Merge v5.19-rc1 into drm-misc-fixes
[platform/kernel/linux-starfive.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/blk-mq.h>
36 #include <linux/t10-pi.h>
37 #include "blk.h"
38 #include "blk-mq.h"
39 #include "blk-mq-debugfs.h"
40 #include "blk-mq-tag.h"
41 #include "blk-pm.h"
42 #include "blk-stat.h"
43 #include "blk-mq-sched.h"
44 #include "blk-rq-qos.h"
45
46 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
47
48 static void blk_mq_poll_stats_start(struct request_queue *q);
49 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
50
51 static int blk_mq_poll_stats_bkt(const struct request *rq)
52 {
53         int ddir, sectors, bucket;
54
55         ddir = rq_data_dir(rq);
56         sectors = blk_rq_stats_sectors(rq);
57
58         bucket = ddir + 2 * ilog2(sectors);
59
60         if (bucket < 0)
61                 return -1;
62         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
63                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
64
65         return bucket;
66 }
67
68 #define BLK_QC_T_SHIFT          16
69 #define BLK_QC_T_INTERNAL       (1U << 31)
70
71 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
72                 blk_qc_t qc)
73 {
74         return xa_load(&q->hctx_table,
75                         (qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT);
76 }
77
78 static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
79                 blk_qc_t qc)
80 {
81         unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
82
83         if (qc & BLK_QC_T_INTERNAL)
84                 return blk_mq_tag_to_rq(hctx->sched_tags, tag);
85         return blk_mq_tag_to_rq(hctx->tags, tag);
86 }
87
88 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
89 {
90         return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
91                 (rq->tag != -1 ?
92                  rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
93 }
94
95 /*
96  * Check if any of the ctx, dispatch list or elevator
97  * have pending work in this hardware queue.
98  */
99 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
100 {
101         return !list_empty_careful(&hctx->dispatch) ||
102                 sbitmap_any_bit_set(&hctx->ctx_map) ||
103                         blk_mq_sched_has_work(hctx);
104 }
105
106 /*
107  * Mark this ctx as having pending work in this hardware queue
108  */
109 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
110                                      struct blk_mq_ctx *ctx)
111 {
112         const int bit = ctx->index_hw[hctx->type];
113
114         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
115                 sbitmap_set_bit(&hctx->ctx_map, bit);
116 }
117
118 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
119                                       struct blk_mq_ctx *ctx)
120 {
121         const int bit = ctx->index_hw[hctx->type];
122
123         sbitmap_clear_bit(&hctx->ctx_map, bit);
124 }
125
126 struct mq_inflight {
127         struct block_device *part;
128         unsigned int inflight[2];
129 };
130
131 static bool blk_mq_check_inflight(struct request *rq, void *priv,
132                                   bool reserved)
133 {
134         struct mq_inflight *mi = priv;
135
136         if (rq->part && blk_do_io_stat(rq) &&
137             (!mi->part->bd_partno || rq->part == mi->part) &&
138             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
139                 mi->inflight[rq_data_dir(rq)]++;
140
141         return true;
142 }
143
144 unsigned int blk_mq_in_flight(struct request_queue *q,
145                 struct block_device *part)
146 {
147         struct mq_inflight mi = { .part = part };
148
149         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
150
151         return mi.inflight[0] + mi.inflight[1];
152 }
153
154 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
155                 unsigned int inflight[2])
156 {
157         struct mq_inflight mi = { .part = part };
158
159         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
160         inflight[0] = mi.inflight[0];
161         inflight[1] = mi.inflight[1];
162 }
163
164 void blk_freeze_queue_start(struct request_queue *q)
165 {
166         mutex_lock(&q->mq_freeze_lock);
167         if (++q->mq_freeze_depth == 1) {
168                 percpu_ref_kill(&q->q_usage_counter);
169                 mutex_unlock(&q->mq_freeze_lock);
170                 if (queue_is_mq(q))
171                         blk_mq_run_hw_queues(q, false);
172         } else {
173                 mutex_unlock(&q->mq_freeze_lock);
174         }
175 }
176 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
177
178 void blk_mq_freeze_queue_wait(struct request_queue *q)
179 {
180         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
181 }
182 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
183
184 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
185                                      unsigned long timeout)
186 {
187         return wait_event_timeout(q->mq_freeze_wq,
188                                         percpu_ref_is_zero(&q->q_usage_counter),
189                                         timeout);
190 }
191 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
192
193 /*
194  * Guarantee no request is in use, so we can change any data structure of
195  * the queue afterward.
196  */
197 void blk_freeze_queue(struct request_queue *q)
198 {
199         /*
200          * In the !blk_mq case we are only calling this to kill the
201          * q_usage_counter, otherwise this increases the freeze depth
202          * and waits for it to return to zero.  For this reason there is
203          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
204          * exported to drivers as the only user for unfreeze is blk_mq.
205          */
206         blk_freeze_queue_start(q);
207         blk_mq_freeze_queue_wait(q);
208 }
209
210 void blk_mq_freeze_queue(struct request_queue *q)
211 {
212         /*
213          * ...just an alias to keep freeze and unfreeze actions balanced
214          * in the blk_mq_* namespace
215          */
216         blk_freeze_queue(q);
217 }
218 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
219
220 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
221 {
222         mutex_lock(&q->mq_freeze_lock);
223         if (force_atomic)
224                 q->q_usage_counter.data->force_atomic = true;
225         q->mq_freeze_depth--;
226         WARN_ON_ONCE(q->mq_freeze_depth < 0);
227         if (!q->mq_freeze_depth) {
228                 percpu_ref_resurrect(&q->q_usage_counter);
229                 wake_up_all(&q->mq_freeze_wq);
230         }
231         mutex_unlock(&q->mq_freeze_lock);
232 }
233
234 void blk_mq_unfreeze_queue(struct request_queue *q)
235 {
236         __blk_mq_unfreeze_queue(q, false);
237 }
238 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
239
240 /*
241  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
242  * mpt3sas driver such that this function can be removed.
243  */
244 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
245 {
246         unsigned long flags;
247
248         spin_lock_irqsave(&q->queue_lock, flags);
249         if (!q->quiesce_depth++)
250                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
251         spin_unlock_irqrestore(&q->queue_lock, flags);
252 }
253 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
254
255 /**
256  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
257  * @q: request queue.
258  *
259  * Note: it is driver's responsibility for making sure that quiesce has
260  * been started.
261  */
262 void blk_mq_wait_quiesce_done(struct request_queue *q)
263 {
264         if (blk_queue_has_srcu(q))
265                 synchronize_srcu(q->srcu);
266         else
267                 synchronize_rcu();
268 }
269 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
270
271 /**
272  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
273  * @q: request queue.
274  *
275  * Note: this function does not prevent that the struct request end_io()
276  * callback function is invoked. Once this function is returned, we make
277  * sure no dispatch can happen until the queue is unquiesced via
278  * blk_mq_unquiesce_queue().
279  */
280 void blk_mq_quiesce_queue(struct request_queue *q)
281 {
282         blk_mq_quiesce_queue_nowait(q);
283         blk_mq_wait_quiesce_done(q);
284 }
285 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
286
287 /*
288  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
289  * @q: request queue.
290  *
291  * This function recovers queue into the state before quiescing
292  * which is done by blk_mq_quiesce_queue.
293  */
294 void blk_mq_unquiesce_queue(struct request_queue *q)
295 {
296         unsigned long flags;
297         bool run_queue = false;
298
299         spin_lock_irqsave(&q->queue_lock, flags);
300         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
301                 ;
302         } else if (!--q->quiesce_depth) {
303                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
304                 run_queue = true;
305         }
306         spin_unlock_irqrestore(&q->queue_lock, flags);
307
308         /* dispatch requests which are inserted during quiescing */
309         if (run_queue)
310                 blk_mq_run_hw_queues(q, true);
311 }
312 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
313
314 void blk_mq_wake_waiters(struct request_queue *q)
315 {
316         struct blk_mq_hw_ctx *hctx;
317         unsigned long i;
318
319         queue_for_each_hw_ctx(q, hctx, i)
320                 if (blk_mq_hw_queue_mapped(hctx))
321                         blk_mq_tag_wakeup_all(hctx->tags, true);
322 }
323
324 void blk_rq_init(struct request_queue *q, struct request *rq)
325 {
326         memset(rq, 0, sizeof(*rq));
327
328         INIT_LIST_HEAD(&rq->queuelist);
329         rq->q = q;
330         rq->__sector = (sector_t) -1;
331         INIT_HLIST_NODE(&rq->hash);
332         RB_CLEAR_NODE(&rq->rb_node);
333         rq->tag = BLK_MQ_NO_TAG;
334         rq->internal_tag = BLK_MQ_NO_TAG;
335         rq->start_time_ns = ktime_get_ns();
336         rq->part = NULL;
337         blk_crypto_rq_set_defaults(rq);
338 }
339 EXPORT_SYMBOL(blk_rq_init);
340
341 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
342                 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
343 {
344         struct blk_mq_ctx *ctx = data->ctx;
345         struct blk_mq_hw_ctx *hctx = data->hctx;
346         struct request_queue *q = data->q;
347         struct request *rq = tags->static_rqs[tag];
348
349         rq->q = q;
350         rq->mq_ctx = ctx;
351         rq->mq_hctx = hctx;
352         rq->cmd_flags = data->cmd_flags;
353
354         if (data->flags & BLK_MQ_REQ_PM)
355                 data->rq_flags |= RQF_PM;
356         if (blk_queue_io_stat(q))
357                 data->rq_flags |= RQF_IO_STAT;
358         rq->rq_flags = data->rq_flags;
359
360         if (!(data->rq_flags & RQF_ELV)) {
361                 rq->tag = tag;
362                 rq->internal_tag = BLK_MQ_NO_TAG;
363         } else {
364                 rq->tag = BLK_MQ_NO_TAG;
365                 rq->internal_tag = tag;
366         }
367         rq->timeout = 0;
368
369         if (blk_mq_need_time_stamp(rq))
370                 rq->start_time_ns = ktime_get_ns();
371         else
372                 rq->start_time_ns = 0;
373         rq->part = NULL;
374 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
375         rq->alloc_time_ns = alloc_time_ns;
376 #endif
377         rq->io_start_time_ns = 0;
378         rq->stats_sectors = 0;
379         rq->nr_phys_segments = 0;
380 #if defined(CONFIG_BLK_DEV_INTEGRITY)
381         rq->nr_integrity_segments = 0;
382 #endif
383         rq->end_io = NULL;
384         rq->end_io_data = NULL;
385
386         blk_crypto_rq_set_defaults(rq);
387         INIT_LIST_HEAD(&rq->queuelist);
388         /* tag was already set */
389         WRITE_ONCE(rq->deadline, 0);
390         req_ref_set(rq, 1);
391
392         if (rq->rq_flags & RQF_ELV) {
393                 struct elevator_queue *e = data->q->elevator;
394
395                 INIT_HLIST_NODE(&rq->hash);
396                 RB_CLEAR_NODE(&rq->rb_node);
397
398                 if (!op_is_flush(data->cmd_flags) &&
399                     e->type->ops.prepare_request) {
400                         e->type->ops.prepare_request(rq);
401                         rq->rq_flags |= RQF_ELVPRIV;
402                 }
403         }
404
405         return rq;
406 }
407
408 static inline struct request *
409 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
410                 u64 alloc_time_ns)
411 {
412         unsigned int tag, tag_offset;
413         struct blk_mq_tags *tags;
414         struct request *rq;
415         unsigned long tag_mask;
416         int i, nr = 0;
417
418         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
419         if (unlikely(!tag_mask))
420                 return NULL;
421
422         tags = blk_mq_tags_from_data(data);
423         for (i = 0; tag_mask; i++) {
424                 if (!(tag_mask & (1UL << i)))
425                         continue;
426                 tag = tag_offset + i;
427                 prefetch(tags->static_rqs[tag]);
428                 tag_mask &= ~(1UL << i);
429                 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
430                 rq_list_add(data->cached_rq, rq);
431                 nr++;
432         }
433         /* caller already holds a reference, add for remainder */
434         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
435         data->nr_tags -= nr;
436
437         return rq_list_pop(data->cached_rq);
438 }
439
440 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
441 {
442         struct request_queue *q = data->q;
443         u64 alloc_time_ns = 0;
444         struct request *rq;
445         unsigned int tag;
446
447         /* alloc_time includes depth and tag waits */
448         if (blk_queue_rq_alloc_time(q))
449                 alloc_time_ns = ktime_get_ns();
450
451         if (data->cmd_flags & REQ_NOWAIT)
452                 data->flags |= BLK_MQ_REQ_NOWAIT;
453
454         if (q->elevator) {
455                 struct elevator_queue *e = q->elevator;
456
457                 data->rq_flags |= RQF_ELV;
458
459                 /*
460                  * Flush/passthrough requests are special and go directly to the
461                  * dispatch list. Don't include reserved tags in the
462                  * limiting, as it isn't useful.
463                  */
464                 if (!op_is_flush(data->cmd_flags) &&
465                     !blk_op_is_passthrough(data->cmd_flags) &&
466                     e->type->ops.limit_depth &&
467                     !(data->flags & BLK_MQ_REQ_RESERVED))
468                         e->type->ops.limit_depth(data->cmd_flags, data);
469         }
470
471 retry:
472         data->ctx = blk_mq_get_ctx(q);
473         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
474         if (!(data->rq_flags & RQF_ELV))
475                 blk_mq_tag_busy(data->hctx);
476
477         /*
478          * Try batched alloc if we want more than 1 tag.
479          */
480         if (data->nr_tags > 1) {
481                 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
482                 if (rq)
483                         return rq;
484                 data->nr_tags = 1;
485         }
486
487         /*
488          * Waiting allocations only fail because of an inactive hctx.  In that
489          * case just retry the hctx assignment and tag allocation as CPU hotplug
490          * should have migrated us to an online CPU by now.
491          */
492         tag = blk_mq_get_tag(data);
493         if (tag == BLK_MQ_NO_TAG) {
494                 if (data->flags & BLK_MQ_REQ_NOWAIT)
495                         return NULL;
496                 /*
497                  * Give up the CPU and sleep for a random short time to
498                  * ensure that thread using a realtime scheduling class
499                  * are migrated off the CPU, and thus off the hctx that
500                  * is going away.
501                  */
502                 msleep(3);
503                 goto retry;
504         }
505
506         return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
507                                         alloc_time_ns);
508 }
509
510 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
511                 blk_mq_req_flags_t flags)
512 {
513         struct blk_mq_alloc_data data = {
514                 .q              = q,
515                 .flags          = flags,
516                 .cmd_flags      = op,
517                 .nr_tags        = 1,
518         };
519         struct request *rq;
520         int ret;
521
522         ret = blk_queue_enter(q, flags);
523         if (ret)
524                 return ERR_PTR(ret);
525
526         rq = __blk_mq_alloc_requests(&data);
527         if (!rq)
528                 goto out_queue_exit;
529         rq->__data_len = 0;
530         rq->__sector = (sector_t) -1;
531         rq->bio = rq->biotail = NULL;
532         return rq;
533 out_queue_exit:
534         blk_queue_exit(q);
535         return ERR_PTR(-EWOULDBLOCK);
536 }
537 EXPORT_SYMBOL(blk_mq_alloc_request);
538
539 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
540         unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
541 {
542         struct blk_mq_alloc_data data = {
543                 .q              = q,
544                 .flags          = flags,
545                 .cmd_flags      = op,
546                 .nr_tags        = 1,
547         };
548         u64 alloc_time_ns = 0;
549         unsigned int cpu;
550         unsigned int tag;
551         int ret;
552
553         /* alloc_time includes depth and tag waits */
554         if (blk_queue_rq_alloc_time(q))
555                 alloc_time_ns = ktime_get_ns();
556
557         /*
558          * If the tag allocator sleeps we could get an allocation for a
559          * different hardware context.  No need to complicate the low level
560          * allocator for this for the rare use case of a command tied to
561          * a specific queue.
562          */
563         if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
564                 return ERR_PTR(-EINVAL);
565
566         if (hctx_idx >= q->nr_hw_queues)
567                 return ERR_PTR(-EIO);
568
569         ret = blk_queue_enter(q, flags);
570         if (ret)
571                 return ERR_PTR(ret);
572
573         /*
574          * Check if the hardware context is actually mapped to anything.
575          * If not tell the caller that it should skip this queue.
576          */
577         ret = -EXDEV;
578         data.hctx = xa_load(&q->hctx_table, hctx_idx);
579         if (!blk_mq_hw_queue_mapped(data.hctx))
580                 goto out_queue_exit;
581         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
582         data.ctx = __blk_mq_get_ctx(q, cpu);
583
584         if (!q->elevator)
585                 blk_mq_tag_busy(data.hctx);
586         else
587                 data.rq_flags |= RQF_ELV;
588
589         ret = -EWOULDBLOCK;
590         tag = blk_mq_get_tag(&data);
591         if (tag == BLK_MQ_NO_TAG)
592                 goto out_queue_exit;
593         return blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
594                                         alloc_time_ns);
595
596 out_queue_exit:
597         blk_queue_exit(q);
598         return ERR_PTR(ret);
599 }
600 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
601
602 static void __blk_mq_free_request(struct request *rq)
603 {
604         struct request_queue *q = rq->q;
605         struct blk_mq_ctx *ctx = rq->mq_ctx;
606         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
607         const int sched_tag = rq->internal_tag;
608
609         blk_crypto_free_request(rq);
610         blk_pm_mark_last_busy(rq);
611         rq->mq_hctx = NULL;
612         if (rq->tag != BLK_MQ_NO_TAG)
613                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
614         if (sched_tag != BLK_MQ_NO_TAG)
615                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
616         blk_mq_sched_restart(hctx);
617         blk_queue_exit(q);
618 }
619
620 void blk_mq_free_request(struct request *rq)
621 {
622         struct request_queue *q = rq->q;
623         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
624
625         if ((rq->rq_flags & RQF_ELVPRIV) &&
626             q->elevator->type->ops.finish_request)
627                 q->elevator->type->ops.finish_request(rq);
628
629         if (rq->rq_flags & RQF_MQ_INFLIGHT)
630                 __blk_mq_dec_active_requests(hctx);
631
632         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
633                 laptop_io_completion(q->disk->bdi);
634
635         rq_qos_done(q, rq);
636
637         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
638         if (req_ref_put_and_test(rq))
639                 __blk_mq_free_request(rq);
640 }
641 EXPORT_SYMBOL_GPL(blk_mq_free_request);
642
643 void blk_mq_free_plug_rqs(struct blk_plug *plug)
644 {
645         struct request *rq;
646
647         while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
648                 blk_mq_free_request(rq);
649 }
650
651 void blk_dump_rq_flags(struct request *rq, char *msg)
652 {
653         printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
654                 rq->q->disk ? rq->q->disk->disk_name : "?",
655                 (unsigned long long) rq->cmd_flags);
656
657         printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
658                (unsigned long long)blk_rq_pos(rq),
659                blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
660         printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
661                rq->bio, rq->biotail, blk_rq_bytes(rq));
662 }
663 EXPORT_SYMBOL(blk_dump_rq_flags);
664
665 static void req_bio_endio(struct request *rq, struct bio *bio,
666                           unsigned int nbytes, blk_status_t error)
667 {
668         if (unlikely(error)) {
669                 bio->bi_status = error;
670         } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
671                 /*
672                  * Partial zone append completions cannot be supported as the
673                  * BIO fragments may end up not being written sequentially.
674                  */
675                 if (bio->bi_iter.bi_size != nbytes)
676                         bio->bi_status = BLK_STS_IOERR;
677                 else
678                         bio->bi_iter.bi_sector = rq->__sector;
679         }
680
681         bio_advance(bio, nbytes);
682
683         if (unlikely(rq->rq_flags & RQF_QUIET))
684                 bio_set_flag(bio, BIO_QUIET);
685         /* don't actually finish bio if it's part of flush sequence */
686         if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
687                 bio_endio(bio);
688 }
689
690 static void blk_account_io_completion(struct request *req, unsigned int bytes)
691 {
692         if (req->part && blk_do_io_stat(req)) {
693                 const int sgrp = op_stat_group(req_op(req));
694
695                 part_stat_lock();
696                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
697                 part_stat_unlock();
698         }
699 }
700
701 static void blk_print_req_error(struct request *req, blk_status_t status)
702 {
703         printk_ratelimited(KERN_ERR
704                 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
705                 "phys_seg %u prio class %u\n",
706                 blk_status_to_str(status),
707                 req->q->disk ? req->q->disk->disk_name : "?",
708                 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
709                 req->cmd_flags & ~REQ_OP_MASK,
710                 req->nr_phys_segments,
711                 IOPRIO_PRIO_CLASS(req->ioprio));
712 }
713
714 /*
715  * Fully end IO on a request. Does not support partial completions, or
716  * errors.
717  */
718 static void blk_complete_request(struct request *req)
719 {
720         const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
721         int total_bytes = blk_rq_bytes(req);
722         struct bio *bio = req->bio;
723
724         trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
725
726         if (!bio)
727                 return;
728
729 #ifdef CONFIG_BLK_DEV_INTEGRITY
730         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
731                 req->q->integrity.profile->complete_fn(req, total_bytes);
732 #endif
733
734         blk_account_io_completion(req, total_bytes);
735
736         do {
737                 struct bio *next = bio->bi_next;
738
739                 /* Completion has already been traced */
740                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
741
742                 if (req_op(req) == REQ_OP_ZONE_APPEND)
743                         bio->bi_iter.bi_sector = req->__sector;
744
745                 if (!is_flush)
746                         bio_endio(bio);
747                 bio = next;
748         } while (bio);
749
750         /*
751          * Reset counters so that the request stacking driver
752          * can find how many bytes remain in the request
753          * later.
754          */
755         req->bio = NULL;
756         req->__data_len = 0;
757 }
758
759 /**
760  * blk_update_request - Complete multiple bytes without completing the request
761  * @req:      the request being processed
762  * @error:    block status code
763  * @nr_bytes: number of bytes to complete for @req
764  *
765  * Description:
766  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
767  *     the request structure even if @req doesn't have leftover.
768  *     If @req has leftover, sets it up for the next range of segments.
769  *
770  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
771  *     %false return from this function.
772  *
773  * Note:
774  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
775  *      except in the consistency check at the end of this function.
776  *
777  * Return:
778  *     %false - this request doesn't have any more data
779  *     %true  - this request has more data
780  **/
781 bool blk_update_request(struct request *req, blk_status_t error,
782                 unsigned int nr_bytes)
783 {
784         int total_bytes;
785
786         trace_block_rq_complete(req, error, nr_bytes);
787
788         if (!req->bio)
789                 return false;
790
791 #ifdef CONFIG_BLK_DEV_INTEGRITY
792         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
793             error == BLK_STS_OK)
794                 req->q->integrity.profile->complete_fn(req, nr_bytes);
795 #endif
796
797         if (unlikely(error && !blk_rq_is_passthrough(req) &&
798                      !(req->rq_flags & RQF_QUIET)) &&
799                      !test_bit(GD_DEAD, &req->q->disk->state)) {
800                 blk_print_req_error(req, error);
801                 trace_block_rq_error(req, error, nr_bytes);
802         }
803
804         blk_account_io_completion(req, nr_bytes);
805
806         total_bytes = 0;
807         while (req->bio) {
808                 struct bio *bio = req->bio;
809                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
810
811                 if (bio_bytes == bio->bi_iter.bi_size)
812                         req->bio = bio->bi_next;
813
814                 /* Completion has already been traced */
815                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
816                 req_bio_endio(req, bio, bio_bytes, error);
817
818                 total_bytes += bio_bytes;
819                 nr_bytes -= bio_bytes;
820
821                 if (!nr_bytes)
822                         break;
823         }
824
825         /*
826          * completely done
827          */
828         if (!req->bio) {
829                 /*
830                  * Reset counters so that the request stacking driver
831                  * can find how many bytes remain in the request
832                  * later.
833                  */
834                 req->__data_len = 0;
835                 return false;
836         }
837
838         req->__data_len -= total_bytes;
839
840         /* update sector only for requests with clear definition of sector */
841         if (!blk_rq_is_passthrough(req))
842                 req->__sector += total_bytes >> 9;
843
844         /* mixed attributes always follow the first bio */
845         if (req->rq_flags & RQF_MIXED_MERGE) {
846                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
847                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
848         }
849
850         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
851                 /*
852                  * If total number of sectors is less than the first segment
853                  * size, something has gone terribly wrong.
854                  */
855                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
856                         blk_dump_rq_flags(req, "request botched");
857                         req->__data_len = blk_rq_cur_bytes(req);
858                 }
859
860                 /* recalculate the number of segments */
861                 req->nr_phys_segments = blk_recalc_rq_segments(req);
862         }
863
864         return true;
865 }
866 EXPORT_SYMBOL_GPL(blk_update_request);
867
868 static void __blk_account_io_done(struct request *req, u64 now)
869 {
870         const int sgrp = op_stat_group(req_op(req));
871
872         part_stat_lock();
873         update_io_ticks(req->part, jiffies, true);
874         part_stat_inc(req->part, ios[sgrp]);
875         part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
876         part_stat_unlock();
877 }
878
879 static inline void blk_account_io_done(struct request *req, u64 now)
880 {
881         /*
882          * Account IO completion.  flush_rq isn't accounted as a
883          * normal IO on queueing nor completion.  Accounting the
884          * containing request is enough.
885          */
886         if (blk_do_io_stat(req) && req->part &&
887             !(req->rq_flags & RQF_FLUSH_SEQ))
888                 __blk_account_io_done(req, now);
889 }
890
891 static void __blk_account_io_start(struct request *rq)
892 {
893         /*
894          * All non-passthrough requests are created from a bio with one
895          * exception: when a flush command that is part of a flush sequence
896          * generated by the state machine in blk-flush.c is cloned onto the
897          * lower device by dm-multipath we can get here without a bio.
898          */
899         if (rq->bio)
900                 rq->part = rq->bio->bi_bdev;
901         else
902                 rq->part = rq->q->disk->part0;
903
904         part_stat_lock();
905         update_io_ticks(rq->part, jiffies, false);
906         part_stat_unlock();
907 }
908
909 static inline void blk_account_io_start(struct request *req)
910 {
911         if (blk_do_io_stat(req))
912                 __blk_account_io_start(req);
913 }
914
915 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
916 {
917         if (rq->rq_flags & RQF_STATS) {
918                 blk_mq_poll_stats_start(rq->q);
919                 blk_stat_add(rq, now);
920         }
921
922         blk_mq_sched_completed_request(rq, now);
923         blk_account_io_done(rq, now);
924 }
925
926 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
927 {
928         if (blk_mq_need_time_stamp(rq))
929                 __blk_mq_end_request_acct(rq, ktime_get_ns());
930
931         if (rq->end_io) {
932                 rq_qos_done(rq->q, rq);
933                 rq->end_io(rq, error);
934         } else {
935                 blk_mq_free_request(rq);
936         }
937 }
938 EXPORT_SYMBOL(__blk_mq_end_request);
939
940 void blk_mq_end_request(struct request *rq, blk_status_t error)
941 {
942         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
943                 BUG();
944         __blk_mq_end_request(rq, error);
945 }
946 EXPORT_SYMBOL(blk_mq_end_request);
947
948 #define TAG_COMP_BATCH          32
949
950 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
951                                           int *tag_array, int nr_tags)
952 {
953         struct request_queue *q = hctx->queue;
954
955         /*
956          * All requests should have been marked as RQF_MQ_INFLIGHT, so
957          * update hctx->nr_active in batch
958          */
959         if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
960                 __blk_mq_sub_active_requests(hctx, nr_tags);
961
962         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
963         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
964 }
965
966 void blk_mq_end_request_batch(struct io_comp_batch *iob)
967 {
968         int tags[TAG_COMP_BATCH], nr_tags = 0;
969         struct blk_mq_hw_ctx *cur_hctx = NULL;
970         struct request *rq;
971         u64 now = 0;
972
973         if (iob->need_ts)
974                 now = ktime_get_ns();
975
976         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
977                 prefetch(rq->bio);
978                 prefetch(rq->rq_next);
979
980                 blk_complete_request(rq);
981                 if (iob->need_ts)
982                         __blk_mq_end_request_acct(rq, now);
983
984                 rq_qos_done(rq->q, rq);
985
986                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
987                 if (!req_ref_put_and_test(rq))
988                         continue;
989
990                 blk_crypto_free_request(rq);
991                 blk_pm_mark_last_busy(rq);
992
993                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
994                         if (cur_hctx)
995                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
996                         nr_tags = 0;
997                         cur_hctx = rq->mq_hctx;
998                 }
999                 tags[nr_tags++] = rq->tag;
1000         }
1001
1002         if (nr_tags)
1003                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1004 }
1005 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1006
1007 static void blk_complete_reqs(struct llist_head *list)
1008 {
1009         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1010         struct request *rq, *next;
1011
1012         llist_for_each_entry_safe(rq, next, entry, ipi_list)
1013                 rq->q->mq_ops->complete(rq);
1014 }
1015
1016 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1017 {
1018         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1019 }
1020
1021 static int blk_softirq_cpu_dead(unsigned int cpu)
1022 {
1023         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1024         return 0;
1025 }
1026
1027 static void __blk_mq_complete_request_remote(void *data)
1028 {
1029         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1030 }
1031
1032 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1033 {
1034         int cpu = raw_smp_processor_id();
1035
1036         if (!IS_ENABLED(CONFIG_SMP) ||
1037             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1038                 return false;
1039         /*
1040          * With force threaded interrupts enabled, raising softirq from an SMP
1041          * function call will always result in waking the ksoftirqd thread.
1042          * This is probably worse than completing the request on a different
1043          * cache domain.
1044          */
1045         if (force_irqthreads())
1046                 return false;
1047
1048         /* same CPU or cache domain?  Complete locally */
1049         if (cpu == rq->mq_ctx->cpu ||
1050             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1051              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1052                 return false;
1053
1054         /* don't try to IPI to an offline CPU */
1055         return cpu_online(rq->mq_ctx->cpu);
1056 }
1057
1058 static void blk_mq_complete_send_ipi(struct request *rq)
1059 {
1060         struct llist_head *list;
1061         unsigned int cpu;
1062
1063         cpu = rq->mq_ctx->cpu;
1064         list = &per_cpu(blk_cpu_done, cpu);
1065         if (llist_add(&rq->ipi_list, list)) {
1066                 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1067                 smp_call_function_single_async(cpu, &rq->csd);
1068         }
1069 }
1070
1071 static void blk_mq_raise_softirq(struct request *rq)
1072 {
1073         struct llist_head *list;
1074
1075         preempt_disable();
1076         list = this_cpu_ptr(&blk_cpu_done);
1077         if (llist_add(&rq->ipi_list, list))
1078                 raise_softirq(BLOCK_SOFTIRQ);
1079         preempt_enable();
1080 }
1081
1082 bool blk_mq_complete_request_remote(struct request *rq)
1083 {
1084         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1085
1086         /*
1087          * For a polled request, always complete locally, it's pointless
1088          * to redirect the completion.
1089          */
1090         if (rq->cmd_flags & REQ_POLLED)
1091                 return false;
1092
1093         if (blk_mq_complete_need_ipi(rq)) {
1094                 blk_mq_complete_send_ipi(rq);
1095                 return true;
1096         }
1097
1098         if (rq->q->nr_hw_queues == 1) {
1099                 blk_mq_raise_softirq(rq);
1100                 return true;
1101         }
1102         return false;
1103 }
1104 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1105
1106 /**
1107  * blk_mq_complete_request - end I/O on a request
1108  * @rq:         the request being processed
1109  *
1110  * Description:
1111  *      Complete a request by scheduling the ->complete_rq operation.
1112  **/
1113 void blk_mq_complete_request(struct request *rq)
1114 {
1115         if (!blk_mq_complete_request_remote(rq))
1116                 rq->q->mq_ops->complete(rq);
1117 }
1118 EXPORT_SYMBOL(blk_mq_complete_request);
1119
1120 /**
1121  * blk_mq_start_request - Start processing a request
1122  * @rq: Pointer to request to be started
1123  *
1124  * Function used by device drivers to notify the block layer that a request
1125  * is going to be processed now, so blk layer can do proper initializations
1126  * such as starting the timeout timer.
1127  */
1128 void blk_mq_start_request(struct request *rq)
1129 {
1130         struct request_queue *q = rq->q;
1131
1132         trace_block_rq_issue(rq);
1133
1134         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1135                 rq->io_start_time_ns = ktime_get_ns();
1136                 rq->stats_sectors = blk_rq_sectors(rq);
1137                 rq->rq_flags |= RQF_STATS;
1138                 rq_qos_issue(q, rq);
1139         }
1140
1141         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1142
1143         blk_add_timer(rq);
1144         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1145
1146 #ifdef CONFIG_BLK_DEV_INTEGRITY
1147         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1148                 q->integrity.profile->prepare_fn(rq);
1149 #endif
1150         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1151                 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1152 }
1153 EXPORT_SYMBOL(blk_mq_start_request);
1154
1155 /*
1156  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1157  * queues. This is important for md arrays to benefit from merging
1158  * requests.
1159  */
1160 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1161 {
1162         if (plug->multiple_queues)
1163                 return BLK_MAX_REQUEST_COUNT * 2;
1164         return BLK_MAX_REQUEST_COUNT;
1165 }
1166
1167 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1168 {
1169         struct request *last = rq_list_peek(&plug->mq_list);
1170
1171         if (!plug->rq_count) {
1172                 trace_block_plug(rq->q);
1173         } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1174                    (!blk_queue_nomerges(rq->q) &&
1175                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1176                 blk_mq_flush_plug_list(plug, false);
1177                 trace_block_plug(rq->q);
1178         }
1179
1180         if (!plug->multiple_queues && last && last->q != rq->q)
1181                 plug->multiple_queues = true;
1182         if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
1183                 plug->has_elevator = true;
1184         rq->rq_next = NULL;
1185         rq_list_add(&plug->mq_list, rq);
1186         plug->rq_count++;
1187 }
1188
1189 /**
1190  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1191  * @rq:         request to insert
1192  * @at_head:    insert request at head or tail of queue
1193  *
1194  * Description:
1195  *    Insert a fully prepared request at the back of the I/O scheduler queue
1196  *    for execution.  Don't wait for completion.
1197  *
1198  * Note:
1199  *    This function will invoke @done directly if the queue is dead.
1200  */
1201 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1202 {
1203         WARN_ON(irqs_disabled());
1204         WARN_ON(!blk_rq_is_passthrough(rq));
1205
1206         blk_account_io_start(rq);
1207         if (current->plug)
1208                 blk_add_rq_to_plug(current->plug, rq);
1209         else
1210                 blk_mq_sched_insert_request(rq, at_head, true, false);
1211 }
1212 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1213
1214 struct blk_rq_wait {
1215         struct completion done;
1216         blk_status_t ret;
1217 };
1218
1219 static void blk_end_sync_rq(struct request *rq, blk_status_t ret)
1220 {
1221         struct blk_rq_wait *wait = rq->end_io_data;
1222
1223         wait->ret = ret;
1224         complete(&wait->done);
1225 }
1226
1227 static bool blk_rq_is_poll(struct request *rq)
1228 {
1229         if (!rq->mq_hctx)
1230                 return false;
1231         if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1232                 return false;
1233         if (WARN_ON_ONCE(!rq->bio))
1234                 return false;
1235         return true;
1236 }
1237
1238 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1239 {
1240         do {
1241                 bio_poll(rq->bio, NULL, 0);
1242                 cond_resched();
1243         } while (!completion_done(wait));
1244 }
1245
1246 /**
1247  * blk_execute_rq - insert a request into queue for execution
1248  * @rq:         request to insert
1249  * @at_head:    insert request at head or tail of queue
1250  *
1251  * Description:
1252  *    Insert a fully prepared request at the back of the I/O scheduler queue
1253  *    for execution and wait for completion.
1254  * Return: The blk_status_t result provided to blk_mq_end_request().
1255  */
1256 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1257 {
1258         struct blk_rq_wait wait = {
1259                 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1260         };
1261
1262         WARN_ON(irqs_disabled());
1263         WARN_ON(!blk_rq_is_passthrough(rq));
1264
1265         rq->end_io_data = &wait;
1266         rq->end_io = blk_end_sync_rq;
1267
1268         blk_account_io_start(rq);
1269         blk_mq_sched_insert_request(rq, at_head, true, false);
1270
1271         if (blk_rq_is_poll(rq)) {
1272                 blk_rq_poll_completion(rq, &wait.done);
1273         } else {
1274                 /*
1275                  * Prevent hang_check timer from firing at us during very long
1276                  * I/O
1277                  */
1278                 unsigned long hang_check = sysctl_hung_task_timeout_secs;
1279
1280                 if (hang_check)
1281                         while (!wait_for_completion_io_timeout(&wait.done,
1282                                         hang_check * (HZ/2)))
1283                                 ;
1284                 else
1285                         wait_for_completion_io(&wait.done);
1286         }
1287
1288         return wait.ret;
1289 }
1290 EXPORT_SYMBOL(blk_execute_rq);
1291
1292 static void __blk_mq_requeue_request(struct request *rq)
1293 {
1294         struct request_queue *q = rq->q;
1295
1296         blk_mq_put_driver_tag(rq);
1297
1298         trace_block_rq_requeue(rq);
1299         rq_qos_requeue(q, rq);
1300
1301         if (blk_mq_request_started(rq)) {
1302                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1303                 rq->rq_flags &= ~RQF_TIMED_OUT;
1304         }
1305 }
1306
1307 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1308 {
1309         __blk_mq_requeue_request(rq);
1310
1311         /* this request will be re-inserted to io scheduler queue */
1312         blk_mq_sched_requeue_request(rq);
1313
1314         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
1315 }
1316 EXPORT_SYMBOL(blk_mq_requeue_request);
1317
1318 static void blk_mq_requeue_work(struct work_struct *work)
1319 {
1320         struct request_queue *q =
1321                 container_of(work, struct request_queue, requeue_work.work);
1322         LIST_HEAD(rq_list);
1323         struct request *rq, *next;
1324
1325         spin_lock_irq(&q->requeue_lock);
1326         list_splice_init(&q->requeue_list, &rq_list);
1327         spin_unlock_irq(&q->requeue_lock);
1328
1329         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1330                 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1331                         continue;
1332
1333                 rq->rq_flags &= ~RQF_SOFTBARRIER;
1334                 list_del_init(&rq->queuelist);
1335                 /*
1336                  * If RQF_DONTPREP, rq has contained some driver specific
1337                  * data, so insert it to hctx dispatch list to avoid any
1338                  * merge.
1339                  */
1340                 if (rq->rq_flags & RQF_DONTPREP)
1341                         blk_mq_request_bypass_insert(rq, false, false);
1342                 else
1343                         blk_mq_sched_insert_request(rq, true, false, false);
1344         }
1345
1346         while (!list_empty(&rq_list)) {
1347                 rq = list_entry(rq_list.next, struct request, queuelist);
1348                 list_del_init(&rq->queuelist);
1349                 blk_mq_sched_insert_request(rq, false, false, false);
1350         }
1351
1352         blk_mq_run_hw_queues(q, false);
1353 }
1354
1355 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1356                                 bool kick_requeue_list)
1357 {
1358         struct request_queue *q = rq->q;
1359         unsigned long flags;
1360
1361         /*
1362          * We abuse this flag that is otherwise used by the I/O scheduler to
1363          * request head insertion from the workqueue.
1364          */
1365         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1366
1367         spin_lock_irqsave(&q->requeue_lock, flags);
1368         if (at_head) {
1369                 rq->rq_flags |= RQF_SOFTBARRIER;
1370                 list_add(&rq->queuelist, &q->requeue_list);
1371         } else {
1372                 list_add_tail(&rq->queuelist, &q->requeue_list);
1373         }
1374         spin_unlock_irqrestore(&q->requeue_lock, flags);
1375
1376         if (kick_requeue_list)
1377                 blk_mq_kick_requeue_list(q);
1378 }
1379
1380 void blk_mq_kick_requeue_list(struct request_queue *q)
1381 {
1382         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1383 }
1384 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1385
1386 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1387                                     unsigned long msecs)
1388 {
1389         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1390                                     msecs_to_jiffies(msecs));
1391 }
1392 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1393
1394 static bool blk_mq_rq_inflight(struct request *rq, void *priv,
1395                                bool reserved)
1396 {
1397         /*
1398          * If we find a request that isn't idle we know the queue is busy
1399          * as it's checked in the iter.
1400          * Return false to stop the iteration.
1401          */
1402         if (blk_mq_request_started(rq)) {
1403                 bool *busy = priv;
1404
1405                 *busy = true;
1406                 return false;
1407         }
1408
1409         return true;
1410 }
1411
1412 bool blk_mq_queue_inflight(struct request_queue *q)
1413 {
1414         bool busy = false;
1415
1416         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1417         return busy;
1418 }
1419 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1420
1421 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
1422 {
1423         req->rq_flags |= RQF_TIMED_OUT;
1424         if (req->q->mq_ops->timeout) {
1425                 enum blk_eh_timer_return ret;
1426
1427                 ret = req->q->mq_ops->timeout(req, reserved);
1428                 if (ret == BLK_EH_DONE)
1429                         return;
1430                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1431         }
1432
1433         blk_add_timer(req);
1434 }
1435
1436 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
1437 {
1438         unsigned long deadline;
1439
1440         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1441                 return false;
1442         if (rq->rq_flags & RQF_TIMED_OUT)
1443                 return false;
1444
1445         deadline = READ_ONCE(rq->deadline);
1446         if (time_after_eq(jiffies, deadline))
1447                 return true;
1448
1449         if (*next == 0)
1450                 *next = deadline;
1451         else if (time_after(*next, deadline))
1452                 *next = deadline;
1453         return false;
1454 }
1455
1456 void blk_mq_put_rq_ref(struct request *rq)
1457 {
1458         if (is_flush_rq(rq))
1459                 rq->end_io(rq, 0);
1460         else if (req_ref_put_and_test(rq))
1461                 __blk_mq_free_request(rq);
1462 }
1463
1464 static bool blk_mq_check_expired(struct request *rq, void *priv, bool reserved)
1465 {
1466         unsigned long *next = priv;
1467
1468         /*
1469          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1470          * be reallocated underneath the timeout handler's processing, then
1471          * the expire check is reliable. If the request is not expired, then
1472          * it was completed and reallocated as a new request after returning
1473          * from blk_mq_check_expired().
1474          */
1475         if (blk_mq_req_expired(rq, next))
1476                 blk_mq_rq_timed_out(rq, reserved);
1477         return true;
1478 }
1479
1480 static void blk_mq_timeout_work(struct work_struct *work)
1481 {
1482         struct request_queue *q =
1483                 container_of(work, struct request_queue, timeout_work);
1484         unsigned long next = 0;
1485         struct blk_mq_hw_ctx *hctx;
1486         unsigned long i;
1487
1488         /* A deadlock might occur if a request is stuck requiring a
1489          * timeout at the same time a queue freeze is waiting
1490          * completion, since the timeout code would not be able to
1491          * acquire the queue reference here.
1492          *
1493          * That's why we don't use blk_queue_enter here; instead, we use
1494          * percpu_ref_tryget directly, because we need to be able to
1495          * obtain a reference even in the short window between the queue
1496          * starting to freeze, by dropping the first reference in
1497          * blk_freeze_queue_start, and the moment the last request is
1498          * consumed, marked by the instant q_usage_counter reaches
1499          * zero.
1500          */
1501         if (!percpu_ref_tryget(&q->q_usage_counter))
1502                 return;
1503
1504         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
1505
1506         if (next != 0) {
1507                 mod_timer(&q->timeout, next);
1508         } else {
1509                 /*
1510                  * Request timeouts are handled as a forward rolling timer. If
1511                  * we end up here it means that no requests are pending and
1512                  * also that no request has been pending for a while. Mark
1513                  * each hctx as idle.
1514                  */
1515                 queue_for_each_hw_ctx(q, hctx, i) {
1516                         /* the hctx may be unmapped, so check it here */
1517                         if (blk_mq_hw_queue_mapped(hctx))
1518                                 blk_mq_tag_idle(hctx);
1519                 }
1520         }
1521         blk_queue_exit(q);
1522 }
1523
1524 struct flush_busy_ctx_data {
1525         struct blk_mq_hw_ctx *hctx;
1526         struct list_head *list;
1527 };
1528
1529 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1530 {
1531         struct flush_busy_ctx_data *flush_data = data;
1532         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1533         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1534         enum hctx_type type = hctx->type;
1535
1536         spin_lock(&ctx->lock);
1537         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1538         sbitmap_clear_bit(sb, bitnr);
1539         spin_unlock(&ctx->lock);
1540         return true;
1541 }
1542
1543 /*
1544  * Process software queues that have been marked busy, splicing them
1545  * to the for-dispatch
1546  */
1547 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1548 {
1549         struct flush_busy_ctx_data data = {
1550                 .hctx = hctx,
1551                 .list = list,
1552         };
1553
1554         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1555 }
1556 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1557
1558 struct dispatch_rq_data {
1559         struct blk_mq_hw_ctx *hctx;
1560         struct request *rq;
1561 };
1562
1563 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1564                 void *data)
1565 {
1566         struct dispatch_rq_data *dispatch_data = data;
1567         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1568         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1569         enum hctx_type type = hctx->type;
1570
1571         spin_lock(&ctx->lock);
1572         if (!list_empty(&ctx->rq_lists[type])) {
1573                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1574                 list_del_init(&dispatch_data->rq->queuelist);
1575                 if (list_empty(&ctx->rq_lists[type]))
1576                         sbitmap_clear_bit(sb, bitnr);
1577         }
1578         spin_unlock(&ctx->lock);
1579
1580         return !dispatch_data->rq;
1581 }
1582
1583 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1584                                         struct blk_mq_ctx *start)
1585 {
1586         unsigned off = start ? start->index_hw[hctx->type] : 0;
1587         struct dispatch_rq_data data = {
1588                 .hctx = hctx,
1589                 .rq   = NULL,
1590         };
1591
1592         __sbitmap_for_each_set(&hctx->ctx_map, off,
1593                                dispatch_rq_from_ctx, &data);
1594
1595         return data.rq;
1596 }
1597
1598 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1599 {
1600         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1601         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1602         int tag;
1603
1604         blk_mq_tag_busy(rq->mq_hctx);
1605
1606         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1607                 bt = &rq->mq_hctx->tags->breserved_tags;
1608                 tag_offset = 0;
1609         } else {
1610                 if (!hctx_may_queue(rq->mq_hctx, bt))
1611                         return false;
1612         }
1613
1614         tag = __sbitmap_queue_get(bt);
1615         if (tag == BLK_MQ_NO_TAG)
1616                 return false;
1617
1618         rq->tag = tag + tag_offset;
1619         return true;
1620 }
1621
1622 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1623 {
1624         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1625                 return false;
1626
1627         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1628                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1629                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1630                 __blk_mq_inc_active_requests(hctx);
1631         }
1632         hctx->tags->rqs[rq->tag] = rq;
1633         return true;
1634 }
1635
1636 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1637                                 int flags, void *key)
1638 {
1639         struct blk_mq_hw_ctx *hctx;
1640
1641         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1642
1643         spin_lock(&hctx->dispatch_wait_lock);
1644         if (!list_empty(&wait->entry)) {
1645                 struct sbitmap_queue *sbq;
1646
1647                 list_del_init(&wait->entry);
1648                 sbq = &hctx->tags->bitmap_tags;
1649                 atomic_dec(&sbq->ws_active);
1650         }
1651         spin_unlock(&hctx->dispatch_wait_lock);
1652
1653         blk_mq_run_hw_queue(hctx, true);
1654         return 1;
1655 }
1656
1657 /*
1658  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1659  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1660  * restart. For both cases, take care to check the condition again after
1661  * marking us as waiting.
1662  */
1663 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1664                                  struct request *rq)
1665 {
1666         struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1667         struct wait_queue_head *wq;
1668         wait_queue_entry_t *wait;
1669         bool ret;
1670
1671         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1672                 blk_mq_sched_mark_restart_hctx(hctx);
1673
1674                 /*
1675                  * It's possible that a tag was freed in the window between the
1676                  * allocation failure and adding the hardware queue to the wait
1677                  * queue.
1678                  *
1679                  * Don't clear RESTART here, someone else could have set it.
1680                  * At most this will cost an extra queue run.
1681                  */
1682                 return blk_mq_get_driver_tag(rq);
1683         }
1684
1685         wait = &hctx->dispatch_wait;
1686         if (!list_empty_careful(&wait->entry))
1687                 return false;
1688
1689         wq = &bt_wait_ptr(sbq, hctx)->wait;
1690
1691         spin_lock_irq(&wq->lock);
1692         spin_lock(&hctx->dispatch_wait_lock);
1693         if (!list_empty(&wait->entry)) {
1694                 spin_unlock(&hctx->dispatch_wait_lock);
1695                 spin_unlock_irq(&wq->lock);
1696                 return false;
1697         }
1698
1699         atomic_inc(&sbq->ws_active);
1700         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1701         __add_wait_queue(wq, wait);
1702
1703         /*
1704          * It's possible that a tag was freed in the window between the
1705          * allocation failure and adding the hardware queue to the wait
1706          * queue.
1707          */
1708         ret = blk_mq_get_driver_tag(rq);
1709         if (!ret) {
1710                 spin_unlock(&hctx->dispatch_wait_lock);
1711                 spin_unlock_irq(&wq->lock);
1712                 return false;
1713         }
1714
1715         /*
1716          * We got a tag, remove ourselves from the wait queue to ensure
1717          * someone else gets the wakeup.
1718          */
1719         list_del_init(&wait->entry);
1720         atomic_dec(&sbq->ws_active);
1721         spin_unlock(&hctx->dispatch_wait_lock);
1722         spin_unlock_irq(&wq->lock);
1723
1724         return true;
1725 }
1726
1727 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1728 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1729 /*
1730  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1731  * - EWMA is one simple way to compute running average value
1732  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1733  * - take 4 as factor for avoiding to get too small(0) result, and this
1734  *   factor doesn't matter because EWMA decreases exponentially
1735  */
1736 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1737 {
1738         unsigned int ewma;
1739
1740         ewma = hctx->dispatch_busy;
1741
1742         if (!ewma && !busy)
1743                 return;
1744
1745         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1746         if (busy)
1747                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1748         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1749
1750         hctx->dispatch_busy = ewma;
1751 }
1752
1753 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1754
1755 static void blk_mq_handle_dev_resource(struct request *rq,
1756                                        struct list_head *list)
1757 {
1758         struct request *next =
1759                 list_first_entry_or_null(list, struct request, queuelist);
1760
1761         /*
1762          * If an I/O scheduler has been configured and we got a driver tag for
1763          * the next request already, free it.
1764          */
1765         if (next)
1766                 blk_mq_put_driver_tag(next);
1767
1768         list_add(&rq->queuelist, list);
1769         __blk_mq_requeue_request(rq);
1770 }
1771
1772 static void blk_mq_handle_zone_resource(struct request *rq,
1773                                         struct list_head *zone_list)
1774 {
1775         /*
1776          * If we end up here it is because we cannot dispatch a request to a
1777          * specific zone due to LLD level zone-write locking or other zone
1778          * related resource not being available. In this case, set the request
1779          * aside in zone_list for retrying it later.
1780          */
1781         list_add(&rq->queuelist, zone_list);
1782         __blk_mq_requeue_request(rq);
1783 }
1784
1785 enum prep_dispatch {
1786         PREP_DISPATCH_OK,
1787         PREP_DISPATCH_NO_TAG,
1788         PREP_DISPATCH_NO_BUDGET,
1789 };
1790
1791 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1792                                                   bool need_budget)
1793 {
1794         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1795         int budget_token = -1;
1796
1797         if (need_budget) {
1798                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1799                 if (budget_token < 0) {
1800                         blk_mq_put_driver_tag(rq);
1801                         return PREP_DISPATCH_NO_BUDGET;
1802                 }
1803                 blk_mq_set_rq_budget_token(rq, budget_token);
1804         }
1805
1806         if (!blk_mq_get_driver_tag(rq)) {
1807                 /*
1808                  * The initial allocation attempt failed, so we need to
1809                  * rerun the hardware queue when a tag is freed. The
1810                  * waitqueue takes care of that. If the queue is run
1811                  * before we add this entry back on the dispatch list,
1812                  * we'll re-run it below.
1813                  */
1814                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1815                         /*
1816                          * All budgets not got from this function will be put
1817                          * together during handling partial dispatch
1818                          */
1819                         if (need_budget)
1820                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1821                         return PREP_DISPATCH_NO_TAG;
1822                 }
1823         }
1824
1825         return PREP_DISPATCH_OK;
1826 }
1827
1828 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1829 static void blk_mq_release_budgets(struct request_queue *q,
1830                 struct list_head *list)
1831 {
1832         struct request *rq;
1833
1834         list_for_each_entry(rq, list, queuelist) {
1835                 int budget_token = blk_mq_get_rq_budget_token(rq);
1836
1837                 if (budget_token >= 0)
1838                         blk_mq_put_dispatch_budget(q, budget_token);
1839         }
1840 }
1841
1842 /*
1843  * Returns true if we did some work AND can potentially do more.
1844  */
1845 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1846                              unsigned int nr_budgets)
1847 {
1848         enum prep_dispatch prep;
1849         struct request_queue *q = hctx->queue;
1850         struct request *rq, *nxt;
1851         int errors, queued;
1852         blk_status_t ret = BLK_STS_OK;
1853         LIST_HEAD(zone_list);
1854         bool needs_resource = false;
1855
1856         if (list_empty(list))
1857                 return false;
1858
1859         /*
1860          * Now process all the entries, sending them to the driver.
1861          */
1862         errors = queued = 0;
1863         do {
1864                 struct blk_mq_queue_data bd;
1865
1866                 rq = list_first_entry(list, struct request, queuelist);
1867
1868                 WARN_ON_ONCE(hctx != rq->mq_hctx);
1869                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1870                 if (prep != PREP_DISPATCH_OK)
1871                         break;
1872
1873                 list_del_init(&rq->queuelist);
1874
1875                 bd.rq = rq;
1876
1877                 /*
1878                  * Flag last if we have no more requests, or if we have more
1879                  * but can't assign a driver tag to it.
1880                  */
1881                 if (list_empty(list))
1882                         bd.last = true;
1883                 else {
1884                         nxt = list_first_entry(list, struct request, queuelist);
1885                         bd.last = !blk_mq_get_driver_tag(nxt);
1886                 }
1887
1888                 /*
1889                  * once the request is queued to lld, no need to cover the
1890                  * budget any more
1891                  */
1892                 if (nr_budgets)
1893                         nr_budgets--;
1894                 ret = q->mq_ops->queue_rq(hctx, &bd);
1895                 switch (ret) {
1896                 case BLK_STS_OK:
1897                         queued++;
1898                         break;
1899                 case BLK_STS_RESOURCE:
1900                         needs_resource = true;
1901                         fallthrough;
1902                 case BLK_STS_DEV_RESOURCE:
1903                         blk_mq_handle_dev_resource(rq, list);
1904                         goto out;
1905                 case BLK_STS_ZONE_RESOURCE:
1906                         /*
1907                          * Move the request to zone_list and keep going through
1908                          * the dispatch list to find more requests the drive can
1909                          * accept.
1910                          */
1911                         blk_mq_handle_zone_resource(rq, &zone_list);
1912                         needs_resource = true;
1913                         break;
1914                 default:
1915                         errors++;
1916                         blk_mq_end_request(rq, ret);
1917                 }
1918         } while (!list_empty(list));
1919 out:
1920         if (!list_empty(&zone_list))
1921                 list_splice_tail_init(&zone_list, list);
1922
1923         /* If we didn't flush the entire list, we could have told the driver
1924          * there was more coming, but that turned out to be a lie.
1925          */
1926         if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1927                 q->mq_ops->commit_rqs(hctx);
1928         /*
1929          * Any items that need requeuing? Stuff them into hctx->dispatch,
1930          * that is where we will continue on next queue run.
1931          */
1932         if (!list_empty(list)) {
1933                 bool needs_restart;
1934                 /* For non-shared tags, the RESTART check will suffice */
1935                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1936                         (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1937
1938                 if (nr_budgets)
1939                         blk_mq_release_budgets(q, list);
1940
1941                 spin_lock(&hctx->lock);
1942                 list_splice_tail_init(list, &hctx->dispatch);
1943                 spin_unlock(&hctx->lock);
1944
1945                 /*
1946                  * Order adding requests to hctx->dispatch and checking
1947                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
1948                  * in blk_mq_sched_restart(). Avoid restart code path to
1949                  * miss the new added requests to hctx->dispatch, meantime
1950                  * SCHED_RESTART is observed here.
1951                  */
1952                 smp_mb();
1953
1954                 /*
1955                  * If SCHED_RESTART was set by the caller of this function and
1956                  * it is no longer set that means that it was cleared by another
1957                  * thread and hence that a queue rerun is needed.
1958                  *
1959                  * If 'no_tag' is set, that means that we failed getting
1960                  * a driver tag with an I/O scheduler attached. If our dispatch
1961                  * waitqueue is no longer active, ensure that we run the queue
1962                  * AFTER adding our entries back to the list.
1963                  *
1964                  * If no I/O scheduler has been configured it is possible that
1965                  * the hardware queue got stopped and restarted before requests
1966                  * were pushed back onto the dispatch list. Rerun the queue to
1967                  * avoid starvation. Notes:
1968                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1969                  *   been stopped before rerunning a queue.
1970                  * - Some but not all block drivers stop a queue before
1971                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1972                  *   and dm-rq.
1973                  *
1974                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1975                  * bit is set, run queue after a delay to avoid IO stalls
1976                  * that could otherwise occur if the queue is idle.  We'll do
1977                  * similar if we couldn't get budget or couldn't lock a zone
1978                  * and SCHED_RESTART is set.
1979                  */
1980                 needs_restart = blk_mq_sched_needs_restart(hctx);
1981                 if (prep == PREP_DISPATCH_NO_BUDGET)
1982                         needs_resource = true;
1983                 if (!needs_restart ||
1984                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1985                         blk_mq_run_hw_queue(hctx, true);
1986                 else if (needs_restart && needs_resource)
1987                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1988
1989                 blk_mq_update_dispatch_busy(hctx, true);
1990                 return false;
1991         } else
1992                 blk_mq_update_dispatch_busy(hctx, false);
1993
1994         return (queued + errors) != 0;
1995 }
1996
1997 /**
1998  * __blk_mq_run_hw_queue - Run a hardware queue.
1999  * @hctx: Pointer to the hardware queue to run.
2000  *
2001  * Send pending requests to the hardware.
2002  */
2003 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
2004 {
2005         /*
2006          * We can't run the queue inline with ints disabled. Ensure that
2007          * we catch bad users of this early.
2008          */
2009         WARN_ON_ONCE(in_interrupt());
2010
2011         blk_mq_run_dispatch_ops(hctx->queue,
2012                         blk_mq_sched_dispatch_requests(hctx));
2013 }
2014
2015 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2016 {
2017         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2018
2019         if (cpu >= nr_cpu_ids)
2020                 cpu = cpumask_first(hctx->cpumask);
2021         return cpu;
2022 }
2023
2024 /*
2025  * It'd be great if the workqueue API had a way to pass
2026  * in a mask and had some smarts for more clever placement.
2027  * For now we just round-robin here, switching for every
2028  * BLK_MQ_CPU_WORK_BATCH queued items.
2029  */
2030 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2031 {
2032         bool tried = false;
2033         int next_cpu = hctx->next_cpu;
2034
2035         if (hctx->queue->nr_hw_queues == 1)
2036                 return WORK_CPU_UNBOUND;
2037
2038         if (--hctx->next_cpu_batch <= 0) {
2039 select_cpu:
2040                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2041                                 cpu_online_mask);
2042                 if (next_cpu >= nr_cpu_ids)
2043                         next_cpu = blk_mq_first_mapped_cpu(hctx);
2044                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2045         }
2046
2047         /*
2048          * Do unbound schedule if we can't find a online CPU for this hctx,
2049          * and it should only happen in the path of handling CPU DEAD.
2050          */
2051         if (!cpu_online(next_cpu)) {
2052                 if (!tried) {
2053                         tried = true;
2054                         goto select_cpu;
2055                 }
2056
2057                 /*
2058                  * Make sure to re-select CPU next time once after CPUs
2059                  * in hctx->cpumask become online again.
2060                  */
2061                 hctx->next_cpu = next_cpu;
2062                 hctx->next_cpu_batch = 1;
2063                 return WORK_CPU_UNBOUND;
2064         }
2065
2066         hctx->next_cpu = next_cpu;
2067         return next_cpu;
2068 }
2069
2070 /**
2071  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2072  * @hctx: Pointer to the hardware queue to run.
2073  * @async: If we want to run the queue asynchronously.
2074  * @msecs: Milliseconds of delay to wait before running the queue.
2075  *
2076  * If !@async, try to run the queue now. Else, run the queue asynchronously and
2077  * with a delay of @msecs.
2078  */
2079 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2080                                         unsigned long msecs)
2081 {
2082         if (unlikely(blk_mq_hctx_stopped(hctx)))
2083                 return;
2084
2085         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2086                 int cpu = get_cpu();
2087                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
2088                         __blk_mq_run_hw_queue(hctx);
2089                         put_cpu();
2090                         return;
2091                 }
2092
2093                 put_cpu();
2094         }
2095
2096         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2097                                     msecs_to_jiffies(msecs));
2098 }
2099
2100 /**
2101  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2102  * @hctx: Pointer to the hardware queue to run.
2103  * @msecs: Milliseconds of delay to wait before running the queue.
2104  *
2105  * Run a hardware queue asynchronously with a delay of @msecs.
2106  */
2107 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2108 {
2109         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
2110 }
2111 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2112
2113 /**
2114  * blk_mq_run_hw_queue - Start to run a hardware queue.
2115  * @hctx: Pointer to the hardware queue to run.
2116  * @async: If we want to run the queue asynchronously.
2117  *
2118  * Check if the request queue is not in a quiesced state and if there are
2119  * pending requests to be sent. If this is true, run the queue to send requests
2120  * to hardware.
2121  */
2122 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2123 {
2124         bool need_run;
2125
2126         /*
2127          * When queue is quiesced, we may be switching io scheduler, or
2128          * updating nr_hw_queues, or other things, and we can't run queue
2129          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2130          *
2131          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2132          * quiesced.
2133          */
2134         __blk_mq_run_dispatch_ops(hctx->queue, false,
2135                 need_run = !blk_queue_quiesced(hctx->queue) &&
2136                 blk_mq_hctx_has_pending(hctx));
2137
2138         if (need_run)
2139                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
2140 }
2141 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2142
2143 /*
2144  * Is the request queue handled by an IO scheduler that does not respect
2145  * hardware queues when dispatching?
2146  */
2147 static bool blk_mq_has_sqsched(struct request_queue *q)
2148 {
2149         struct elevator_queue *e = q->elevator;
2150
2151         if (e && e->type->ops.dispatch_request &&
2152             !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
2153                 return true;
2154         return false;
2155 }
2156
2157 /*
2158  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2159  * scheduler.
2160  */
2161 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2162 {
2163         struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2164         /*
2165          * If the IO scheduler does not respect hardware queues when
2166          * dispatching, we just don't bother with multiple HW queues and
2167          * dispatch from hctx for the current CPU since running multiple queues
2168          * just causes lock contention inside the scheduler and pointless cache
2169          * bouncing.
2170          */
2171         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, 0, ctx);
2172
2173         if (!blk_mq_hctx_stopped(hctx))
2174                 return hctx;
2175         return NULL;
2176 }
2177
2178 /**
2179  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2180  * @q: Pointer to the request queue to run.
2181  * @async: If we want to run the queue asynchronously.
2182  */
2183 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2184 {
2185         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2186         unsigned long i;
2187
2188         sq_hctx = NULL;
2189         if (blk_mq_has_sqsched(q))
2190                 sq_hctx = blk_mq_get_sq_hctx(q);
2191         queue_for_each_hw_ctx(q, hctx, i) {
2192                 if (blk_mq_hctx_stopped(hctx))
2193                         continue;
2194                 /*
2195                  * Dispatch from this hctx either if there's no hctx preferred
2196                  * by IO scheduler or if it has requests that bypass the
2197                  * scheduler.
2198                  */
2199                 if (!sq_hctx || sq_hctx == hctx ||
2200                     !list_empty_careful(&hctx->dispatch))
2201                         blk_mq_run_hw_queue(hctx, async);
2202         }
2203 }
2204 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2205
2206 /**
2207  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2208  * @q: Pointer to the request queue to run.
2209  * @msecs: Milliseconds of delay to wait before running the queues.
2210  */
2211 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2212 {
2213         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2214         unsigned long i;
2215
2216         sq_hctx = NULL;
2217         if (blk_mq_has_sqsched(q))
2218                 sq_hctx = blk_mq_get_sq_hctx(q);
2219         queue_for_each_hw_ctx(q, hctx, i) {
2220                 if (blk_mq_hctx_stopped(hctx))
2221                         continue;
2222                 /*
2223                  * If there is already a run_work pending, leave the
2224                  * pending delay untouched. Otherwise, a hctx can stall
2225                  * if another hctx is re-delaying the other's work
2226                  * before the work executes.
2227                  */
2228                 if (delayed_work_pending(&hctx->run_work))
2229                         continue;
2230                 /*
2231                  * Dispatch from this hctx either if there's no hctx preferred
2232                  * by IO scheduler or if it has requests that bypass the
2233                  * scheduler.
2234                  */
2235                 if (!sq_hctx || sq_hctx == hctx ||
2236                     !list_empty_careful(&hctx->dispatch))
2237                         blk_mq_delay_run_hw_queue(hctx, msecs);
2238         }
2239 }
2240 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2241
2242 /**
2243  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
2244  * @q: request queue.
2245  *
2246  * The caller is responsible for serializing this function against
2247  * blk_mq_{start,stop}_hw_queue().
2248  */
2249 bool blk_mq_queue_stopped(struct request_queue *q)
2250 {
2251         struct blk_mq_hw_ctx *hctx;
2252         unsigned long i;
2253
2254         queue_for_each_hw_ctx(q, hctx, i)
2255                 if (blk_mq_hctx_stopped(hctx))
2256                         return true;
2257
2258         return false;
2259 }
2260 EXPORT_SYMBOL(blk_mq_queue_stopped);
2261
2262 /*
2263  * This function is often used for pausing .queue_rq() by driver when
2264  * there isn't enough resource or some conditions aren't satisfied, and
2265  * BLK_STS_RESOURCE is usually returned.
2266  *
2267  * We do not guarantee that dispatch can be drained or blocked
2268  * after blk_mq_stop_hw_queue() returns. Please use
2269  * blk_mq_quiesce_queue() for that requirement.
2270  */
2271 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2272 {
2273         cancel_delayed_work(&hctx->run_work);
2274
2275         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2276 }
2277 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2278
2279 /*
2280  * This function is often used for pausing .queue_rq() by driver when
2281  * there isn't enough resource or some conditions aren't satisfied, and
2282  * BLK_STS_RESOURCE is usually returned.
2283  *
2284  * We do not guarantee that dispatch can be drained or blocked
2285  * after blk_mq_stop_hw_queues() returns. Please use
2286  * blk_mq_quiesce_queue() for that requirement.
2287  */
2288 void blk_mq_stop_hw_queues(struct request_queue *q)
2289 {
2290         struct blk_mq_hw_ctx *hctx;
2291         unsigned long i;
2292
2293         queue_for_each_hw_ctx(q, hctx, i)
2294                 blk_mq_stop_hw_queue(hctx);
2295 }
2296 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2297
2298 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2299 {
2300         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2301
2302         blk_mq_run_hw_queue(hctx, false);
2303 }
2304 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2305
2306 void blk_mq_start_hw_queues(struct request_queue *q)
2307 {
2308         struct blk_mq_hw_ctx *hctx;
2309         unsigned long i;
2310
2311         queue_for_each_hw_ctx(q, hctx, i)
2312                 blk_mq_start_hw_queue(hctx);
2313 }
2314 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2315
2316 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2317 {
2318         if (!blk_mq_hctx_stopped(hctx))
2319                 return;
2320
2321         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2322         blk_mq_run_hw_queue(hctx, async);
2323 }
2324 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2325
2326 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2327 {
2328         struct blk_mq_hw_ctx *hctx;
2329         unsigned long i;
2330
2331         queue_for_each_hw_ctx(q, hctx, i)
2332                 blk_mq_start_stopped_hw_queue(hctx, async);
2333 }
2334 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2335
2336 static void blk_mq_run_work_fn(struct work_struct *work)
2337 {
2338         struct blk_mq_hw_ctx *hctx;
2339
2340         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2341
2342         /*
2343          * If we are stopped, don't run the queue.
2344          */
2345         if (blk_mq_hctx_stopped(hctx))
2346                 return;
2347
2348         __blk_mq_run_hw_queue(hctx);
2349 }
2350
2351 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2352                                             struct request *rq,
2353                                             bool at_head)
2354 {
2355         struct blk_mq_ctx *ctx = rq->mq_ctx;
2356         enum hctx_type type = hctx->type;
2357
2358         lockdep_assert_held(&ctx->lock);
2359
2360         trace_block_rq_insert(rq);
2361
2362         if (at_head)
2363                 list_add(&rq->queuelist, &ctx->rq_lists[type]);
2364         else
2365                 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2366 }
2367
2368 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2369                              bool at_head)
2370 {
2371         struct blk_mq_ctx *ctx = rq->mq_ctx;
2372
2373         lockdep_assert_held(&ctx->lock);
2374
2375         __blk_mq_insert_req_list(hctx, rq, at_head);
2376         blk_mq_hctx_mark_pending(hctx, ctx);
2377 }
2378
2379 /**
2380  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2381  * @rq: Pointer to request to be inserted.
2382  * @at_head: true if the request should be inserted at the head of the list.
2383  * @run_queue: If we should run the hardware queue after inserting the request.
2384  *
2385  * Should only be used carefully, when the caller knows we want to
2386  * bypass a potential IO scheduler on the target device.
2387  */
2388 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2389                                   bool run_queue)
2390 {
2391         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2392
2393         spin_lock(&hctx->lock);
2394         if (at_head)
2395                 list_add(&rq->queuelist, &hctx->dispatch);
2396         else
2397                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2398         spin_unlock(&hctx->lock);
2399
2400         if (run_queue)
2401                 blk_mq_run_hw_queue(hctx, false);
2402 }
2403
2404 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2405                             struct list_head *list)
2406
2407 {
2408         struct request *rq;
2409         enum hctx_type type = hctx->type;
2410
2411         /*
2412          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2413          * offline now
2414          */
2415         list_for_each_entry(rq, list, queuelist) {
2416                 BUG_ON(rq->mq_ctx != ctx);
2417                 trace_block_rq_insert(rq);
2418         }
2419
2420         spin_lock(&ctx->lock);
2421         list_splice_tail_init(list, &ctx->rq_lists[type]);
2422         blk_mq_hctx_mark_pending(hctx, ctx);
2423         spin_unlock(&ctx->lock);
2424 }
2425
2426 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2427                               bool from_schedule)
2428 {
2429         if (hctx->queue->mq_ops->commit_rqs) {
2430                 trace_block_unplug(hctx->queue, *queued, !from_schedule);
2431                 hctx->queue->mq_ops->commit_rqs(hctx);
2432         }
2433         *queued = 0;
2434 }
2435
2436 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2437                 unsigned int nr_segs)
2438 {
2439         int err;
2440
2441         if (bio->bi_opf & REQ_RAHEAD)
2442                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2443
2444         rq->__sector = bio->bi_iter.bi_sector;
2445         blk_rq_bio_prep(rq, bio, nr_segs);
2446
2447         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2448         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2449         WARN_ON_ONCE(err);
2450
2451         blk_account_io_start(rq);
2452 }
2453
2454 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2455                                             struct request *rq, bool last)
2456 {
2457         struct request_queue *q = rq->q;
2458         struct blk_mq_queue_data bd = {
2459                 .rq = rq,
2460                 .last = last,
2461         };
2462         blk_status_t ret;
2463
2464         /*
2465          * For OK queue, we are done. For error, caller may kill it.
2466          * Any other error (busy), just add it to our list as we
2467          * previously would have done.
2468          */
2469         ret = q->mq_ops->queue_rq(hctx, &bd);
2470         switch (ret) {
2471         case BLK_STS_OK:
2472                 blk_mq_update_dispatch_busy(hctx, false);
2473                 break;
2474         case BLK_STS_RESOURCE:
2475         case BLK_STS_DEV_RESOURCE:
2476                 blk_mq_update_dispatch_busy(hctx, true);
2477                 __blk_mq_requeue_request(rq);
2478                 break;
2479         default:
2480                 blk_mq_update_dispatch_busy(hctx, false);
2481                 break;
2482         }
2483
2484         return ret;
2485 }
2486
2487 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2488                                                 struct request *rq,
2489                                                 bool bypass_insert, bool last)
2490 {
2491         struct request_queue *q = rq->q;
2492         bool run_queue = true;
2493         int budget_token;
2494
2495         /*
2496          * RCU or SRCU read lock is needed before checking quiesced flag.
2497          *
2498          * When queue is stopped or quiesced, ignore 'bypass_insert' from
2499          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2500          * and avoid driver to try to dispatch again.
2501          */
2502         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2503                 run_queue = false;
2504                 bypass_insert = false;
2505                 goto insert;
2506         }
2507
2508         if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2509                 goto insert;
2510
2511         budget_token = blk_mq_get_dispatch_budget(q);
2512         if (budget_token < 0)
2513                 goto insert;
2514
2515         blk_mq_set_rq_budget_token(rq, budget_token);
2516
2517         if (!blk_mq_get_driver_tag(rq)) {
2518                 blk_mq_put_dispatch_budget(q, budget_token);
2519                 goto insert;
2520         }
2521
2522         return __blk_mq_issue_directly(hctx, rq, last);
2523 insert:
2524         if (bypass_insert)
2525                 return BLK_STS_RESOURCE;
2526
2527         blk_mq_sched_insert_request(rq, false, run_queue, false);
2528
2529         return BLK_STS_OK;
2530 }
2531
2532 /**
2533  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2534  * @hctx: Pointer of the associated hardware queue.
2535  * @rq: Pointer to request to be sent.
2536  *
2537  * If the device has enough resources to accept a new request now, send the
2538  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2539  * we can try send it another time in the future. Requests inserted at this
2540  * queue have higher priority.
2541  */
2542 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2543                 struct request *rq)
2544 {
2545         blk_status_t ret =
2546                 __blk_mq_try_issue_directly(hctx, rq, false, true);
2547
2548         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2549                 blk_mq_request_bypass_insert(rq, false, true);
2550         else if (ret != BLK_STS_OK)
2551                 blk_mq_end_request(rq, ret);
2552 }
2553
2554 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2555 {
2556         return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
2557 }
2558
2559 static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2560 {
2561         struct blk_mq_hw_ctx *hctx = NULL;
2562         struct request *rq;
2563         int queued = 0;
2564         int errors = 0;
2565
2566         while ((rq = rq_list_pop(&plug->mq_list))) {
2567                 bool last = rq_list_empty(plug->mq_list);
2568                 blk_status_t ret;
2569
2570                 if (hctx != rq->mq_hctx) {
2571                         if (hctx)
2572                                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2573                         hctx = rq->mq_hctx;
2574                 }
2575
2576                 ret = blk_mq_request_issue_directly(rq, last);
2577                 switch (ret) {
2578                 case BLK_STS_OK:
2579                         queued++;
2580                         break;
2581                 case BLK_STS_RESOURCE:
2582                 case BLK_STS_DEV_RESOURCE:
2583                         blk_mq_request_bypass_insert(rq, false, last);
2584                         blk_mq_commit_rqs(hctx, &queued, from_schedule);
2585                         return;
2586                 default:
2587                         blk_mq_end_request(rq, ret);
2588                         errors++;
2589                         break;
2590                 }
2591         }
2592
2593         /*
2594          * If we didn't flush the entire list, we could have told the driver
2595          * there was more coming, but that turned out to be a lie.
2596          */
2597         if (errors)
2598                 blk_mq_commit_rqs(hctx, &queued, from_schedule);
2599 }
2600
2601 static void __blk_mq_flush_plug_list(struct request_queue *q,
2602                                      struct blk_plug *plug)
2603 {
2604         if (blk_queue_quiesced(q))
2605                 return;
2606         q->mq_ops->queue_rqs(&plug->mq_list);
2607 }
2608
2609 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2610 {
2611         struct blk_mq_hw_ctx *this_hctx = NULL;
2612         struct blk_mq_ctx *this_ctx = NULL;
2613         struct request *requeue_list = NULL;
2614         unsigned int depth = 0;
2615         LIST_HEAD(list);
2616
2617         do {
2618                 struct request *rq = rq_list_pop(&plug->mq_list);
2619
2620                 if (!this_hctx) {
2621                         this_hctx = rq->mq_hctx;
2622                         this_ctx = rq->mq_ctx;
2623                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2624                         rq_list_add(&requeue_list, rq);
2625                         continue;
2626                 }
2627                 list_add_tail(&rq->queuelist, &list);
2628                 depth++;
2629         } while (!rq_list_empty(plug->mq_list));
2630
2631         plug->mq_list = requeue_list;
2632         trace_block_unplug(this_hctx->queue, depth, !from_sched);
2633         blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched);
2634 }
2635
2636 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2637 {
2638         struct request *rq;
2639
2640         if (rq_list_empty(plug->mq_list))
2641                 return;
2642         plug->rq_count = 0;
2643
2644         if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2645                 struct request_queue *q;
2646
2647                 rq = rq_list_peek(&plug->mq_list);
2648                 q = rq->q;
2649
2650                 /*
2651                  * Peek first request and see if we have a ->queue_rqs() hook.
2652                  * If we do, we can dispatch the whole plug list in one go. We
2653                  * already know at this point that all requests belong to the
2654                  * same queue, caller must ensure that's the case.
2655                  *
2656                  * Since we pass off the full list to the driver at this point,
2657                  * we do not increment the active request count for the queue.
2658                  * Bypass shared tags for now because of that.
2659                  */
2660                 if (q->mq_ops->queue_rqs &&
2661                     !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2662                         blk_mq_run_dispatch_ops(q,
2663                                 __blk_mq_flush_plug_list(q, plug));
2664                         if (rq_list_empty(plug->mq_list))
2665                                 return;
2666                 }
2667
2668                 blk_mq_run_dispatch_ops(q,
2669                                 blk_mq_plug_issue_direct(plug, false));
2670                 if (rq_list_empty(plug->mq_list))
2671                         return;
2672         }
2673
2674         do {
2675                 blk_mq_dispatch_plug_list(plug, from_schedule);
2676         } while (!rq_list_empty(plug->mq_list));
2677 }
2678
2679 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2680                 struct list_head *list)
2681 {
2682         int queued = 0;
2683         int errors = 0;
2684
2685         while (!list_empty(list)) {
2686                 blk_status_t ret;
2687                 struct request *rq = list_first_entry(list, struct request,
2688                                 queuelist);
2689
2690                 list_del_init(&rq->queuelist);
2691                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2692                 if (ret != BLK_STS_OK) {
2693                         if (ret == BLK_STS_RESOURCE ||
2694                                         ret == BLK_STS_DEV_RESOURCE) {
2695                                 blk_mq_request_bypass_insert(rq, false,
2696                                                         list_empty(list));
2697                                 break;
2698                         }
2699                         blk_mq_end_request(rq, ret);
2700                         errors++;
2701                 } else
2702                         queued++;
2703         }
2704
2705         /*
2706          * If we didn't flush the entire list, we could have told
2707          * the driver there was more coming, but that turned out to
2708          * be a lie.
2709          */
2710         if ((!list_empty(list) || errors) &&
2711              hctx->queue->mq_ops->commit_rqs && queued)
2712                 hctx->queue->mq_ops->commit_rqs(hctx);
2713 }
2714
2715 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2716                                      struct bio *bio, unsigned int nr_segs)
2717 {
2718         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2719                 if (blk_attempt_plug_merge(q, bio, nr_segs))
2720                         return true;
2721                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2722                         return true;
2723         }
2724         return false;
2725 }
2726
2727 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2728                                                struct blk_plug *plug,
2729                                                struct bio *bio,
2730                                                unsigned int nsegs)
2731 {
2732         struct blk_mq_alloc_data data = {
2733                 .q              = q,
2734                 .nr_tags        = 1,
2735                 .cmd_flags      = bio->bi_opf,
2736         };
2737         struct request *rq;
2738
2739         if (unlikely(bio_queue_enter(bio)))
2740                 return NULL;
2741
2742         if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2743                 goto queue_exit;
2744
2745         rq_qos_throttle(q, bio);
2746
2747         if (plug) {
2748                 data.nr_tags = plug->nr_ios;
2749                 plug->nr_ios = 1;
2750                 data.cached_rq = &plug->cached_rq;
2751         }
2752
2753         rq = __blk_mq_alloc_requests(&data);
2754         if (rq)
2755                 return rq;
2756         rq_qos_cleanup(q, bio);
2757         if (bio->bi_opf & REQ_NOWAIT)
2758                 bio_wouldblock_error(bio);
2759 queue_exit:
2760         blk_queue_exit(q);
2761         return NULL;
2762 }
2763
2764 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2765                 struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2766 {
2767         struct request *rq;
2768
2769         if (!plug)
2770                 return NULL;
2771         rq = rq_list_peek(&plug->cached_rq);
2772         if (!rq || rq->q != q)
2773                 return NULL;
2774
2775         if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2776                 *bio = NULL;
2777                 return NULL;
2778         }
2779
2780         rq_qos_throttle(q, *bio);
2781
2782         if (blk_mq_get_hctx_type((*bio)->bi_opf) != rq->mq_hctx->type)
2783                 return NULL;
2784         if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2785                 return NULL;
2786
2787         rq->cmd_flags = (*bio)->bi_opf;
2788         plug->cached_rq = rq_list_next(rq);
2789         INIT_LIST_HEAD(&rq->queuelist);
2790         return rq;
2791 }
2792
2793 /**
2794  * blk_mq_submit_bio - Create and send a request to block device.
2795  * @bio: Bio pointer.
2796  *
2797  * Builds up a request structure from @q and @bio and send to the device. The
2798  * request may not be queued directly to hardware if:
2799  * * This request can be merged with another one
2800  * * We want to place request at plug queue for possible future merging
2801  * * There is an IO scheduler active at this queue
2802  *
2803  * It will not queue the request if there is an error with the bio, or at the
2804  * request creation.
2805  */
2806 void blk_mq_submit_bio(struct bio *bio)
2807 {
2808         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2809         struct blk_plug *plug = blk_mq_plug(q, bio);
2810         const int is_sync = op_is_sync(bio->bi_opf);
2811         struct request *rq;
2812         unsigned int nr_segs = 1;
2813         blk_status_t ret;
2814
2815         blk_queue_bounce(q, &bio);
2816         if (blk_may_split(q, bio))
2817                 __blk_queue_split(q, &bio, &nr_segs);
2818
2819         if (!bio_integrity_prep(bio))
2820                 return;
2821
2822         rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2823         if (!rq) {
2824                 if (!bio)
2825                         return;
2826                 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2827                 if (unlikely(!rq))
2828                         return;
2829         }
2830
2831         trace_block_getrq(bio);
2832
2833         rq_qos_track(q, rq, bio);
2834
2835         blk_mq_bio_to_request(rq, bio, nr_segs);
2836
2837         ret = blk_crypto_init_request(rq);
2838         if (ret != BLK_STS_OK) {
2839                 bio->bi_status = ret;
2840                 bio_endio(bio);
2841                 blk_mq_free_request(rq);
2842                 return;
2843         }
2844
2845         if (op_is_flush(bio->bi_opf)) {
2846                 blk_insert_flush(rq);
2847                 return;
2848         }
2849
2850         if (plug)
2851                 blk_add_rq_to_plug(plug, rq);
2852         else if ((rq->rq_flags & RQF_ELV) ||
2853                  (rq->mq_hctx->dispatch_busy &&
2854                   (q->nr_hw_queues == 1 || !is_sync)))
2855                 blk_mq_sched_insert_request(rq, false, true, true);
2856         else
2857                 blk_mq_run_dispatch_ops(rq->q,
2858                                 blk_mq_try_issue_directly(rq->mq_hctx, rq));
2859 }
2860
2861 #ifdef CONFIG_BLK_MQ_STACKING
2862 /**
2863  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2864  * @rq: the request being queued
2865  */
2866 blk_status_t blk_insert_cloned_request(struct request *rq)
2867 {
2868         struct request_queue *q = rq->q;
2869         unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
2870         blk_status_t ret;
2871
2872         if (blk_rq_sectors(rq) > max_sectors) {
2873                 /*
2874                  * SCSI device does not have a good way to return if
2875                  * Write Same/Zero is actually supported. If a device rejects
2876                  * a non-read/write command (discard, write same,etc.) the
2877                  * low-level device driver will set the relevant queue limit to
2878                  * 0 to prevent blk-lib from issuing more of the offending
2879                  * operations. Commands queued prior to the queue limit being
2880                  * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
2881                  * errors being propagated to upper layers.
2882                  */
2883                 if (max_sectors == 0)
2884                         return BLK_STS_NOTSUPP;
2885
2886                 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
2887                         __func__, blk_rq_sectors(rq), max_sectors);
2888                 return BLK_STS_IOERR;
2889         }
2890
2891         /*
2892          * The queue settings related to segment counting may differ from the
2893          * original queue.
2894          */
2895         rq->nr_phys_segments = blk_recalc_rq_segments(rq);
2896         if (rq->nr_phys_segments > queue_max_segments(q)) {
2897                 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
2898                         __func__, rq->nr_phys_segments, queue_max_segments(q));
2899                 return BLK_STS_IOERR;
2900         }
2901
2902         if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
2903                 return BLK_STS_IOERR;
2904
2905         if (blk_crypto_insert_cloned_request(rq))
2906                 return BLK_STS_IOERR;
2907
2908         blk_account_io_start(rq);
2909
2910         /*
2911          * Since we have a scheduler attached on the top device,
2912          * bypass a potential scheduler on the bottom device for
2913          * insert.
2914          */
2915         blk_mq_run_dispatch_ops(q,
2916                         ret = blk_mq_request_issue_directly(rq, true));
2917         if (ret)
2918                 blk_account_io_done(rq, ktime_get_ns());
2919         return ret;
2920 }
2921 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2922
2923 /**
2924  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2925  * @rq: the clone request to be cleaned up
2926  *
2927  * Description:
2928  *     Free all bios in @rq for a cloned request.
2929  */
2930 void blk_rq_unprep_clone(struct request *rq)
2931 {
2932         struct bio *bio;
2933
2934         while ((bio = rq->bio) != NULL) {
2935                 rq->bio = bio->bi_next;
2936
2937                 bio_put(bio);
2938         }
2939 }
2940 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2941
2942 /**
2943  * blk_rq_prep_clone - Helper function to setup clone request
2944  * @rq: the request to be setup
2945  * @rq_src: original request to be cloned
2946  * @bs: bio_set that bios for clone are allocated from
2947  * @gfp_mask: memory allocation mask for bio
2948  * @bio_ctr: setup function to be called for each clone bio.
2949  *           Returns %0 for success, non %0 for failure.
2950  * @data: private data to be passed to @bio_ctr
2951  *
2952  * Description:
2953  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2954  *     Also, pages which the original bios are pointing to are not copied
2955  *     and the cloned bios just point same pages.
2956  *     So cloned bios must be completed before original bios, which means
2957  *     the caller must complete @rq before @rq_src.
2958  */
2959 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2960                       struct bio_set *bs, gfp_t gfp_mask,
2961                       int (*bio_ctr)(struct bio *, struct bio *, void *),
2962                       void *data)
2963 {
2964         struct bio *bio, *bio_src;
2965
2966         if (!bs)
2967                 bs = &fs_bio_set;
2968
2969         __rq_for_each_bio(bio_src, rq_src) {
2970                 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
2971                                       bs);
2972                 if (!bio)
2973                         goto free_and_out;
2974
2975                 if (bio_ctr && bio_ctr(bio, bio_src, data))
2976                         goto free_and_out;
2977
2978                 if (rq->bio) {
2979                         rq->biotail->bi_next = bio;
2980                         rq->biotail = bio;
2981                 } else {
2982                         rq->bio = rq->biotail = bio;
2983                 }
2984                 bio = NULL;
2985         }
2986
2987         /* Copy attributes of the original request to the clone request. */
2988         rq->__sector = blk_rq_pos(rq_src);
2989         rq->__data_len = blk_rq_bytes(rq_src);
2990         if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
2991                 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
2992                 rq->special_vec = rq_src->special_vec;
2993         }
2994         rq->nr_phys_segments = rq_src->nr_phys_segments;
2995         rq->ioprio = rq_src->ioprio;
2996
2997         if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
2998                 goto free_and_out;
2999
3000         return 0;
3001
3002 free_and_out:
3003         if (bio)
3004                 bio_put(bio);
3005         blk_rq_unprep_clone(rq);
3006
3007         return -ENOMEM;
3008 }
3009 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3010 #endif /* CONFIG_BLK_MQ_STACKING */
3011
3012 /*
3013  * Steal bios from a request and add them to a bio list.
3014  * The request must not have been partially completed before.
3015  */
3016 void blk_steal_bios(struct bio_list *list, struct request *rq)
3017 {
3018         if (rq->bio) {
3019                 if (list->tail)
3020                         list->tail->bi_next = rq->bio;
3021                 else
3022                         list->head = rq->bio;
3023                 list->tail = rq->biotail;
3024
3025                 rq->bio = NULL;
3026                 rq->biotail = NULL;
3027         }
3028
3029         rq->__data_len = 0;
3030 }
3031 EXPORT_SYMBOL_GPL(blk_steal_bios);
3032
3033 static size_t order_to_size(unsigned int order)
3034 {
3035         return (size_t)PAGE_SIZE << order;
3036 }
3037
3038 /* called before freeing request pool in @tags */
3039 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3040                                     struct blk_mq_tags *tags)
3041 {
3042         struct page *page;
3043         unsigned long flags;
3044
3045         /* There is no need to clear a driver tags own mapping */
3046         if (drv_tags == tags)
3047                 return;
3048
3049         list_for_each_entry(page, &tags->page_list, lru) {
3050                 unsigned long start = (unsigned long)page_address(page);
3051                 unsigned long end = start + order_to_size(page->private);
3052                 int i;
3053
3054                 for (i = 0; i < drv_tags->nr_tags; i++) {
3055                         struct request *rq = drv_tags->rqs[i];
3056                         unsigned long rq_addr = (unsigned long)rq;
3057
3058                         if (rq_addr >= start && rq_addr < end) {
3059                                 WARN_ON_ONCE(req_ref_read(rq) != 0);
3060                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3061                         }
3062                 }
3063         }
3064
3065         /*
3066          * Wait until all pending iteration is done.
3067          *
3068          * Request reference is cleared and it is guaranteed to be observed
3069          * after the ->lock is released.
3070          */
3071         spin_lock_irqsave(&drv_tags->lock, flags);
3072         spin_unlock_irqrestore(&drv_tags->lock, flags);
3073 }
3074
3075 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3076                      unsigned int hctx_idx)
3077 {
3078         struct blk_mq_tags *drv_tags;
3079         struct page *page;
3080
3081         if (list_empty(&tags->page_list))
3082                 return;
3083
3084         if (blk_mq_is_shared_tags(set->flags))
3085                 drv_tags = set->shared_tags;
3086         else
3087                 drv_tags = set->tags[hctx_idx];
3088
3089         if (tags->static_rqs && set->ops->exit_request) {
3090                 int i;
3091
3092                 for (i = 0; i < tags->nr_tags; i++) {
3093                         struct request *rq = tags->static_rqs[i];
3094
3095                         if (!rq)
3096                                 continue;
3097                         set->ops->exit_request(set, rq, hctx_idx);
3098                         tags->static_rqs[i] = NULL;
3099                 }
3100         }
3101
3102         blk_mq_clear_rq_mapping(drv_tags, tags);
3103
3104         while (!list_empty(&tags->page_list)) {
3105                 page = list_first_entry(&tags->page_list, struct page, lru);
3106                 list_del_init(&page->lru);
3107                 /*
3108                  * Remove kmemleak object previously allocated in
3109                  * blk_mq_alloc_rqs().
3110                  */
3111                 kmemleak_free(page_address(page));
3112                 __free_pages(page, page->private);
3113         }
3114 }
3115
3116 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3117 {
3118         kfree(tags->rqs);
3119         tags->rqs = NULL;
3120         kfree(tags->static_rqs);
3121         tags->static_rqs = NULL;
3122
3123         blk_mq_free_tags(tags);
3124 }
3125
3126 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3127                 unsigned int hctx_idx)
3128 {
3129         int i;
3130
3131         for (i = 0; i < set->nr_maps; i++) {
3132                 unsigned int start = set->map[i].queue_offset;
3133                 unsigned int end = start + set->map[i].nr_queues;
3134
3135                 if (hctx_idx >= start && hctx_idx < end)
3136                         break;
3137         }
3138
3139         if (i >= set->nr_maps)
3140                 i = HCTX_TYPE_DEFAULT;
3141
3142         return i;
3143 }
3144
3145 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3146                 unsigned int hctx_idx)
3147 {
3148         enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3149
3150         return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3151 }
3152
3153 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3154                                                unsigned int hctx_idx,
3155                                                unsigned int nr_tags,
3156                                                unsigned int reserved_tags)
3157 {
3158         int node = blk_mq_get_hctx_node(set, hctx_idx);
3159         struct blk_mq_tags *tags;
3160
3161         if (node == NUMA_NO_NODE)
3162                 node = set->numa_node;
3163
3164         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3165                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3166         if (!tags)
3167                 return NULL;
3168
3169         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3170                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3171                                  node);
3172         if (!tags->rqs) {
3173                 blk_mq_free_tags(tags);
3174                 return NULL;
3175         }
3176
3177         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3178                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3179                                         node);
3180         if (!tags->static_rqs) {
3181                 kfree(tags->rqs);
3182                 blk_mq_free_tags(tags);
3183                 return NULL;
3184         }
3185
3186         return tags;
3187 }
3188
3189 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3190                                unsigned int hctx_idx, int node)
3191 {
3192         int ret;
3193
3194         if (set->ops->init_request) {
3195                 ret = set->ops->init_request(set, rq, hctx_idx, node);
3196                 if (ret)
3197                         return ret;
3198         }
3199
3200         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3201         return 0;
3202 }
3203
3204 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3205                             struct blk_mq_tags *tags,
3206                             unsigned int hctx_idx, unsigned int depth)
3207 {
3208         unsigned int i, j, entries_per_page, max_order = 4;
3209         int node = blk_mq_get_hctx_node(set, hctx_idx);
3210         size_t rq_size, left;
3211
3212         if (node == NUMA_NO_NODE)
3213                 node = set->numa_node;
3214
3215         INIT_LIST_HEAD(&tags->page_list);
3216
3217         /*
3218          * rq_size is the size of the request plus driver payload, rounded
3219          * to the cacheline size
3220          */
3221         rq_size = round_up(sizeof(struct request) + set->cmd_size,
3222                                 cache_line_size());
3223         left = rq_size * depth;
3224
3225         for (i = 0; i < depth; ) {
3226                 int this_order = max_order;
3227                 struct page *page;
3228                 int to_do;
3229                 void *p;
3230
3231                 while (this_order && left < order_to_size(this_order - 1))
3232                         this_order--;
3233
3234                 do {
3235                         page = alloc_pages_node(node,
3236                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3237                                 this_order);
3238                         if (page)
3239                                 break;
3240                         if (!this_order--)
3241                                 break;
3242                         if (order_to_size(this_order) < rq_size)
3243                                 break;
3244                 } while (1);
3245
3246                 if (!page)
3247                         goto fail;
3248
3249                 page->private = this_order;
3250                 list_add_tail(&page->lru, &tags->page_list);
3251
3252                 p = page_address(page);
3253                 /*
3254                  * Allow kmemleak to scan these pages as they contain pointers
3255                  * to additional allocations like via ops->init_request().
3256                  */
3257                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3258                 entries_per_page = order_to_size(this_order) / rq_size;
3259                 to_do = min(entries_per_page, depth - i);
3260                 left -= to_do * rq_size;
3261                 for (j = 0; j < to_do; j++) {
3262                         struct request *rq = p;
3263
3264                         tags->static_rqs[i] = rq;
3265                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3266                                 tags->static_rqs[i] = NULL;
3267                                 goto fail;
3268                         }
3269
3270                         p += rq_size;
3271                         i++;
3272                 }
3273         }
3274         return 0;
3275
3276 fail:
3277         blk_mq_free_rqs(set, tags, hctx_idx);
3278         return -ENOMEM;
3279 }
3280
3281 struct rq_iter_data {
3282         struct blk_mq_hw_ctx *hctx;
3283         bool has_rq;
3284 };
3285
3286 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
3287 {
3288         struct rq_iter_data *iter_data = data;
3289
3290         if (rq->mq_hctx != iter_data->hctx)
3291                 return true;
3292         iter_data->has_rq = true;
3293         return false;
3294 }
3295
3296 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3297 {
3298         struct blk_mq_tags *tags = hctx->sched_tags ?
3299                         hctx->sched_tags : hctx->tags;
3300         struct rq_iter_data data = {
3301                 .hctx   = hctx,
3302         };
3303
3304         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3305         return data.has_rq;
3306 }
3307
3308 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3309                 struct blk_mq_hw_ctx *hctx)
3310 {
3311         if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3312                 return false;
3313         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3314                 return false;
3315         return true;
3316 }
3317
3318 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3319 {
3320         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3321                         struct blk_mq_hw_ctx, cpuhp_online);
3322
3323         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3324             !blk_mq_last_cpu_in_hctx(cpu, hctx))
3325                 return 0;
3326
3327         /*
3328          * Prevent new request from being allocated on the current hctx.
3329          *
3330          * The smp_mb__after_atomic() Pairs with the implied barrier in
3331          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3332          * seen once we return from the tag allocator.
3333          */
3334         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3335         smp_mb__after_atomic();
3336
3337         /*
3338          * Try to grab a reference to the queue and wait for any outstanding
3339          * requests.  If we could not grab a reference the queue has been
3340          * frozen and there are no requests.
3341          */
3342         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3343                 while (blk_mq_hctx_has_requests(hctx))
3344                         msleep(5);
3345                 percpu_ref_put(&hctx->queue->q_usage_counter);
3346         }
3347
3348         return 0;
3349 }
3350
3351 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3352 {
3353         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3354                         struct blk_mq_hw_ctx, cpuhp_online);
3355
3356         if (cpumask_test_cpu(cpu, hctx->cpumask))
3357                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3358         return 0;
3359 }
3360
3361 /*
3362  * 'cpu' is going away. splice any existing rq_list entries from this
3363  * software queue to the hw queue dispatch list, and ensure that it
3364  * gets run.
3365  */
3366 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3367 {
3368         struct blk_mq_hw_ctx *hctx;
3369         struct blk_mq_ctx *ctx;
3370         LIST_HEAD(tmp);
3371         enum hctx_type type;
3372
3373         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3374         if (!cpumask_test_cpu(cpu, hctx->cpumask))
3375                 return 0;
3376
3377         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3378         type = hctx->type;
3379
3380         spin_lock(&ctx->lock);
3381         if (!list_empty(&ctx->rq_lists[type])) {
3382                 list_splice_init(&ctx->rq_lists[type], &tmp);
3383                 blk_mq_hctx_clear_pending(hctx, ctx);
3384         }
3385         spin_unlock(&ctx->lock);
3386
3387         if (list_empty(&tmp))
3388                 return 0;
3389
3390         spin_lock(&hctx->lock);
3391         list_splice_tail_init(&tmp, &hctx->dispatch);
3392         spin_unlock(&hctx->lock);
3393
3394         blk_mq_run_hw_queue(hctx, true);
3395         return 0;
3396 }
3397
3398 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3399 {
3400         if (!(hctx->flags & BLK_MQ_F_STACKING))
3401                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3402                                                     &hctx->cpuhp_online);
3403         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3404                                             &hctx->cpuhp_dead);
3405 }
3406
3407 /*
3408  * Before freeing hw queue, clearing the flush request reference in
3409  * tags->rqs[] for avoiding potential UAF.
3410  */
3411 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3412                 unsigned int queue_depth, struct request *flush_rq)
3413 {
3414         int i;
3415         unsigned long flags;
3416
3417         /* The hw queue may not be mapped yet */
3418         if (!tags)
3419                 return;
3420
3421         WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3422
3423         for (i = 0; i < queue_depth; i++)
3424                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3425
3426         /*
3427          * Wait until all pending iteration is done.
3428          *
3429          * Request reference is cleared and it is guaranteed to be observed
3430          * after the ->lock is released.
3431          */
3432         spin_lock_irqsave(&tags->lock, flags);
3433         spin_unlock_irqrestore(&tags->lock, flags);
3434 }
3435
3436 /* hctx->ctxs will be freed in queue's release handler */
3437 static void blk_mq_exit_hctx(struct request_queue *q,
3438                 struct blk_mq_tag_set *set,
3439                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3440 {
3441         struct request *flush_rq = hctx->fq->flush_rq;
3442
3443         if (blk_mq_hw_queue_mapped(hctx))
3444                 blk_mq_tag_idle(hctx);
3445
3446         blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3447                         set->queue_depth, flush_rq);
3448         if (set->ops->exit_request)
3449                 set->ops->exit_request(set, flush_rq, hctx_idx);
3450
3451         if (set->ops->exit_hctx)
3452                 set->ops->exit_hctx(hctx, hctx_idx);
3453
3454         blk_mq_remove_cpuhp(hctx);
3455
3456         xa_erase(&q->hctx_table, hctx_idx);
3457
3458         spin_lock(&q->unused_hctx_lock);
3459         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3460         spin_unlock(&q->unused_hctx_lock);
3461 }
3462
3463 static void blk_mq_exit_hw_queues(struct request_queue *q,
3464                 struct blk_mq_tag_set *set, int nr_queue)
3465 {
3466         struct blk_mq_hw_ctx *hctx;
3467         unsigned long i;
3468
3469         queue_for_each_hw_ctx(q, hctx, i) {
3470                 if (i == nr_queue)
3471                         break;
3472                 blk_mq_exit_hctx(q, set, hctx, i);
3473         }
3474 }
3475
3476 static int blk_mq_init_hctx(struct request_queue *q,
3477                 struct blk_mq_tag_set *set,
3478                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3479 {
3480         hctx->queue_num = hctx_idx;
3481
3482         if (!(hctx->flags & BLK_MQ_F_STACKING))
3483                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3484                                 &hctx->cpuhp_online);
3485         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3486
3487         hctx->tags = set->tags[hctx_idx];
3488
3489         if (set->ops->init_hctx &&
3490             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3491                 goto unregister_cpu_notifier;
3492
3493         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3494                                 hctx->numa_node))
3495                 goto exit_hctx;
3496
3497         if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3498                 goto exit_flush_rq;
3499
3500         return 0;
3501
3502  exit_flush_rq:
3503         if (set->ops->exit_request)
3504                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3505  exit_hctx:
3506         if (set->ops->exit_hctx)
3507                 set->ops->exit_hctx(hctx, hctx_idx);
3508  unregister_cpu_notifier:
3509         blk_mq_remove_cpuhp(hctx);
3510         return -1;
3511 }
3512
3513 static struct blk_mq_hw_ctx *
3514 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3515                 int node)
3516 {
3517         struct blk_mq_hw_ctx *hctx;
3518         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3519
3520         hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3521         if (!hctx)
3522                 goto fail_alloc_hctx;
3523
3524         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3525                 goto free_hctx;
3526
3527         atomic_set(&hctx->nr_active, 0);
3528         if (node == NUMA_NO_NODE)
3529                 node = set->numa_node;
3530         hctx->numa_node = node;
3531
3532         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3533         spin_lock_init(&hctx->lock);
3534         INIT_LIST_HEAD(&hctx->dispatch);
3535         hctx->queue = q;
3536         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3537
3538         INIT_LIST_HEAD(&hctx->hctx_list);
3539
3540         /*
3541          * Allocate space for all possible cpus to avoid allocation at
3542          * runtime
3543          */
3544         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3545                         gfp, node);
3546         if (!hctx->ctxs)
3547                 goto free_cpumask;
3548
3549         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3550                                 gfp, node, false, false))
3551                 goto free_ctxs;
3552         hctx->nr_ctx = 0;
3553
3554         spin_lock_init(&hctx->dispatch_wait_lock);
3555         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3556         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3557
3558         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3559         if (!hctx->fq)
3560                 goto free_bitmap;
3561
3562         blk_mq_hctx_kobj_init(hctx);
3563
3564         return hctx;
3565
3566  free_bitmap:
3567         sbitmap_free(&hctx->ctx_map);
3568  free_ctxs:
3569         kfree(hctx->ctxs);
3570  free_cpumask:
3571         free_cpumask_var(hctx->cpumask);
3572  free_hctx:
3573         kfree(hctx);
3574  fail_alloc_hctx:
3575         return NULL;
3576 }
3577
3578 static void blk_mq_init_cpu_queues(struct request_queue *q,
3579                                    unsigned int nr_hw_queues)
3580 {
3581         struct blk_mq_tag_set *set = q->tag_set;
3582         unsigned int i, j;
3583
3584         for_each_possible_cpu(i) {
3585                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3586                 struct blk_mq_hw_ctx *hctx;
3587                 int k;
3588
3589                 __ctx->cpu = i;
3590                 spin_lock_init(&__ctx->lock);
3591                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3592                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3593
3594                 __ctx->queue = q;
3595
3596                 /*
3597                  * Set local node, IFF we have more than one hw queue. If
3598                  * not, we remain on the home node of the device
3599                  */
3600                 for (j = 0; j < set->nr_maps; j++) {
3601                         hctx = blk_mq_map_queue_type(q, j, i);
3602                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3603                                 hctx->numa_node = cpu_to_node(i);
3604                 }
3605         }
3606 }
3607
3608 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3609                                              unsigned int hctx_idx,
3610                                              unsigned int depth)
3611 {
3612         struct blk_mq_tags *tags;
3613         int ret;
3614
3615         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3616         if (!tags)
3617                 return NULL;
3618
3619         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3620         if (ret) {
3621                 blk_mq_free_rq_map(tags);
3622                 return NULL;
3623         }
3624
3625         return tags;
3626 }
3627
3628 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3629                                        int hctx_idx)
3630 {
3631         if (blk_mq_is_shared_tags(set->flags)) {
3632                 set->tags[hctx_idx] = set->shared_tags;
3633
3634                 return true;
3635         }
3636
3637         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3638                                                        set->queue_depth);
3639
3640         return set->tags[hctx_idx];
3641 }
3642
3643 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3644                              struct blk_mq_tags *tags,
3645                              unsigned int hctx_idx)
3646 {
3647         if (tags) {
3648                 blk_mq_free_rqs(set, tags, hctx_idx);
3649                 blk_mq_free_rq_map(tags);
3650         }
3651 }
3652
3653 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3654                                       unsigned int hctx_idx)
3655 {
3656         if (!blk_mq_is_shared_tags(set->flags))
3657                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3658
3659         set->tags[hctx_idx] = NULL;
3660 }
3661
3662 static void blk_mq_map_swqueue(struct request_queue *q)
3663 {
3664         unsigned int j, hctx_idx;
3665         unsigned long i;
3666         struct blk_mq_hw_ctx *hctx;
3667         struct blk_mq_ctx *ctx;
3668         struct blk_mq_tag_set *set = q->tag_set;
3669
3670         queue_for_each_hw_ctx(q, hctx, i) {
3671                 cpumask_clear(hctx->cpumask);
3672                 hctx->nr_ctx = 0;
3673                 hctx->dispatch_from = NULL;
3674         }
3675
3676         /*
3677          * Map software to hardware queues.
3678          *
3679          * If the cpu isn't present, the cpu is mapped to first hctx.
3680          */
3681         for_each_possible_cpu(i) {
3682
3683                 ctx = per_cpu_ptr(q->queue_ctx, i);
3684                 for (j = 0; j < set->nr_maps; j++) {
3685                         if (!set->map[j].nr_queues) {
3686                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3687                                                 HCTX_TYPE_DEFAULT, i);
3688                                 continue;
3689                         }
3690                         hctx_idx = set->map[j].mq_map[i];
3691                         /* unmapped hw queue can be remapped after CPU topo changed */
3692                         if (!set->tags[hctx_idx] &&
3693                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3694                                 /*
3695                                  * If tags initialization fail for some hctx,
3696                                  * that hctx won't be brought online.  In this
3697                                  * case, remap the current ctx to hctx[0] which
3698                                  * is guaranteed to always have tags allocated
3699                                  */
3700                                 set->map[j].mq_map[i] = 0;
3701                         }
3702
3703                         hctx = blk_mq_map_queue_type(q, j, i);
3704                         ctx->hctxs[j] = hctx;
3705                         /*
3706                          * If the CPU is already set in the mask, then we've
3707                          * mapped this one already. This can happen if
3708                          * devices share queues across queue maps.
3709                          */
3710                         if (cpumask_test_cpu(i, hctx->cpumask))
3711                                 continue;
3712
3713                         cpumask_set_cpu(i, hctx->cpumask);
3714                         hctx->type = j;
3715                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
3716                         hctx->ctxs[hctx->nr_ctx++] = ctx;
3717
3718                         /*
3719                          * If the nr_ctx type overflows, we have exceeded the
3720                          * amount of sw queues we can support.
3721                          */
3722                         BUG_ON(!hctx->nr_ctx);
3723                 }
3724
3725                 for (; j < HCTX_MAX_TYPES; j++)
3726                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
3727                                         HCTX_TYPE_DEFAULT, i);
3728         }
3729
3730         queue_for_each_hw_ctx(q, hctx, i) {
3731                 /*
3732                  * If no software queues are mapped to this hardware queue,
3733                  * disable it and free the request entries.
3734                  */
3735                 if (!hctx->nr_ctx) {
3736                         /* Never unmap queue 0.  We need it as a
3737                          * fallback in case of a new remap fails
3738                          * allocation
3739                          */
3740                         if (i)
3741                                 __blk_mq_free_map_and_rqs(set, i);
3742
3743                         hctx->tags = NULL;
3744                         continue;
3745                 }
3746
3747                 hctx->tags = set->tags[i];
3748                 WARN_ON(!hctx->tags);
3749
3750                 /*
3751                  * Set the map size to the number of mapped software queues.
3752                  * This is more accurate and more efficient than looping
3753                  * over all possibly mapped software queues.
3754                  */
3755                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3756
3757                 /*
3758                  * Initialize batch roundrobin counts
3759                  */
3760                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3761                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3762         }
3763 }
3764
3765 /*
3766  * Caller needs to ensure that we're either frozen/quiesced, or that
3767  * the queue isn't live yet.
3768  */
3769 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3770 {
3771         struct blk_mq_hw_ctx *hctx;
3772         unsigned long i;
3773
3774         queue_for_each_hw_ctx(q, hctx, i) {
3775                 if (shared) {
3776                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3777                 } else {
3778                         blk_mq_tag_idle(hctx);
3779                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3780                 }
3781         }
3782 }
3783
3784 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3785                                          bool shared)
3786 {
3787         struct request_queue *q;
3788
3789         lockdep_assert_held(&set->tag_list_lock);
3790
3791         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3792                 blk_mq_freeze_queue(q);
3793                 queue_set_hctx_shared(q, shared);
3794                 blk_mq_unfreeze_queue(q);
3795         }
3796 }
3797
3798 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3799 {
3800         struct blk_mq_tag_set *set = q->tag_set;
3801
3802         mutex_lock(&set->tag_list_lock);
3803         list_del(&q->tag_set_list);
3804         if (list_is_singular(&set->tag_list)) {
3805                 /* just transitioned to unshared */
3806                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3807                 /* update existing queue */
3808                 blk_mq_update_tag_set_shared(set, false);
3809         }
3810         mutex_unlock(&set->tag_list_lock);
3811         INIT_LIST_HEAD(&q->tag_set_list);
3812 }
3813
3814 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3815                                      struct request_queue *q)
3816 {
3817         mutex_lock(&set->tag_list_lock);
3818
3819         /*
3820          * Check to see if we're transitioning to shared (from 1 to 2 queues).
3821          */
3822         if (!list_empty(&set->tag_list) &&
3823             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3824                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3825                 /* update existing queue */
3826                 blk_mq_update_tag_set_shared(set, true);
3827         }
3828         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3829                 queue_set_hctx_shared(q, true);
3830         list_add_tail(&q->tag_set_list, &set->tag_list);
3831
3832         mutex_unlock(&set->tag_list_lock);
3833 }
3834
3835 /* All allocations will be freed in release handler of q->mq_kobj */
3836 static int blk_mq_alloc_ctxs(struct request_queue *q)
3837 {
3838         struct blk_mq_ctxs *ctxs;
3839         int cpu;
3840
3841         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3842         if (!ctxs)
3843                 return -ENOMEM;
3844
3845         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3846         if (!ctxs->queue_ctx)
3847                 goto fail;
3848
3849         for_each_possible_cpu(cpu) {
3850                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3851                 ctx->ctxs = ctxs;
3852         }
3853
3854         q->mq_kobj = &ctxs->kobj;
3855         q->queue_ctx = ctxs->queue_ctx;
3856
3857         return 0;
3858  fail:
3859         kfree(ctxs);
3860         return -ENOMEM;
3861 }
3862
3863 /*
3864  * It is the actual release handler for mq, but we do it from
3865  * request queue's release handler for avoiding use-after-free
3866  * and headache because q->mq_kobj shouldn't have been introduced,
3867  * but we can't group ctx/kctx kobj without it.
3868  */
3869 void blk_mq_release(struct request_queue *q)
3870 {
3871         struct blk_mq_hw_ctx *hctx, *next;
3872         unsigned long i;
3873
3874         queue_for_each_hw_ctx(q, hctx, i)
3875                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3876
3877         /* all hctx are in .unused_hctx_list now */
3878         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3879                 list_del_init(&hctx->hctx_list);
3880                 kobject_put(&hctx->kobj);
3881         }
3882
3883         xa_destroy(&q->hctx_table);
3884
3885         /*
3886          * release .mq_kobj and sw queue's kobject now because
3887          * both share lifetime with request queue.
3888          */
3889         blk_mq_sysfs_deinit(q);
3890 }
3891
3892 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3893                 void *queuedata)
3894 {
3895         struct request_queue *q;
3896         int ret;
3897
3898         q = blk_alloc_queue(set->numa_node, set->flags & BLK_MQ_F_BLOCKING);
3899         if (!q)
3900                 return ERR_PTR(-ENOMEM);
3901         q->queuedata = queuedata;
3902         ret = blk_mq_init_allocated_queue(set, q);
3903         if (ret) {
3904                 blk_cleanup_queue(q);
3905                 return ERR_PTR(ret);
3906         }
3907         return q;
3908 }
3909
3910 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3911 {
3912         return blk_mq_init_queue_data(set, NULL);
3913 }
3914 EXPORT_SYMBOL(blk_mq_init_queue);
3915
3916 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
3917                 struct lock_class_key *lkclass)
3918 {
3919         struct request_queue *q;
3920         struct gendisk *disk;
3921
3922         q = blk_mq_init_queue_data(set, queuedata);
3923         if (IS_ERR(q))
3924                 return ERR_CAST(q);
3925
3926         disk = __alloc_disk_node(q, set->numa_node, lkclass);
3927         if (!disk) {
3928                 blk_cleanup_queue(q);
3929                 return ERR_PTR(-ENOMEM);
3930         }
3931         return disk;
3932 }
3933 EXPORT_SYMBOL(__blk_mq_alloc_disk);
3934
3935 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3936                 struct blk_mq_tag_set *set, struct request_queue *q,
3937                 int hctx_idx, int node)
3938 {
3939         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3940
3941         /* reuse dead hctx first */
3942         spin_lock(&q->unused_hctx_lock);
3943         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3944                 if (tmp->numa_node == node) {
3945                         hctx = tmp;
3946                         break;
3947                 }
3948         }
3949         if (hctx)
3950                 list_del_init(&hctx->hctx_list);
3951         spin_unlock(&q->unused_hctx_lock);
3952
3953         if (!hctx)
3954                 hctx = blk_mq_alloc_hctx(q, set, node);
3955         if (!hctx)
3956                 goto fail;
3957
3958         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3959                 goto free_hctx;
3960
3961         return hctx;
3962
3963  free_hctx:
3964         kobject_put(&hctx->kobj);
3965  fail:
3966         return NULL;
3967 }
3968
3969 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3970                                                 struct request_queue *q)
3971 {
3972         struct blk_mq_hw_ctx *hctx;
3973         unsigned long i, j;
3974
3975         /* protect against switching io scheduler  */
3976         mutex_lock(&q->sysfs_lock);
3977         for (i = 0; i < set->nr_hw_queues; i++) {
3978                 int old_node;
3979                 int node = blk_mq_get_hctx_node(set, i);
3980                 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
3981
3982                 if (old_hctx) {
3983                         old_node = old_hctx->numa_node;
3984                         blk_mq_exit_hctx(q, set, old_hctx, i);
3985                 }
3986
3987                 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
3988                         if (!old_hctx)
3989                                 break;
3990                         pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
3991                                         node, old_node);
3992                         hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
3993                         WARN_ON_ONCE(!hctx);
3994                 }
3995         }
3996         /*
3997          * Increasing nr_hw_queues fails. Free the newly allocated
3998          * hctxs and keep the previous q->nr_hw_queues.
3999          */
4000         if (i != set->nr_hw_queues) {
4001                 j = q->nr_hw_queues;
4002         } else {
4003                 j = i;
4004                 q->nr_hw_queues = set->nr_hw_queues;
4005         }
4006
4007         xa_for_each_start(&q->hctx_table, j, hctx, j)
4008                 blk_mq_exit_hctx(q, set, hctx, j);
4009         mutex_unlock(&q->sysfs_lock);
4010 }
4011
4012 static void blk_mq_update_poll_flag(struct request_queue *q)
4013 {
4014         struct blk_mq_tag_set *set = q->tag_set;
4015
4016         if (set->nr_maps > HCTX_TYPE_POLL &&
4017             set->map[HCTX_TYPE_POLL].nr_queues)
4018                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4019         else
4020                 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4021 }
4022
4023 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4024                 struct request_queue *q)
4025 {
4026         WARN_ON_ONCE(blk_queue_has_srcu(q) !=
4027                         !!(set->flags & BLK_MQ_F_BLOCKING));
4028
4029         /* mark the queue as mq asap */
4030         q->mq_ops = set->ops;
4031
4032         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4033                                              blk_mq_poll_stats_bkt,
4034                                              BLK_MQ_POLL_STATS_BKTS, q);
4035         if (!q->poll_cb)
4036                 goto err_exit;
4037
4038         if (blk_mq_alloc_ctxs(q))
4039                 goto err_poll;
4040
4041         /* init q->mq_kobj and sw queues' kobjects */
4042         blk_mq_sysfs_init(q);
4043
4044         INIT_LIST_HEAD(&q->unused_hctx_list);
4045         spin_lock_init(&q->unused_hctx_lock);
4046
4047         xa_init(&q->hctx_table);
4048
4049         blk_mq_realloc_hw_ctxs(set, q);
4050         if (!q->nr_hw_queues)
4051                 goto err_hctxs;
4052
4053         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4054         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4055
4056         q->tag_set = set;
4057
4058         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4059         blk_mq_update_poll_flag(q);
4060
4061         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4062         INIT_LIST_HEAD(&q->requeue_list);
4063         spin_lock_init(&q->requeue_lock);
4064
4065         q->nr_requests = set->queue_depth;
4066
4067         /*
4068          * Default to classic polling
4069          */
4070         q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4071
4072         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4073         blk_mq_add_queue_tag_set(set, q);
4074         blk_mq_map_swqueue(q);
4075         return 0;
4076
4077 err_hctxs:
4078         xa_destroy(&q->hctx_table);
4079         q->nr_hw_queues = 0;
4080         blk_mq_sysfs_deinit(q);
4081 err_poll:
4082         blk_stat_free_callback(q->poll_cb);
4083         q->poll_cb = NULL;
4084 err_exit:
4085         q->mq_ops = NULL;
4086         return -ENOMEM;
4087 }
4088 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4089
4090 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4091 void blk_mq_exit_queue(struct request_queue *q)
4092 {
4093         struct blk_mq_tag_set *set = q->tag_set;
4094
4095         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4096         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4097         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4098         blk_mq_del_queue_tag_set(q);
4099 }
4100
4101 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4102 {
4103         int i;
4104
4105         if (blk_mq_is_shared_tags(set->flags)) {
4106                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4107                                                 BLK_MQ_NO_HCTX_IDX,
4108                                                 set->queue_depth);
4109                 if (!set->shared_tags)
4110                         return -ENOMEM;
4111         }
4112
4113         for (i = 0; i < set->nr_hw_queues; i++) {
4114                 if (!__blk_mq_alloc_map_and_rqs(set, i))
4115                         goto out_unwind;
4116                 cond_resched();
4117         }
4118
4119         return 0;
4120
4121 out_unwind:
4122         while (--i >= 0)
4123                 __blk_mq_free_map_and_rqs(set, i);
4124
4125         if (blk_mq_is_shared_tags(set->flags)) {
4126                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4127                                         BLK_MQ_NO_HCTX_IDX);
4128         }
4129
4130         return -ENOMEM;
4131 }
4132
4133 /*
4134  * Allocate the request maps associated with this tag_set. Note that this
4135  * may reduce the depth asked for, if memory is tight. set->queue_depth
4136  * will be updated to reflect the allocated depth.
4137  */
4138 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4139 {
4140         unsigned int depth;
4141         int err;
4142
4143         depth = set->queue_depth;
4144         do {
4145                 err = __blk_mq_alloc_rq_maps(set);
4146                 if (!err)
4147                         break;
4148
4149                 set->queue_depth >>= 1;
4150                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4151                         err = -ENOMEM;
4152                         break;
4153                 }
4154         } while (set->queue_depth);
4155
4156         if (!set->queue_depth || err) {
4157                 pr_err("blk-mq: failed to allocate request map\n");
4158                 return -ENOMEM;
4159         }
4160
4161         if (depth != set->queue_depth)
4162                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4163                                                 depth, set->queue_depth);
4164
4165         return 0;
4166 }
4167
4168 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4169 {
4170         /*
4171          * blk_mq_map_queues() and multiple .map_queues() implementations
4172          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4173          * number of hardware queues.
4174          */
4175         if (set->nr_maps == 1)
4176                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4177
4178         if (set->ops->map_queues && !is_kdump_kernel()) {
4179                 int i;
4180
4181                 /*
4182                  * transport .map_queues is usually done in the following
4183                  * way:
4184                  *
4185                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4186                  *      mask = get_cpu_mask(queue)
4187                  *      for_each_cpu(cpu, mask)
4188                  *              set->map[x].mq_map[cpu] = queue;
4189                  * }
4190                  *
4191                  * When we need to remap, the table has to be cleared for
4192                  * killing stale mapping since one CPU may not be mapped
4193                  * to any hw queue.
4194                  */
4195                 for (i = 0; i < set->nr_maps; i++)
4196                         blk_mq_clear_mq_map(&set->map[i]);
4197
4198                 return set->ops->map_queues(set);
4199         } else {
4200                 BUG_ON(set->nr_maps > 1);
4201                 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4202         }
4203 }
4204
4205 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4206                                   int cur_nr_hw_queues, int new_nr_hw_queues)
4207 {
4208         struct blk_mq_tags **new_tags;
4209
4210         if (cur_nr_hw_queues >= new_nr_hw_queues)
4211                 return 0;
4212
4213         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4214                                 GFP_KERNEL, set->numa_node);
4215         if (!new_tags)
4216                 return -ENOMEM;
4217
4218         if (set->tags)
4219                 memcpy(new_tags, set->tags, cur_nr_hw_queues *
4220                        sizeof(*set->tags));
4221         kfree(set->tags);
4222         set->tags = new_tags;
4223         set->nr_hw_queues = new_nr_hw_queues;
4224
4225         return 0;
4226 }
4227
4228 static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set,
4229                                 int new_nr_hw_queues)
4230 {
4231         return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues);
4232 }
4233
4234 /*
4235  * Alloc a tag set to be associated with one or more request queues.
4236  * May fail with EINVAL for various error conditions. May adjust the
4237  * requested depth down, if it's too large. In that case, the set
4238  * value will be stored in set->queue_depth.
4239  */
4240 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4241 {
4242         int i, ret;
4243
4244         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4245
4246         if (!set->nr_hw_queues)
4247                 return -EINVAL;
4248         if (!set->queue_depth)
4249                 return -EINVAL;
4250         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4251                 return -EINVAL;
4252
4253         if (!set->ops->queue_rq)
4254                 return -EINVAL;
4255
4256         if (!set->ops->get_budget ^ !set->ops->put_budget)
4257                 return -EINVAL;
4258
4259         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4260                 pr_info("blk-mq: reduced tag depth to %u\n",
4261                         BLK_MQ_MAX_DEPTH);
4262                 set->queue_depth = BLK_MQ_MAX_DEPTH;
4263         }
4264
4265         if (!set->nr_maps)
4266                 set->nr_maps = 1;
4267         else if (set->nr_maps > HCTX_MAX_TYPES)
4268                 return -EINVAL;
4269
4270         /*
4271          * If a crashdump is active, then we are potentially in a very
4272          * memory constrained environment. Limit us to 1 queue and
4273          * 64 tags to prevent using too much memory.
4274          */
4275         if (is_kdump_kernel()) {
4276                 set->nr_hw_queues = 1;
4277                 set->nr_maps = 1;
4278                 set->queue_depth = min(64U, set->queue_depth);
4279         }
4280         /*
4281          * There is no use for more h/w queues than cpus if we just have
4282          * a single map
4283          */
4284         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4285                 set->nr_hw_queues = nr_cpu_ids;
4286
4287         if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0)
4288                 return -ENOMEM;
4289
4290         ret = -ENOMEM;
4291         for (i = 0; i < set->nr_maps; i++) {
4292                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4293                                                   sizeof(set->map[i].mq_map[0]),
4294                                                   GFP_KERNEL, set->numa_node);
4295                 if (!set->map[i].mq_map)
4296                         goto out_free_mq_map;
4297                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4298         }
4299
4300         ret = blk_mq_update_queue_map(set);
4301         if (ret)
4302                 goto out_free_mq_map;
4303
4304         ret = blk_mq_alloc_set_map_and_rqs(set);
4305         if (ret)
4306                 goto out_free_mq_map;
4307
4308         mutex_init(&set->tag_list_lock);
4309         INIT_LIST_HEAD(&set->tag_list);
4310
4311         return 0;
4312
4313 out_free_mq_map:
4314         for (i = 0; i < set->nr_maps; i++) {
4315                 kfree(set->map[i].mq_map);
4316                 set->map[i].mq_map = NULL;
4317         }
4318         kfree(set->tags);
4319         set->tags = NULL;
4320         return ret;
4321 }
4322 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4323
4324 /* allocate and initialize a tagset for a simple single-queue device */
4325 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4326                 const struct blk_mq_ops *ops, unsigned int queue_depth,
4327                 unsigned int set_flags)
4328 {
4329         memset(set, 0, sizeof(*set));
4330         set->ops = ops;
4331         set->nr_hw_queues = 1;
4332         set->nr_maps = 1;
4333         set->queue_depth = queue_depth;
4334         set->numa_node = NUMA_NO_NODE;
4335         set->flags = set_flags;
4336         return blk_mq_alloc_tag_set(set);
4337 }
4338 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4339
4340 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4341 {
4342         int i, j;
4343
4344         for (i = 0; i < set->nr_hw_queues; i++)
4345                 __blk_mq_free_map_and_rqs(set, i);
4346
4347         if (blk_mq_is_shared_tags(set->flags)) {
4348                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4349                                         BLK_MQ_NO_HCTX_IDX);
4350         }
4351
4352         for (j = 0; j < set->nr_maps; j++) {
4353                 kfree(set->map[j].mq_map);
4354                 set->map[j].mq_map = NULL;
4355         }
4356
4357         kfree(set->tags);
4358         set->tags = NULL;
4359 }
4360 EXPORT_SYMBOL(blk_mq_free_tag_set);
4361
4362 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4363 {
4364         struct blk_mq_tag_set *set = q->tag_set;
4365         struct blk_mq_hw_ctx *hctx;
4366         int ret;
4367         unsigned long i;
4368
4369         if (!set)
4370                 return -EINVAL;
4371
4372         if (q->nr_requests == nr)
4373                 return 0;
4374
4375         blk_mq_freeze_queue(q);
4376         blk_mq_quiesce_queue(q);
4377
4378         ret = 0;
4379         queue_for_each_hw_ctx(q, hctx, i) {
4380                 if (!hctx->tags)
4381                         continue;
4382                 /*
4383                  * If we're using an MQ scheduler, just update the scheduler
4384                  * queue depth. This is similar to what the old code would do.
4385                  */
4386                 if (hctx->sched_tags) {
4387                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4388                                                       nr, true);
4389                 } else {
4390                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4391                                                       false);
4392                 }
4393                 if (ret)
4394                         break;
4395                 if (q->elevator && q->elevator->type->ops.depth_updated)
4396                         q->elevator->type->ops.depth_updated(hctx);
4397         }
4398         if (!ret) {
4399                 q->nr_requests = nr;
4400                 if (blk_mq_is_shared_tags(set->flags)) {
4401                         if (q->elevator)
4402                                 blk_mq_tag_update_sched_shared_tags(q);
4403                         else
4404                                 blk_mq_tag_resize_shared_tags(set, nr);
4405                 }
4406         }
4407
4408         blk_mq_unquiesce_queue(q);
4409         blk_mq_unfreeze_queue(q);
4410
4411         return ret;
4412 }
4413
4414 /*
4415  * request_queue and elevator_type pair.
4416  * It is just used by __blk_mq_update_nr_hw_queues to cache
4417  * the elevator_type associated with a request_queue.
4418  */
4419 struct blk_mq_qe_pair {
4420         struct list_head node;
4421         struct request_queue *q;
4422         struct elevator_type *type;
4423 };
4424
4425 /*
4426  * Cache the elevator_type in qe pair list and switch the
4427  * io scheduler to 'none'
4428  */
4429 static bool blk_mq_elv_switch_none(struct list_head *head,
4430                 struct request_queue *q)
4431 {
4432         struct blk_mq_qe_pair *qe;
4433
4434         if (!q->elevator)
4435                 return true;
4436
4437         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4438         if (!qe)
4439                 return false;
4440
4441         INIT_LIST_HEAD(&qe->node);
4442         qe->q = q;
4443         qe->type = q->elevator->type;
4444         list_add(&qe->node, head);
4445
4446         mutex_lock(&q->sysfs_lock);
4447         /*
4448          * After elevator_switch_mq, the previous elevator_queue will be
4449          * released by elevator_release. The reference of the io scheduler
4450          * module get by elevator_get will also be put. So we need to get
4451          * a reference of the io scheduler module here to prevent it to be
4452          * removed.
4453          */
4454         __module_get(qe->type->elevator_owner);
4455         elevator_switch_mq(q, NULL);
4456         mutex_unlock(&q->sysfs_lock);
4457
4458         return true;
4459 }
4460
4461 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4462                                                 struct request_queue *q)
4463 {
4464         struct blk_mq_qe_pair *qe;
4465
4466         list_for_each_entry(qe, head, node)
4467                 if (qe->q == q)
4468                         return qe;
4469
4470         return NULL;
4471 }
4472
4473 static void blk_mq_elv_switch_back(struct list_head *head,
4474                                   struct request_queue *q)
4475 {
4476         struct blk_mq_qe_pair *qe;
4477         struct elevator_type *t;
4478
4479         qe = blk_lookup_qe_pair(head, q);
4480         if (!qe)
4481                 return;
4482         t = qe->type;
4483         list_del(&qe->node);
4484         kfree(qe);
4485
4486         mutex_lock(&q->sysfs_lock);
4487         elevator_switch_mq(q, t);
4488         mutex_unlock(&q->sysfs_lock);
4489 }
4490
4491 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4492                                                         int nr_hw_queues)
4493 {
4494         struct request_queue *q;
4495         LIST_HEAD(head);
4496         int prev_nr_hw_queues;
4497
4498         lockdep_assert_held(&set->tag_list_lock);
4499
4500         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4501                 nr_hw_queues = nr_cpu_ids;
4502         if (nr_hw_queues < 1)
4503                 return;
4504         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4505                 return;
4506
4507         list_for_each_entry(q, &set->tag_list, tag_set_list)
4508                 blk_mq_freeze_queue(q);
4509         /*
4510          * Switch IO scheduler to 'none', cleaning up the data associated
4511          * with the previous scheduler. We will switch back once we are done
4512          * updating the new sw to hw queue mappings.
4513          */
4514         list_for_each_entry(q, &set->tag_list, tag_set_list)
4515                 if (!blk_mq_elv_switch_none(&head, q))
4516                         goto switch_back;
4517
4518         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4519                 blk_mq_debugfs_unregister_hctxs(q);
4520                 blk_mq_sysfs_unregister(q);
4521         }
4522
4523         prev_nr_hw_queues = set->nr_hw_queues;
4524         if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
4525             0)
4526                 goto reregister;
4527
4528         set->nr_hw_queues = nr_hw_queues;
4529 fallback:
4530         blk_mq_update_queue_map(set);
4531         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4532                 blk_mq_realloc_hw_ctxs(set, q);
4533                 blk_mq_update_poll_flag(q);
4534                 if (q->nr_hw_queues != set->nr_hw_queues) {
4535                         int i = prev_nr_hw_queues;
4536
4537                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4538                                         nr_hw_queues, prev_nr_hw_queues);
4539                         for (; i < set->nr_hw_queues; i++)
4540                                 __blk_mq_free_map_and_rqs(set, i);
4541
4542                         set->nr_hw_queues = prev_nr_hw_queues;
4543                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4544                         goto fallback;
4545                 }
4546                 blk_mq_map_swqueue(q);
4547         }
4548
4549 reregister:
4550         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4551                 blk_mq_sysfs_register(q);
4552                 blk_mq_debugfs_register_hctxs(q);
4553         }
4554
4555 switch_back:
4556         list_for_each_entry(q, &set->tag_list, tag_set_list)
4557                 blk_mq_elv_switch_back(&head, q);
4558
4559         list_for_each_entry(q, &set->tag_list, tag_set_list)
4560                 blk_mq_unfreeze_queue(q);
4561 }
4562
4563 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4564 {
4565         mutex_lock(&set->tag_list_lock);
4566         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4567         mutex_unlock(&set->tag_list_lock);
4568 }
4569 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4570
4571 /* Enable polling stats and return whether they were already enabled. */
4572 static bool blk_poll_stats_enable(struct request_queue *q)
4573 {
4574         if (q->poll_stat)
4575                 return true;
4576
4577         return blk_stats_alloc_enable(q);
4578 }
4579
4580 static void blk_mq_poll_stats_start(struct request_queue *q)
4581 {
4582         /*
4583          * We don't arm the callback if polling stats are not enabled or the
4584          * callback is already active.
4585          */
4586         if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4587                 return;
4588
4589         blk_stat_activate_msecs(q->poll_cb, 100);
4590 }
4591
4592 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4593 {
4594         struct request_queue *q = cb->data;
4595         int bucket;
4596
4597         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4598                 if (cb->stat[bucket].nr_samples)
4599                         q->poll_stat[bucket] = cb->stat[bucket];
4600         }
4601 }
4602
4603 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4604                                        struct request *rq)
4605 {
4606         unsigned long ret = 0;
4607         int bucket;
4608
4609         /*
4610          * If stats collection isn't on, don't sleep but turn it on for
4611          * future users
4612          */
4613         if (!blk_poll_stats_enable(q))
4614                 return 0;
4615
4616         /*
4617          * As an optimistic guess, use half of the mean service time
4618          * for this type of request. We can (and should) make this smarter.
4619          * For instance, if the completion latencies are tight, we can
4620          * get closer than just half the mean. This is especially
4621          * important on devices where the completion latencies are longer
4622          * than ~10 usec. We do use the stats for the relevant IO size
4623          * if available which does lead to better estimates.
4624          */
4625         bucket = blk_mq_poll_stats_bkt(rq);
4626         if (bucket < 0)
4627                 return ret;
4628
4629         if (q->poll_stat[bucket].nr_samples)
4630                 ret = (q->poll_stat[bucket].mean + 1) / 2;
4631
4632         return ret;
4633 }
4634
4635 static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4636 {
4637         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4638         struct request *rq = blk_qc_to_rq(hctx, qc);
4639         struct hrtimer_sleeper hs;
4640         enum hrtimer_mode mode;
4641         unsigned int nsecs;
4642         ktime_t kt;
4643
4644         /*
4645          * If a request has completed on queue that uses an I/O scheduler, we
4646          * won't get back a request from blk_qc_to_rq.
4647          */
4648         if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4649                 return false;
4650
4651         /*
4652          * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4653          *
4654          *  0:  use half of prev avg
4655          * >0:  use this specific value
4656          */
4657         if (q->poll_nsec > 0)
4658                 nsecs = q->poll_nsec;
4659         else
4660                 nsecs = blk_mq_poll_nsecs(q, rq);
4661
4662         if (!nsecs)
4663                 return false;
4664
4665         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4666
4667         /*
4668          * This will be replaced with the stats tracking code, using
4669          * 'avg_completion_time / 2' as the pre-sleep target.
4670          */
4671         kt = nsecs;
4672
4673         mode = HRTIMER_MODE_REL;
4674         hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4675         hrtimer_set_expires(&hs.timer, kt);
4676
4677         do {
4678                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4679                         break;
4680                 set_current_state(TASK_UNINTERRUPTIBLE);
4681                 hrtimer_sleeper_start_expires(&hs, mode);
4682                 if (hs.task)
4683                         io_schedule();
4684                 hrtimer_cancel(&hs.timer);
4685                 mode = HRTIMER_MODE_ABS;
4686         } while (hs.task && !signal_pending(current));
4687
4688         __set_current_state(TASK_RUNNING);
4689         destroy_hrtimer_on_stack(&hs.timer);
4690
4691         /*
4692          * If we sleep, have the caller restart the poll loop to reset the
4693          * state.  Like for the other success return cases, the caller is
4694          * responsible for checking if the IO completed.  If the IO isn't
4695          * complete, we'll get called again and will go straight to the busy
4696          * poll loop.
4697          */
4698         return true;
4699 }
4700
4701 static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4702                                struct io_comp_batch *iob, unsigned int flags)
4703 {
4704         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4705         long state = get_current_state();
4706         int ret;
4707
4708         do {
4709                 ret = q->mq_ops->poll(hctx, iob);
4710                 if (ret > 0) {
4711                         __set_current_state(TASK_RUNNING);
4712                         return ret;
4713                 }
4714
4715                 if (signal_pending_state(state, current))
4716                         __set_current_state(TASK_RUNNING);
4717                 if (task_is_running(current))
4718                         return 1;
4719
4720                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4721                         break;
4722                 cpu_relax();
4723         } while (!need_resched());
4724
4725         __set_current_state(TASK_RUNNING);
4726         return 0;
4727 }
4728
4729 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4730                 unsigned int flags)
4731 {
4732         if (!(flags & BLK_POLL_NOSLEEP) &&
4733             q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4734                 if (blk_mq_poll_hybrid(q, cookie))
4735                         return 1;
4736         }
4737         return blk_mq_poll_classic(q, cookie, iob, flags);
4738 }
4739
4740 unsigned int blk_mq_rq_cpu(struct request *rq)
4741 {
4742         return rq->mq_ctx->cpu;
4743 }
4744 EXPORT_SYMBOL(blk_mq_rq_cpu);
4745
4746 void blk_mq_cancel_work_sync(struct request_queue *q)
4747 {
4748         if (queue_is_mq(q)) {
4749                 struct blk_mq_hw_ctx *hctx;
4750                 unsigned long i;
4751
4752                 cancel_delayed_work_sync(&q->requeue_work);
4753
4754                 queue_for_each_hw_ctx(q, hctx, i)
4755                         cancel_delayed_work_sync(&hctx->run_work);
4756         }
4757 }
4758
4759 static int __init blk_mq_init(void)
4760 {
4761         int i;
4762
4763         for_each_possible_cpu(i)
4764                 init_llist_head(&per_cpu(blk_cpu_done, i));
4765         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4766
4767         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4768                                   "block/softirq:dead", NULL,
4769                                   blk_softirq_cpu_dead);
4770         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4771                                 blk_mq_hctx_notify_dead);
4772         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4773                                 blk_mq_hctx_notify_online,
4774                                 blk_mq_hctx_notify_offline);
4775         return 0;
4776 }
4777 subsys_initcall(blk_mq_init);