2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
26 #include <trace/events/block.h>
28 #include <linux/blk-mq.h>
31 #include "blk-mq-tag.h"
33 static DEFINE_MUTEX(all_q_mutex);
34 static LIST_HEAD(all_q_list);
36 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
39 * Check if any of the ctx's have pending work in this hardware queue
41 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
45 for (i = 0; i < hctx->ctx_map.size; i++)
46 if (hctx->ctx_map.map[i].word)
52 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
53 struct blk_mq_ctx *ctx)
55 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
58 #define CTX_TO_BIT(hctx, ctx) \
59 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
62 * Mark this ctx as having pending work in this hardware queue
64 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
65 struct blk_mq_ctx *ctx)
67 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
69 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
70 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
73 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
74 struct blk_mq_ctx *ctx)
76 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
78 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
81 void blk_mq_freeze_queue_start(struct request_queue *q)
85 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
86 if (freeze_depth == 1) {
87 percpu_ref_kill(&q->q_usage_counter);
88 blk_mq_run_hw_queues(q, false);
91 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
93 static void blk_mq_freeze_queue_wait(struct request_queue *q)
95 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
99 * Guarantee no request is in use, so we can change any data structure of
100 * the queue afterward.
102 void blk_freeze_queue(struct request_queue *q)
105 * In the !blk_mq case we are only calling this to kill the
106 * q_usage_counter, otherwise this increases the freeze depth
107 * and waits for it to return to zero. For this reason there is
108 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
109 * exported to drivers as the only user for unfreeze is blk_mq.
111 blk_mq_freeze_queue_start(q);
112 blk_mq_freeze_queue_wait(q);
115 void blk_mq_freeze_queue(struct request_queue *q)
118 * ...just an alias to keep freeze and unfreeze actions balanced
119 * in the blk_mq_* namespace
123 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
125 void blk_mq_unfreeze_queue(struct request_queue *q)
129 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
130 WARN_ON_ONCE(freeze_depth < 0);
132 percpu_ref_reinit(&q->q_usage_counter);
133 wake_up_all(&q->mq_freeze_wq);
136 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
138 void blk_mq_wake_waiters(struct request_queue *q)
140 struct blk_mq_hw_ctx *hctx;
143 queue_for_each_hw_ctx(q, hctx, i)
144 if (blk_mq_hw_queue_mapped(hctx))
145 blk_mq_tag_wakeup_all(hctx->tags, true);
148 * If we are called because the queue has now been marked as
149 * dying, we need to ensure that processes currently waiting on
150 * the queue are notified as well.
152 wake_up_all(&q->mq_freeze_wq);
155 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
157 return blk_mq_has_free_tags(hctx->tags);
159 EXPORT_SYMBOL(blk_mq_can_queue);
161 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
162 struct request *rq, unsigned int rw_flags)
164 if (blk_queue_io_stat(q))
165 rw_flags |= REQ_IO_STAT;
167 INIT_LIST_HEAD(&rq->queuelist);
168 /* csd/requeue_work/fifo_time is initialized before use */
171 rq->cmd_flags |= rw_flags;
172 /* do not touch atomic flags, it needs atomic ops against the timer */
174 INIT_HLIST_NODE(&rq->hash);
175 RB_CLEAR_NODE(&rq->rb_node);
178 rq->start_time = jiffies;
179 #ifdef CONFIG_BLK_CGROUP
181 set_start_time_ns(rq);
182 rq->io_start_time_ns = 0;
184 rq->nr_phys_segments = 0;
185 #if defined(CONFIG_BLK_DEV_INTEGRITY)
186 rq->nr_integrity_segments = 0;
189 /* tag was already set */
199 INIT_LIST_HEAD(&rq->timeout_list);
203 rq->end_io_data = NULL;
206 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
209 static struct request *
210 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
215 tag = blk_mq_get_tag(data);
216 if (tag != BLK_MQ_TAG_FAIL) {
217 rq = data->hctx->tags->rqs[tag];
219 if (blk_mq_tag_busy(data->hctx)) {
220 rq->cmd_flags = REQ_MQ_INFLIGHT;
221 atomic_inc(&data->hctx->nr_active);
225 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
232 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
235 struct blk_mq_ctx *ctx;
236 struct blk_mq_hw_ctx *hctx;
238 struct blk_mq_alloc_data alloc_data;
241 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
245 ctx = blk_mq_get_ctx(q);
246 hctx = q->mq_ops->map_queue(q, ctx->cpu);
247 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
249 rq = __blk_mq_alloc_request(&alloc_data, rw);
250 if (!rq && !(flags & BLK_MQ_REQ_NOWAIT)) {
251 __blk_mq_run_hw_queue(hctx);
254 ctx = blk_mq_get_ctx(q);
255 hctx = q->mq_ops->map_queue(q, ctx->cpu);
256 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
257 rq = __blk_mq_alloc_request(&alloc_data, rw);
258 ctx = alloc_data.ctx;
263 return ERR_PTR(-EWOULDBLOCK);
267 EXPORT_SYMBOL(blk_mq_alloc_request);
269 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
270 struct blk_mq_ctx *ctx, struct request *rq)
272 const int tag = rq->tag;
273 struct request_queue *q = rq->q;
275 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
276 atomic_dec(&hctx->nr_active);
279 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
280 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
284 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
286 struct blk_mq_ctx *ctx = rq->mq_ctx;
288 ctx->rq_completed[rq_is_sync(rq)]++;
289 __blk_mq_free_request(hctx, ctx, rq);
292 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
294 void blk_mq_free_request(struct request *rq)
296 struct blk_mq_hw_ctx *hctx;
297 struct request_queue *q = rq->q;
299 hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
300 blk_mq_free_hctx_request(hctx, rq);
302 EXPORT_SYMBOL_GPL(blk_mq_free_request);
304 inline void __blk_mq_end_request(struct request *rq, int error)
306 blk_account_io_done(rq);
309 rq->end_io(rq, error);
311 if (unlikely(blk_bidi_rq(rq)))
312 blk_mq_free_request(rq->next_rq);
313 blk_mq_free_request(rq);
316 EXPORT_SYMBOL(__blk_mq_end_request);
318 void blk_mq_end_request(struct request *rq, int error)
320 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
322 __blk_mq_end_request(rq, error);
324 EXPORT_SYMBOL(blk_mq_end_request);
326 static void __blk_mq_complete_request_remote(void *data)
328 struct request *rq = data;
330 rq->q->softirq_done_fn(rq);
333 static void blk_mq_ipi_complete_request(struct request *rq)
335 struct blk_mq_ctx *ctx = rq->mq_ctx;
339 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
340 rq->q->softirq_done_fn(rq);
345 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
346 shared = cpus_share_cache(cpu, ctx->cpu);
348 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
349 rq->csd.func = __blk_mq_complete_request_remote;
352 smp_call_function_single_async(ctx->cpu, &rq->csd);
354 rq->q->softirq_done_fn(rq);
359 static void __blk_mq_complete_request(struct request *rq)
361 struct request_queue *q = rq->q;
363 if (!q->softirq_done_fn)
364 blk_mq_end_request(rq, rq->errors);
366 blk_mq_ipi_complete_request(rq);
370 * blk_mq_complete_request - end I/O on a request
371 * @rq: the request being processed
374 * Ends all I/O on a request. It does not handle partial completions.
375 * The actual completion happens out-of-order, through a IPI handler.
377 void blk_mq_complete_request(struct request *rq, int error)
379 struct request_queue *q = rq->q;
381 if (unlikely(blk_should_fake_timeout(q)))
383 if (!blk_mark_rq_complete(rq)) {
385 __blk_mq_complete_request(rq);
388 EXPORT_SYMBOL(blk_mq_complete_request);
390 int blk_mq_request_started(struct request *rq)
392 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
394 EXPORT_SYMBOL_GPL(blk_mq_request_started);
396 void blk_mq_start_request(struct request *rq)
398 struct request_queue *q = rq->q;
400 trace_block_rq_issue(q, rq);
402 rq->resid_len = blk_rq_bytes(rq);
403 if (unlikely(blk_bidi_rq(rq)))
404 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
409 * Ensure that ->deadline is visible before set the started
410 * flag and clear the completed flag.
412 smp_mb__before_atomic();
415 * Mark us as started and clear complete. Complete might have been
416 * set if requeue raced with timeout, which then marked it as
417 * complete. So be sure to clear complete again when we start
418 * the request, otherwise we'll ignore the completion event.
420 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
421 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
422 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
423 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
425 if (q->dma_drain_size && blk_rq_bytes(rq)) {
427 * Make sure space for the drain appears. We know we can do
428 * this because max_hw_segments has been adjusted to be one
429 * fewer than the device can handle.
431 rq->nr_phys_segments++;
434 EXPORT_SYMBOL(blk_mq_start_request);
436 static void __blk_mq_requeue_request(struct request *rq)
438 struct request_queue *q = rq->q;
440 trace_block_rq_requeue(q, rq);
442 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
443 if (q->dma_drain_size && blk_rq_bytes(rq))
444 rq->nr_phys_segments--;
448 void blk_mq_requeue_request(struct request *rq)
450 __blk_mq_requeue_request(rq);
452 BUG_ON(blk_queued_rq(rq));
453 blk_mq_add_to_requeue_list(rq, true);
455 EXPORT_SYMBOL(blk_mq_requeue_request);
457 static void blk_mq_requeue_work(struct work_struct *work)
459 struct request_queue *q =
460 container_of(work, struct request_queue, requeue_work);
462 struct request *rq, *next;
465 spin_lock_irqsave(&q->requeue_lock, flags);
466 list_splice_init(&q->requeue_list, &rq_list);
467 spin_unlock_irqrestore(&q->requeue_lock, flags);
469 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
470 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
473 rq->cmd_flags &= ~REQ_SOFTBARRIER;
474 list_del_init(&rq->queuelist);
475 blk_mq_insert_request(rq, true, false, false);
478 while (!list_empty(&rq_list)) {
479 rq = list_entry(rq_list.next, struct request, queuelist);
480 list_del_init(&rq->queuelist);
481 blk_mq_insert_request(rq, false, false, false);
485 * Use the start variant of queue running here, so that running
486 * the requeue work will kick stopped queues.
488 blk_mq_start_hw_queues(q);
491 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
493 struct request_queue *q = rq->q;
497 * We abuse this flag that is otherwise used by the I/O scheduler to
498 * request head insertation from the workqueue.
500 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
502 spin_lock_irqsave(&q->requeue_lock, flags);
504 rq->cmd_flags |= REQ_SOFTBARRIER;
505 list_add(&rq->queuelist, &q->requeue_list);
507 list_add_tail(&rq->queuelist, &q->requeue_list);
509 spin_unlock_irqrestore(&q->requeue_lock, flags);
511 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
513 void blk_mq_cancel_requeue_work(struct request_queue *q)
515 cancel_work_sync(&q->requeue_work);
517 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
519 void blk_mq_kick_requeue_list(struct request_queue *q)
521 kblockd_schedule_work(&q->requeue_work);
523 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
525 void blk_mq_abort_requeue_list(struct request_queue *q)
530 spin_lock_irqsave(&q->requeue_lock, flags);
531 list_splice_init(&q->requeue_list, &rq_list);
532 spin_unlock_irqrestore(&q->requeue_lock, flags);
534 while (!list_empty(&rq_list)) {
537 rq = list_first_entry(&rq_list, struct request, queuelist);
538 list_del_init(&rq->queuelist);
540 blk_mq_end_request(rq, rq->errors);
543 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
545 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
547 return tags->rqs[tag];
549 EXPORT_SYMBOL(blk_mq_tag_to_rq);
551 struct blk_mq_timeout_data {
553 unsigned int next_set;
556 void blk_mq_rq_timed_out(struct request *req, bool reserved)
558 struct blk_mq_ops *ops = req->q->mq_ops;
559 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
562 * We know that complete is set at this point. If STARTED isn't set
563 * anymore, then the request isn't active and the "timeout" should
564 * just be ignored. This can happen due to the bitflag ordering.
565 * Timeout first checks if STARTED is set, and if it is, assumes
566 * the request is active. But if we race with completion, then
567 * we both flags will get cleared. So check here again, and ignore
568 * a timeout event with a request that isn't active.
570 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
574 ret = ops->timeout(req, reserved);
578 __blk_mq_complete_request(req);
580 case BLK_EH_RESET_TIMER:
582 blk_clear_rq_complete(req);
584 case BLK_EH_NOT_HANDLED:
587 printk(KERN_ERR "block: bad eh return: %d\n", ret);
592 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
593 struct request *rq, void *priv, bool reserved)
595 struct blk_mq_timeout_data *data = priv;
597 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
599 * If a request wasn't started before the queue was
600 * marked dying, kill it here or it'll go unnoticed.
602 if (unlikely(blk_queue_dying(rq->q))) {
604 blk_mq_end_request(rq, rq->errors);
609 if (time_after_eq(jiffies, rq->deadline)) {
610 if (!blk_mark_rq_complete(rq))
611 blk_mq_rq_timed_out(rq, reserved);
612 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
613 data->next = rq->deadline;
618 static void blk_mq_timeout_work(struct work_struct *work)
620 struct request_queue *q =
621 container_of(work, struct request_queue, timeout_work);
622 struct blk_mq_timeout_data data = {
628 if (blk_queue_enter(q, true))
631 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
634 data.next = blk_rq_timeout(round_jiffies_up(data.next));
635 mod_timer(&q->timeout, data.next);
637 struct blk_mq_hw_ctx *hctx;
639 queue_for_each_hw_ctx(q, hctx, i) {
640 /* the hctx may be unmapped, so check it here */
641 if (blk_mq_hw_queue_mapped(hctx))
642 blk_mq_tag_idle(hctx);
649 * Reverse check our software queue for entries that we could potentially
650 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
651 * too much time checking for merges.
653 static bool blk_mq_attempt_merge(struct request_queue *q,
654 struct blk_mq_ctx *ctx, struct bio *bio)
659 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
665 if (!blk_rq_merge_ok(rq, bio))
668 el_ret = blk_try_merge(rq, bio);
669 if (el_ret == ELEVATOR_BACK_MERGE) {
670 if (bio_attempt_back_merge(q, rq, bio)) {
675 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
676 if (bio_attempt_front_merge(q, rq, bio)) {
688 * Process software queues that have been marked busy, splicing them
689 * to the for-dispatch
691 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
693 struct blk_mq_ctx *ctx;
696 for (i = 0; i < hctx->ctx_map.size; i++) {
697 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
698 unsigned int off, bit;
704 off = i * hctx->ctx_map.bits_per_word;
706 bit = find_next_bit(&bm->word, bm->depth, bit);
707 if (bit >= bm->depth)
710 ctx = hctx->ctxs[bit + off];
711 clear_bit(bit, &bm->word);
712 spin_lock(&ctx->lock);
713 list_splice_tail_init(&ctx->rq_list, list);
714 spin_unlock(&ctx->lock);
722 * Run this hardware queue, pulling any software queues mapped to it in.
723 * Note that this function currently has various problems around ordering
724 * of IO. In particular, we'd like FIFO behaviour on handling existing
725 * items on the hctx->dispatch list. Ignore that for now.
727 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
729 struct request_queue *q = hctx->queue;
732 LIST_HEAD(driver_list);
733 struct list_head *dptr;
736 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
738 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
744 * Touch any software queue that has pending entries.
746 flush_busy_ctxs(hctx, &rq_list);
749 * If we have previous entries on our dispatch list, grab them
750 * and stuff them at the front for more fair dispatch.
752 if (!list_empty_careful(&hctx->dispatch)) {
753 spin_lock(&hctx->lock);
754 if (!list_empty(&hctx->dispatch))
755 list_splice_init(&hctx->dispatch, &rq_list);
756 spin_unlock(&hctx->lock);
760 * Start off with dptr being NULL, so we start the first request
761 * immediately, even if we have more pending.
766 * Now process all the entries, sending them to the driver.
769 while (!list_empty(&rq_list)) {
770 struct blk_mq_queue_data bd;
773 rq = list_first_entry(&rq_list, struct request, queuelist);
774 list_del_init(&rq->queuelist);
778 bd.last = list_empty(&rq_list);
780 ret = q->mq_ops->queue_rq(hctx, &bd);
782 case BLK_MQ_RQ_QUEUE_OK:
785 case BLK_MQ_RQ_QUEUE_BUSY:
786 list_add(&rq->queuelist, &rq_list);
787 __blk_mq_requeue_request(rq);
790 pr_err("blk-mq: bad return on queue: %d\n", ret);
791 case BLK_MQ_RQ_QUEUE_ERROR:
793 blk_mq_end_request(rq, rq->errors);
797 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
801 * We've done the first request. If we have more than 1
802 * left in the list, set dptr to defer issue.
804 if (!dptr && rq_list.next != rq_list.prev)
809 hctx->dispatched[0]++;
810 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
811 hctx->dispatched[ilog2(queued) + 1]++;
814 * Any items that need requeuing? Stuff them into hctx->dispatch,
815 * that is where we will continue on next queue run.
817 if (!list_empty(&rq_list)) {
818 spin_lock(&hctx->lock);
819 list_splice(&rq_list, &hctx->dispatch);
820 spin_unlock(&hctx->lock);
822 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
823 * it's possible the queue is stopped and restarted again
824 * before this. Queue restart will dispatch requests. And since
825 * requests in rq_list aren't added into hctx->dispatch yet,
826 * the requests in rq_list might get lost.
828 * blk_mq_run_hw_queue() already checks the STOPPED bit
830 blk_mq_run_hw_queue(hctx, true);
835 * It'd be great if the workqueue API had a way to pass
836 * in a mask and had some smarts for more clever placement.
837 * For now we just round-robin here, switching for every
838 * BLK_MQ_CPU_WORK_BATCH queued items.
840 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
842 if (hctx->queue->nr_hw_queues == 1)
843 return WORK_CPU_UNBOUND;
845 if (--hctx->next_cpu_batch <= 0) {
846 int cpu = hctx->next_cpu, next_cpu;
848 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
849 if (next_cpu >= nr_cpu_ids)
850 next_cpu = cpumask_first(hctx->cpumask);
852 hctx->next_cpu = next_cpu;
853 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
858 return hctx->next_cpu;
861 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
863 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
864 !blk_mq_hw_queue_mapped(hctx)))
869 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
870 __blk_mq_run_hw_queue(hctx);
878 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
882 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
884 struct blk_mq_hw_ctx *hctx;
887 queue_for_each_hw_ctx(q, hctx, i) {
888 if ((!blk_mq_hctx_has_pending(hctx) &&
889 list_empty_careful(&hctx->dispatch)) ||
890 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
893 blk_mq_run_hw_queue(hctx, async);
896 EXPORT_SYMBOL(blk_mq_run_hw_queues);
898 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
900 cancel_delayed_work(&hctx->run_work);
901 cancel_delayed_work(&hctx->delay_work);
902 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
904 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
906 void blk_mq_stop_hw_queues(struct request_queue *q)
908 struct blk_mq_hw_ctx *hctx;
911 queue_for_each_hw_ctx(q, hctx, i)
912 blk_mq_stop_hw_queue(hctx);
914 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
916 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
918 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
920 blk_mq_run_hw_queue(hctx, false);
922 EXPORT_SYMBOL(blk_mq_start_hw_queue);
924 void blk_mq_start_hw_queues(struct request_queue *q)
926 struct blk_mq_hw_ctx *hctx;
929 queue_for_each_hw_ctx(q, hctx, i)
930 blk_mq_start_hw_queue(hctx);
932 EXPORT_SYMBOL(blk_mq_start_hw_queues);
934 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
936 struct blk_mq_hw_ctx *hctx;
939 queue_for_each_hw_ctx(q, hctx, i) {
940 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
943 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
944 blk_mq_run_hw_queue(hctx, async);
947 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
949 static void blk_mq_run_work_fn(struct work_struct *work)
951 struct blk_mq_hw_ctx *hctx;
953 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
955 __blk_mq_run_hw_queue(hctx);
958 static void blk_mq_delay_work_fn(struct work_struct *work)
960 struct blk_mq_hw_ctx *hctx;
962 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
964 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
965 __blk_mq_run_hw_queue(hctx);
968 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
970 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
973 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
974 &hctx->delay_work, msecs_to_jiffies(msecs));
976 EXPORT_SYMBOL(blk_mq_delay_queue);
978 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
979 struct blk_mq_ctx *ctx,
983 trace_block_rq_insert(hctx->queue, rq);
986 list_add(&rq->queuelist, &ctx->rq_list);
988 list_add_tail(&rq->queuelist, &ctx->rq_list);
991 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
992 struct request *rq, bool at_head)
994 struct blk_mq_ctx *ctx = rq->mq_ctx;
996 __blk_mq_insert_req_list(hctx, ctx, rq, at_head);
997 blk_mq_hctx_mark_pending(hctx, ctx);
1000 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1003 struct request_queue *q = rq->q;
1004 struct blk_mq_hw_ctx *hctx;
1005 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
1007 current_ctx = blk_mq_get_ctx(q);
1008 if (!cpu_online(ctx->cpu))
1009 rq->mq_ctx = ctx = current_ctx;
1011 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1013 spin_lock(&ctx->lock);
1014 __blk_mq_insert_request(hctx, rq, at_head);
1015 spin_unlock(&ctx->lock);
1018 blk_mq_run_hw_queue(hctx, async);
1020 blk_mq_put_ctx(current_ctx);
1023 static void blk_mq_insert_requests(struct request_queue *q,
1024 struct blk_mq_ctx *ctx,
1025 struct list_head *list,
1030 struct blk_mq_hw_ctx *hctx;
1031 struct blk_mq_ctx *current_ctx;
1033 trace_block_unplug(q, depth, !from_schedule);
1035 current_ctx = blk_mq_get_ctx(q);
1037 if (!cpu_online(ctx->cpu))
1039 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1042 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1045 spin_lock(&ctx->lock);
1046 while (!list_empty(list)) {
1049 rq = list_first_entry(list, struct request, queuelist);
1050 list_del_init(&rq->queuelist);
1052 __blk_mq_insert_req_list(hctx, ctx, rq, false);
1054 blk_mq_hctx_mark_pending(hctx, ctx);
1055 spin_unlock(&ctx->lock);
1057 blk_mq_run_hw_queue(hctx, from_schedule);
1058 blk_mq_put_ctx(current_ctx);
1061 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1063 struct request *rqa = container_of(a, struct request, queuelist);
1064 struct request *rqb = container_of(b, struct request, queuelist);
1066 return !(rqa->mq_ctx < rqb->mq_ctx ||
1067 (rqa->mq_ctx == rqb->mq_ctx &&
1068 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1071 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1073 struct blk_mq_ctx *this_ctx;
1074 struct request_queue *this_q;
1077 LIST_HEAD(ctx_list);
1080 list_splice_init(&plug->mq_list, &list);
1082 list_sort(NULL, &list, plug_ctx_cmp);
1088 while (!list_empty(&list)) {
1089 rq = list_entry_rq(list.next);
1090 list_del_init(&rq->queuelist);
1092 if (rq->mq_ctx != this_ctx) {
1094 blk_mq_insert_requests(this_q, this_ctx,
1099 this_ctx = rq->mq_ctx;
1105 list_add_tail(&rq->queuelist, &ctx_list);
1109 * If 'this_ctx' is set, we know we have entries to complete
1110 * on 'ctx_list'. Do those.
1113 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1118 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1120 init_request_from_bio(rq, bio);
1122 if (blk_do_io_stat(rq))
1123 blk_account_io_start(rq, 1);
1126 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1128 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1129 !blk_queue_nomerges(hctx->queue);
1132 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1133 struct blk_mq_ctx *ctx,
1134 struct request *rq, struct bio *bio)
1136 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1137 blk_mq_bio_to_request(rq, bio);
1138 spin_lock(&ctx->lock);
1140 __blk_mq_insert_request(hctx, rq, false);
1141 spin_unlock(&ctx->lock);
1144 struct request_queue *q = hctx->queue;
1146 spin_lock(&ctx->lock);
1147 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1148 blk_mq_bio_to_request(rq, bio);
1152 spin_unlock(&ctx->lock);
1153 __blk_mq_free_request(hctx, ctx, rq);
1158 struct blk_map_ctx {
1159 struct blk_mq_hw_ctx *hctx;
1160 struct blk_mq_ctx *ctx;
1163 static struct request *blk_mq_map_request(struct request_queue *q,
1165 struct blk_map_ctx *data)
1167 struct blk_mq_hw_ctx *hctx;
1168 struct blk_mq_ctx *ctx;
1170 int rw = bio_data_dir(bio);
1171 struct blk_mq_alloc_data alloc_data;
1173 blk_queue_enter_live(q);
1174 ctx = blk_mq_get_ctx(q);
1175 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1177 if (rw_is_sync(bio->bi_rw))
1180 trace_block_getrq(q, bio, rw);
1181 blk_mq_set_alloc_data(&alloc_data, q, BLK_MQ_REQ_NOWAIT, ctx, hctx);
1182 rq = __blk_mq_alloc_request(&alloc_data, rw);
1183 if (unlikely(!rq)) {
1184 __blk_mq_run_hw_queue(hctx);
1185 blk_mq_put_ctx(ctx);
1186 trace_block_sleeprq(q, bio, rw);
1188 ctx = blk_mq_get_ctx(q);
1189 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1190 blk_mq_set_alloc_data(&alloc_data, q, 0, ctx, hctx);
1191 rq = __blk_mq_alloc_request(&alloc_data, rw);
1192 ctx = alloc_data.ctx;
1193 hctx = alloc_data.hctx;
1202 static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie)
1205 struct request_queue *q = rq->q;
1206 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
1208 struct blk_mq_queue_data bd = {
1213 blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1216 * For OK queue, we are done. For error, kill it. Any other
1217 * error (busy), just add it to our list as we previously
1220 ret = q->mq_ops->queue_rq(hctx, &bd);
1221 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1222 *cookie = new_cookie;
1226 __blk_mq_requeue_request(rq);
1228 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1229 *cookie = BLK_QC_T_NONE;
1231 blk_mq_end_request(rq, rq->errors);
1239 * Multiple hardware queue variant. This will not use per-process plugs,
1240 * but will attempt to bypass the hctx queueing if we can go straight to
1241 * hardware for SYNC IO.
1243 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1245 const int is_sync = rw_is_sync(bio->bi_rw);
1246 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1247 struct blk_map_ctx data;
1249 unsigned int request_count = 0;
1250 struct blk_plug *plug;
1251 struct request *same_queue_rq = NULL;
1254 blk_queue_bounce(q, &bio);
1256 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1258 return BLK_QC_T_NONE;
1261 blk_queue_split(q, &bio, q->bio_split);
1263 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1264 if (blk_attempt_plug_merge(q, bio, &request_count,
1266 return BLK_QC_T_NONE;
1268 request_count = blk_plug_queued_count(q);
1270 rq = blk_mq_map_request(q, bio, &data);
1272 return BLK_QC_T_NONE;
1274 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1276 if (unlikely(is_flush_fua)) {
1277 blk_mq_bio_to_request(rq, bio);
1278 blk_insert_flush(rq);
1282 plug = current->plug;
1284 * If the driver supports defer issued based on 'last', then
1285 * queue it up like normal since we can potentially save some
1288 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1289 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1290 struct request *old_rq = NULL;
1292 blk_mq_bio_to_request(rq, bio);
1295 * We do limited pluging. If the bio can be merged, do that.
1296 * Otherwise the existing request in the plug list will be
1297 * issued. So the plug list will have one request at most
1301 * The plug list might get flushed before this. If that
1302 * happens, same_queue_rq is invalid and plug list is
1305 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1306 old_rq = same_queue_rq;
1307 list_del_init(&old_rq->queuelist);
1309 list_add_tail(&rq->queuelist, &plug->mq_list);
1310 } else /* is_sync */
1312 blk_mq_put_ctx(data.ctx);
1315 if (!blk_mq_direct_issue_request(old_rq, &cookie))
1317 blk_mq_insert_request(old_rq, false, true, true);
1321 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1323 * For a SYNC request, send it to the hardware immediately. For
1324 * an ASYNC request, just ensure that we run it later on. The
1325 * latter allows for merging opportunities and more efficient
1329 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1331 blk_mq_put_ctx(data.ctx);
1337 * Single hardware queue variant. This will attempt to use any per-process
1338 * plug for merging and IO deferral.
1340 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1342 const int is_sync = rw_is_sync(bio->bi_rw);
1343 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1344 struct blk_plug *plug;
1345 unsigned int request_count = 0;
1346 struct blk_map_ctx data;
1350 blk_queue_bounce(q, &bio);
1352 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1354 return BLK_QC_T_NONE;
1357 blk_queue_split(q, &bio, q->bio_split);
1359 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1360 blk_attempt_plug_merge(q, bio, &request_count, NULL))
1361 return BLK_QC_T_NONE;
1363 rq = blk_mq_map_request(q, bio, &data);
1365 return BLK_QC_T_NONE;
1367 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1369 if (unlikely(is_flush_fua)) {
1370 blk_mq_bio_to_request(rq, bio);
1371 blk_insert_flush(rq);
1376 * A task plug currently exists. Since this is completely lockless,
1377 * utilize that to temporarily store requests until the task is
1378 * either done or scheduled away.
1380 plug = current->plug;
1382 blk_mq_bio_to_request(rq, bio);
1384 trace_block_plug(q);
1386 blk_mq_put_ctx(data.ctx);
1388 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1389 blk_flush_plug_list(plug, false);
1390 trace_block_plug(q);
1393 list_add_tail(&rq->queuelist, &plug->mq_list);
1397 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1399 * For a SYNC request, send it to the hardware immediately. For
1400 * an ASYNC request, just ensure that we run it later on. The
1401 * latter allows for merging opportunities and more efficient
1405 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1408 blk_mq_put_ctx(data.ctx);
1413 * Default mapping to a software queue, since we use one per CPU.
1415 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1417 return q->queue_hw_ctx[q->mq_map[cpu]];
1419 EXPORT_SYMBOL(blk_mq_map_queue);
1421 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1422 struct blk_mq_tags *tags, unsigned int hctx_idx)
1426 if (tags->rqs && set->ops->exit_request) {
1429 for (i = 0; i < tags->nr_tags; i++) {
1432 set->ops->exit_request(set->driver_data, tags->rqs[i],
1434 tags->rqs[i] = NULL;
1438 while (!list_empty(&tags->page_list)) {
1439 page = list_first_entry(&tags->page_list, struct page, lru);
1440 list_del_init(&page->lru);
1442 * Remove kmemleak object previously allocated in
1443 * blk_mq_init_rq_map().
1445 kmemleak_free(page_address(page));
1446 __free_pages(page, page->private);
1451 blk_mq_free_tags(tags);
1454 static size_t order_to_size(unsigned int order)
1456 return (size_t)PAGE_SIZE << order;
1459 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1460 unsigned int hctx_idx)
1462 struct blk_mq_tags *tags;
1463 unsigned int i, j, entries_per_page, max_order = 4;
1464 size_t rq_size, left;
1466 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1468 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1472 INIT_LIST_HEAD(&tags->page_list);
1474 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1475 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1478 blk_mq_free_tags(tags);
1483 * rq_size is the size of the request plus driver payload, rounded
1484 * to the cacheline size
1486 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1488 left = rq_size * set->queue_depth;
1490 for (i = 0; i < set->queue_depth; ) {
1491 int this_order = max_order;
1496 while (left < order_to_size(this_order - 1) && this_order)
1500 page = alloc_pages_node(set->numa_node,
1501 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1507 if (order_to_size(this_order) < rq_size)
1514 page->private = this_order;
1515 list_add_tail(&page->lru, &tags->page_list);
1517 p = page_address(page);
1519 * Allow kmemleak to scan these pages as they contain pointers
1520 * to additional allocations like via ops->init_request().
1522 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1523 entries_per_page = order_to_size(this_order) / rq_size;
1524 to_do = min(entries_per_page, set->queue_depth - i);
1525 left -= to_do * rq_size;
1526 for (j = 0; j < to_do; j++) {
1528 if (set->ops->init_request) {
1529 if (set->ops->init_request(set->driver_data,
1530 tags->rqs[i], hctx_idx, i,
1532 tags->rqs[i] = NULL;
1544 blk_mq_free_rq_map(set, tags, hctx_idx);
1548 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1553 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1555 unsigned int bpw = 8, total, num_maps, i;
1557 bitmap->bits_per_word = bpw;
1559 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1560 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1566 for (i = 0; i < num_maps; i++) {
1567 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1568 total -= bitmap->map[i].depth;
1574 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1576 struct request_queue *q = hctx->queue;
1577 struct blk_mq_ctx *ctx;
1581 * Move ctx entries to new CPU, if this one is going away.
1583 ctx = __blk_mq_get_ctx(q, cpu);
1585 spin_lock(&ctx->lock);
1586 if (!list_empty(&ctx->rq_list)) {
1587 list_splice_init(&ctx->rq_list, &tmp);
1588 blk_mq_hctx_clear_pending(hctx, ctx);
1590 spin_unlock(&ctx->lock);
1592 if (list_empty(&tmp))
1595 ctx = blk_mq_get_ctx(q);
1596 spin_lock(&ctx->lock);
1598 while (!list_empty(&tmp)) {
1601 rq = list_first_entry(&tmp, struct request, queuelist);
1603 list_move_tail(&rq->queuelist, &ctx->rq_list);
1606 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1607 blk_mq_hctx_mark_pending(hctx, ctx);
1609 spin_unlock(&ctx->lock);
1611 blk_mq_run_hw_queue(hctx, true);
1612 blk_mq_put_ctx(ctx);
1616 static int blk_mq_hctx_notify(void *data, unsigned long action,
1619 struct blk_mq_hw_ctx *hctx = data;
1621 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1622 return blk_mq_hctx_cpu_offline(hctx, cpu);
1625 * In case of CPU online, tags may be reallocated
1626 * in blk_mq_map_swqueue() after mapping is updated.
1632 /* hctx->ctxs will be freed in queue's release handler */
1633 static void blk_mq_exit_hctx(struct request_queue *q,
1634 struct blk_mq_tag_set *set,
1635 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1637 unsigned flush_start_tag = set->queue_depth;
1639 blk_mq_tag_idle(hctx);
1641 if (set->ops->exit_request)
1642 set->ops->exit_request(set->driver_data,
1643 hctx->fq->flush_rq, hctx_idx,
1644 flush_start_tag + hctx_idx);
1646 if (set->ops->exit_hctx)
1647 set->ops->exit_hctx(hctx, hctx_idx);
1649 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1650 blk_free_flush_queue(hctx->fq);
1651 blk_mq_free_bitmap(&hctx->ctx_map);
1654 static void blk_mq_exit_hw_queues(struct request_queue *q,
1655 struct blk_mq_tag_set *set, int nr_queue)
1657 struct blk_mq_hw_ctx *hctx;
1660 queue_for_each_hw_ctx(q, hctx, i) {
1663 blk_mq_exit_hctx(q, set, hctx, i);
1667 static void blk_mq_free_hw_queues(struct request_queue *q,
1668 struct blk_mq_tag_set *set)
1670 struct blk_mq_hw_ctx *hctx;
1673 queue_for_each_hw_ctx(q, hctx, i)
1674 free_cpumask_var(hctx->cpumask);
1677 static int blk_mq_init_hctx(struct request_queue *q,
1678 struct blk_mq_tag_set *set,
1679 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1682 unsigned flush_start_tag = set->queue_depth;
1684 node = hctx->numa_node;
1685 if (node == NUMA_NO_NODE)
1686 node = hctx->numa_node = set->numa_node;
1688 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1689 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1690 spin_lock_init(&hctx->lock);
1691 INIT_LIST_HEAD(&hctx->dispatch);
1693 hctx->queue_num = hctx_idx;
1694 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1696 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1697 blk_mq_hctx_notify, hctx);
1698 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1700 hctx->tags = set->tags[hctx_idx];
1703 * Allocate space for all possible cpus to avoid allocation at
1706 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1709 goto unregister_cpu_notifier;
1711 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1716 if (set->ops->init_hctx &&
1717 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1720 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1724 if (set->ops->init_request &&
1725 set->ops->init_request(set->driver_data,
1726 hctx->fq->flush_rq, hctx_idx,
1727 flush_start_tag + hctx_idx, node))
1735 if (set->ops->exit_hctx)
1736 set->ops->exit_hctx(hctx, hctx_idx);
1738 blk_mq_free_bitmap(&hctx->ctx_map);
1741 unregister_cpu_notifier:
1742 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1747 static int blk_mq_init_hw_queues(struct request_queue *q,
1748 struct blk_mq_tag_set *set)
1750 struct blk_mq_hw_ctx *hctx;
1754 * Initialize hardware queues
1756 queue_for_each_hw_ctx(q, hctx, i) {
1757 if (blk_mq_init_hctx(q, set, hctx, i))
1761 if (i == q->nr_hw_queues)
1767 blk_mq_exit_hw_queues(q, set, i);
1772 static void blk_mq_init_cpu_queues(struct request_queue *q,
1773 unsigned int nr_hw_queues)
1777 for_each_possible_cpu(i) {
1778 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1779 struct blk_mq_hw_ctx *hctx;
1781 memset(__ctx, 0, sizeof(*__ctx));
1783 spin_lock_init(&__ctx->lock);
1784 INIT_LIST_HEAD(&__ctx->rq_list);
1787 /* If the cpu isn't online, the cpu is mapped to first hctx */
1791 hctx = q->mq_ops->map_queue(q, i);
1794 * Set local node, IFF we have more than one hw queue. If
1795 * not, we remain on the home node of the device
1797 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1798 hctx->numa_node = local_memory_node(cpu_to_node(i));
1802 static void blk_mq_map_swqueue(struct request_queue *q,
1803 const struct cpumask *online_mask)
1806 struct blk_mq_hw_ctx *hctx;
1807 struct blk_mq_ctx *ctx;
1808 struct blk_mq_tag_set *set = q->tag_set;
1811 * Avoid others reading imcomplete hctx->cpumask through sysfs
1813 mutex_lock(&q->sysfs_lock);
1815 queue_for_each_hw_ctx(q, hctx, i) {
1816 cpumask_clear(hctx->cpumask);
1821 * Map software to hardware queues
1823 queue_for_each_ctx(q, ctx, i) {
1824 /* If the cpu isn't online, the cpu is mapped to first hctx */
1825 if (!cpumask_test_cpu(i, online_mask))
1828 hctx = q->mq_ops->map_queue(q, i);
1829 cpumask_set_cpu(i, hctx->cpumask);
1830 ctx->index_hw = hctx->nr_ctx;
1831 hctx->ctxs[hctx->nr_ctx++] = ctx;
1834 mutex_unlock(&q->sysfs_lock);
1836 queue_for_each_hw_ctx(q, hctx, i) {
1837 struct blk_mq_ctxmap *map = &hctx->ctx_map;
1840 * If no software queues are mapped to this hardware queue,
1841 * disable it and free the request entries.
1843 if (!hctx->nr_ctx) {
1845 blk_mq_free_rq_map(set, set->tags[i], i);
1846 set->tags[i] = NULL;
1852 /* unmapped hw queue can be remapped after CPU topo changed */
1854 set->tags[i] = blk_mq_init_rq_map(set, i);
1855 hctx->tags = set->tags[i];
1856 WARN_ON(!hctx->tags);
1858 cpumask_copy(hctx->tags->cpumask, hctx->cpumask);
1860 * Set the map size to the number of mapped software queues.
1861 * This is more accurate and more efficient than looping
1862 * over all possibly mapped software queues.
1864 map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
1867 * Initialize batch roundrobin counts
1869 hctx->next_cpu = cpumask_first(hctx->cpumask);
1870 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1874 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1876 struct blk_mq_hw_ctx *hctx;
1879 queue_for_each_hw_ctx(q, hctx, i) {
1881 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1883 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1887 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
1889 struct request_queue *q;
1891 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1892 blk_mq_freeze_queue(q);
1893 queue_set_hctx_shared(q, shared);
1894 blk_mq_unfreeze_queue(q);
1898 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1900 struct blk_mq_tag_set *set = q->tag_set;
1902 mutex_lock(&set->tag_list_lock);
1903 list_del_init(&q->tag_set_list);
1904 if (list_is_singular(&set->tag_list)) {
1905 /* just transitioned to unshared */
1906 set->flags &= ~BLK_MQ_F_TAG_SHARED;
1907 /* update existing queue */
1908 blk_mq_update_tag_set_depth(set, false);
1910 mutex_unlock(&set->tag_list_lock);
1913 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1914 struct request_queue *q)
1918 mutex_lock(&set->tag_list_lock);
1920 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
1921 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
1922 set->flags |= BLK_MQ_F_TAG_SHARED;
1923 /* update existing queue */
1924 blk_mq_update_tag_set_depth(set, true);
1926 if (set->flags & BLK_MQ_F_TAG_SHARED)
1927 queue_set_hctx_shared(q, true);
1928 list_add_tail(&q->tag_set_list, &set->tag_list);
1930 mutex_unlock(&set->tag_list_lock);
1934 * It is the actual release handler for mq, but we do it from
1935 * request queue's release handler for avoiding use-after-free
1936 * and headache because q->mq_kobj shouldn't have been introduced,
1937 * but we can't group ctx/kctx kobj without it.
1939 void blk_mq_release(struct request_queue *q)
1941 struct blk_mq_hw_ctx *hctx;
1944 /* hctx kobj stays in hctx */
1945 queue_for_each_hw_ctx(q, hctx, i) {
1955 kfree(q->queue_hw_ctx);
1957 /* ctx kobj stays in queue_ctx */
1958 free_percpu(q->queue_ctx);
1961 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1963 struct request_queue *uninit_q, *q;
1965 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1967 return ERR_PTR(-ENOMEM);
1969 q = blk_mq_init_allocated_queue(set, uninit_q);
1971 blk_cleanup_queue(uninit_q);
1975 EXPORT_SYMBOL(blk_mq_init_queue);
1977 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
1978 struct request_queue *q)
1980 struct blk_mq_hw_ctx **hctxs;
1981 struct blk_mq_ctx __percpu *ctx;
1985 ctx = alloc_percpu(struct blk_mq_ctx);
1987 return ERR_PTR(-ENOMEM);
1989 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1995 map = blk_mq_make_queue_map(set);
1999 for (i = 0; i < set->nr_hw_queues; i++) {
2000 int node = blk_mq_hw_queue_to_node(map, i);
2002 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2007 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2011 atomic_set(&hctxs[i]->nr_active, 0);
2012 hctxs[i]->numa_node = node;
2013 hctxs[i]->queue_num = i;
2016 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2017 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2019 q->nr_queues = nr_cpu_ids;
2020 q->nr_hw_queues = set->nr_hw_queues;
2024 q->queue_hw_ctx = hctxs;
2026 q->mq_ops = set->ops;
2027 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2029 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2030 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2032 q->sg_reserved_size = INT_MAX;
2034 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
2035 INIT_LIST_HEAD(&q->requeue_list);
2036 spin_lock_init(&q->requeue_lock);
2038 if (q->nr_hw_queues > 1)
2039 blk_queue_make_request(q, blk_mq_make_request);
2041 blk_queue_make_request(q, blk_sq_make_request);
2044 * Do this after blk_queue_make_request() overrides it...
2046 q->nr_requests = set->queue_depth;
2048 if (set->ops->complete)
2049 blk_queue_softirq_done(q, set->ops->complete);
2051 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2053 if (blk_mq_init_hw_queues(q, set))
2057 mutex_lock(&all_q_mutex);
2059 list_add_tail(&q->all_q_node, &all_q_list);
2060 blk_mq_add_queue_tag_set(set, q);
2061 blk_mq_map_swqueue(q, cpu_online_mask);
2063 mutex_unlock(&all_q_mutex);
2070 for (i = 0; i < set->nr_hw_queues; i++) {
2073 free_cpumask_var(hctxs[i]->cpumask);
2080 return ERR_PTR(-ENOMEM);
2082 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2084 void blk_mq_free_queue(struct request_queue *q)
2086 struct blk_mq_tag_set *set = q->tag_set;
2088 mutex_lock(&all_q_mutex);
2089 list_del_init(&q->all_q_node);
2090 mutex_unlock(&all_q_mutex);
2092 blk_mq_del_queue_tag_set(q);
2094 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2095 blk_mq_free_hw_queues(q, set);
2098 /* Basically redo blk_mq_init_queue with queue frozen */
2099 static void blk_mq_queue_reinit(struct request_queue *q,
2100 const struct cpumask *online_mask)
2102 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2104 blk_mq_sysfs_unregister(q);
2106 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask);
2109 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2110 * we should change hctx numa_node according to new topology (this
2111 * involves free and re-allocate memory, worthy doing?)
2114 blk_mq_map_swqueue(q, online_mask);
2116 blk_mq_sysfs_register(q);
2119 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2120 unsigned long action, void *hcpu)
2122 struct request_queue *q;
2123 int cpu = (unsigned long)hcpu;
2125 * New online cpumask which is going to be set in this hotplug event.
2126 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2127 * one-by-one and dynamically allocating this could result in a failure.
2129 static struct cpumask online_new;
2132 * Before hotadded cpu starts handling requests, new mappings must
2133 * be established. Otherwise, these requests in hw queue might
2134 * never be dispatched.
2136 * For example, there is a single hw queue (hctx) and two CPU queues
2137 * (ctx0 for CPU0, and ctx1 for CPU1).
2139 * Now CPU1 is just onlined and a request is inserted into
2140 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
2143 * And then while running hw queue, flush_busy_ctxs() finds bit0 is
2144 * set in pending bitmap and tries to retrieve requests in
2145 * hctx->ctxs[0]->rq_list. But htx->ctxs[0] is a pointer to ctx0,
2146 * so the request in ctx1->rq_list is ignored.
2148 switch (action & ~CPU_TASKS_FROZEN) {
2150 case CPU_UP_CANCELED:
2151 cpumask_copy(&online_new, cpu_online_mask);
2153 case CPU_UP_PREPARE:
2154 cpumask_copy(&online_new, cpu_online_mask);
2155 cpumask_set_cpu(cpu, &online_new);
2161 mutex_lock(&all_q_mutex);
2164 * We need to freeze and reinit all existing queues. Freezing
2165 * involves synchronous wait for an RCU grace period and doing it
2166 * one by one may take a long time. Start freezing all queues in
2167 * one swoop and then wait for the completions so that freezing can
2168 * take place in parallel.
2170 list_for_each_entry(q, &all_q_list, all_q_node)
2171 blk_mq_freeze_queue_start(q);
2172 list_for_each_entry(q, &all_q_list, all_q_node) {
2173 blk_mq_freeze_queue_wait(q);
2176 * timeout handler can't touch hw queue during the
2179 del_timer_sync(&q->timeout);
2182 list_for_each_entry(q, &all_q_list, all_q_node)
2183 blk_mq_queue_reinit(q, &online_new);
2185 list_for_each_entry(q, &all_q_list, all_q_node)
2186 blk_mq_unfreeze_queue(q);
2188 mutex_unlock(&all_q_mutex);
2192 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2196 for (i = 0; i < set->nr_hw_queues; i++) {
2197 set->tags[i] = blk_mq_init_rq_map(set, i);
2206 blk_mq_free_rq_map(set, set->tags[i], i);
2212 * Allocate the request maps associated with this tag_set. Note that this
2213 * may reduce the depth asked for, if memory is tight. set->queue_depth
2214 * will be updated to reflect the allocated depth.
2216 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2221 depth = set->queue_depth;
2223 err = __blk_mq_alloc_rq_maps(set);
2227 set->queue_depth >>= 1;
2228 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2232 } while (set->queue_depth);
2234 if (!set->queue_depth || err) {
2235 pr_err("blk-mq: failed to allocate request map\n");
2239 if (depth != set->queue_depth)
2240 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2241 depth, set->queue_depth);
2246 struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
2248 return tags->cpumask;
2250 EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);
2253 * Alloc a tag set to be associated with one or more request queues.
2254 * May fail with EINVAL for various error conditions. May adjust the
2255 * requested depth down, if if it too large. In that case, the set
2256 * value will be stored in set->queue_depth.
2258 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2260 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2262 if (!set->nr_hw_queues)
2264 if (!set->queue_depth)
2266 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2269 if (!set->ops->queue_rq || !set->ops->map_queue)
2272 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2273 pr_info("blk-mq: reduced tag depth to %u\n",
2275 set->queue_depth = BLK_MQ_MAX_DEPTH;
2279 * If a crashdump is active, then we are potentially in a very
2280 * memory constrained environment. Limit us to 1 queue and
2281 * 64 tags to prevent using too much memory.
2283 if (is_kdump_kernel()) {
2284 set->nr_hw_queues = 1;
2285 set->queue_depth = min(64U, set->queue_depth);
2288 set->tags = kmalloc_node(set->nr_hw_queues *
2289 sizeof(struct blk_mq_tags *),
2290 GFP_KERNEL, set->numa_node);
2294 if (blk_mq_alloc_rq_maps(set))
2297 mutex_init(&set->tag_list_lock);
2298 INIT_LIST_HEAD(&set->tag_list);
2306 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2308 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2312 for (i = 0; i < set->nr_hw_queues; i++) {
2314 blk_mq_free_rq_map(set, set->tags[i], i);
2320 EXPORT_SYMBOL(blk_mq_free_tag_set);
2322 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2324 struct blk_mq_tag_set *set = q->tag_set;
2325 struct blk_mq_hw_ctx *hctx;
2328 if (!set || nr > set->queue_depth)
2332 queue_for_each_hw_ctx(q, hctx, i) {
2333 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2339 q->nr_requests = nr;
2344 void blk_mq_disable_hotplug(void)
2346 mutex_lock(&all_q_mutex);
2349 void blk_mq_enable_hotplug(void)
2351 mutex_unlock(&all_q_mutex);
2354 static int __init blk_mq_init(void)
2358 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2362 subsys_initcall(blk_mq_init);