated hardware queue.
2660 * @rq: Pointer to request to be sent.
2662 * If the device has enough resources to accept a new request now, send the
2663 * request directly to device driver. Else, insert at hctx->dispatch queue, so
2664 * we can try send it another time in the future. Requests inserted at this
2665 * queue have higher priority.
2667 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2671 __blk_mq_try_issue_directly(hctx, rq, false, true);
2673 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2674 blk_mq_request_bypass_insert(rq, false, true);
2675 else if (ret != BLK_STS_OK)
2676 blk_mq_end_request(rq, ret);
2679 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2681 return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
2684 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2686 struct blk_mq_hw_ctx *hctx = NULL;
2691 while ((rq = rq_list_pop(&plug->mq_list))) {
2692 bool last = rq_list_empty(plug->mq_list);
2695 if (hctx != rq->mq_hctx) {
2697 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2701 ret = blk_mq_request_issue_directly(rq, last);
2706 case BLK_STS_RESOURCE:
2707 case BLK_STS_DEV_RESOURCE:
2708 blk_mq_request_bypass_insert(rq, false, true);
2709 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2712 blk_mq_end_request(rq, ret);
2719 * If we didn't flush the entire list, we could have told the driver
2720 * there was more coming, but that turned out to be a lie.
2723 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2726 static void __blk_mq_flush_plug_list(struct request_queue *q,
2727 struct blk_plug *plug)
2729 if (blk_queue_quiesced(q))
2731 q->mq_ops->queue_rqs(&plug->mq_list);
2734 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2736 struct blk_mq_hw_ctx *this_hctx = NULL;
2737 struct blk_mq_ctx *this_ctx = NULL;
2738 struct request *requeue_list = NULL;
2739 unsigned int depth = 0;
2743 struct request *rq = rq_list_pop(&plug->mq_list);
2746 this_hctx = rq->mq_hctx;
2747 this_ctx = rq->mq_ctx;
2748 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2749 rq_list_add(&requeue_list, rq);
2752 list_add_tail(&rq->queuelist, &list);
2754 } while (!rq_list_empty(plug->mq_list));
2756 plug->mq_list = requeue_list;
2757 trace_block_unplug(this_hctx->queue, depth, !from_sched);
2758 blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched);
2761 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2765 if (rq_list_empty(plug->mq_list))
2769 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2770 struct request_queue *q;
2772 rq = rq_list_peek(&plug->mq_list);
2776 * Peek first request and see if we have a ->queue_rqs() hook.
2777 * If we do, we can dispatch the whole plug list in one go. We
2778 * already know at this point that all requests belong to the
2779 * same queue, caller must ensure that's the case.
2781 * Since we pass off the full list to the driver at this point,
2782 * we do not increment the active request count for the queue.
2783 * Bypass shared tags for now because of that.
2785 if (q->mq_ops->queue_rqs &&
2786 !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2787 blk_mq_run_dispatch_ops(q,
2788 __blk_mq_flush_plug_list(q, plug));
2789 if (rq_list_empty(plug->mq_list))
2793 blk_mq_run_dispatch_ops(q,
2794 blk_mq_plug_issue_direct(plug, false));
2795 if (rq_list_empty(plug->mq_list))
2800 blk_mq_dispatch_plug_list(plug, from_schedule);
2801 } while (!rq_list_empty(plug->mq_list));
2804 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2805 struct list_head *list)
2810 while (!list_empty(list)) {
2812 struct request *rq = list_first_entry(list, struct request,
2815 list_del_init(&rq->queuelist);
2816 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2817 if (ret != BLK_STS_OK) {
2819 if (ret == BLK_STS_RESOURCE ||
2820 ret == BLK_STS_DEV_RESOURCE) {
2821 blk_mq_request_bypass_insert(rq, false,
2825 blk_mq_end_request(rq, ret);
2831 * If we didn't flush the entire list, we could have told
2832 * the driver there was more coming, but that turned out to
2835 if ((!list_empty(list) || errors) &&
2836 hctx->queue->mq_ops->commit_rqs && queued)
2837 hctx->queue->mq_ops->commit_rqs(hctx);
2840 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2841 struct bio *bio, unsigned int nr_segs)
2843 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2844 if (blk_attempt_plug_merge(q, bio, nr_segs))
2846 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2852 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2853 struct blk_plug *plug,
2857 struct blk_mq_alloc_data data = {
2860 .cmd_flags = bio->bi_opf,
2864 if (unlikely(bio_queue_enter(bio)))
2867 if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2870 rq_qos_throttle(q, bio);
2873 data.nr_tags = plug->nr_ios;
2875 data.cached_rq = &plug->cached_rq;
2878 rq = __blk_mq_alloc_requests(&data);
2881 rq_qos_cleanup(q, bio);
2882 if (bio->bi_opf & REQ_NOWAIT)
2883 bio_wouldblock_error(bio);
2889 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2890 struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2893 enum hctx_type type, hctx_type;
2897 rq = rq_list_peek(&plug->cached_rq);
2898 if (!rq || rq->q != q)
2901 if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2906 type = blk_mq_get_hctx_type((*bio)->bi_opf);
2907 hctx_type = rq->mq_hctx->type;
2908 if (type != hctx_type &&
2909 !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2911 if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2915 * If any qos ->throttle() end up blocking, we will have flushed the
2916 * plug and hence killed the cached_rq list as well. Pop this entry
2917 * before we throttle.
2919 plug->cached_rq = rq_list_next(rq);
2920 rq_qos_throttle(q, *bio);
2922 rq->cmd_flags = (*bio)->bi_opf;
2923 INIT_LIST_HEAD(&rq->queuelist);
2927 static void bio_set_ioprio(struct bio *bio)
2929 /* Nobody set ioprio so far? Initialize it based on task's nice value */
2930 if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2931 bio->bi_ioprio = get_current_ioprio();
2932 blkcg_set_ioprio(bio);
2936 * blk_mq_submit_bio - Create and send a request to block device.
2937 * @bio: Bio pointer.
2939 * Builds up a request structure from @q and @bio and send to the device. The
2940 * request may not be queued directly to hardware if:
2941 * * This request can be merged with another one
2942 * * We want to place request at plug queue for possible future merging
2943 * * There is an IO scheduler active at this queue
2945 * It will not queue the request if there is an error with the bio, or at the
2948 void blk_mq_submit_bio(struct bio *bio)
2950 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2951 struct blk_plug *plug = blk_mq_plug(bio);
2952 const int is_sync = op_is_sync(bio->bi_opf);
2954 unsigned int nr_segs = 1;
2957 bio = blk_queue_bounce(bio, q);
2958 if (bio_may_exceed_limits(bio, &q->limits)) {
2959 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2964 if (!bio_integrity_prep(bio))
2967 bio_set_ioprio(bio);
2969 rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2973 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2978 trace_block_getrq(bio);
2980 rq_qos_track(q, rq, bio);
2982 blk_mq_bio_to_request(rq, bio, nr_segs);
2984 ret = blk_crypto_init_request(rq);
2985 if (ret != BLK_STS_OK) {
2986 bio->bi_status = ret;
2988 blk_mq_free_request(rq);
2992 if (op_is_flush(bio->bi_opf)) {
2993 blk_insert_flush(rq);
2998 blk_add_rq_to_plug(plug, rq);
2999 else if ((rq->rq_flags & RQF_ELV) ||
3000 (rq->mq_hctx->dispatch_busy &&
3001 (q->nr_hw_queues == 1 || !is_sync)))
3002 blk_mq_sched_insert_request(rq, false, true, true);
3004 blk_mq_run_dispatch_ops(rq->q,
3005 blk_mq_try_issue_directly(rq->mq_hctx, rq));
3008 #ifdef CONFIG_BLK_MQ_STACKING
3010 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3011 * @rq: the request being queued
3013 blk_status_t blk_insert_cloned_request(struct request *rq)
3015 struct request_queue *q = rq->q;
3016 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3019 if (blk_rq_sectors(rq) > max_sectors) {
3021 * SCSI device does not have a good way to return if
3022 * Write Same/Zero is actually supported. If a device rejects
3023 * a non-read/write command (discard, write same,etc.) the
3024 * low-level device driver will set the relevant queue limit to
3025 * 0 to prevent blk-lib from issuing more of the offending
3026 * operations. Commands queued prior to the queue limit being
3027 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3028 * errors being propagated to upper layers.
3030 if (max_sectors == 0)
3031 return BLK_STS_NOTSUPP;
3033 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3034 __func__, blk_rq_sectors(rq), max_sectors);
3035 return BLK_STS_IOERR;
3039 * The queue settings related to segment counting may differ from the
3042 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3043 if (rq->nr_phys_segments > queue_max_segments(q)) {
3044 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
3045 __func__, rq->nr_phys_segments, queue_max_segments(q));
3046 return BLK_STS_IOERR;
3049 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3050 return BLK_STS_IOERR;
3052 if (blk_crypto_insert_cloned_request(rq))
3053 return BLK_STS_IOERR;
3055 blk_account_io_start(rq);
3058 * Since we have a scheduler attached on the top device,
3059 * bypass a potential scheduler on the bottom device for
3062 blk_mq_run_dispatch_ops(q,
3063 ret = blk_mq_request_issue_directly(rq, true));
3065 blk_account_io_done(rq, ktime_get_ns());
3068 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3071 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3072 * @rq: the clone request to be cleaned up
3075 * Free all bios in @rq for a cloned request.
3077 void blk_rq_unprep_clone(struct request *rq)
3081 while ((bio = rq->bio) != NULL) {
3082 rq->bio = bio->bi_next;
3087 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3090 * blk_rq_prep_clone - Helper function to setup clone request
3091 * @rq: the request to be setup
3092 * @rq_src: original request to be cloned
3093 * @bs: bio_set that bios for clone are allocated from
3094 * @gfp_mask: memory allocation mask for bio
3095 * @bio_ctr: setup function to be called for each clone bio.
3096 * Returns %0 for success, non %0 for failure.
3097 * @data: private data to be passed to @bio_ctr
3100 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3101 * Also, pages which the original bios are pointing to are not copied
3102 * and the cloned bios just point same pages.
3103 * So cloned bios must be completed before original bios, which means
3104 * the caller must complete @rq before @rq_src.
3106 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3107 struct bio_set *bs, gfp_t gfp_mask,
3108 int (*bio_ctr)(struct bio *, struct bio *, void *),
3111 struct bio *bio, *bio_src;
3116 __rq_for_each_bio(bio_src, rq_src) {
3117 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3122 if (bio_ctr && bio_ctr(bio, bio_src, data))
3126 rq->biotail->bi_next = bio;
3129 rq->bio = rq->biotail = bio;
3134 /* Copy attributes of the original request to the clone request. */
3135 rq->__sector = blk_rq_pos(rq_src);
3136 rq->__data_len = blk_rq_bytes(rq_src);
3137 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3138 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3139 rq->special_vec = rq_src->special_vec;
3141 rq->nr_phys_segments = rq_src->nr_phys_segments;
3142 rq->ioprio = rq_src->ioprio;
3144 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3152 blk_rq_unprep_clone(rq);
3156 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3157 #endif /* CONFIG_BLK_MQ_STACKING */
3160 * Steal bios from a request and add them to a bio list.
3161 * The request must not have been partially completed before.
3163 void blk_steal_bios(struct bio_list *list, struct request *rq)
3167 list->tail->bi_next = rq->bio;
3169 list->head = rq->bio;
3170 list->tail = rq->biotail;
3178 EXPORT_SYMBOL_GPL(blk_steal_bios);
3180 static size_t order_to_size(unsigned int order)
3182 return (size_t)PAGE_SIZE << order;
3185 /* called before freeing request pool in @tags */
3186 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3187 struct blk_mq_tags *tags)
3190 unsigned long flags;
3193 * There is no need to clear mapping if driver tags is not initialized
3194 * or the mapping belongs to the driver tags.
3196 if (!drv_tags || drv_tags == tags)
3199 list_for_each_entry(page, &tags->page_list, lru) {
3200 unsigned long start = (unsigned long)page_address(page);
3201 unsigned long end = start + order_to_size(page->private);
3204 for (i = 0; i < drv_tags->nr_tags; i++) {
3205 struct request *rq = drv_tags->rqs[i];
3206 unsigned long rq_addr = (unsigned long)rq;
3208 if (rq_addr >= start && rq_addr < end) {
3209 WARN_ON_ONCE(req_ref_read(rq) != 0);
3210 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3216 * Wait until all pending iteration is done.
3218 * Request reference is cleared and it is guaranteed to be observed
3219 * after the ->lock is released.
3221 spin_lock_irqsave(&drv_tags->lock, flags);
3222 spin_unlock_irqrestore(&drv_tags->lock, flags);
3225 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3226 unsigned int hctx_idx)
3228 struct blk_mq_tags *drv_tags;
3231 if (list_empty(&tags->page_list))
3234 if (blk_mq_is_shared_tags(set->flags))
3235 drv_tags = set->shared_tags;
3237 drv_tags = set->tags[hctx_idx];
3239 if (tags->static_rqs && set->ops->exit_request) {
3242 for (i = 0; i < tags->nr_tags; i++) {
3243 struct request *rq = tags->static_rqs[i];
3247 set->ops->exit_request(set, rq, hctx_idx);
3248 tags->static_rqs[i] = NULL;
3252 blk_mq_clear_rq_mapping(drv_tags, tags);
3254 while (!list_empty(&tags->page_list)) {
3255 page = list_first_entry(&tags->page_list, struct page, lru);
3256 list_del_init(&page->lru);
3258 * Remove kmemleak object previously allocated in
3259 * blk_mq_alloc_rqs().
3261 kmemleak_free(page_address(page));
3262 __free_pages(page, page->private);
3266 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3270 kfree(tags->static_rqs);
3271 tags->static_rqs = NULL;
3273 blk_mq_free_tags(tags);
3276 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3277 unsigned int hctx_idx)
3281 for (i = 0; i < set->nr_maps; i++) {
3282 unsigned int start = set->map[i].queue_offset;
3283 unsigned int end = start + set->map[i].nr_queues;
3285 if (hctx_idx >= start && hctx_idx < end)
3289 if (i >= set->nr_maps)
3290 i = HCTX_TYPE_DEFAULT;
3295 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3296 unsigned int hctx_idx)
3298 enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3300 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3303 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3304 unsigned int hctx_idx,
3305 unsigned int nr_tags,
3306 unsigned int reserved_tags)
3308 int node = blk_mq_get_hctx_node(set, hctx_idx);
3309 struct blk_mq_tags *tags;
3311 if (node == NUMA_NO_NODE)
3312 node = set->numa_node;
3314 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3315 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3319 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3320 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3325 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3326 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3328 if (!tags->static_rqs)
3336 blk_mq_free_tags(tags);
3340 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3341 unsigned int hctx_idx, int node)
3345 if (set->ops->init_request) {
3346 ret = set->ops->init_request(set, rq, hctx_idx, node);
3351 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3355 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3356 struct blk_mq_tags *tags,
3357 unsigned int hctx_idx, unsigned int depth)
3359 unsigned int i, j, entries_per_page, max_order = 4;
3360 int node = blk_mq_get_hctx_node(set, hctx_idx);
3361 size_t rq_size, left;
3363 if (node == NUMA_NO_NODE)
3364 node = set->numa_node;
3366 INIT_LIST_HEAD(&tags->page_list);
3369 * rq_size is the size of the request plus driver payload, rounded
3370 * to the cacheline size
3372 rq_size = round_up(sizeof(struct request) + set->cmd_size,
3374 left = rq_size * depth;
3376 for (i = 0; i < depth; ) {
3377 int this_order = max_order;
3382 while (this_order && left < order_to_size(this_order - 1))
3386 page = alloc_pages_node(node,
3387 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3393 if (order_to_size(this_order) < rq_size)
3400 page->private = this_order;
3401 list_add_tail(&page->lru, &tags->page_list);
3403 p = page_address(page);
3405 * Allow kmemleak to scan these pages as they contain pointers
3406 * to additional allocations like via ops->init_request().
3408 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3409 entries_per_page = order_to_size(this_order) / rq_size;
3410 to_do = min(entries_per_page, depth - i);
3411 left -= to_do * rq_size;
3412 for (j = 0; j < to_do; j++) {
3413 struct request *rq = p;
3415 tags->static_rqs[i] = rq;
3416 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3417 tags->static_rqs[i] = NULL;
3428 blk_mq_free_rqs(set, tags, hctx_idx);
3432 struct rq_iter_data {
3433 struct blk_mq_hw_ctx *hctx;
3437 static bool blk_mq_has_request(struct request *rq, void *data)
3439 struct rq_iter_data *iter_data = data;
3441 if (rq->mq_hctx != iter_data->hctx)
3443 iter_data->has_rq = true;
3447 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3449 struct blk_mq_tags *tags = hctx->sched_tags ?
3450 hctx->sched_tags : hctx->tags;
3451 struct rq_iter_data data = {
3455 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3459 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3460 struct blk_mq_hw_ctx *hctx)
3462 if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3464 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3469 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3471 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3472 struct blk_mq_hw_ctx, cpuhp_online);
3474 if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3475 !blk_mq_last_cpu_in_hctx(cpu, hctx))
3479 * Prevent new request from being allocated on the current hctx.
3481 * The smp_mb__after_atomic() Pairs with the implied barrier in
3482 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is
3483 * seen once we return from the tag allocator.
3485 set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3486 smp_mb__after_atomic();
3489 * Try to grab a reference to the queue and wait for any outstanding
3490 * requests. If we could not grab a reference the queue has been
3491 * frozen and there are no requests.
3493 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3494 while (blk_mq_hctx_has_requests(hctx))
3496 percpu_ref_put(&hctx->queue->q_usage_counter);
3502 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3504 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3505 struct blk_mq_hw_ctx, cpuhp_online);
3507 if (cpumask_test_cpu(cpu, hctx->cpumask))
3508 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3513 * 'cpu' is going away. splice any existing rq_list entries from this
3514 * software queue to the hw queue dispatch list, and ensure that it
3517 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3519 struct blk_mq_hw_ctx *hctx;
3520 struct blk_mq_ctx *ctx;
3522 enum hctx_type type;
3524 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3525 if (!cpumask_test_cpu(cpu, hctx->cpumask))
3528 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3531 spin_lock(&ctx->lock);
3532 if (!list_empty(&ctx->rq_lists[type])) {
3533 list_splice_init(&ctx->rq_lists[type], &tmp);
3534 blk_mq_hctx_clear_pending(hctx, ctx);
3536 spin_unlock(&ctx->lock);
3538 if (list_empty(&tmp))
3541 spin_lock(&hctx->lock);
3542 list_splice_tail_init(&tmp, &hctx->dispatch);
3543 spin_unlock(&hctx->lock);
3545 blk_mq_run_hw_queue(hctx, true);
3549 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3551 if (!(hctx->flags & BLK_MQ_F_STACKING))
3552 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3553 &hctx->cpuhp_online);
3554 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3559 * Before freeing hw queue, clearing the flush request reference in
3560 * tags->rqs[] for avoiding potential UAF.
3562 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3563 unsigned int queue_depth, struct request *flush_rq)
3566 unsigned long flags;
3568 /* The hw queue may not be mapped yet */
3572 WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3574 for (i = 0; i < queue_depth; i++)
3575 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3578 * Wait until all pending iteration is done.
3580 * Request reference is cleared and it is guaranteed to be observed
3581 * after the ->lock is released.
3583 spin_lock_irqsave(&tags->lock, flags);
3584 spin_unlock_irqrestore(&tags->lock, flags);
3587 /* hctx->ctxs will be freed in queue's release handler */
3588 static void blk_mq_exit_hctx(struct request_queue *q,
3589 struct blk_mq_tag_set *set,
3590 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3592 struct request *flush_rq = hctx->fq->flush_rq;
3594 if (blk_mq_hw_queue_mapped(hctx))
3595 blk_mq_tag_idle(hctx);
3597 if (blk_queue_init_done(q))
3598 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3599 set->queue_depth, flush_rq);
3600 if (set->ops->exit_request)
3601 set->ops->exit_request(set, flush_rq, hctx_idx);
3603 if (set->ops->exit_hctx)
3604 set->ops->exit_hctx(hctx, hctx_idx);
3606 blk_mq_remove_cpuhp(hctx);
3608 xa_erase(&q->hctx_table, hctx_idx);
3610 spin_lock(&q->unused_hctx_lock);
3611 list_add(&hctx->hctx_list, &q->unused_hctx_list);
3612 spin_unlock(&q->unused_hctx_lock);
3615 static void blk_mq_exit_hw_queues(struct request_queue *q,
3616 struct blk_mq_tag_set *set, int nr_queue)
3618 struct blk_mq_hw_ctx *hctx;
3621 queue_for_each_hw_ctx(q, hctx, i) {
3624 blk_mq_exit_hctx(q, set, hctx, i);
3628 static int blk_mq_init_hctx(struct request_queue *q,
3629 struct blk_mq_tag_set *set,
3630 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3632 hctx->queue_num = hctx_idx;
3634 if (!(hctx->flags & BLK_MQ_F_STACKING))
3635 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3636 &hctx->cpuhp_online);
3637 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3639 hctx->tags = set->tags[hctx_idx];
3641 if (set->ops->init_hctx &&
3642 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3643 goto unregister_cpu_notifier;
3645 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3649 if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3655 if (set->ops->exit_request)
3656 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3658 if (set->ops->exit_hctx)
3659 set->ops->exit_hctx(hctx, hctx_idx);
3660 unregister_cpu_notifier:
3661 blk_mq_remove_cpuhp(hctx);
3665 static struct blk_mq_hw_ctx *
3666 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3669 struct blk_mq_hw_ctx *hctx;
3670 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3672 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3674 goto fail_alloc_hctx;
3676 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3679 atomic_set(&hctx->nr_active, 0);
3680 if (node == NUMA_NO_NODE)
3681 node = set->numa_node;
3682 hctx->numa_node = node;
3684 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3685 spin_lock_init(&hctx->lock);
3686 INIT_LIST_HEAD(&hctx->dispatch);
3688 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3690 INIT_LIST_HEAD(&hctx->hctx_list);
3693 * Allocate space for all possible cpus to avoid allocation at
3696 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3701 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3702 gfp, node, false, false))
3706 spin_lock_init(&hctx->dispatch_wait_lock);
3707 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3708 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3710 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3714 blk_mq_hctx_kobj_init(hctx);
3719 sbitmap_free(&hctx->ctx_map);
3723 free_cpumask_var(hctx->cpumask);
3730 static void blk_mq_init_cpu_queues(struct request_queue *q,
3731 unsigned int nr_hw_queues)
3733 struct blk_mq_tag_set *set = q->tag_set;
3736 for_each_possible_cpu(i) {
3737 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3738 struct blk_mq_hw_ctx *hctx;
3742 spin_lock_init(&__ctx->lock);
3743 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3744 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3749 * Set local node, IFF we have more than one hw queue. If
3750 * not, we remain on the home node of the device
3752 for (j = 0; j < set->nr_maps; j++) {
3753 hctx = blk_mq_map_queue_type(q, j, i);
3754 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3755 hctx->numa_node = cpu_to_node(i);
3760 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3761 unsigned int hctx_idx,
3764 struct blk_mq_tags *tags;
3767 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3771 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3773 blk_mq_free_rq_map(tags);
3780 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3783 if (blk_mq_is_shared_tags(set->flags)) {
3784 set->tags[hctx_idx] = set->shared_tags;
3789 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3792 return set->tags[hctx_idx];
3795 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3796 struct blk_mq_tags *tags,
3797 unsigned int hctx_idx)
3800 blk_mq_free_rqs(set, tags, hctx_idx);
3801 blk_mq_free_rq_map(tags);
3805 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3806 unsigned int hctx_idx)
3808 if (!blk_mq_is_shared_tags(set->flags))
3809 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3811 set->tags[hctx_idx] = NULL;
3814 static void blk_mq_map_swqueue(struct request_queue *q)
3816 unsigned int j, hctx_idx;
3818 struct blk_mq_hw_ctx *hctx;
3819 struct blk_mq_ctx *ctx;
3820 struct blk_mq_tag_set *set = q->tag_set;
3822 queue_for_each_hw_ctx(q, hctx, i) {
3823 cpumask_clear(hctx->cpumask);
3825 hctx->dispatch_from = NULL;
3829 * Map software to hardware queues.
3831 * If the cpu isn't present, the cpu is mapped to first hctx.
3833 for_each_possible_cpu(i) {
3835 ctx = per_cpu_ptr(q->queue_ctx, i);
3836 for (j = 0; j < set->nr_maps; j++) {
3837 if (!set->map[j].nr_queues) {
3838 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3839 HCTX_TYPE_DEFAULT, i);
3842 hctx_idx = set->map[j].mq_map[i];
3843 /* unmapped hw queue can be remapped after CPU topo changed */
3844 if (!set->tags[hctx_idx] &&
3845 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3847 * If tags initialization fail for some hctx,
3848 * that hctx won't be brought online. In this
3849 * case, remap the current ctx to hctx[0] which
3850 * is guaranteed to always have tags allocated
3852 set->map[j].mq_map[i] = 0;
3855 hctx = blk_mq_map_queue_type(q, j, i);
3856 ctx->hctxs[j] = hctx;
3858 * If the CPU is already set in the mask, then we've
3859 * mapped this one already. This can happen if
3860 * devices share queues across queue maps.
3862 if (cpumask_test_cpu(i, hctx->cpumask))
3865 cpumask_set_cpu(i, hctx->cpumask);
3867 ctx->index_hw[hctx->type] = hctx->nr_ctx;
3868 hctx->ctxs[hctx->nr_ctx++] = ctx;
3871 * If the nr_ctx type overflows, we have exceeded the
3872 * amount of sw queues we can support.
3874 BUG_ON(!hctx->nr_ctx);
3877 for (; j < HCTX_MAX_TYPES; j++)
3878 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3879 HCTX_TYPE_DEFAULT, i);
3882 queue_for_each_hw_ctx(q, hctx, i) {
3884 * If no software queues are mapped to this hardware queue,
3885 * disable it and free the request entries.
3887 if (!hctx->nr_ctx) {
3888 /* Never unmap queue 0. We need it as a
3889 * fallback in case of a new remap fails
3893 __blk_mq_free_map_and_rqs(set, i);
3899 hctx->tags = set->tags[i];
3900 WARN_ON(!hctx->tags);
3903 * Set the map size to the number of mapped software queues.
3904 * This is more accurate and more efficient than looping
3905 * over all possibly mapped software queues.
3907 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3910 * Initialize batch roundrobin counts
3912 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3913 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3918 * Caller needs to ensure that we're either frozen/quiesced, or that
3919 * the queue isn't live yet.
3921 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3923 struct blk_mq_hw_ctx *hctx;
3926 queue_for_each_hw_ctx(q, hctx, i) {
3928 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3930 blk_mq_tag_idle(hctx);
3931 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3936 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3939 struct request_queue *q;
3941 lockdep_assert_held(&set->tag_list_lock);
3943 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3944 blk_mq_freeze_queue(q);
3945 queue_set_hctx_shared(q, shared);
3946 blk_mq_unfreeze_queue(q);
3950 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3952 struct blk_mq_tag_set *set = q->tag_set;
3954 mutex_lock(&set->tag_list_lock);
3955 list_del(&q->tag_set_list);
3956 if (list_is_singular(&set->tag_list)) {
3957 /* just transitioned to unshared */
3958 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3959 /* update existing queue */
3960 blk_mq_update_tag_set_shared(set, false);
3962 mutex_unlock(&set->tag_list_lock);
3963 INIT_LIST_HEAD(&q->tag_set_list);
3966 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3967 struct request_queue *q)
3969 mutex_lock(&set->tag_list_lock);
3972 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3974 if (!list_empty(&set->tag_list) &&
3975 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3976 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3977 /* update existing queue */
3978 blk_mq_update_tag_set_shared(set, true);
3980 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3981 queue_set_hctx_shared(q, true);
3982 list_add_tail(&q->tag_set_list, &set->tag_list);
3984 mutex_unlock(&set->tag_list_lock);
3987 /* All allocations will be freed in release handler of q->mq_kobj */
3988 static int blk_mq_alloc_ctxs(struct request_queue *q)
3990 struct blk_mq_ctxs *ctxs;
3993 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3997 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3998 if (!ctxs->queue_ctx)
4001 for_each_possible_cpu(cpu) {
4002 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4006 q->mq_kobj = &ctxs->kobj;
4007 q->queue_ctx = ctxs->queue_ctx;
4016 * It is the actual release handler for mq, but we do it from
4017 * request queue's release handler for avoiding use-after-free
4018 * and headache because q->mq_kobj shouldn't have been introduced,
4019 * but we can't group ctx/kctx kobj without it.
4021 void blk_mq_release(struct request_queue *q)
4023 struct blk_mq_hw_ctx *hctx, *next;
4026 queue_for_each_hw_ctx(q, hctx, i)
4027 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4029 /* all hctx are in .unused_hctx_list now */
4030 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4031 list_del_init(&hctx->hctx_list);
4032 kobject_put(&hctx->kobj);
4035 xa_destroy(&q->hctx_table);
4038 * release .mq_kobj and sw queue's kobject now because
4039 * both share lifetime with request queue.
4041 blk_mq_sysfs_deinit(q);
4044 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4047 struct request_queue *q;
4050 q = blk_alloc_queue(set->numa_node);
4052 return ERR_PTR(-ENOMEM);
4053 q->queuedata = queuedata;
4054 ret = blk_mq_init_allocated_queue(set, q);
4057 return ERR_PTR(ret);
4062 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4064 return blk_mq_init_queue_data(set, NULL);
4066 EXPORT_SYMBOL(blk_mq_init_queue);
4069 * blk_mq_destroy_queue - shutdown a request queue
4070 * @q: request queue to shutdown
4072 * This shuts down a request queue allocated by blk_mq_init_queue(). All future
4073 * requests will be failed with -ENODEV. The caller is responsible for dropping
4074 * the reference from blk_mq_init_queue() by calling blk_put_queue().
4076 * Context: can sleep
4078 void blk_mq_destroy_queue(struct request_queue *q)
4080 WARN_ON_ONCE(!queue_is_mq(q));
4081 WARN_ON_ONCE(blk_queue_registered(q));
4085 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4086 blk_queue_start_drain(q);
4087 blk_mq_freeze_queue_wait(q);
4090 blk_mq_cancel_work_sync(q);
4091 blk_mq_exit_queue(q);
4093 EXPORT_SYMBOL(blk_mq_destroy_queue);
4095 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4096 struct lock_class_key *lkclass)
4098 struct request_queue *q;
4099 struct gendisk *disk;
4101 q = blk_mq_init_queue_data(set, queuedata);
4105 disk = __alloc_disk_node(q, set->numa_node, lkclass);
4107 blk_mq_destroy_queue(q);
4109 return ERR_PTR(-ENOMEM);
4111 set_bit(GD_OWNS_QUEUE, &disk->state);
4114 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4116 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4117 struct lock_class_key *lkclass)
4119 struct gendisk *disk;
4121 if (!blk_get_queue(q))
4123 disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4128 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4130 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4131 struct blk_mq_tag_set *set, struct request_queue *q,
4132 int hctx_idx, int node)
4134 struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4136 /* reuse dead hctx first */
4137 spin_lock(&q->unused_hctx_lock);
4138 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4139 if (tmp->numa_node == node) {
4145 list_del_init(&hctx->hctx_list);
4146 spin_unlock(&q->unused_hctx_lock);
4149 hctx = blk_mq_alloc_hctx(q, set, node);
4153 if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4159 kobject_put(&hctx->kobj);
4164 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4165 struct request_queue *q)
4167 struct blk_mq_hw_ctx *hctx;
4170 /* protect against switching io scheduler */
4171 mutex_lock(&q->sysfs_lock);
4172 for (i = 0; i < set->nr_hw_queues; i++) {
4174 int node = blk_mq_get_hctx_node(set, i);
4175 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4178 old_node = old_hctx->numa_node;
4179 blk_mq_exit_hctx(q, set, old_hctx, i);
4182 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4185 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4187 hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4188 WARN_ON_ONCE(!hctx);
4192 * Increasing nr_hw_queues fails. Free the newly allocated
4193 * hctxs and keep the previous q->nr_hw_queues.
4195 if (i != set->nr_hw_queues) {
4196 j = q->nr_hw_queues;
4199 q->nr_hw_queues = set->nr_hw_queues;
4202 xa_for_each_start(&q->hctx_table, j, hctx, j)
4203 blk_mq_exit_hctx(q, set, hctx, j);
4204 mutex_unlock(&q->sysfs_lock);
4207 static void blk_mq_update_poll_flag(struct request_queue *q)
4209 struct blk_mq_tag_set *set = q->tag_set;
4211 if (set->nr_maps > HCTX_TYPE_POLL &&
4212 set->map[HCTX_TYPE_POLL].nr_queues)
4213 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4215 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4218 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4219 struct request_queue *q)
4221 /* mark the queue as mq asap */
4222 q->mq_ops = set->ops;
4224 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4225 blk_mq_poll_stats_bkt,
4226 BLK_MQ_POLL_STATS_BKTS, q);
4230 if (blk_mq_alloc_ctxs(q))
4233 /* init q->mq_kobj and sw queues' kobjects */
4234 blk_mq_sysfs_init(q);
4236 INIT_LIST_HEAD(&q->unused_hctx_list);
4237 spin_lock_init(&q->unused_hctx_lock);
4239 xa_init(&q->hctx_table);
4241 blk_mq_realloc_hw_ctxs(set, q);
4242 if (!q->nr_hw_queues)
4245 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4246 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4250 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4251 blk_mq_update_poll_flag(q);
4253 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4254 INIT_LIST_HEAD(&q->requeue_list);
4255 spin_lock_init(&q->requeue_lock);
4257 q->nr_requests = set->queue_depth;
4260 * Default to classic polling
4262 q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4264 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4265 blk_mq_add_queue_tag_set(set, q);
4266 blk_mq_map_swqueue(q);
4272 blk_stat_free_callback(q->poll_cb);
4278 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4280 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4281 void blk_mq_exit_queue(struct request_queue *q)
4283 struct blk_mq_tag_set *set = q->tag_set;
4285 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4286 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4287 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4288 blk_mq_del_queue_tag_set(q);
4291 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4295 if (blk_mq_is_shared_tags(set->flags)) {
4296 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4299 if (!set->shared_tags)
4303 for (i = 0; i < set->nr_hw_queues; i++) {
4304 if (!__blk_mq_alloc_map_and_rqs(set, i))
4313 __blk_mq_free_map_and_rqs(set, i);
4315 if (blk_mq_is_shared_tags(set->flags)) {
4316 blk_mq_free_map_and_rqs(set, set->shared_tags,
4317 BLK_MQ_NO_HCTX_IDX);
4324 * Allocate the request maps associated with this tag_set. Note that this
4325 * may reduce the depth asked for, if memory is tight. set->queue_depth
4326 * will be updated to reflect the allocated depth.
4328 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4333 depth = set->queue_depth;
4335 err = __blk_mq_alloc_rq_maps(set);
4339 set->queue_depth >>= 1;
4340 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4344 } while (set->queue_depth);
4346 if (!set->queue_depth || err) {
4347 pr_err("blk-mq: failed to allocate request map\n");
4351 if (depth != set->queue_depth)
4352 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4353 depth, set->queue_depth);
4358 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4361 * blk_mq_map_queues() and multiple .map_queues() implementations
4362 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4363 * number of hardware queues.
4365 if (set->nr_maps == 1)
4366 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4368 if (set->ops->map_queues && !is_kdump_kernel()) {
4372 * transport .map_queues is usually done in the following
4375 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4376 * mask = get_cpu_mask(queue)
4377 * for_each_cpu(cpu, mask)
4378 * set->map[x].mq_map[cpu] = queue;
4381 * When we need to remap, the table has to be cleared for
4382 * killing stale mapping since one CPU may not be mapped
4385 for (i = 0; i < set->nr_maps; i++)
4386 blk_mq_clear_mq_map(&set->map[i]);
4388 set->ops->map_queues(set);
4390 BUG_ON(set->nr_maps > 1);
4391 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4395 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4396 int new_nr_hw_queues)
4398 struct blk_mq_tags **new_tags;
4400 if (set->nr_hw_queues >= new_nr_hw_queues)
4403 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4404 GFP_KERNEL, set->numa_node);
4409 memcpy(new_tags, set->tags, set->nr_hw_queues *
4410 sizeof(*set->tags));
4412 set->tags = new_tags;
4414 set->nr_hw_queues = new_nr_hw_queues;
4419 * Alloc a tag set to be associated with one or more request queues.
4420 * May fail with EINVAL for various error conditions. May adjust the
4421 * requested depth down, if it's too large. In that case, the set
4422 * value will be stored in set->queue_depth.
4424 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4428 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4430 if (!set->nr_hw_queues)
4432 if (!set->queue_depth)
4434 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4437 if (!set->ops->queue_rq)
4440 if (!set->ops->get_budget ^ !set->ops->put_budget)
4443 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4444 pr_info("blk-mq: reduced tag depth to %u\n",
4446 set->queue_depth = BLK_MQ_MAX_DEPTH;
4451 else if (set->nr_maps > HCTX_MAX_TYPES)
4455 * If a crashdump is active, then we are potentially in a very
4456 * memory constrained environment. Limit us to 1 queue and
4457 * 64 tags to prevent using too much memory.
4459 if (is_kdump_kernel()) {
4460 set->nr_hw_queues = 1;
4462 set->queue_depth = min(64U, set->queue_depth);
4465 * There is no use for more h/w queues than cpus if we just have
4468 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4469 set->nr_hw_queues = nr_cpu_ids;
4471 if (set->flags & BLK_MQ_F_BLOCKING) {
4472 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4475 ret = init_srcu_struct(set->srcu);
4481 set->tags = kcalloc_node(set->nr_hw_queues,
4482 sizeof(struct blk_mq_tags *), GFP_KERNEL,
4485 goto out_cleanup_srcu;
4487 for (i = 0; i < set->nr_maps; i++) {
4488 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4489 sizeof(set->map[i].mq_map[0]),
4490 GFP_KERNEL, set->numa_node);
4491 if (!set->map[i].mq_map)
4492 goto out_free_mq_map;
4493 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4496 blk_mq_update_queue_map(set);
4498 ret = blk_mq_alloc_set_map_and_rqs(set);
4500 goto out_free_mq_map;
4502 mutex_init(&set->tag_list_lock);
4503 INIT_LIST_HEAD(&set->tag_list);
4508 for (i = 0; i < set->nr_maps; i++) {
4509 kfree(set->map[i].mq_map);
4510 set->map[i].mq_map = NULL;
4515 if (set->flags & BLK_MQ_F_BLOCKING)
4516 cleanup_srcu_struct(set->srcu);
4518 if (set->flags & BLK_MQ_F_BLOCKING)
4522 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4524 /* allocate and initialize a tagset for a simple single-queue device */
4525 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4526 const struct blk_mq_ops *ops, unsigned int queue_depth,
4527 unsigned int set_flags)
4529 memset(set, 0, sizeof(*set));
4531 set->nr_hw_queues = 1;
4533 set->queue_depth = queue_depth;
4534 set->numa_node = NUMA_NO_NODE;
4535 set->flags = set_flags;
4536 return blk_mq_alloc_tag_set(set);
4538 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4540 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4544 for (i = 0; i < set->nr_hw_queues; i++)
4545 __blk_mq_free_map_and_rqs(set, i);
4547 if (blk_mq_is_shared_tags(set->flags)) {
4548 blk_mq_free_map_and_rqs(set, set->shared_tags,
4549 BLK_MQ_NO_HCTX_IDX);
4552 for (j = 0; j < set->nr_maps; j++) {
4553 kfree(set->map[j].mq_map);
4554 set->map[j].mq_map = NULL;
4559 if (set->flags & BLK_MQ_F_BLOCKING) {
4560 cleanup_srcu_struct(set->srcu);
4564 EXPORT_SYMBOL(blk_mq_free_tag_set);
4566 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4568 struct blk_mq_tag_set *set = q->tag_set;
4569 struct blk_mq_hw_ctx *hctx;
4576 if (q->nr_requests == nr)
4579 blk_mq_freeze_queue(q);
4580 blk_mq_quiesce_queue(q);
4583 queue_for_each_hw_ctx(q, hctx, i) {
4587 * If we're using an MQ scheduler, just update the scheduler
4588 * queue depth. This is similar to what the old code would do.
4590 if (hctx->sched_tags) {
4591 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4594 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4599 if (q->elevator && q->elevator->type->ops.depth_updated)
4600 q->elevator->type->ops.depth_updated(hctx);
4603 q->nr_requests = nr;
4604 if (blk_mq_is_shared_tags(set->flags)) {
4606 blk_mq_tag_update_sched_shared_tags(q);
4608 blk_mq_tag_resize_shared_tags(set, nr);
4612 blk_mq_unquiesce_queue(q);
4613 blk_mq_unfreeze_queue(q);
4619 * request_queue and elevator_type pair.
4620 * It is just used by __blk_mq_update_nr_hw_queues to cache
4621 * the elevator_type associated with a request_queue.
4623 struct blk_mq_qe_pair {
4624 struct list_head node;
4625 struct request_queue *q;
4626 struct elevator_type *type;
4630 * Cache the elevator_type in qe pair list and switch the
4631 * io scheduler to 'none'
4633 static bool blk_mq_elv_switch_none(struct list_head *head,
4634 struct request_queue *q)
4636 struct blk_mq_qe_pair *qe;
4641 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4645 /* q->elevator needs protection from ->sysfs_lock */
4646 mutex_lock(&q->sysfs_lock);
4648 INIT_LIST_HEAD(&qe->node);
4650 qe->type = q->elevator->type;
4651 /* keep a reference to the elevator module as we'll switch back */
4652 __elevator_get(qe->type);
4653 list_add(&qe->node, head);
4654 elevator_disable(q);
4655 mutex_unlock(&q->sysfs_lock);
4660 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4661 struct request_queue *q)
4663 struct blk_mq_qe_pair *qe;
4665 list_for_each_entry(qe, head, node)
4672 static void blk_mq_elv_switch_back(struct list_head *head,
4673 struct request_queue *q)
4675 struct blk_mq_qe_pair *qe;
4676 struct elevator_type *t;
4678 qe = blk_lookup_qe_pair(head, q);
4682 list_del(&qe->node);
4685 mutex_lock(&q->sysfs_lock);
4686 elevator_switch(q, t);
4687 /* drop the reference acquired in blk_mq_elv_switch_none */
4689 mutex_unlock(&q->sysfs_lock);
4692 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4695 struct request_queue *q;
4697 int prev_nr_hw_queues;
4699 lockdep_assert_held(&set->tag_list_lock);
4701 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4702 nr_hw_queues = nr_cpu_ids;
4703 if (nr_hw_queues < 1)
4705 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4708 list_for_each_entry(q, &set->tag_list, tag_set_list)
4709 blk_mq_freeze_queue(q);
4711 * Switch IO scheduler to 'none', cleaning up the data associated
4712 * with the previous scheduler. We will switch back once we are done
4713 * updating the new sw to hw queue mappings.
4715 list_for_each_entry(q, &set->tag_list, tag_set_list)
4716 if (!blk_mq_elv_switch_none(&head, q))
4719 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4720 blk_mq_debugfs_unregister_hctxs(q);
4721 blk_mq_sysfs_unregister_hctxs(q);
4724 prev_nr_hw_queues = set->nr_hw_queues;
4725 if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4729 blk_mq_update_queue_map(set);
4730 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4731 blk_mq_realloc_hw_ctxs(set, q);
4732 blk_mq_update_poll_flag(q);
4733 if (q->nr_hw_queues != set->nr_hw_queues) {
4734 int i = prev_nr_hw_queues;
4736 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4737 nr_hw_queues, prev_nr_hw_queues);
4738 for (; i < set->nr_hw_queues; i++)
4739 __blk_mq_free_map_and_rqs(set, i);
4741 set->nr_hw_queues = prev_nr_hw_queues;
4742 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4745 blk_mq_map_swqueue(q);
4749 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4750 blk_mq_sysfs_register_hctxs(q);
4751 blk_mq_debugfs_register_hctxs(q);
4755 list_for_each_entry(q, &set->tag_list, tag_set_list)
4756 blk_mq_elv_switch_back(&head, q);
4758 list_for_each_entry(q, &set->tag_list, tag_set_list)
4759 blk_mq_unfreeze_queue(q);
4762 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4764 mutex_lock(&set->tag_list_lock);
4765 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4766 mutex_unlock(&set->tag_list_lock);
4768 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4770 /* Enable polling stats and return whether they were already enabled. */
4771 static bool blk_poll_stats_enable(struct request_queue *q)
4776 return blk_stats_alloc_enable(q);
4779 static void blk_mq_poll_stats_start(struct request_queue *q)
4782 * We don't arm the callback if polling stats are not enabled or the
4783 * callback is already active.
4785 if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4788 blk_stat_activate_msecs(q->poll_cb, 100);
4791 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4793 struct request_queue *q = cb->data;
4796 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4797 if (cb->stat[bucket].nr_samples)
4798 q->poll_stat[bucket] = cb->stat[bucket];
4802 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4805 unsigned long ret = 0;
4809 * If stats collection isn't on, don't sleep but turn it on for
4812 if (!blk_poll_stats_enable(q))
4816 * As an optimistic guess, use half of the mean service time
4817 * for this type of request. We can (and should) make this smarter.
4818 * For instance, if the completion latencies are tight, we can
4819 * get closer than just half the mean. This is especially
4820 * important on devices where the completion latencies are longer
4821 * than ~10 usec. We do use the stats for the relevant IO size
4822 * if available which does lead to better estimates.
4824 bucket = blk_mq_poll_stats_bkt(rq);
4828 if (q->poll_stat[bucket].nr_samples)
4829 ret = (q->poll_stat[bucket].mean + 1) / 2;
4834 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4836 struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4837 struct request *rq = blk_qc_to_rq(hctx, qc);
4838 struct hrtimer_sleeper hs;
4839 enum hrtimer_mode mode;
4844 * If a request has completed on queue that uses an I/O scheduler, we
4845 * won't get back a request from blk_qc_to_rq.
4847 if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4851 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4853 * 0: use half of prev avg
4854 * >0: use this specific value
4856 if (q->poll_nsec > 0)
4857 nsecs = q->poll_nsec;
4859 nsecs = blk_mq_poll_nsecs(q, rq);
4864 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4867 * This will be replaced with the stats tracking code, using
4868 * 'avg_completion_time / 2' as the pre-sleep target.
4872 mode = HRTIMER_MODE_REL;
4873 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4874 hrtimer_set_expires(&hs.timer, kt);
4877 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4879 set_current_state(TASK_UNINTERRUPTIBLE);
4880 hrtimer_sleeper_start_expires(&hs, mode);
4883 hrtimer_cancel(&hs.timer);
4884 mode = HRTIMER_MODE_ABS;
4885 } while (hs.task && !signal_pending(current));
4887 __set_current_state(TASK_RUNNING);
4888 destroy_hrtimer_on_stack(&hs.timer);
4891 * If we sleep, have the caller restart the poll loop to reset the
4892 * state. Like for the other success return cases, the caller is
4893 * responsible for checking if the IO completed. If the IO isn't
4894 * complete, we'll get called again and will go straight to the busy
4900 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4901 struct io_comp_batch *iob, unsigned int flags)
4903 struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4904 long state = get_current_state();
4908 ret = q->mq_ops->poll(hctx, iob);
4910 __set_current_state(TASK_RUNNING);
4914 if (signal_pending_state(state, current))
4915 __set_current_state(TASK_RUNNING);
4916 if (task_is_running(current))
4919 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4922 } while (!need_resched());
4924 __set_current_state(TASK_RUNNING);
4928 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4931 if (!(flags & BLK_POLL_NOSLEEP) &&
4932 q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4933 if (blk_mq_poll_hybrid(q, cookie))
4936 return blk_mq_poll_classic(q, cookie, iob, flags);
4939 unsigned int blk_mq_rq_cpu(struct request *rq)
4941 return rq->mq_ctx->cpu;
4943 EXPORT_SYMBOL(blk_mq_rq_cpu);
4945 void blk_mq_cancel_work_sync(struct request_queue *q)
4947 struct blk_mq_hw_ctx *hctx;
4950 cancel_delayed_work_sync(&q->requeue_work);
4952 queue_for_each_hw_ctx(q, hctx, i)
4953 cancel_delayed_work_sync(&hctx->run_work);
4956 static int __init blk_mq_init(void)
4960 for_each_possible_cpu(i)
4961 init_llist_head(&per_cpu(blk_cpu_done, i));
4962 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4964 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4965 "block/softirq:dead", NULL,
4966 blk_softirq_cpu_dead);
4967 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4968 blk_mq_hctx_notify_dead);
4969 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4970 blk_mq_hctx_notify_online,
4971 blk_mq_hctx_notify_offline);
4974 subsys_initcall(blk_mq_init);