2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
25 #include <linux/prefetch.h>
27 #include <trace/events/block.h>
29 #include <linux/blk-mq.h>
32 #include "blk-mq-tag.h"
34 static DEFINE_MUTEX(all_q_mutex);
35 static LIST_HEAD(all_q_list);
38 * Check if any of the ctx's have pending work in this hardware queue
40 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
42 return sbitmap_any_bit_set(&hctx->ctx_map);
46 * Mark this ctx as having pending work in this hardware queue
48 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
49 struct blk_mq_ctx *ctx)
51 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
52 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
55 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
56 struct blk_mq_ctx *ctx)
58 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
61 void blk_mq_freeze_queue_start(struct request_queue *q)
65 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
66 if (freeze_depth == 1) {
67 percpu_ref_kill(&q->q_usage_counter);
68 blk_mq_run_hw_queues(q, false);
71 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
73 static void blk_mq_freeze_queue_wait(struct request_queue *q)
75 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
79 * Guarantee no request is in use, so we can change any data structure of
80 * the queue afterward.
82 void blk_freeze_queue(struct request_queue *q)
85 * In the !blk_mq case we are only calling this to kill the
86 * q_usage_counter, otherwise this increases the freeze depth
87 * and waits for it to return to zero. For this reason there is
88 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
89 * exported to drivers as the only user for unfreeze is blk_mq.
91 blk_mq_freeze_queue_start(q);
92 blk_mq_freeze_queue_wait(q);
95 void blk_mq_freeze_queue(struct request_queue *q)
98 * ...just an alias to keep freeze and unfreeze actions balanced
99 * in the blk_mq_* namespace
103 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
105 void blk_mq_unfreeze_queue(struct request_queue *q)
109 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
110 WARN_ON_ONCE(freeze_depth < 0);
112 percpu_ref_reinit(&q->q_usage_counter);
113 wake_up_all(&q->mq_freeze_wq);
116 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
118 void blk_mq_wake_waiters(struct request_queue *q)
120 struct blk_mq_hw_ctx *hctx;
123 queue_for_each_hw_ctx(q, hctx, i)
124 if (blk_mq_hw_queue_mapped(hctx))
125 blk_mq_tag_wakeup_all(hctx->tags, true);
128 * If we are called because the queue has now been marked as
129 * dying, we need to ensure that processes currently waiting on
130 * the queue are notified as well.
132 wake_up_all(&q->mq_freeze_wq);
135 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
137 return blk_mq_has_free_tags(hctx->tags);
139 EXPORT_SYMBOL(blk_mq_can_queue);
141 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
142 struct request *rq, int op,
143 unsigned int op_flags)
145 if (blk_queue_io_stat(q))
146 op_flags |= REQ_IO_STAT;
148 INIT_LIST_HEAD(&rq->queuelist);
149 /* csd/requeue_work/fifo_time is initialized before use */
152 req_set_op_attrs(rq, op, op_flags);
153 /* do not touch atomic flags, it needs atomic ops against the timer */
155 INIT_HLIST_NODE(&rq->hash);
156 RB_CLEAR_NODE(&rq->rb_node);
159 rq->start_time = jiffies;
160 #ifdef CONFIG_BLK_CGROUP
162 set_start_time_ns(rq);
163 rq->io_start_time_ns = 0;
165 rq->nr_phys_segments = 0;
166 #if defined(CONFIG_BLK_DEV_INTEGRITY)
167 rq->nr_integrity_segments = 0;
170 /* tag was already set */
180 INIT_LIST_HEAD(&rq->timeout_list);
184 rq->end_io_data = NULL;
187 ctx->rq_dispatched[rw_is_sync(op, op_flags)]++;
190 static struct request *
191 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int op, int op_flags)
196 tag = blk_mq_get_tag(data);
197 if (tag != BLK_MQ_TAG_FAIL) {
198 rq = data->hctx->tags->rqs[tag];
200 if (blk_mq_tag_busy(data->hctx)) {
201 rq->cmd_flags = REQ_MQ_INFLIGHT;
202 atomic_inc(&data->hctx->nr_active);
206 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op, op_flags);
213 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
216 struct blk_mq_ctx *ctx;
217 struct blk_mq_hw_ctx *hctx;
219 struct blk_mq_alloc_data alloc_data;
222 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
226 ctx = blk_mq_get_ctx(q);
227 hctx = blk_mq_map_queue(q, ctx->cpu);
228 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
229 rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
234 return ERR_PTR(-EWOULDBLOCK);
238 rq->__sector = (sector_t) -1;
239 rq->bio = rq->biotail = NULL;
242 EXPORT_SYMBOL(blk_mq_alloc_request);
244 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
245 unsigned int flags, unsigned int hctx_idx)
247 struct blk_mq_hw_ctx *hctx;
248 struct blk_mq_ctx *ctx;
250 struct blk_mq_alloc_data alloc_data;
254 * If the tag allocator sleeps we could get an allocation for a
255 * different hardware context. No need to complicate the low level
256 * allocator for this for the rare use case of a command tied to
259 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
260 return ERR_PTR(-EINVAL);
262 if (hctx_idx >= q->nr_hw_queues)
263 return ERR_PTR(-EIO);
265 ret = blk_queue_enter(q, true);
270 * Check if the hardware context is actually mapped to anything.
271 * If not tell the caller that it should skip this queue.
273 hctx = q->queue_hw_ctx[hctx_idx];
274 if (!blk_mq_hw_queue_mapped(hctx)) {
278 ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));
280 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
281 rq = __blk_mq_alloc_request(&alloc_data, rw, 0);
293 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
295 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
296 struct blk_mq_ctx *ctx, struct request *rq)
298 const int tag = rq->tag;
299 struct request_queue *q = rq->q;
301 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
302 atomic_dec(&hctx->nr_active);
305 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
306 blk_mq_put_tag(hctx, ctx, tag);
310 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
312 struct blk_mq_ctx *ctx = rq->mq_ctx;
314 ctx->rq_completed[rq_is_sync(rq)]++;
315 __blk_mq_free_request(hctx, ctx, rq);
318 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
320 void blk_mq_free_request(struct request *rq)
322 blk_mq_free_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
324 EXPORT_SYMBOL_GPL(blk_mq_free_request);
326 inline void __blk_mq_end_request(struct request *rq, int error)
328 blk_account_io_done(rq);
331 rq->end_io(rq, error);
333 if (unlikely(blk_bidi_rq(rq)))
334 blk_mq_free_request(rq->next_rq);
335 blk_mq_free_request(rq);
338 EXPORT_SYMBOL(__blk_mq_end_request);
340 void blk_mq_end_request(struct request *rq, int error)
342 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
344 __blk_mq_end_request(rq, error);
346 EXPORT_SYMBOL(blk_mq_end_request);
348 static void __blk_mq_complete_request_remote(void *data)
350 struct request *rq = data;
352 rq->q->softirq_done_fn(rq);
355 static void blk_mq_ipi_complete_request(struct request *rq)
357 struct blk_mq_ctx *ctx = rq->mq_ctx;
361 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
362 rq->q->softirq_done_fn(rq);
367 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
368 shared = cpus_share_cache(cpu, ctx->cpu);
370 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
371 rq->csd.func = __blk_mq_complete_request_remote;
374 smp_call_function_single_async(ctx->cpu, &rq->csd);
376 rq->q->softirq_done_fn(rq);
381 static void __blk_mq_complete_request(struct request *rq)
383 struct request_queue *q = rq->q;
385 if (!q->softirq_done_fn)
386 blk_mq_end_request(rq, rq->errors);
388 blk_mq_ipi_complete_request(rq);
392 * blk_mq_complete_request - end I/O on a request
393 * @rq: the request being processed
396 * Ends all I/O on a request. It does not handle partial completions.
397 * The actual completion happens out-of-order, through a IPI handler.
399 void blk_mq_complete_request(struct request *rq, int error)
401 struct request_queue *q = rq->q;
403 if (unlikely(blk_should_fake_timeout(q)))
405 if (!blk_mark_rq_complete(rq)) {
407 __blk_mq_complete_request(rq);
410 EXPORT_SYMBOL(blk_mq_complete_request);
412 int blk_mq_request_started(struct request *rq)
414 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
416 EXPORT_SYMBOL_GPL(blk_mq_request_started);
418 void blk_mq_start_request(struct request *rq)
420 struct request_queue *q = rq->q;
422 trace_block_rq_issue(q, rq);
424 rq->resid_len = blk_rq_bytes(rq);
425 if (unlikely(blk_bidi_rq(rq)))
426 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
431 * Ensure that ->deadline is visible before set the started
432 * flag and clear the completed flag.
434 smp_mb__before_atomic();
437 * Mark us as started and clear complete. Complete might have been
438 * set if requeue raced with timeout, which then marked it as
439 * complete. So be sure to clear complete again when we start
440 * the request, otherwise we'll ignore the completion event.
442 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
443 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
444 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
445 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
447 if (q->dma_drain_size && blk_rq_bytes(rq)) {
449 * Make sure space for the drain appears. We know we can do
450 * this because max_hw_segments has been adjusted to be one
451 * fewer than the device can handle.
453 rq->nr_phys_segments++;
456 EXPORT_SYMBOL(blk_mq_start_request);
458 static void __blk_mq_requeue_request(struct request *rq)
460 struct request_queue *q = rq->q;
462 trace_block_rq_requeue(q, rq);
464 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
465 if (q->dma_drain_size && blk_rq_bytes(rq))
466 rq->nr_phys_segments--;
470 void blk_mq_requeue_request(struct request *rq)
472 __blk_mq_requeue_request(rq);
474 BUG_ON(blk_queued_rq(rq));
475 blk_mq_add_to_requeue_list(rq, true);
477 EXPORT_SYMBOL(blk_mq_requeue_request);
479 static void blk_mq_requeue_work(struct work_struct *work)
481 struct request_queue *q =
482 container_of(work, struct request_queue, requeue_work.work);
484 struct request *rq, *next;
487 spin_lock_irqsave(&q->requeue_lock, flags);
488 list_splice_init(&q->requeue_list, &rq_list);
489 spin_unlock_irqrestore(&q->requeue_lock, flags);
491 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
492 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
495 rq->cmd_flags &= ~REQ_SOFTBARRIER;
496 list_del_init(&rq->queuelist);
497 blk_mq_insert_request(rq, true, false, false);
500 while (!list_empty(&rq_list)) {
501 rq = list_entry(rq_list.next, struct request, queuelist);
502 list_del_init(&rq->queuelist);
503 blk_mq_insert_request(rq, false, false, false);
507 * Use the start variant of queue running here, so that running
508 * the requeue work will kick stopped queues.
510 blk_mq_start_hw_queues(q);
513 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
515 struct request_queue *q = rq->q;
519 * We abuse this flag that is otherwise used by the I/O scheduler to
520 * request head insertation from the workqueue.
522 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
524 spin_lock_irqsave(&q->requeue_lock, flags);
526 rq->cmd_flags |= REQ_SOFTBARRIER;
527 list_add(&rq->queuelist, &q->requeue_list);
529 list_add_tail(&rq->queuelist, &q->requeue_list);
531 spin_unlock_irqrestore(&q->requeue_lock, flags);
533 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
535 void blk_mq_cancel_requeue_work(struct request_queue *q)
537 cancel_delayed_work_sync(&q->requeue_work);
539 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
541 void blk_mq_kick_requeue_list(struct request_queue *q)
543 kblockd_schedule_delayed_work(&q->requeue_work, 0);
545 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
547 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
550 kblockd_schedule_delayed_work(&q->requeue_work,
551 msecs_to_jiffies(msecs));
553 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
555 void blk_mq_abort_requeue_list(struct request_queue *q)
560 spin_lock_irqsave(&q->requeue_lock, flags);
561 list_splice_init(&q->requeue_list, &rq_list);
562 spin_unlock_irqrestore(&q->requeue_lock, flags);
564 while (!list_empty(&rq_list)) {
567 rq = list_first_entry(&rq_list, struct request, queuelist);
568 list_del_init(&rq->queuelist);
570 blk_mq_end_request(rq, rq->errors);
573 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
575 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
577 if (tag < tags->nr_tags) {
578 prefetch(tags->rqs[tag]);
579 return tags->rqs[tag];
584 EXPORT_SYMBOL(blk_mq_tag_to_rq);
586 struct blk_mq_timeout_data {
588 unsigned int next_set;
591 void blk_mq_rq_timed_out(struct request *req, bool reserved)
593 struct blk_mq_ops *ops = req->q->mq_ops;
594 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
597 * We know that complete is set at this point. If STARTED isn't set
598 * anymore, then the request isn't active and the "timeout" should
599 * just be ignored. This can happen due to the bitflag ordering.
600 * Timeout first checks if STARTED is set, and if it is, assumes
601 * the request is active. But if we race with completion, then
602 * we both flags will get cleared. So check here again, and ignore
603 * a timeout event with a request that isn't active.
605 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
609 ret = ops->timeout(req, reserved);
613 __blk_mq_complete_request(req);
615 case BLK_EH_RESET_TIMER:
617 blk_clear_rq_complete(req);
619 case BLK_EH_NOT_HANDLED:
622 printk(KERN_ERR "block: bad eh return: %d\n", ret);
627 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
628 struct request *rq, void *priv, bool reserved)
630 struct blk_mq_timeout_data *data = priv;
632 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
634 * If a request wasn't started before the queue was
635 * marked dying, kill it here or it'll go unnoticed.
637 if (unlikely(blk_queue_dying(rq->q))) {
639 blk_mq_end_request(rq, rq->errors);
644 if (time_after_eq(jiffies, rq->deadline)) {
645 if (!blk_mark_rq_complete(rq))
646 blk_mq_rq_timed_out(rq, reserved);
647 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
648 data->next = rq->deadline;
653 static void blk_mq_timeout_work(struct work_struct *work)
655 struct request_queue *q =
656 container_of(work, struct request_queue, timeout_work);
657 struct blk_mq_timeout_data data = {
663 /* A deadlock might occur if a request is stuck requiring a
664 * timeout at the same time a queue freeze is waiting
665 * completion, since the timeout code would not be able to
666 * acquire the queue reference here.
668 * That's why we don't use blk_queue_enter here; instead, we use
669 * percpu_ref_tryget directly, because we need to be able to
670 * obtain a reference even in the short window between the queue
671 * starting to freeze, by dropping the first reference in
672 * blk_mq_freeze_queue_start, and the moment the last request is
673 * consumed, marked by the instant q_usage_counter reaches
676 if (!percpu_ref_tryget(&q->q_usage_counter))
679 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
682 data.next = blk_rq_timeout(round_jiffies_up(data.next));
683 mod_timer(&q->timeout, data.next);
685 struct blk_mq_hw_ctx *hctx;
687 queue_for_each_hw_ctx(q, hctx, i) {
688 /* the hctx may be unmapped, so check it here */
689 if (blk_mq_hw_queue_mapped(hctx))
690 blk_mq_tag_idle(hctx);
697 * Reverse check our software queue for entries that we could potentially
698 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
699 * too much time checking for merges.
701 static bool blk_mq_attempt_merge(struct request_queue *q,
702 struct blk_mq_ctx *ctx, struct bio *bio)
707 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
713 if (!blk_rq_merge_ok(rq, bio))
716 el_ret = blk_try_merge(rq, bio);
717 if (el_ret == ELEVATOR_BACK_MERGE) {
718 if (bio_attempt_back_merge(q, rq, bio)) {
723 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
724 if (bio_attempt_front_merge(q, rq, bio)) {
735 struct flush_busy_ctx_data {
736 struct blk_mq_hw_ctx *hctx;
737 struct list_head *list;
740 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
742 struct flush_busy_ctx_data *flush_data = data;
743 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
744 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
746 sbitmap_clear_bit(sb, bitnr);
747 spin_lock(&ctx->lock);
748 list_splice_tail_init(&ctx->rq_list, flush_data->list);
749 spin_unlock(&ctx->lock);
754 * Process software queues that have been marked busy, splicing them
755 * to the for-dispatch
757 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
759 struct flush_busy_ctx_data data = {
764 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
767 static inline unsigned int queued_to_index(unsigned int queued)
772 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
776 * Run this hardware queue, pulling any software queues mapped to it in.
777 * Note that this function currently has various problems around ordering
778 * of IO. In particular, we'd like FIFO behaviour on handling existing
779 * items on the hctx->dispatch list. Ignore that for now.
781 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
783 struct request_queue *q = hctx->queue;
786 LIST_HEAD(driver_list);
787 struct list_head *dptr;
790 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
793 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
794 cpu_online(hctx->next_cpu));
799 * Touch any software queue that has pending entries.
801 flush_busy_ctxs(hctx, &rq_list);
804 * If we have previous entries on our dispatch list, grab them
805 * and stuff them at the front for more fair dispatch.
807 if (!list_empty_careful(&hctx->dispatch)) {
808 spin_lock(&hctx->lock);
809 if (!list_empty(&hctx->dispatch))
810 list_splice_init(&hctx->dispatch, &rq_list);
811 spin_unlock(&hctx->lock);
815 * Start off with dptr being NULL, so we start the first request
816 * immediately, even if we have more pending.
821 * Now process all the entries, sending them to the driver.
824 while (!list_empty(&rq_list)) {
825 struct blk_mq_queue_data bd;
828 rq = list_first_entry(&rq_list, struct request, queuelist);
829 list_del_init(&rq->queuelist);
833 bd.last = list_empty(&rq_list);
835 ret = q->mq_ops->queue_rq(hctx, &bd);
837 case BLK_MQ_RQ_QUEUE_OK:
840 case BLK_MQ_RQ_QUEUE_BUSY:
841 list_add(&rq->queuelist, &rq_list);
842 __blk_mq_requeue_request(rq);
845 pr_err("blk-mq: bad return on queue: %d\n", ret);
846 case BLK_MQ_RQ_QUEUE_ERROR:
848 blk_mq_end_request(rq, rq->errors);
852 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
856 * We've done the first request. If we have more than 1
857 * left in the list, set dptr to defer issue.
859 if (!dptr && rq_list.next != rq_list.prev)
863 hctx->dispatched[queued_to_index(queued)]++;
866 * Any items that need requeuing? Stuff them into hctx->dispatch,
867 * that is where we will continue on next queue run.
869 if (!list_empty(&rq_list)) {
870 spin_lock(&hctx->lock);
871 list_splice(&rq_list, &hctx->dispatch);
872 spin_unlock(&hctx->lock);
874 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
875 * it's possible the queue is stopped and restarted again
876 * before this. Queue restart will dispatch requests. And since
877 * requests in rq_list aren't added into hctx->dispatch yet,
878 * the requests in rq_list might get lost.
880 * blk_mq_run_hw_queue() already checks the STOPPED bit
882 blk_mq_run_hw_queue(hctx, true);
887 * It'd be great if the workqueue API had a way to pass
888 * in a mask and had some smarts for more clever placement.
889 * For now we just round-robin here, switching for every
890 * BLK_MQ_CPU_WORK_BATCH queued items.
892 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
894 if (hctx->queue->nr_hw_queues == 1)
895 return WORK_CPU_UNBOUND;
897 if (--hctx->next_cpu_batch <= 0) {
898 int cpu = hctx->next_cpu, next_cpu;
900 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
901 if (next_cpu >= nr_cpu_ids)
902 next_cpu = cpumask_first(hctx->cpumask);
904 hctx->next_cpu = next_cpu;
905 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
910 return hctx->next_cpu;
913 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
915 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
916 !blk_mq_hw_queue_mapped(hctx)))
919 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
921 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
922 __blk_mq_run_hw_queue(hctx);
930 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
933 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
935 struct blk_mq_hw_ctx *hctx;
938 queue_for_each_hw_ctx(q, hctx, i) {
939 if ((!blk_mq_hctx_has_pending(hctx) &&
940 list_empty_careful(&hctx->dispatch)) ||
941 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
944 blk_mq_run_hw_queue(hctx, async);
947 EXPORT_SYMBOL(blk_mq_run_hw_queues);
949 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
951 cancel_work(&hctx->run_work);
952 cancel_delayed_work(&hctx->delay_work);
953 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
955 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
957 void blk_mq_stop_hw_queues(struct request_queue *q)
959 struct blk_mq_hw_ctx *hctx;
962 queue_for_each_hw_ctx(q, hctx, i)
963 blk_mq_stop_hw_queue(hctx);
965 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
967 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
969 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
971 blk_mq_run_hw_queue(hctx, false);
973 EXPORT_SYMBOL(blk_mq_start_hw_queue);
975 void blk_mq_start_hw_queues(struct request_queue *q)
977 struct blk_mq_hw_ctx *hctx;
980 queue_for_each_hw_ctx(q, hctx, i)
981 blk_mq_start_hw_queue(hctx);
983 EXPORT_SYMBOL(blk_mq_start_hw_queues);
985 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
987 struct blk_mq_hw_ctx *hctx;
990 queue_for_each_hw_ctx(q, hctx, i) {
991 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
994 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
995 blk_mq_run_hw_queue(hctx, async);
998 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1000 static void blk_mq_run_work_fn(struct work_struct *work)
1002 struct blk_mq_hw_ctx *hctx;
1004 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1006 __blk_mq_run_hw_queue(hctx);
1009 static void blk_mq_delay_work_fn(struct work_struct *work)
1011 struct blk_mq_hw_ctx *hctx;
1013 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1015 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1016 __blk_mq_run_hw_queue(hctx);
1019 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1021 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1024 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1025 &hctx->delay_work, msecs_to_jiffies(msecs));
1027 EXPORT_SYMBOL(blk_mq_delay_queue);
1029 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1033 struct blk_mq_ctx *ctx = rq->mq_ctx;
1035 trace_block_rq_insert(hctx->queue, rq);
1038 list_add(&rq->queuelist, &ctx->rq_list);
1040 list_add_tail(&rq->queuelist, &ctx->rq_list);
1043 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
1044 struct request *rq, bool at_head)
1046 struct blk_mq_ctx *ctx = rq->mq_ctx;
1048 __blk_mq_insert_req_list(hctx, rq, at_head);
1049 blk_mq_hctx_mark_pending(hctx, ctx);
1052 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1055 struct blk_mq_ctx *ctx = rq->mq_ctx;
1056 struct request_queue *q = rq->q;
1057 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1059 spin_lock(&ctx->lock);
1060 __blk_mq_insert_request(hctx, rq, at_head);
1061 spin_unlock(&ctx->lock);
1064 blk_mq_run_hw_queue(hctx, async);
1067 static void blk_mq_insert_requests(struct request_queue *q,
1068 struct blk_mq_ctx *ctx,
1069 struct list_head *list,
1074 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1076 trace_block_unplug(q, depth, !from_schedule);
1079 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1082 spin_lock(&ctx->lock);
1083 while (!list_empty(list)) {
1086 rq = list_first_entry(list, struct request, queuelist);
1087 BUG_ON(rq->mq_ctx != ctx);
1088 list_del_init(&rq->queuelist);
1089 __blk_mq_insert_req_list(hctx, rq, false);
1091 blk_mq_hctx_mark_pending(hctx, ctx);
1092 spin_unlock(&ctx->lock);
1094 blk_mq_run_hw_queue(hctx, from_schedule);
1097 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1099 struct request *rqa = container_of(a, struct request, queuelist);
1100 struct request *rqb = container_of(b, struct request, queuelist);
1102 return !(rqa->mq_ctx < rqb->mq_ctx ||
1103 (rqa->mq_ctx == rqb->mq_ctx &&
1104 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1107 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1109 struct blk_mq_ctx *this_ctx;
1110 struct request_queue *this_q;
1113 LIST_HEAD(ctx_list);
1116 list_splice_init(&plug->mq_list, &list);
1118 list_sort(NULL, &list, plug_ctx_cmp);
1124 while (!list_empty(&list)) {
1125 rq = list_entry_rq(list.next);
1126 list_del_init(&rq->queuelist);
1128 if (rq->mq_ctx != this_ctx) {
1130 blk_mq_insert_requests(this_q, this_ctx,
1135 this_ctx = rq->mq_ctx;
1141 list_add_tail(&rq->queuelist, &ctx_list);
1145 * If 'this_ctx' is set, we know we have entries to complete
1146 * on 'ctx_list'. Do those.
1149 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1154 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1156 init_request_from_bio(rq, bio);
1158 blk_account_io_start(rq, 1);
1161 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1163 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1164 !blk_queue_nomerges(hctx->queue);
1167 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1168 struct blk_mq_ctx *ctx,
1169 struct request *rq, struct bio *bio)
1171 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1172 blk_mq_bio_to_request(rq, bio);
1173 spin_lock(&ctx->lock);
1175 __blk_mq_insert_request(hctx, rq, false);
1176 spin_unlock(&ctx->lock);
1179 struct request_queue *q = hctx->queue;
1181 spin_lock(&ctx->lock);
1182 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1183 blk_mq_bio_to_request(rq, bio);
1187 spin_unlock(&ctx->lock);
1188 __blk_mq_free_request(hctx, ctx, rq);
1193 struct blk_map_ctx {
1194 struct blk_mq_hw_ctx *hctx;
1195 struct blk_mq_ctx *ctx;
1198 static struct request *blk_mq_map_request(struct request_queue *q,
1200 struct blk_map_ctx *data)
1202 struct blk_mq_hw_ctx *hctx;
1203 struct blk_mq_ctx *ctx;
1205 int op = bio_data_dir(bio);
1207 struct blk_mq_alloc_data alloc_data;
1209 blk_queue_enter_live(q);
1210 ctx = blk_mq_get_ctx(q);
1211 hctx = blk_mq_map_queue(q, ctx->cpu);
1213 if (rw_is_sync(bio_op(bio), bio->bi_opf))
1214 op_flags |= REQ_SYNC;
1216 trace_block_getrq(q, bio, op);
1217 blk_mq_set_alloc_data(&alloc_data, q, 0, ctx, hctx);
1218 rq = __blk_mq_alloc_request(&alloc_data, op, op_flags);
1220 data->hctx = alloc_data.hctx;
1221 data->ctx = alloc_data.ctx;
1222 data->hctx->queued++;
1226 static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie)
1229 struct request_queue *q = rq->q;
1230 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
1231 struct blk_mq_queue_data bd = {
1236 blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1239 * For OK queue, we are done. For error, kill it. Any other
1240 * error (busy), just add it to our list as we previously
1243 ret = q->mq_ops->queue_rq(hctx, &bd);
1244 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1245 *cookie = new_cookie;
1249 __blk_mq_requeue_request(rq);
1251 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1252 *cookie = BLK_QC_T_NONE;
1254 blk_mq_end_request(rq, rq->errors);
1262 * Multiple hardware queue variant. This will not use per-process plugs,
1263 * but will attempt to bypass the hctx queueing if we can go straight to
1264 * hardware for SYNC IO.
1266 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1268 const int is_sync = rw_is_sync(bio_op(bio), bio->bi_opf);
1269 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1270 struct blk_map_ctx data;
1272 unsigned int request_count = 0;
1273 struct blk_plug *plug;
1274 struct request *same_queue_rq = NULL;
1277 blk_queue_bounce(q, &bio);
1279 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1281 return BLK_QC_T_NONE;
1284 blk_queue_split(q, &bio, q->bio_split);
1286 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1287 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1288 return BLK_QC_T_NONE;
1290 rq = blk_mq_map_request(q, bio, &data);
1292 return BLK_QC_T_NONE;
1294 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1296 if (unlikely(is_flush_fua)) {
1297 blk_mq_bio_to_request(rq, bio);
1298 blk_insert_flush(rq);
1302 plug = current->plug;
1304 * If the driver supports defer issued based on 'last', then
1305 * queue it up like normal since we can potentially save some
1308 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1309 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1310 struct request *old_rq = NULL;
1312 blk_mq_bio_to_request(rq, bio);
1315 * We do limited pluging. If the bio can be merged, do that.
1316 * Otherwise the existing request in the plug list will be
1317 * issued. So the plug list will have one request at most
1321 * The plug list might get flushed before this. If that
1322 * happens, same_queue_rq is invalid and plug list is
1325 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1326 old_rq = same_queue_rq;
1327 list_del_init(&old_rq->queuelist);
1329 list_add_tail(&rq->queuelist, &plug->mq_list);
1330 } else /* is_sync */
1332 blk_mq_put_ctx(data.ctx);
1335 if (!blk_mq_direct_issue_request(old_rq, &cookie))
1337 blk_mq_insert_request(old_rq, false, true, true);
1341 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1343 * For a SYNC request, send it to the hardware immediately. For
1344 * an ASYNC request, just ensure that we run it later on. The
1345 * latter allows for merging opportunities and more efficient
1349 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1351 blk_mq_put_ctx(data.ctx);
1357 * Single hardware queue variant. This will attempt to use any per-process
1358 * plug for merging and IO deferral.
1360 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1362 const int is_sync = rw_is_sync(bio_op(bio), bio->bi_opf);
1363 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1364 struct blk_plug *plug;
1365 unsigned int request_count = 0;
1366 struct blk_map_ctx data;
1370 blk_queue_bounce(q, &bio);
1372 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1374 return BLK_QC_T_NONE;
1377 blk_queue_split(q, &bio, q->bio_split);
1379 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1380 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1381 return BLK_QC_T_NONE;
1383 request_count = blk_plug_queued_count(q);
1385 rq = blk_mq_map_request(q, bio, &data);
1387 return BLK_QC_T_NONE;
1389 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1391 if (unlikely(is_flush_fua)) {
1392 blk_mq_bio_to_request(rq, bio);
1393 blk_insert_flush(rq);
1398 * A task plug currently exists. Since this is completely lockless,
1399 * utilize that to temporarily store requests until the task is
1400 * either done or scheduled away.
1402 plug = current->plug;
1404 blk_mq_bio_to_request(rq, bio);
1406 trace_block_plug(q);
1408 blk_mq_put_ctx(data.ctx);
1410 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1411 blk_flush_plug_list(plug, false);
1412 trace_block_plug(q);
1415 list_add_tail(&rq->queuelist, &plug->mq_list);
1419 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1421 * For a SYNC request, send it to the hardware immediately. For
1422 * an ASYNC request, just ensure that we run it later on. The
1423 * latter allows for merging opportunities and more efficient
1427 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1430 blk_mq_put_ctx(data.ctx);
1434 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1435 struct blk_mq_tags *tags, unsigned int hctx_idx)
1439 if (tags->rqs && set->ops->exit_request) {
1442 for (i = 0; i < tags->nr_tags; i++) {
1445 set->ops->exit_request(set->driver_data, tags->rqs[i],
1447 tags->rqs[i] = NULL;
1451 while (!list_empty(&tags->page_list)) {
1452 page = list_first_entry(&tags->page_list, struct page, lru);
1453 list_del_init(&page->lru);
1455 * Remove kmemleak object previously allocated in
1456 * blk_mq_init_rq_map().
1458 kmemleak_free(page_address(page));
1459 __free_pages(page, page->private);
1464 blk_mq_free_tags(tags);
1467 static size_t order_to_size(unsigned int order)
1469 return (size_t)PAGE_SIZE << order;
1472 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1473 unsigned int hctx_idx)
1475 struct blk_mq_tags *tags;
1476 unsigned int i, j, entries_per_page, max_order = 4;
1477 size_t rq_size, left;
1479 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1481 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1485 INIT_LIST_HEAD(&tags->page_list);
1487 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1488 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1491 blk_mq_free_tags(tags);
1496 * rq_size is the size of the request plus driver payload, rounded
1497 * to the cacheline size
1499 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1501 left = rq_size * set->queue_depth;
1503 for (i = 0; i < set->queue_depth; ) {
1504 int this_order = max_order;
1509 while (this_order && left < order_to_size(this_order - 1))
1513 page = alloc_pages_node(set->numa_node,
1514 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1520 if (order_to_size(this_order) < rq_size)
1527 page->private = this_order;
1528 list_add_tail(&page->lru, &tags->page_list);
1530 p = page_address(page);
1532 * Allow kmemleak to scan these pages as they contain pointers
1533 * to additional allocations like via ops->init_request().
1535 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1536 entries_per_page = order_to_size(this_order) / rq_size;
1537 to_do = min(entries_per_page, set->queue_depth - i);
1538 left -= to_do * rq_size;
1539 for (j = 0; j < to_do; j++) {
1541 if (set->ops->init_request) {
1542 if (set->ops->init_request(set->driver_data,
1543 tags->rqs[i], hctx_idx, i,
1545 tags->rqs[i] = NULL;
1557 blk_mq_free_rq_map(set, tags, hctx_idx);
1562 * 'cpu' is going away. splice any existing rq_list entries from this
1563 * software queue to the hw queue dispatch list, and ensure that it
1566 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1568 struct blk_mq_hw_ctx *hctx;
1569 struct blk_mq_ctx *ctx;
1572 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1573 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1575 spin_lock(&ctx->lock);
1576 if (!list_empty(&ctx->rq_list)) {
1577 list_splice_init(&ctx->rq_list, &tmp);
1578 blk_mq_hctx_clear_pending(hctx, ctx);
1580 spin_unlock(&ctx->lock);
1582 if (list_empty(&tmp))
1585 spin_lock(&hctx->lock);
1586 list_splice_tail_init(&tmp, &hctx->dispatch);
1587 spin_unlock(&hctx->lock);
1589 blk_mq_run_hw_queue(hctx, true);
1593 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1595 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1599 /* hctx->ctxs will be freed in queue's release handler */
1600 static void blk_mq_exit_hctx(struct request_queue *q,
1601 struct blk_mq_tag_set *set,
1602 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1604 unsigned flush_start_tag = set->queue_depth;
1606 blk_mq_tag_idle(hctx);
1608 if (set->ops->exit_request)
1609 set->ops->exit_request(set->driver_data,
1610 hctx->fq->flush_rq, hctx_idx,
1611 flush_start_tag + hctx_idx);
1613 if (set->ops->exit_hctx)
1614 set->ops->exit_hctx(hctx, hctx_idx);
1616 blk_mq_remove_cpuhp(hctx);
1617 blk_free_flush_queue(hctx->fq);
1618 sbitmap_free(&hctx->ctx_map);
1621 static void blk_mq_exit_hw_queues(struct request_queue *q,
1622 struct blk_mq_tag_set *set, int nr_queue)
1624 struct blk_mq_hw_ctx *hctx;
1627 queue_for_each_hw_ctx(q, hctx, i) {
1630 blk_mq_exit_hctx(q, set, hctx, i);
1634 static void blk_mq_free_hw_queues(struct request_queue *q,
1635 struct blk_mq_tag_set *set)
1637 struct blk_mq_hw_ctx *hctx;
1640 queue_for_each_hw_ctx(q, hctx, i)
1641 free_cpumask_var(hctx->cpumask);
1644 static int blk_mq_init_hctx(struct request_queue *q,
1645 struct blk_mq_tag_set *set,
1646 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1649 unsigned flush_start_tag = set->queue_depth;
1651 node = hctx->numa_node;
1652 if (node == NUMA_NO_NODE)
1653 node = hctx->numa_node = set->numa_node;
1655 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1656 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1657 spin_lock_init(&hctx->lock);
1658 INIT_LIST_HEAD(&hctx->dispatch);
1660 hctx->queue_num = hctx_idx;
1661 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1663 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1665 hctx->tags = set->tags[hctx_idx];
1668 * Allocate space for all possible cpus to avoid allocation at
1671 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1674 goto unregister_cpu_notifier;
1676 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1682 if (set->ops->init_hctx &&
1683 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1686 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1690 if (set->ops->init_request &&
1691 set->ops->init_request(set->driver_data,
1692 hctx->fq->flush_rq, hctx_idx,
1693 flush_start_tag + hctx_idx, node))
1701 if (set->ops->exit_hctx)
1702 set->ops->exit_hctx(hctx, hctx_idx);
1704 sbitmap_free(&hctx->ctx_map);
1707 unregister_cpu_notifier:
1708 blk_mq_remove_cpuhp(hctx);
1712 static void blk_mq_init_cpu_queues(struct request_queue *q,
1713 unsigned int nr_hw_queues)
1717 for_each_possible_cpu(i) {
1718 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1719 struct blk_mq_hw_ctx *hctx;
1721 memset(__ctx, 0, sizeof(*__ctx));
1723 spin_lock_init(&__ctx->lock);
1724 INIT_LIST_HEAD(&__ctx->rq_list);
1727 /* If the cpu isn't online, the cpu is mapped to first hctx */
1731 hctx = blk_mq_map_queue(q, i);
1734 * Set local node, IFF we have more than one hw queue. If
1735 * not, we remain on the home node of the device
1737 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1738 hctx->numa_node = local_memory_node(cpu_to_node(i));
1742 static void blk_mq_map_swqueue(struct request_queue *q,
1743 const struct cpumask *online_mask)
1746 struct blk_mq_hw_ctx *hctx;
1747 struct blk_mq_ctx *ctx;
1748 struct blk_mq_tag_set *set = q->tag_set;
1751 * Avoid others reading imcomplete hctx->cpumask through sysfs
1753 mutex_lock(&q->sysfs_lock);
1755 queue_for_each_hw_ctx(q, hctx, i) {
1756 cpumask_clear(hctx->cpumask);
1761 * Map software to hardware queues
1763 for_each_possible_cpu(i) {
1764 /* If the cpu isn't online, the cpu is mapped to first hctx */
1765 if (!cpumask_test_cpu(i, online_mask))
1768 ctx = per_cpu_ptr(q->queue_ctx, i);
1769 hctx = blk_mq_map_queue(q, i);
1771 cpumask_set_cpu(i, hctx->cpumask);
1772 ctx->index_hw = hctx->nr_ctx;
1773 hctx->ctxs[hctx->nr_ctx++] = ctx;
1776 mutex_unlock(&q->sysfs_lock);
1778 queue_for_each_hw_ctx(q, hctx, i) {
1780 * If no software queues are mapped to this hardware queue,
1781 * disable it and free the request entries.
1783 if (!hctx->nr_ctx) {
1785 blk_mq_free_rq_map(set, set->tags[i], i);
1786 set->tags[i] = NULL;
1792 /* unmapped hw queue can be remapped after CPU topo changed */
1794 set->tags[i] = blk_mq_init_rq_map(set, i);
1795 hctx->tags = set->tags[i];
1796 WARN_ON(!hctx->tags);
1799 * Set the map size to the number of mapped software queues.
1800 * This is more accurate and more efficient than looping
1801 * over all possibly mapped software queues.
1803 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
1806 * Initialize batch roundrobin counts
1808 hctx->next_cpu = cpumask_first(hctx->cpumask);
1809 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1813 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1815 struct blk_mq_hw_ctx *hctx;
1818 queue_for_each_hw_ctx(q, hctx, i) {
1820 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1822 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1826 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
1828 struct request_queue *q;
1830 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1831 blk_mq_freeze_queue(q);
1832 queue_set_hctx_shared(q, shared);
1833 blk_mq_unfreeze_queue(q);
1837 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1839 struct blk_mq_tag_set *set = q->tag_set;
1841 mutex_lock(&set->tag_list_lock);
1842 list_del_init(&q->tag_set_list);
1843 if (list_is_singular(&set->tag_list)) {
1844 /* just transitioned to unshared */
1845 set->flags &= ~BLK_MQ_F_TAG_SHARED;
1846 /* update existing queue */
1847 blk_mq_update_tag_set_depth(set, false);
1849 mutex_unlock(&set->tag_list_lock);
1852 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1853 struct request_queue *q)
1857 mutex_lock(&set->tag_list_lock);
1859 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
1860 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
1861 set->flags |= BLK_MQ_F_TAG_SHARED;
1862 /* update existing queue */
1863 blk_mq_update_tag_set_depth(set, true);
1865 if (set->flags & BLK_MQ_F_TAG_SHARED)
1866 queue_set_hctx_shared(q, true);
1867 list_add_tail(&q->tag_set_list, &set->tag_list);
1869 mutex_unlock(&set->tag_list_lock);
1873 * It is the actual release handler for mq, but we do it from
1874 * request queue's release handler for avoiding use-after-free
1875 * and headache because q->mq_kobj shouldn't have been introduced,
1876 * but we can't group ctx/kctx kobj without it.
1878 void blk_mq_release(struct request_queue *q)
1880 struct blk_mq_hw_ctx *hctx;
1883 /* hctx kobj stays in hctx */
1884 queue_for_each_hw_ctx(q, hctx, i) {
1893 kfree(q->queue_hw_ctx);
1895 /* ctx kobj stays in queue_ctx */
1896 free_percpu(q->queue_ctx);
1899 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1901 struct request_queue *uninit_q, *q;
1903 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1905 return ERR_PTR(-ENOMEM);
1907 q = blk_mq_init_allocated_queue(set, uninit_q);
1909 blk_cleanup_queue(uninit_q);
1913 EXPORT_SYMBOL(blk_mq_init_queue);
1915 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
1916 struct request_queue *q)
1919 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
1921 blk_mq_sysfs_unregister(q);
1922 for (i = 0; i < set->nr_hw_queues; i++) {
1928 node = blk_mq_hw_queue_to_node(q->mq_map, i);
1929 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1934 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1941 atomic_set(&hctxs[i]->nr_active, 0);
1942 hctxs[i]->numa_node = node;
1943 hctxs[i]->queue_num = i;
1945 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
1946 free_cpumask_var(hctxs[i]->cpumask);
1951 blk_mq_hctx_kobj_init(hctxs[i]);
1953 for (j = i; j < q->nr_hw_queues; j++) {
1954 struct blk_mq_hw_ctx *hctx = hctxs[j];
1958 blk_mq_free_rq_map(set, hctx->tags, j);
1959 set->tags[j] = NULL;
1961 blk_mq_exit_hctx(q, set, hctx, j);
1962 free_cpumask_var(hctx->cpumask);
1963 kobject_put(&hctx->kobj);
1970 q->nr_hw_queues = i;
1971 blk_mq_sysfs_register(q);
1974 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
1975 struct request_queue *q)
1977 /* mark the queue as mq asap */
1978 q->mq_ops = set->ops;
1980 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
1984 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
1985 GFP_KERNEL, set->numa_node);
1986 if (!q->queue_hw_ctx)
1989 q->mq_map = set->mq_map;
1991 blk_mq_realloc_hw_ctxs(set, q);
1992 if (!q->nr_hw_queues)
1995 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
1996 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
1998 q->nr_queues = nr_cpu_ids;
2000 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2002 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2003 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2005 q->sg_reserved_size = INT_MAX;
2007 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2008 INIT_LIST_HEAD(&q->requeue_list);
2009 spin_lock_init(&q->requeue_lock);
2011 if (q->nr_hw_queues > 1)
2012 blk_queue_make_request(q, blk_mq_make_request);
2014 blk_queue_make_request(q, blk_sq_make_request);
2017 * Do this after blk_queue_make_request() overrides it...
2019 q->nr_requests = set->queue_depth;
2021 if (set->ops->complete)
2022 blk_queue_softirq_done(q, set->ops->complete);
2024 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2027 mutex_lock(&all_q_mutex);
2029 list_add_tail(&q->all_q_node, &all_q_list);
2030 blk_mq_add_queue_tag_set(set, q);
2031 blk_mq_map_swqueue(q, cpu_online_mask);
2033 mutex_unlock(&all_q_mutex);
2039 kfree(q->queue_hw_ctx);
2041 free_percpu(q->queue_ctx);
2044 return ERR_PTR(-ENOMEM);
2046 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2048 void blk_mq_free_queue(struct request_queue *q)
2050 struct blk_mq_tag_set *set = q->tag_set;
2052 mutex_lock(&all_q_mutex);
2053 list_del_init(&q->all_q_node);
2054 mutex_unlock(&all_q_mutex);
2056 blk_mq_del_queue_tag_set(q);
2058 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2059 blk_mq_free_hw_queues(q, set);
2062 /* Basically redo blk_mq_init_queue with queue frozen */
2063 static void blk_mq_queue_reinit(struct request_queue *q,
2064 const struct cpumask *online_mask)
2066 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2068 blk_mq_sysfs_unregister(q);
2071 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2072 * we should change hctx numa_node according to new topology (this
2073 * involves free and re-allocate memory, worthy doing?)
2076 blk_mq_map_swqueue(q, online_mask);
2078 blk_mq_sysfs_register(q);
2082 * New online cpumask which is going to be set in this hotplug event.
2083 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2084 * one-by-one and dynamically allocating this could result in a failure.
2086 static struct cpumask cpuhp_online_new;
2088 static void blk_mq_queue_reinit_work(void)
2090 struct request_queue *q;
2092 mutex_lock(&all_q_mutex);
2094 * We need to freeze and reinit all existing queues. Freezing
2095 * involves synchronous wait for an RCU grace period and doing it
2096 * one by one may take a long time. Start freezing all queues in
2097 * one swoop and then wait for the completions so that freezing can
2098 * take place in parallel.
2100 list_for_each_entry(q, &all_q_list, all_q_node)
2101 blk_mq_freeze_queue_start(q);
2102 list_for_each_entry(q, &all_q_list, all_q_node) {
2103 blk_mq_freeze_queue_wait(q);
2106 * timeout handler can't touch hw queue during the
2109 del_timer_sync(&q->timeout);
2112 list_for_each_entry(q, &all_q_list, all_q_node)
2113 blk_mq_queue_reinit(q, &cpuhp_online_new);
2115 list_for_each_entry(q, &all_q_list, all_q_node)
2116 blk_mq_unfreeze_queue(q);
2118 mutex_unlock(&all_q_mutex);
2121 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2123 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2124 blk_mq_queue_reinit_work();
2129 * Before hotadded cpu starts handling requests, new mappings must be
2130 * established. Otherwise, these requests in hw queue might never be
2133 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2134 * for CPU0, and ctx1 for CPU1).
2136 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2137 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2139 * And then while running hw queue, flush_busy_ctxs() finds bit0 is set in
2140 * pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2141 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list
2144 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2146 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2147 cpumask_set_cpu(cpu, &cpuhp_online_new);
2148 blk_mq_queue_reinit_work();
2152 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2156 for (i = 0; i < set->nr_hw_queues; i++) {
2157 set->tags[i] = blk_mq_init_rq_map(set, i);
2166 blk_mq_free_rq_map(set, set->tags[i], i);
2172 * Allocate the request maps associated with this tag_set. Note that this
2173 * may reduce the depth asked for, if memory is tight. set->queue_depth
2174 * will be updated to reflect the allocated depth.
2176 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2181 depth = set->queue_depth;
2183 err = __blk_mq_alloc_rq_maps(set);
2187 set->queue_depth >>= 1;
2188 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2192 } while (set->queue_depth);
2194 if (!set->queue_depth || err) {
2195 pr_err("blk-mq: failed to allocate request map\n");
2199 if (depth != set->queue_depth)
2200 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2201 depth, set->queue_depth);
2207 * Alloc a tag set to be associated with one or more request queues.
2208 * May fail with EINVAL for various error conditions. May adjust the
2209 * requested depth down, if if it too large. In that case, the set
2210 * value will be stored in set->queue_depth.
2212 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2216 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2218 if (!set->nr_hw_queues)
2220 if (!set->queue_depth)
2222 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2225 if (!set->ops->queue_rq)
2228 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2229 pr_info("blk-mq: reduced tag depth to %u\n",
2231 set->queue_depth = BLK_MQ_MAX_DEPTH;
2235 * If a crashdump is active, then we are potentially in a very
2236 * memory constrained environment. Limit us to 1 queue and
2237 * 64 tags to prevent using too much memory.
2239 if (is_kdump_kernel()) {
2240 set->nr_hw_queues = 1;
2241 set->queue_depth = min(64U, set->queue_depth);
2244 * There is no use for more h/w queues than cpus.
2246 if (set->nr_hw_queues > nr_cpu_ids)
2247 set->nr_hw_queues = nr_cpu_ids;
2249 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2250 GFP_KERNEL, set->numa_node);
2255 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2256 GFP_KERNEL, set->numa_node);
2260 if (set->ops->map_queues)
2261 ret = set->ops->map_queues(set);
2263 ret = blk_mq_map_queues(set);
2265 goto out_free_mq_map;
2267 ret = blk_mq_alloc_rq_maps(set);
2269 goto out_free_mq_map;
2271 mutex_init(&set->tag_list_lock);
2272 INIT_LIST_HEAD(&set->tag_list);
2284 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2286 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2290 for (i = 0; i < nr_cpu_ids; i++) {
2292 blk_mq_free_rq_map(set, set->tags[i], i);
2301 EXPORT_SYMBOL(blk_mq_free_tag_set);
2303 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2305 struct blk_mq_tag_set *set = q->tag_set;
2306 struct blk_mq_hw_ctx *hctx;
2309 if (!set || nr > set->queue_depth)
2313 queue_for_each_hw_ctx(q, hctx, i) {
2316 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2322 q->nr_requests = nr;
2327 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2329 struct request_queue *q;
2331 if (nr_hw_queues > nr_cpu_ids)
2332 nr_hw_queues = nr_cpu_ids;
2333 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2336 list_for_each_entry(q, &set->tag_list, tag_set_list)
2337 blk_mq_freeze_queue(q);
2339 set->nr_hw_queues = nr_hw_queues;
2340 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2341 blk_mq_realloc_hw_ctxs(set, q);
2343 if (q->nr_hw_queues > 1)
2344 blk_queue_make_request(q, blk_mq_make_request);
2346 blk_queue_make_request(q, blk_sq_make_request);
2348 blk_mq_queue_reinit(q, cpu_online_mask);
2351 list_for_each_entry(q, &set->tag_list, tag_set_list)
2352 blk_mq_unfreeze_queue(q);
2354 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2356 void blk_mq_disable_hotplug(void)
2358 mutex_lock(&all_q_mutex);
2361 void blk_mq_enable_hotplug(void)
2363 mutex_unlock(&all_q_mutex);
2366 static int __init blk_mq_init(void)
2368 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2369 blk_mq_hctx_notify_dead);
2371 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2372 blk_mq_queue_reinit_prepare,
2373 blk_mq_queue_reinit_dead);
2376 subsys_initcall(blk_mq_init);